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Reconstructing wave packets by quantum-state holography
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We analyze and further develop our method of quantum-state holography for reconstructing quantum su-
perposition states in molecules or atoms@Phys. Rev. Lett.80, 1418~1998!#. The technique is based on mixing
the unknownobject statewith a known reference stategenerated in the same system by two delayed laser
pulses, and detecting the total time- and frequency-integrated fluorescence as a function of the delay. The
feasibility of the method is demonstrated by reconstructing various vibrational wave packets in sodium dimers.
Both the cases of completely controlled and noisy relative phase between the laser pulses are considered. In the
latter case, we use the technique of coherence observation by interference noise to recover the interference
component of the fluorescence signal. Our results clearly demonstrate the robustness of quantum-state holog-
raphy and the high quality of reconstruction even in the presence of the external noise.
@S1050-2947~99!06403-3#

PACS number~s!: 32.80.Qk, 42.50.Md, 03.65.Bz, 42.50.Lc
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I. INTRODUCTION

The past few years have seen an upsurge of interest in
old problem of quantum-state preparation and measurem
~see, for example,@1–5#!. Quantum-state preparation dea
with the creation of states of quantum fields or material s
tems in acontrolledmanner. On the other hand, the notion
‘‘measuring a state’’ refers to aseriesof measurements on a
ensembleof identically prepared systems whose outcom
contain all the necessary information to reconstruct
complex-valued wave function or density matrix of the sy
tem from real-valued experimental data. Consequent
phase-sensitivetechniques must be employed to extract t
full phase information of the quantum state of the system

This is a difficult experimental task, and a complete d
termination of quantum states has been achieved for a
systems only. Among them are the measurement of the s
of hydrogen formed in H1-He collisions@6#, of the electro-
magnetic radiation field via eight-port interferometry@7,8#
and optical homodyne tomography@9,10#, and of the vibra-
tory motion of a single ion stored in a Paul trap@11#. More-
over, the motional quantum state of a cold atomic beam
been observed@12#.

In this paper, we address the problem of measuring
quantum state of a molecule@13–19#. Dunn, Walmsley, and
Mukamel have managed to recover experimentally a qu
classical vibrational state of a sodium dimer with the help
emission tomography@13#: By measuring the time-depende
spectrum of the fluorescence of the molecule they were
to reconstruct a generalized phase-space distribution of a
brational wave packet in Na2 . However, their scheme relie
on several approximations which presume an essentially
monic potential. Moreover, this scheme measures
smoothed version of the Wigner function and is theref
hardly capable of reconstructing highly nonclassical featu
if such exist@17#.

Leonhardt and Raymer have shown theoretically how
PRA 591050-2947/99/59~3!/2163~11!/$15.00
he
nt

-

s
e

,

-
w
te

as

e

i-
f

le
vi-

r-
a
e
s,

o

recover the quantum state of a one-dimensional wave pa
in an arbitrary binding potential from its time-dependent p
sition distributions@16#. Unfortunately, this quantity is no
easy to measure experimentally. Moreover, for an anh
monic potential one has to monitor — at least in principle
the temporal evolution of the wave packet for a very lo
time. For example, for a Morse potential one has to meas
@18# the position distribution up to half of the so-called r
vival time Trev @20#.

Many of these problems are overcome by the method
wave function imaging@14,15# which uses both the time
resolved and frequency-resolved fluorescence of the m
ecule. Relying on a basis set expansion it is possible to in
the above data to obtain the complex amplitudes of the c
tributing eigenstates which build up the wave packet. Ho
ever, since the unknown coefficients enter the relevant a
braic equations quadratically, the method is highly sensit
to experimental noise.

In order to resolve this problem, we have recently dev
oped @21# a new linear technique for the reconstruction
quantum superposition states~wave packets!. Because of its
linearity, it overcomes the shortcomings of the wave funct
imaging method. In common to this method, it is able
reconstruct even highly nonclassical states. The new me
was termed ‘‘quantum-state holography,’’ as a natural g
eralization of optical holography to material waves.

In the present paper we describe in detail the method
quantum-state holography, and demonstrate its feasibility
numerically simulating the reconstruction of vibration
wave packets in sodium dimers. In particular, we study t
realizations of the method, which use stable or noisy int
ferometers. In the latter case, the recently proposed techn
of coherence observation by interference noise~COIN!
@22,23# is utilized for a simple and robust implementation
quantum holography. Different inversion schemes are tes

The organization of the paper is as follows: In Sec. II w
outline the idea of quantum-state holography for the rec
2163 ©1999 The American Physical Society
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2164 PRA 59AVERBUKH, SHAPIRO, LEICHTLE, AND SCHLEICH
struction of molecular quantum states. We devote Sec. II
an application of this technique to the case of a stable in
ferometer and demonstrate its feasibility by numerica
simulating the reconstruction of complicated coherent sup
position states. We include random measurement error
test the stability of our scheme and discuss the role of
reference state in the performance of quantum-state holo
phy. In Sec. IV we generalize the method to treating no
COIN interferometers and study the dependence of the
construction fidelity on the magnitude of experimental noi
We summarize the main results of the paper in Sec. V
discuss further potential applications of our method.

