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Nonlinear Raman vibrational excitation of a trapped ion
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Raman sideband excitations driven by counterpropagating Raman beams are analyzed for the trapped ion
under the localization conditions in and beyond the Lamb-Dicke regime. Multiquantum vibrational couplings
are demonstrated to produce significant effects on the Raman sideband transitions and the relevant Raman
excitations of the trapped ion beyond the Lamb-Dicke regime. The quantum features of the vibrational states
attained by exciting the motional ground state are closely associated with the nonlinear vibronic couplings,
Raman excitation, and localization conditions. Quantum entanglement and quantum interference are discussed
for the trapped ion under various Raman excitation and localization conditions. The results are compared with
the recent experiments. Further experimental attempts are proposed to use the single trapped25Mg1 ion in a
linear ion trap.@S1050-2947~99!07603-9#

PACS number~s!: 32.80.Pj, 42.50.Vk, 42.50.Md, 32.80.Qk
th
g

ca
at
na
i

le
he
ze
d
ve
ni
-

di
a

ap

un
a

in
o

he
de
n

m
y-
t
c
te

ets,

ter-
ms
or-
he

wo-
the
y

he
al

an
o a
ser

nd
o-
to

. It
ten-
ra-
nce
uch
ter-
i-
nt
n an

ly
of

t to
dy-

t to
a

an
Ra-
on-
I. INTRODUCTION

Recently, it has been of increasing interest to study
quantized motion of a single trapped ion for its intriguin
applications in quantum optics@1–4#. In an ion trap, the
center-of-mass motion of the ultracold single trapped ion
be approximately regarded as an ideal harmonic oscill
with discrete eigenstates. It is clear that the ionic inter
excitation or deexcitation driven by classical laser fields
usually accompanied by vibronic couplings, which enab
the realization of some cavity QED experiments with t
quantized radiation fields being replaced by the quanti
motion of the trapped ion@5#. Consider a two-level trappe
ion interacting with a classical traveling- or standing-wa
laser field tuned to the first motional sideband. The vibro
Jaynes-Cummings type@6,7# and nonlinear vibronic Jaynes
Cummings type couplings may be observed@8,9# in an ion
trap in and beyond the Lamb-Dicke~LD! regime, respec-
tively, where the LD regime is defined as a localization
mension much smaller than the wavelength of the relev
ionic transition.

Moreover, recent developments in laser cooling and tr
ping techniques, especially sideband laser cooling@10# and
stimulated Raman sideband cooling techniques@11,12#, have
enabled experimental attainments of the motional gro
state with high probabilities. Such a well-defined state m
serve as the initial condition for preparing some interest
quantum motional states of trapped particles, such as F
states @13–19#, coherent states@18,20–22#, vibrational
‘‘Schrödinger cat’’ states@23–25#, and squeezed states@20–
22,26#. In their remarkable experiments in the rf~Paul! ion
trap @18,23#, Wineland and his co-workers have proved t
feasibility of implementing the first and second Raman si
band excitations to displace and squeeze the vibratio
ground state, respectively. The Raman excitation sche
allow elimination of the electronic transitions from the d
namics of the system. It has already been demonstrated
the appropriately selected sequence of Raman sideband
plings closely correlated with the relevant internal spin sta
PRA 591050-2947/99/59~3!/2174~12!/$15.00
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could produce entangled quantum-mechanical wave pack
and in particular vibrational ‘‘Schro¨dinger cat’’ states@23#.

Consider a configuration where a single trapped ion in
acts with two counterpropagating traveling-wave laser bea
tuned far off any internal electronic resonances, with the c
responding wave-vector difference pointing to one of t
principal trap axes of the ion trap, for example thez axis.
Under sideband resonance, the laser beams will drive t
photon Raman transitions between vibrational levels. In
LD limit, if the two applied laser beams differ in frequenc
by n (n is the trap frequency along thez axis!, the Raman
excitation acts as a ‘‘Raman motional displacement’’ in t
LD approximation, i.e., it displaces the initial vibration
ground state to a coherent motional state while the Ram
excitation squeezes the initial vibrational ground state t
vacuum squeezed state of motion if the two applied la
beams differ in frequency by 2n. However, the LD approxi-
mation becomes invalid for a trapped ion localized beyo
the LD regime. In such a case the interference of the m
tional wave packets with the irradiating laser waves leads
nonlinear modification of the Raman sideband excitations
was theoretically demonstrated that, when the spatial ex
sion of the motional wave packet is comparable to the ir
diating laser wavelength, there exists destructive interfere
between the motional wave packet and the laser wave. S
destructive interference may even cause the atom-field in
action to break down@27#. We note that the recent exper
ments@18,23# in connection with the preparation of cohere
and vacuum squeezed motional states were performed i
ion trap slightly beyond the LD regime, with a typical LD
parameterh'0.2. The experimental results were simp
analyzed using the LD approximation, taking no account
the nonlinear vibronic couplings. It seems to be importan
provide more accurate theoretical analyses for the alrea
done experiments. Moreover, it is of experimental interes
check what kinds of motional states can be excited from
vibrational ground state by the nonlinearly modified Ram
sideband interaction, what kinds of quantum feature the
man excited motional states may exhibit, whether the n
2174 ©1999 The American Physical Society
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linearly modified Raman excitations can be used to st
quantum entanglement and interference, whether the atta
motional states can be used for further quantum optics
periments, and so on. This paper will address these q
tions. We will also discuss in detail the characteristics of
Raman sideband excitations for single trapped ions in
beyond the LD limit.

This paper is organized as follows. In Sec. II, a theoreti
model is introduced. Section III discusses the quantum
tures of the nonlinearly excited vibrational states of the io
motion. In Sec. IV, we discuss the quantum interference
the displaced motional states. A conclusion is given in S
V, where an experiment is proposed to use a single trap
25Mg1 ion in a miniature linear trap. In Appendix A, a
approximate master equation is derived to describe the in
action of a trapped ion with two traveling-wave laser beam
Appendix B gives an efficient numerical procedure to in
grate the Schro¨dinger equation in Sec. II.

II. THEORETICAL MODEL

We consider that a trapped ion interacts with two rad
tion fields of frequenciesvL1 and vL2 . Assume that the
propagating directions of the applied laser fields are arran
so that the wave-vector difference points along one of
principal trap directions, say, for example, thez axis. Hence
vibronic Raman couplings only occur for the center-of-ma
motion in thez dimension. Note that the three degrees
freedom of the center-of-mass motion in the three princi
directions can be considered independently, and that the
plied laser fields produce no observable effects on the cen
of-mass motion in thex andy dimensions. We may therefor
simply restrict ourselves to the one-dimensional motion
the z direction. If the laser frequencies are tuned far off a
electronic resonances, the laser fields drive the off-reso
electronic transitions between an electronic ground state
intermediate states. As shown in Appendix A, a stand
adiabatic elimination can be applied to intermediate sta
and the interaction of the total system can be simplified
effective two-photon Raman couplings between vibratio
levels. The Hamiltonian takes the form

H5Htp1Heff , ~1a!

Htp5\nS a†a1
1

2D , ~1b!

Heff5\R@ei ~Dkz2Dvt !1 if1H.c.#, ~1c!

whereHtp andHeff are the Hamiltonians for the ionic motio
of the trapped ion and effective two-photon Raman c
plings, respectively,Dk5ez•(k12k2) and Dv5vL12vL2
are the wave-vector difference along the z-direction (ez de-
notes the unit vector in the z-direction! and frequency differ-
ence of the applied laser fields, respectively,k1 and k2 de-
note the laser wave vectors,R is the real~positive! effective
two-photon coupling constant,f is the phase difference o
the two laser beams, anda5@Mn/(2\)# (1/2)@z1 ip/(Mn)#
is the usual annihilation operator for the harmonic oscilla
(z andp are position and momentum operators, respectiv
andM is the ionic mass!.
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If the laser frequencies are tuned to thel th Raman side-
band resonance, i.e.,vL12vL25 ln, the effective Hamil-
tonian of the Raman interaction can be simplified in the
called rotating-wave approximation in the weak excitati
regime, where the effective two-photon Rabi frequencyR is
much smaller than the trap frequencyn. In a rotating frame
defined by the unitary transformationHeff→U0HeffU 0

† with
U05exp(2inta†a), the effective Hamiltonian takes the form
@27,28#

Hl ,f5\Reif2h2/2(
m50

1`
~ ih!2m1 l

m! ~m1 l !!
~a†!mam1 l1H.c.,

~2!

where h5@\(Dk)2/2Mn#1/2 is the LD parameter for the
two-photon transitions. We have expanded the fac
exp(iDkz)5exp@ih(a†1a)# in orders ofh @27,28#

eiDkz5expS 2
h2

2 D(
l>0

1`

(
m50

1`
~ ih!2m1 l

m! ~ l 1m!!

3@~a†!mam1 l1~a†!m1 lam#. ~3!

Terms containing time-dependent factors such as exp(iknt)
are neglected in the spirit of the vibrational rotating-wa
approximation, wherek is a nonzero integer. It should b
reminded that sideband transitionsun1 l &→un& with u l u>2
are approximately forbidden for a trapped ion in the LD r
gime. But for the case of large LD parameters, the LD a
proximation does not hold. The multiquantum motional e
citation causes nonlinearity in sideband couplings@27,28#.
For example, for the first sideband transitions (un&→un
11&), there exist a lot of terms of excitation described
(a†)m11am, each proportional toh2m11(m50,1,2, . . . ).
Such vibrational multiquantum couplings contribute sign
cantly to Raman sideband transitions. The associated
bronic coupling constant betweenun& and un1 l & is actually
proportional to

Vn,n1 l5^nuexp@ iDkz#un1 l &

5expF2
h2

2 G~ ih! lA n!

~n1 l !!
Ln

l ~h2! ~ for l>0!,

~4!

whereLn
l is an associated Laguerre polynomial@27,28#.

The time evolution of the quantized motion is govern
by the time evolution operator

Ul ,f~ t ![expS 1

i\
Hl ,ft D . ~5!

From the initial vibrational ground stateu0&, the trapped ion
is excited touc l(t)&f[Ul ,f(t)u0& after a Raman interaction
with a durationt. Numerically,uc l(t)&f can be calculated by
solving the Schro¨dinger equation i\]uc l(t)&f /]t
5Hl ,fuc l(t)&f with the initial conditionuc l(t50)&f5u0&.
An efficient numeric procedure is presented in Appendix
for solving this equation.
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III. RESULTS AND DISCUSSIONS

In what follows, we will demonstrate that the nonlinear
modified Raman vibrational excitations can be used to cre
some novel nonclassical motional states of a trapped
from the initial vibrational ground state.

A. The first sideband Raman displacement

For a trapped ion under localization condition in the L
limit, a displacement operator can be experimentally reali
by the use of displacement Raman beams of traveling-w
radiation fields which differ in frequency byn @23#. The
applied laser fields create Raman couplings between vi
tional levels, which are governed by a rotating-wav
approximation Hamiltonian as H1,f' i\Rhaeif

2 i\Rha†e2 if to the first order ofh. Such Raman interac
tion will excite the initial vibrational ground state to the sta
uc(t)&5U1,f(t)u0&, where the time-evolution operato
U1,f(t) approximates the displacement operatorU1,f(t)
'D(2Rthe2 if), with the displacement operator being d
fined by D(a)5exp(aa†1a*a). uc(t)& is therefore a coher
ent state with an average vibrational number^n(t)&
5uRthu2 and phasee2 if1 ip. Note that all the above analy
ses are based upon the LD perturbation approximation to
first order of the LD parameterh. Moreover, the polarization
of the applied laser beams and the internal ground-state
level can be properly chosen so that the displacement be
only affect the motional states correlated with the selec
ground-state sublevel@23#. The attained coherent motiona
state is then correlated with the relevant electronic gro
state.

Beyond the LD regime, the vibronic couplings includ
contribution from many multiquantum processes such
(a†)mam1 l and (a†)m1 lam. The time-evolution operato
U1,f(t) is obviously different from the displacement oper
tor, anduc1(t)&f5U1,f(t)u0& is no longer a coherent state o
motion. Note thatU1,f(t) can be simplified as a displaceme
operator when only terms of the first order ofh are consid-
ered. In this sense,U1,f(t) may be regarded as an extend
displacement operator. Because the vibrational mode is n
linearly coupled during the Raman excitations, we may te
U1,f as a ‘‘nonlinear displacement operator.’’

Figure 1 gives the spatial probability distributions of t

FIG. 1. The spatial probability distribution p(x)
5 z^xuc1(t)&f50z2 of a vibrational wave packet excited by Rama
beams withf50.0 andRt515.0, wherex is defined asx5z/a0

with a05A\/(Mn). The ion is trapped with the LD parametersh
50.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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wave packetsuc1(t)&f50 under various localization condi
tions (h50.1–0.5), and with the Raman interaction are
Rt515.0 @23#. For small LD parameters, the wave pack
uc1(t)&f is approximately of Gaussian shape, and the co
sponding wave-packet state approximates a coherent
Note thath50.2 andRt515.0 corresponds to the exper
mental situation in Ref.@23#. For large LD parameters, th
wave packets become spatially spread. Each wave pa
may even consist of many separate subpackets@30#.