II. PRINCIPLES OF QUANTUM-STATE HOLOGRAPHY

Vibrational wave packets in molecules are typically p
pared by femtosecond laser pulses. In order to ‘‘design
specific wave packet~‘‘wave packet engineering’’!, one has
to ‘‘tailor’’ a pulse by an appropriate pulse shaping appa
tus. Suchamplitude—as well asphase—shaping of ultrafast
laser pulses has been demonstrated in a number of re
experiments~see, e.g.,@24–28#!.

But how can we measure that the preparation pulse
indeed created the desired state? The recently introdu
method ofquantum-state holography@21# employs a second
time-delayed, pulse that generates a second wave packe
ing the same electronic transition as the first one. For w
and phase-coherent pulses, the second pulse effectively
a referencewave packet to theobjectwave packet excited by
the first pump pulse. The interference between the two w
packets contains the complete phase information of the
ject state, provided the reference state differs from the ob
state. In this sense the situation is similar to ordinary opt
holography@29#. As the ‘‘hologram’’ we suggest to recor
the totalincoherentfluorescence of the excited molecule f
different delay timest between the two excitation processe
Our reconstruction step uses a simple numerical procedu
extract the full amplitude and phase information from th
time-domain hologram.

A possible experimental setup for quantum-state holog
phy ~see Fig. 1! resembles that used in the technique of wa
packetcross interferometry@26,30#. A single laser pulse is
split into two identical pulses by a beam splitter. They a
then introduced into the two arms of a Michelson interf
ometer. In one arm of the interferometer a pulse shap
apparatus is introduced which changes the amplitude an
phases of the pump pulse I, whereas probe pulse II rem
unchanged. After recombining the two pulses they exc
subsequently the object and the reference wave packe
the molecules, whose incoherent fluorescence is dete
The length of the second arm may be varied with the help
a movable mirror to change the delayt between the two
pulses.

In contrast to wave packet autointerferometry@31#, wave
packet cross interferometry utilizes twodifferentlaser pulses,
which in turn createdifferent object and reference wav
packets. The object state

uco~t!&5(
n
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has already evolved in time for a periodt ~corresponding to
the delay time between the two pulses!, when the reference
state

uc r&5eif~t!(
n

bnun& ~2!

is being excited. Hereun& denotes thenth vibrational state
with energyEn5\vn in the excited electronic level. In Eq
~2! we allow for an additional phasef(t) between the objec
and reference wave packets. This relative phase is de
mined by the actual experimental setup and may depend
the delay timet.

In the weak-field limit, the quantum state of the molecu
reads

uc tot&5uco&1uc r&. ~3!

Hence, the probabilityPn that thenth vibrational level of the
superposition is populated follows as

Pn~t!5uanu21ubnu212 Re$anbn* e2 i [vnt1f~t!]%. ~4!

It therefore depends on the delay timet via the interference
between the two wave packets.

FIG. 1. Sketch of an experimental setup for quantum-state
lography. A laser system delivers a short pulse which is split b
beam splitter into two identical replicas. These pulses are then
troduced into two arms of a Michelson interferometer. The pu
pulse I becomes ‘‘tailored’’ by a pulse-shaping apparatus and
cites a desiredobjectwave packet which we want to measure. T
probe pulse II remains unchanged and excites areferencewave
packet, which is added coherently to the object wave packet aft
delayt. As the ‘‘hologram’’ we detect the total fluorescence of th
excited molecules as a function of the delay between the two pu
which we vary with the help of a movable mirror. Since the flu
rescence depends on the interference between the object an
reference wave packet, it contains the full phase information of
two quantum states in the superposition. Hence it can be used
the reconstruction of the quantum state of the object wave pac
Moreover, the phase shifter PS allows to change the overall rela
phase between the pump and the probe pulse.
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Quantum-state holography relies on the observation
the interference term in Eq.~4! depends on the complex sta
amplitudes an andbn , and not just on theprobabilitiesuanu2

and ubnu2. In analogy to ordinary holography the populatio
Pn ~which should be associated with the photographic d
sity! allows for a full reconstruction of the object wave fun
tion.

However, there is no need to determine the populationPn
for each of the states separately. It suffices to measure
time- and frequency-integrated fluorescence of the mole
making a spontaneous transition to the lower electronic le
as a function of the delay timet. For a wave packet com
prised of several vibrational statesun& populated with prob-
ability Pn , the time-integrated energy emitted incoheren
by the molecule is given by

F tot5F(
f ,n

Pnz^ f un& z2vn, f
4 . ~5!