On the basis of vibrational Fock states,uc1(t)&f can be
expanded as a coherent superpositionuc1(t)&f
5(n50cn(t)un& with cn(t)5^nuc1(t)&f . The coefficients
cn(t) depends on the details of the Raman interaction. T
occupation probability in the vibrational stateun& is given by
p(n)5ucn(t)u2. Figure 2 gives an example of the occupati
distribution of the displaced motional statesuc1(t)&f50 with
Raman pulseRt515.0, where the LD parameters are s
lected ash50.1, 0.2, 0.3, 0.4, and 0.5, respectively. No
that p(n)5exp(2uau2)uau2n/n! for a coherent motional state
ua&. It is clear that, for the case of a large LD parameter,
occupation distribution ofuc1(t)&f50 deviates from that of
any coherent motional states.

The quantum statistics ofuc1(t)&f can be characterized
by Q5(^N̂2&2^N̂&2)/^N̂&21, which satisfiesQ50 for the
Poissonian distribution,Q.0 for the super-Poissonian dis
tribution, and Q,0 for the sub-Poissonian distribution
whereN̂5a†a. In Fig. 3, Q is plotted as a function of Ra
man excitation areaRt, which clearly shows that the attaine
vibrational wave packet may be of sub- or super-Poisson
statistics dependent on the details of the Raman excitatio
is interesting to note thatQ is negative (Q'20.27) for the
displaced motional state attained in Ref.@23# with h'0.2
andRt'15.0. The quantum fluctuations of the dimensionle
momentum p̃5 i (a†2a)/2 and positionz̃5(a1a†)/2 are
shown in Figs. 4~a! and 4~b!, respectively, where motiona

FIG. 2. The occupation distribution of vibrational stat
U1,f50(t)u0&, with Raman excitation areaRt515.0, driven by two
Raman displacement beams which differ in frequency by the
frequency along the associated principal trap axis (n). The LD
parameters are selected ash50.1, 0.2, 0.3, 0.4, and 0.5, respe
tively.
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squeezing is demonstrated to occur in the position direc
with appropriate Raman displacements. Note thatuc1(t)&f is
no longer a minimum-uncertainty vibrational state, i.

^(D z̃)2&^(D p̃)2&.1/16. Particularly, the displaced motion
state withh'0.2 andRt'15.0 is a position-squeezed on
This can also be seen from Fig. 1, which indicates suc
wave-packet state actually has a narrower shape than th
a coherent one@13–17#.

B. The second sideband Raman excitations

Let us examine the nonlinearly modified second-sideb
Raman excitations of the vibrational ground state. Figur
depicts the spatial probability distributions of the motion
wave packetsuc2(t)&f5p/2 under various localization an
Raman excitation conditions. For a small LD parame
z^zuc2(t)&f5p/2z2 is of a Gaussian shape. Note that
‘‘vacuum squeezed’’ stateucsq&5exp@r/2(a†22a2)#u0& can
be expressed in the position representation as^zucsq&

FIG. 3. The vibrationalQ function of the stateU1,f50(t)u0& of
the trapped ion with the LD parametersh50.1 ~wide solid line!,
h50.2 ~thin dotted line!, h50.3 ~thin solid line!, h50.4 ~wide
dotted line!, andh50.5 ~dotted-dashed line!, respectively, for dif-
ferent Raman pulses (Rt50.0;30.0).

FIG. 4. The quantum fluctuationsDz5^(D z̃)2&21/4 and Dp

5^(D p̃)2&21/4 of the dimensionless position and momentum o

eratorsz̃5(a1a†)/2 andp̃5(a2a†)/2i for a vibrational state ex-
cited by different Raman pulses (Rt50.0;30.0 andf50.0), re-
spectively. The LD parameters of the trapped ion are chosenh
50.1 ~thin solid line!, h50.2 ~thin dotted line!, h50.3 ~thin
dashed line!, h50.4 ~wide solid line!, and h50.5 ~wide dotted
line!, respectively.
n

,

a
of

d
5
l

r,

5c(z,s)5@1/(ps2)1/4#exp(2z2/s2) with s5exp(2r). For
example, for a LD parameterh50.2 and Raman pulse are
Rt550.0, we can get a squeezed wave packet as show
Fig. 5~a!. In a recent experiment@18#, a nearly ‘‘vacuum
squeezed’’ state has been attained with second-sideband
man excitations. On the other hand, a double-peaked sp
distribution can be attained with some larger Raman pu
areas. Figure 5~b! gives the spatial probability distribution
for Rt580.0. Clearly, a double-peaked wave packet diffe
from a Gaussian-shaped ‘‘vacuum squeezed’’ one.

For larger LD parameters, the nonlinearly modifie
second-sideband Raman excitations with appropriate a
Rt can even split the motional ground state into two spatia
separate wave packets. In Fig. 6, we plot the spatial pr
ability distributions of the wave packets for LD paramete
and Raman pulse areash50.3 andRt550.0~a!, h50.4 and
Rt525.0~b!, andh50.5 andRt515.0~c!, respectively. The
free time evolution of the two spatially separate wave pa
ets is also shown at some time points (t f
50, T/8, T/4, 3T/8, andT/2 with T5p/n) after the Raman
interaction, wheret f50 represents the time point just afte
the Raman interaction is switched off.

Numerical calculations show that there exists a particu
range ofRt with which the second-sideband Raman exci
tions are approximately equivalent to a coherent splitter
the motional ground~Gaussian-shaped! wave packet. For ex-
ample, Fig. 7 indicates that spatial splittings can be attai
with Rt515.0–30.0 andh50.4 @29#.

Physically, the splitting originates in the quantum inte
ference between vibrational levels. If the motional state
prepared in a proper superposition of vibrational Fock sta
there may exist destructive interferences in a wide ra
around the center point of the trap, leading to a vanish
local spatial probability. Therefore the resulting wave pac
consists of two spatially separate parts. The free time ev
tion of the motional states changes the relative pha

-

FIG. 5. The spatial probability distributions ofuc2(t)&f5p/2 and
the associated free evolutions forh50.2 andRt550.0 ~a! andRt
580.0 ~b!, respectively. p(x) is given by p(x)
5 z^xuc2(t)&f5p/2z2, where x is defined asx5z/a0 with a0

5A\/(Mn). The free time evolution after the preparation (t f50)
is shown in the spatial probability distributions for some selec
time pointst f50.0 ~solid line!, T/8 ~dotted line!, T/4 ~dot-dashed
line!, 3T/8 ~gray line!, andT/2 ~thin solid line! (T5p/n), respec-
tively.
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of the vibrational Fock-state components, and thus chan
the interference features. When the two parts spatially o
lap at the center of the trap during the oscillation, interf
ence fringes can be expected in the spatial probability dis
bution. As a whole, by the use of the nonlinearly modifi
second-sideband Raman excitations, the motional gro
state~Gaussian-shaped wave packet! is coherently split into
two symmetric vibrational wave packets localized at dist
guishable positions. Each of the split packets undergoes
same motion but with a phase difference ofp. The two

FIG. 6. The spatial probability distributions ofuc2(t)&f5p/2 and
the associated free time evolution forh50.3 andRt550.0 ~a!, h
50.4 andRt525.0 ~b!, andh50.5 andRt515.0 ~c!, respectively.
For clarity, ~a!, ~b!, and ~c! are all split into two graphs, respec
tively. p(x) is given byp(x)5 z^xuc2(t)&f5p/2z2, wherex is defined
as x5z/a0 with a05A\/(Mn). The free time evolution after the
preparation (t f50) is shown in the spatial probability distribution
for some selected time pointst f50.0 ~solid line!, T/8 ~gray line!,
T/4 ~dot-dashed line!, 3T/8 ~dotted line!, andT/2 ~thin solid line!
(T5p/n), respectively.

FIG. 7. The spatial probability distributions ofuc2(t)&f5p/2 at
t f50 for h50.4. The Raman pulse area is selected asRt510.0
~dot-dashed line!, 15.0 ~gray line!, 20.0 ~wide dotted line!, 25.0
~dotted line!, and 30.0~solid line!, respectively. For clarity, the
graph is split into two parts,~a! and ~b!. p(x) is given by p(x)
5 z^xuc2(t)&f5p/2z2, where x is defined asx5z/a0 with a0

5A\/(Mn).
es
r-
-
i-

nd

-
he

resulting packets pass through and thus interfere with e
other near the center point of the harmonic trap. Quant
interferences induce interference fringes in the spatial pr
ability distribution, which are determined by the phase d
ference between the de Broglie waves associated with
two split wave packets. Based on this motional wave-pac
splitting, one may build an ion-trap interferometer to obse
the quantum interference between the de Broglie waves
sociated with the two motional wave packets@30#.

Let us now discuss the quantum features of the seco
sideband excitation on the basis of the vibrational Fo
states. For a small LD parameter, the related effective Ha
tonian approximatesH2,f52\Rexp(if)h2a2/21H.c. up to
the second order ofh, and thereforeuc2(t)&f is approxi-
mately a ‘‘vacuum squeezed state,’’ i.e.,uc2(t)&f
5S(e)u0&, where S(e)5exp@(ea†22e*a2)/2# is the
‘‘squeeze’’ operator, withe[r exp(iu)5ih2Rtexp(2if) (r
5h2Rt is the squeezing parameter andu5p/22f is the
squeezing angle!. For example, the squeezed motional sta
attained in the recent experiment@18# ~for a LD parameter
h'0.2) were fitted to have the vibrational occupational d
tribution p2n5sechr (2n)!(tanhr )2n/(2nn!) 2, with b
[exp(2r)540610 ~i.e., Rt54563). However, for a large
LD parameter, the Raman interaction produces a com
cated superposition of vibrational states~see Fig. 8!. The
occupation distribution for such a superposed motional s
is shown in Fig. 8 with the LD parametersh50.2, 0.3, and
0.4, respectively. The population distribution is restricted
the even vibrational states. One may see that the Ra
excitation of the trapped ion with a relatively large LD p
rameter gives rise to a population distribution obviously d
viating from that of an ideal vacuum squeezed vibratio
state. The difference originates in the nonlinear modificat
of the associated second-sideband vibronic coupling c
stants between vibrational levelsun& and un12&, which
are proportional to uVn,n12u5 z^nuexp@ih(a1a†)#un12&z
5 1

2 h2A(n11)(n12)1O(h4). When n is large andh is

FIG. 8. The occupation probabilityp(n) of the vibrational state
U2,f(t)u0& with f5p/2 andRt530.0. The LD parameters for th
trapped ion are h50.2, 0.3, and 0.4, respectively.p(n)
5 z^nuc2(t)&f5p/2z2.
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not too small, the nonlinear terms included inO(h4) pro-
duce significant effects on the Raman excitation.

The intriguing quantum statistics are illustrated in Fig.
With some particular Raman excitations, quadrature vib
tional squeezing for the dimensionless momentum oper
p̃5 i (a†2a)/2 can be produced. Only in the first order of th
LD expansion do the quantum fluctuations of the dimensi
less position and momentum operators (z̃ and p̃) of the state
U2,f(t)u0& approximately satisfy the minimum-uncertain
relation ^(D z̃)2&^(D p̃)2&51/16, which is a signature of th
vacuum squeezed state. The stateU2,f(t)u0& can then be
thought of as an extension of the ‘‘vacuum squeezed sta
of motion of the trapped ion beyond the LD regime.

C. l th „ l>2… sideband Raman excitations

In a similar way, by the use of Raman beams which dif
in frequency byln, the initial ground state of motion is
driven to uc l(t)&f5Ul ,f(t)u0& after a Raman interaction
with a durationt.

In Fig. 10, we plot the vibrational occupation probabili

FIG. 9. The quantum fluctuationDp5^(D p̃)2&21/4 of the di-

mensionless momentum operatorp̃5(a2a†)/2i of the vibrational
stateU2,f5p/2(t)u0& of a trapped ion with the LD parametersh
50.2, 0.3, 0.4, and 0.5, respectively. The motional state is exc
by Raman pulses tuned to the second sideband resonanceRt
50.0–50.0).

FIG. 10. The occupation distribution of a vibrational wa
packetU3,f50(t)u0& of a trapped ion with the LD parametersh
50.4 and 0.5, respectively, which is excited by Raman pulsesRt
520.0) with a frequency difference of 3n. The inset is the replot of
the occupation distribution for vibrational levelsn>12 in a small
p(n) scale.
.
-

or

-

’’

r

for the motional stateuc3(t)&f of the trapped ion with the
LD parametersh50.4 and 0.5, respectively. Figure 11 illus
trates the occupation distribution of the vibrational sta
uc4(t)&f with the LD parametersh50.5 and 0.6, respec
tively. From the occupation distributions of the stat
uc3(t)&f and uc4(t)&f , one can see that the main portion
the population is still in the vibrational ground state for bo
cases. A small portion of the population distributes amo
the Fock statesun53k& for uc3(t)&f and un54k& for
uc4(t)&f(k51,2, . . . ,), respectively. The weak vibrationa
excitation can be easily understood by consideringHl ,f
}h l /( l !) 1O(h l 11).