Here f designates the vibrational levels of the lower ele
tronic state,vn, f5(En2Ef)/\ denotes the frequency differ
ence of the two states, andF is a ~positive! proportionality
constant.

From Eqs.~4! and~5! it follows that the total fluorescenc

F tot~t!5Fo1Fr1F int~t! ~6!

consists of thet-independent terms

Fo[(
n

uãnu2 ~7!

and

Fr[(
n

ub̃nu2, ~8!

and thet-dependent interference term

F int~t![2 ReH(
n

b̃n* ãne2 i [vnt1f~t!] J , ~9!

which results from the overlap between the two wave pa
ets. Here we have used the notation

ãn[anAF(
f

z^ f un& z2vn, f
4 ~10!

and

b̃n[bnAF(
f

z^ f un& z2vn, f
4 . ~11!

Note that by measuring the fluorescence of the object and
reference wave packet separately, we find the quantitiesFo
and Fr , respectively. Hence we can distill the interferen
term F int(t) from the total fluorescenceF tot(t) by subtract-
ing Fo and Fr from F tot(t). In the remainder we therefor
concentrate onF int(t) only.

We now show how to reconstruct the complete quant
state of the object wave packet from the measured sig
F int(t). For sufficiently short pulses, the Franck-Cond
at
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principle ensures that the excited wave function is jus
replica of the vibrational state in the lower potential. W
make use of this fact and employ such a short pulse to ex
the reference wave packet. We emphasize that except o
shortness of this pulse no detailed knowledge about its ph
and amplitude characteristics is needed.

When the molecule is initially in the eigenstateu f & in the
lower electronic potential, the amplitudesbn of the excited
reference wave packet read therefore simplybn}^nu f &.
From knowledge of these amplitudes we calculate the qu
tities b̃n via Eq. ~11!. Hence the only unknowns which ente
the expression~9! for the fluorescenceF int(t) are the state
amplitudesan for the unknown object wave packet. In th
next two sections we develop two convenient inversion
gorithms for extracting the complex-valued numbersan from
the measured signalF int(t). In this context, we distinguish
the two cases of a stable and a noisy~COIN! interferometer.

III. HOLOGRAPHY WITH A STABLE INTERFEROMETER

In this section we analyze of quantum-state holograp
using a stable Michelson interferometer to prepare the
quence of the two laser pulses. In this case the pulses ha
well-defined relative phasef.

During the coherent interaction of the pulses with t
molecule this relative phasef is transferred onto the wav
packets. If this relative phase is not locked, it just cor
sponds to the geometric path difference between the
arms of the interferometer and therefore reads

f~t![f01vLt. ~12!

Here we allow for an additional phase shiftf0 as in the
experiments reported in Refs.@32,33#. In Fig. 1 this phasef0
is controlled by the phase shifter PS.

A. Inversion method

We now measure the fluorescenceF int(t) at a given delay
t for two different phase anglesf0 , e.g., f050 and
f052p/2, and define the signal as

S~t![
1

2
$F int~t,f050!1 iF int~t,f052p/2!%

5(
n

ãnb̃n* e2 i ~vn1vL!t. ~13!

Signals of this kind were measured in experiments@32# and
@34#.

Since every physical state characterized by the coe
cients an is normalizable, these coefficients become neg
gible for a sufficiently large indexn. Therefore we assume
that the state to be reconstructed can be characterized by
a limited number of coefficientsan with n50, . . . ,nmax.
The quantitynmax is a free parameter of the reconstructio
procedure, which has to be chosen large enough to ensur
accuracy of the procedure. We make at leastN5nmax11
measurements of the signalS(t) at distinct timestn , n
51, . . . ,N, and write the resulting set of equations in matr
form
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S~tn!5 (
n50

nmax

en,nãn , ~14!

where we have used the notation

en,n[b̃n* e2 i ~vn1vL!tn. ~15!

By numerically inverting the set of equations~14! we can
extract the quantitiesãn and from these we calculate th
complex coefficientsan via Eq.~10!. In this way we are able
to reconstruct the amplitudesan of the object wave packet in
their moduliand phases.

For the inversion of the set of equations~14! it is conve-
nient to use the method ofsingular value decomposition.
This method allows us to invert square as well as rectang
~which corresponds to an overdetermined set of equatio!
matrices, even when the matrix is~almost! singular. For a
detailed discussion, see, for example, Ref.@35#. We empha-
size that our reconstruction scheme is numerically rob
since the unknown coefficientsan enter the set of equation
~14! linearly.