Both uc3(t)&f and uc4(t)&f possess no quadratur
squeezing. One can readily get the quantum fluctuation
the operators z̃ and p̃,^(D z̃)2&[^z̃2&2^z̃&251/4, and

^(D p̃)2&[^ p̃2&2^ p̃&251/4, for uc3(t)&f and uc4(t)&f , re-
spectively. Therefore bothuc3(t)&f and uc4(t)&f are
minimum-uncertainty motional wave packets. It is intere
ing to check their higher-order squeezing characterist
Let us define the amplitude-squared operators

y15@~a†!2exp~2 i2int !1a2exp~2int !#/2

and

y25 i @~a†!2exp~2 i2int !2a2exp~2int !#/2.

Clearly, y1 and y2 fulfill the commutation relation@y1 ,y2#

5 i (2N̂11) and the uncertainty relation̂Dy1&^Dy2&>^N̂
11/2& @31#. Note that for the statesuc3(t)&f , the quantum
fluctuations satisfy ^(Dy1)2&5^(Dy2)2&5^N̂11/2&, i.e.,
there is no squeezing for the amplitude-squared opera
Figure 12 shows the quantum fluctuation of the amplitu
squared operator (y1) of the motional stateuc4(t)&f under
various Raman excitation conditions, which indicates the
istence of amplitude-squared squeezing, i.e.,^(Dy1)2&,^N̂
11/2&, in some Raman sideband excitation regimes. S
states may be useful to study the effects caused by
amplitude-squared squeezing.

To the lowest order ofh, the effective HamiltonianHl ,f
takes the formHl ,f'\Reif( ih) lal / l ! 1H.c., for example,

d
(

FIG. 11. The occupation distribution of the vibrational sta
U4,f50(t)u0& of a trapped ion with the LD parametersh50.5 and
0.6, respectively, driven by Raman beams which differ in freque
by 4n and have excitation areaRt520.0. The inset is the replot o
the occupation distribution for vibrational levelsn>8 on a small
p(n) scale.
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for the case ofl 54,H4,f'\Rh4eifa4/241H.c. With small
LD parameters,Hl ,f}h l has small vibrational coupling
strengths. For those Raman sideband excitations to be
perimentally observable, relatively large LD paramet
should be used. We will discuss the experimental feasib
later on.

IV. ENTANGLED STATES OF MOTION

Following the procedures used in Ref.@23#, one may pre-
pare some interesting entangled states of motion. As a p
tical example, we consider Raman interactions in a sin
trapped25Mg1 ion. Assume that the trapped ion is prepar
initially in the motional ground state and in an equal sup
position of the internal electronic states, i.e., (ug1&
1eimug2&)/A2, with ug1& andug2& being the internal ground
state sublevels such as2S1/2uF52,mF52& and uF53,mF
53&, respectively. If counterpropagatings1-polarized dis-
placement beams are used to couple the internal transi
from 2S1/2uF52,mF52& to the virtual ~off-resonant! state
2P1/2uF53,mF53&, the Raman interaction excites only th
motional states of the trapped ion in the internal ground s
ug1&. At first, such counterpropagatings1-polarized dis-
placement beams~with phase differencef) are used to ex-
cite the motion correlated withug1& to a motional state
uc1&f . And then copropagating beams are applied to p
ducep-pulse Raman pumping betweenug1& and ug2& to ex-
change population of the internal states in the superposit
After the population exchange, the internal statesug1& and
ug2& become correlated with the motional statesu0& and
uc1&f , respectively. The displacement beams~with phase
differencef8) are then switched on to excite the motio
correlated with theug1& component to a second motion
stateuc1&f8 . After that, the total system is in a superpositi
of two independent motional states, each correlated with
internal state of the ion, i.e., the total system is in the
tangled state

uC1&5
ug2& ^ uc1&f1eim8ug1& ^ uc1&f8

A2
, ~6!

FIG. 12. The quantum fluctuation̂(Dy1)2&2^N̂11/2& (N̂
5a†a represents the vibrational phonon number operator! of the
dimensionless amplitude-squared operatory15@(a†)2e2 i2nt

1a2ei2nt#/2 of the vibrational stateU4,f50(t)u0& driven by Raman
pulsesRt520.0. The LD parameters of the trapped ion are selec
ash50.4, 0.5, 0.6, 0.7, and 0.8, respectively.
x-
s
y

c-
le

-

ns

te

-

n.

n
-

with m8 depending onm and the Raman couplings. The co
relation in such an entangled state is not only interesting
quantum measurements, but also in reduction of quan
noise in spectroscopy@26#. For relatively small values of the
LD parameter or for a small Raman excitation area when
attained motional statesuc1&f and uc1&f8 still possess mac-
roscopic features, the entangled state corresponds to a m
scopic superposition of quantum or even nonclassical m
tional wave packets macroscopically localized in spatia
separated positions, which may be useful to study the qu
tum decoherence@32,33#.

The two motional states can be combined with the use
a Ramanp/2-pulse pumping betweenug1& and ug2& to yield
uC&5ug2&uS2&2 i ug1&uS1& @23#, with

uS6&[
uc1&f6eiduc1&f8

2
, ~7!

whered depends onm8 and the relative phases of Rama
pumping beams. This entangled state is generally no
‘‘Schrödinger cat’’ state@23# as in Schro¨dinger’s original
thought experiment@34#, since uc1&f and uc1&f8 are no
longer coherent states of motion for a trapped ion localiz
beyond the LD regime. For small LD parameters, it is s
possible for uc1&f and uc1&f8 to be spatially confined a
separate positions. On the other hand, for large LD par
eters, as already indicated in Fig. 1, bothuc1&f and uc1&f8
may be spatially spread so widely that spatial overlapp
may occur for some portions of the wave packets.

Some interesting questions are worth addressing with
gard to the motional superposition. One is whether the m
soscopic superposition gives rise to observable quantum
terferences, even whenuc1&f and uc1&f8 are not coherent
states of motion, for example, even when the wave pac
are spatially wide-spread or squeezed ones. Another que
is whether the spatial overlapping of some portions~particu-
larly some subpackets! of the widespread wave packets ca
also cause the occurrence of quantum interferences.

In Fig. 13, we plot the spatial probability distribution o
the superposition state@ uc1(t)&f501uc1(t)&f5p]/2 and its
free time evolution after the preparation. As a typical ca
for relatively small LD parameters, we consider the case
h'0.2 andRt'15.0 @23# in Fig. 13~a!. It is clear that the
two symmetric vibrational wave packetsuc1(t)&f50 and
uc1(t)&f5p are initially localized at separate positions, a
that both oscillate in the trap after the preparation. The as
ciated oscillations differ in phase byp. The motion of the
wave packet results obviously from the confinement of
trap potential. The two packets pass through each other
the center point of the harmonic trap. Since there exists
herence between the two packets, quantum interference
cur instead of a simple spatial overlapping when the t
motional wave packets come close together. The quan
interferences induce interference fringes in the spatial pr
ability distribution. As in the standard interferometer
atomic interferometer@35#, the interference fringes are dete
mined by the phase difference between the de Broglie wa
associated with the two separate wave packets. Figure 1~b!
gives an example for the cases of large LD paramet
whereh50.4 andRt515.0 are chosen. One can see that
widespread wave packets can still interfere with each oth

d
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and the spatial overlapping of some subpackets can als
sult in interference fringes in the spatial distribution.
should be pointed out that there may be no distinct stage
separate splitting and interfering periods of the wave pack
when the Raman displacements become so complicated~for
example, for very large LD parameters or long Raman in
action duration! that the displaced wave packetsuc1(t)&f50
anduc1(t)&f5p initially interfere and become spatially indis
tinguishable@30#.

As has been already demonstrated in Ref.@23#, the quan-
tum interferences can be directly measured by detecting
probability P(f,f8)[^S2uS2&. Figure 14 gives the calcu
lated signal

P~w![P~f52w/2,f85w/2!

5~^c1u2w/22^c1uw/2!~ uc1&2w/22uc1&w/2!/4 ~8!

with h50.2 andhRt50.8, 1.2, 2.0, 3.0, and 6.0, respe
tively. According to Figs. 3 and 4, one may see that b
uc1(t)&f50 and uc1(t)&f5p for the parameters selected he

FIG. 13. The free time evolution of the superposition st
@ uc1(t)&f501uc1(t)&f5p]/2 after the preparation (t f50) for ~a!
h50.2 and ~b! h50.4, respectively. Bothuc1(t)&f50 and
uc1(t)&f5p are prepared by displacing the motional ground st
with Raman excitation areasRt515.0. The free time evolution is
shown in the spatial probability distributions of the superposit
state for some selected time points,t f50.0 ~solid line!, T/8 ~dotted
line!, T/4 ~dot-dashed line!, 3T/8 ~gray line!, and T/2 ~thin solid
line! (T5p/n), respectively.x is defined byx5z/a0 with a0

5A\/(Mn).

FIG. 14. The probabilityP(w) that the ion is in theug2& internal
state and theuS2&5(uc1&2w/22uc1&w/2)/2 motional state. The LD
parameter of the trapped ion ish50.2.
re-

to
ts,

r-

he

h

are of sub-Poissonian statistics and position-squeezing p
erties. However, the interference signals in Fig. 14 are si
lar to the experimental data and simple theoretical fits in R
@23#. This implies that theoretical calculations to the fir
order of the LD perturbation may give a quite good pred
tion for the interference signals, if the LD parameter a
Raman excitation area are not too large. At first sight, it m
seem strange that, though the quantum features of the
placed motional statesuc1(t)&f50 deviate significantly from
those of the coherent state, the interference signals differ
observably from those based on the first-order LD pertur
tion. Note that the quantum features of the displaced m
tional statesuc1(t)&f5w/2 or uc1(t)&f52w/2 depend strongly
on w/2, and that the squeezing properties and quantum
tistics are related with the quantum fluctuation operators oz̃

or p̃ andQ value, respectively, while interference signals a
related with the coherence betweenuc1(t)&f5w/2 and
uc1(t)&f52w/2 . One may readily draw a conclusion that th
quantum features ofuc1(t)&f50 have little to do with the
coherence betweenuc1(t)&f5w/2 and uc1(t)&f52w/2 . In Fig.
15, the interference signals are checked withhRt53.0 and
various LD parametersh50.1–3.0. It is shown that quantum
interference can be observed over a wide range of local
tion conditions in spite of the complicated motional displac
ment caused by nonlinear vibrational couplings. We ke
hRt constant in our calculations because Raman displa
ments, to the first-order LD perturbation, are proportional
hRt instead ofRt. This makes it easy to compare the effec
from the nonlinear vibronic couplings under different loca
ization conditions. One can see that, for small LD para
eters, the interference signals are approximately symme
overw5p, i.e.,P(p1w8)'P(p2w8). But P(w) becomes
nonsymmetric overw5p for large LD parameters.

It is clear that one has

P~w!5P~2w!, ~9!

e
FIG. 15. The probabilityP(w) that the ion is in theug2& internal

state and theuS2&5(uc1&2w/22uc1&w/2)/2 motional state. The pa
rameters are selected ashRt53.0 and h50.1;0.5 ~a!, h50.6
;1.0 ~b!, andh51.2, 1.5, 1.8, 2.0, and 3.0~c!, respectively.
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P~w!5P~w14p!, ~10!

which is valid under general Raman coupling and locali
tion conditions. Note that

U1,2w2U1,w5U 1,w2p
† 2U 1,p2w

† , ~11!

U1,2w2U1,w5U 1,2w2p
† 2U 1,p1w

† . ~12!

We derive a symmetric relationship in the weak Raman c
pling limit (R!n),

P~w!5P~w62p!. ~13!

From Eqs.~9! and ~13!, we can immediately get

P~p1w!5P~p2w!. ~14!

This symmetry exists for general localization conditions. B
it become invalid when the nonresonant sideband transit
are taken into account. The effects from the nonreson
sideband transitions will be discussed elsewhere@36#. One
can also see that the interference signals decrease wit
creasingh and finally approach zero forh53.0. This indi-
cates thatuc1(t)&2w/2 and uc1(t)&w/2 spatially overlap, and
that destructive interference occurs for the motional sta
@ uc1(t)&2w/22uc1(t)&w/2]/2. Though the Raman displace
ments are proportional tohRt to the first-order LD perturba
tion, nonlinear modification becomes significant if the L
parameter is large. According to the above discussion c
cerning the first sideband Raman displacement, one may
that the displaced motional wave packets~from the motional
ground state! in general spatially show a distribution with
wide oscillatory spread for weakly trapped ions. This impl
that uc1(t)&2w/2 anduc1(t)&w/2 are not well-separated for an
phasew. The destructive interference betweenuc1(t)&2w/2
and uc1(t)&w/2 therefore causes the interference signalP(w)
to decrease.

Briefly, we have studied quantum interferences of m
tional states of a trapped ion generated from the motio
ground state by using the nonlinear coupling between e
tronic and vibrational degrees of freedom. Depending on
excitation parameters, the quantum statistics of these s
were demonstrated to possess either sub-Poissonian or s
Poissonian character, while the position operator can s
either squeezing or a distribution with a wide oscillato
spread. Quantum interferences were found to be less s
tive to the nonlinearity in the generation of the motion
states and remain essentially unchanged up to very large
parameters of the order of 1. The results obtained may
applied directly to the analysis of the experiment reported
Ref. @23#, providing a more accurate description of the da
~taken forh50.2) than the linear coupling model.

V. CONCLUSION

In conclusion, we have discussed the Raman excita
and its application for the generation of nonclassical state
motion of a trapped ion under localization conditions in a
beyond the LD limit. The nonlinear vibronic couplings in th
Raman processes give rise to novel kinds of excitation of
vibrational ground state. The results were compared to
-
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recent experiments in connection with the generation of
herent states, vacuum squeezed states, and ‘‘Schro¨dinger
cat’’ states of the motion of the trapped9Be1 ion with the
LD parameter h'0.2 @18,23,37#. We note that a pure
quantum-mechanical ground state of motion was recently
tained with a probability of 98%@11# by the use of resolved
sideband stimulated Raman cooling. Further experime
with relatively large LD parameters can be achieved by ad
batically reducing the trap frequency. For example, one m
double the LD parameter by decreasing the value of the
frequency to its quarter. Because the trap frequency
changed adiabatically, the trapped ion will remain in the
brational ground state with unchanged occupation proba
ity @38#. On the other hand, if the well-defined quantum m
tional states can be generated in an ion trap under w
localization condition~i.e., with a relatively large LD param
eter!, the experimental observation of the nonlinearly mo
fied Raman sideband excitations may become easy. As
interesting example, we consider a trapped25Mg1 ion in a
miniature linear trap@39# with a trap frequency ofn
50.6 MHz in the principal trapz axis. If the displacemen
Raman beams counterpropagate along thez axis with laser
frequencies tuned to excite the atomic transitions2S1/2
→ 2P1/2, the LD parameter~for two-photon Raman transi
tions! may be as high ash'0.8. In such a case, the motion
superposition states obtained with displacement Ram
beams are far away from Poissonian ones. Furthermore,
may experimentally decrease the LD parameter~for the
z-dimensional motion! by either increasing the trap fre
quency or properly arranging the Raman beams to propa
along directions with certain angles with the principal trapz
axis. Suppose that the applied laser beams propagate i
rections of anglesu1 andu2 with thez axis, respectively. We
get a LD parameterh5uh1cos(u1)2h2cos(u2)u with h i

5A\ki
2/2Mn( i 51,2). Therefore, it is possible to check th

Raman excitations with various LD parameters. The res
here are of particular interest with regard to the prepara
of quantum and even nonclassical motional states and m
particle entangled states for two or more trapped ions i
linear trap@40–44#.
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APPENDIX A

This appendix gives a derivation of the effective Ham
tonian for the Raman sideband transitions. We consider
a trapped ion interacts with the two applied laser fields
exciting electronic transitions between a hyperfine grou
state u1& and intermediate statesu j & with atomic transition
frequencyv j . The interaction can be described with th
Hamiltonian

H5H01Htp1H int , ~A1a!
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H05\v j u j &^ j u, ~A1b!

Htp5\nS a†a1
1

2D , ~A1c!

H int5\~g1eik1zz2 ivL1t1g2eik2zz2 ivL2t!u j &^1u1H.c.,
~A1d!

whereH0 represents the internal energy,Htp is the external
energy of the trapped ion,H int is the dipole couplings be
tween the ground stateu1& and intermediate stateu j &, g1 and
g2 are, respectively, the associated single-photon coup
constants~complex!, and k1z5ez•k1 and k2z5ez•k2 repre-
sent the components of the wave vectors of the applied l
beams in thez direction, respectively. The phases of the a
plied laser fields (f1,2) are included in the complex couplin
constantsg1,25ug1,2uexp(if1,2).

It should be noted that the dipole couplings between
ground and intermediate states are accompanied by v
tional transitions which are determined by the positio
dependent factors exp(6ik1z,2zz). The dynamics of the sys
tem including internal and external degrees of freedom
governed by the master equation:

]

]t
r5

1

i\
@H,r#1Lspr, ~A2!

where the Liouville operatorLsp describes spontaneou
emission

Lspr52g j 1u1&r̃ j j ^1u22g~ u j &^ j ur1ru j &^ j u!, ~A3!

whereg j 1 is the spontaneous decay rate from the interme
ate stateu j & to the hyperfine ground stateu1&, andg denotes
the spontaneous decay rate out of the excited stateu j &. The
latter normally includes spontaneous emission out of the
lated internal levelsu1& andu j &. Other ground-state subleve
are often experimentally depopulated by appropriate
pumping laser beams. For simplicity, we neglect the m
chanical effects due to spontaneous decay to~or repumping
out of! sublevels other thanu1&. We use the symbolr̃ j j to
account for the spontaneous recoils, which are given by
integration over all the directions of the spontaneously em
ted photons, weighted by an angular distribution funct
Ws(u),

r̃5E
21

1

duWs~u!e2 ik0zureik0zu, ~A4!

wherek05v j /c. For a dipole transition, the angular distr
bution of the spontaneous emission takes the formW61(u)
5 3

8 (11u2) or W05 3
4 (12u2) if the spontaneously emitte

photon has a polarizations561 or s50, respectively.
In order to study the effects of the quantized center-

mass motion, we define the density matrix eleme
rj,z(n,m)5^j,nuruz,m&(j,z51, or j ), whereun& andum&
label the vibrational Fock states. Working in the interacti
picture defined by the unitary transformationr(t)
5U 0

†(t)rU0(t) with U0(t)5exp@(1/i\)H0t#, one can readily
derive the equations of motion for the matrix elements fr
the master equation~A2!, which read
g

er
-

e
ra-
-

re

i-

e-

-
-

e
t-
n

f-
s

ṙ1,1~n,m!52 i ~n2m!nr1,1~n,m!

2 i(
n1

@g1* un,n1
* ~k1z!e

2 id1t

1g2* un,n1
* ~k2z!e

2 id2t#r j ,1~n1 ,m!

1 i(
n1

@g1un1 ,m~k1z!e
id1t

1g2un1 ,m~k2z!e
id2t#r1,j~n,n1!12g j 1r̃ j , j~n,m!,

~A5a!

ṙ j ,1~n,m!52 i ~n2m!nr j ,1~n,m!2 i(
n1

@g1un,n1
~k1z!e

id1t

1g2un,n1
~k2z!e

id2t#r1,1~n1 ,m!

1 i(
n1

@g1un1 ,m~k1z!e
id1t

1g2un1 ,m~k2z!e
id2t#r j , j~n,n1!2gr j ,1~n,m!,

~A5b!

ṙ j , j~n,m!52 i ~n2m!nr j , j~n,m!2 i(
n1

@g1un,n1
~k1!eid1t

1g2un,n1
~k2z!e

id2t#r1,j~n1 ,m!

1 i(
n1

@g1* un1 ,m* ~k1z!e
2 id1t

1g2* un1 ,m* ~k2z!e
2 id2t#r j ,1~n,n1!

22gr j , j~n,m!, ~A5c!

whered1 andd2 represent the laser frequency detuningsd1
5v j2vL1 andd25v j2vL2 , respectively, andun1 ,n2

(kz) is

defined byun1 ,n2
(kz)5^n1uexp(ikzz)un2&.

If the applied laser fields are far off the atomic resonan
ud1,2u@g,g j 1 ,n,ug1u, andug2u, the intermediate state can b
adiabatically eliminated, and thus the interaction of the to
system becomes

]

]t
r5

1

i\
@\na†a1Heff ,r#1Lcohr1Leffr, ~A6a!

Heff5\Su1&^1u1\@ReiDkzei ~d12d2!t1H.c.#u1&^1u,
~A6b!

Lcohr52 i
n

d2
@C †a†aCr2rC †a†aC1a†arC †C

2C †Cra†a#, ~A6c!

Leffr5L1r1L2r, ~A6d!

L1r5
2g j 1

d2
Cr̃C †2

g

d2
@C †Cr1rC †C#, ~A6e!
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L2r5
g j 1n

d2g
E

21

1

duWs~u!e2 ik0zu~Ar!eik0zu,

Ar5 i @a†aCrC †1Ca†arC †2H.c.#, ~A6f!

where the operatorC is defined by C5g1eik1zz1 id1t

1g2eik2zz1 id2t,r̃ is defined as in Eq.~A4!, and Leffr and
Lcohr represent the effective spontaneous damping and
herent couplings to the order of 1/d2, respectively, with
1/d'1/d1'1/d2 .Heff represents the ac Stark shift of the i
ternal ground state and the effective two-photon Raman
teraction to the order of 1/udu. The ac Stark shiftS is given
by S5(ug1u21ug2u2)/d, and the effective two-photon cou
pling constantR is defined byR5g1* g2 /d. In the above
derivation, we used the assumption that the detuningsud1u
andud2u are much larger thanud12d2u,n,g,ug1u2, andug2u2,
and kept terms up to the order of 1/d2.

Note that all the terms inLeffr andLcohr scale asn/d2 or
g/d2, while the two-photon Raman processes have an ef
tive Rabi frequency and ac Stark shift proportional
g1* g2 /d and (ug1u21ug2u2)/d, respectively. In this paper, w
consider the case of large laser frequency detunings w
only the two-photon coupling indicated inHeff is dominant.
Moreover, the ac Stark shift is independent of the exter
motion. It produces no effects on Raman couplings betw
vibrational sidebands.

APPENDIX B

For large LD parametersh, the perturbation expansion o
exp@iDkz# in terms ofh, as expressed in the Eq.~3!, contains
a lot of terms, which may become very difficult for numer
calculations. Additionally, if d12d2Þ lnz( l 50,61,
62, . . . ), theeffective Hamiltonian expressed in Eq.~A6b!
is time-dependent. IfR;n, one should consider effects from
the non-rotating-wave-approximation terms, since the vib
tional rotating-wave approximation cannot be used. This
pendix gives an efficient procedure to integrate the ma
equation governing the motion of a single trapped ion.

We rewrite the effective Hamiltonian for the interactio
between Raman beams and a trapped ion as kinetic and
tential operators,

H~ t !5K1V~ t !, ~B1a!

K5
p2

2m
, ~B1b!

V~ t !5
1

2
mn2z212\R cos@ iDkz2 iDvt1 if#.

~B1c!
l o
o-

-

c-

re

al
n

-
-

er

o-

The time evolution of the system is given by

uc~ t i !&5U~ t i ,t i 21!uc~ t i 21!&, ~B2!

where uc(t i)& is the state of the system att5t i( i
51,2, . . . ). In ourcases, the trapped ion is assumed to be
the motional ground stateu0& at t5t0 . U(t i ,t i 21) is the
time-evolution operator, which satisfies the Schro¨dinger
equation

dU~ t i ,t i 21!

dti
5

1

i\
H~ t i !U~ t i ,t i 21!. ~B3!

To integrate this equation, one may propagate the solution
a number of repeated short time propagations which can
performed accurately by using a splitting approximation a
the fast Fourier transform~FFT! algorithm @45#. For a suffi-
ciently short time intervalDt5t i2t i 21 during whichH(t)
can be considered as a constant, the propagating ope
U(t i ,t i 21) can be approximated by

U~ t i ,t i 21!'expF2
i

\
DtHS t i1t i 21

2 D G
5expH 2

iDt

\ FK1VS t i1t i 21

2 D G J
'expF2

iDt

2\
VS t i1t i 21

2 D GexpS 2
iDt

\
K D

3expF2
iDt

2\
VS t i1t i 21

2 D G . ~B4!

It can be readily shown that this approximation is accurate
the orderO(Dt)2. In order to use this approximation t
propagate the solution, one starts with the stateuc(t i 21)& at
time t5t i 21 in the position representations where the ope
tor exp$2iDtV@(ti1ti21)/2#/(2\)% is a multiplicative factor,
then by FFT switches to the momentum representat
where the operator exp@(2iDt/\)K# is a multiplicative factor.
Finally, switching back to the position representation by
inverse Fourier transform and multiplying by the numb
exp$2iDtV@(ti1ti21)/2#/(2\)%, one obtains the stateuc(t i)&
at t5t i .

Using the above procedure for numerical solution, o
can easily calculate the Raman vibrational excitation o
trapped ion in the cases of weak confinement~largeh), gen-
eral detunings (DvÞ ln), and strong Raman coupling
~largeR).
r,
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