B. Example: Reconstruction of a vibrational Schrödinger
cat state

We now demonstrate the feasibility of quantum-state
lography using two statesX(1Sg

1) and A(1Su
1) of the so-

dium dimer, for which the potential curves are well know
@36#. We calculate numerically the corresponding vibration
eigenstates and energies by the renormalized Num
method @37#. As the object state we choose a molecu
Schrödinger cat state@38,39# prepared in the upper electron
potential ~see Fig. 2!. Schrödinger cat states were create
only recently in Rydberg atoms@33#, for a single ion stored
in the Paul trap@40#, and for the electromagnetic field in
cavity @41#.

FIG. 2. Vibrational Schro¨dinger cat state in the excited Born
Oppenheimer potential of Na2 . The dark-shaded curve depicts th
probability density of this state with amplitudesan given by Eq.
~16!. Note that the density has two dominant peaks at the left
right classical turning points of the underlying potential. The lig
shaded curve shows the vibrational ground stateug& of the lower
Born-Oppenheimer potential. In our reconstruction scheme we
this state as the reference state.
ar
s

t,

-

l
ov
r

A molecular Schro¨dinger cat state consists of a cohere
superposition of two vibrational wave packets and can
excited by a pair of laser pulses~delayed in time bydt),
which pump the system from the ground vibrational lev
ug&. The probability amplitudes of the excited vibration
states are given by

an5N^nug&expS 2
Dn

2D t
2

2 D $11e2 iDndt%. ~16!

Here N is a normalization constant andDn[vn2vg
2vL denotes the detuning for thenth level. The carrier fre-
quencyvL of the laser is chosen to be in resonance with
absorption maximum close to then58 state. As the initial
state of the molecule we take the ground stateug&[u f 50& of
the lower potential. We assume both laser pulses to hav
Gaussian shape of durationD t . For the numerical values o
D t anddt we useD t50.1Tvib anddt50.5Tvib , whereTvib is
the vibrational period. For this specified group of levels w
have Tvib5300 fsec. As the reference state we use
ground stateug& of the molecule.

In Fig. 3~a! we show the Wigner function@42#

W~r ,p!5
1

p\E2`

`

dyc* ~r 2y!c~r 1y!e2 i2yp/\ ~17!

of the state we wish to reconstruct. Herec is the wave func-
tion in coordinate space corresponding to the state with
expansion coefficientsan , Eq. ~16!. Solid lines correspond

d

se
FIG. 3. Quantum-state holography of a Schro¨dinger cat state. In

the bottom we show the contour lines of the Wigner functions d
played in the top. Here solid lines correspond to positive values
dashed lines to negative values, respectively. In~a! we present the
exact Wigner function of the superposition state we want to m
sure. In~b! we show the reconstructed Wigner function, which e
hibits all the nonclassical features of this state. We emphasize
excellent agreement between exact and reconstructed state d
the presence of simulated experimental measurement errors.
demonstrates the robustness of quantum-state holography.
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to positive values of the Wigner function and dashed lin
correspond to negative values. From this figure we recog
that indeed this state consists of two distinct wave pack
The prominent fringe structure between the two centers
the wave packets is caused by the quantum interference
tween the two parts of the superposition state and he
shows the nonclassical features of this state.

In Fig. 4~a! we show the fluorescence hologram for t
superposition state, Eq.~16!, for the interval t50 to t
52Tvib . We note fast oscillations with the optical laser fr
quencyvL and a slow modulation of the envelope whic
varies with a period of aboutTvib/2. This behavior become
clear if we recall that the superposition state shown in Fig
consists actually of two wave packets originally centered
the left and right turning points of the potential. These tw
wave packets oscillate out of phase for a timet until they
interfere with the reference wave packet. Since the refere
wave packet becomes excited at the left-turning point,
interference between the object wave packets and this re
ence wave packet takes only place near the Franck-Con
region. Hence we find the strongest variation of the fluor
cence at multiples of half of the vibrational period.

In order to simulate errors of an actual measurement
to test the robustness of the reconstruction procedure,
introduce random fluctuations around the exact signal wh
obey a~normalized! Gaussian distribution with standard d
viation s. Here, we have chosen the values50.1(F01Fr)
and have takenN5100 simulated data points at the discre

FIG. 4. Fluorescence hologram of a Schro¨dinger cat state. In~a!
we show the total fluorescence as a function of the delayt between
the object and the reference pulses for the complete time re
used for the reconstruction. In~b! we display the interference con
tribution to this total fluorescence for a small window aroundt
5Tvib/4. Here we depict by white circles the simulated data poi
including measurement errors at the discrete timestn , whereas the
exact values attn are shown by black circles.
s
ze
s.
f
e-

ce

2
t

ce
e
r-

on
-

d
e

h

valuestn equally spaced betweent50 andt52Tvib . In the
bottom of Fig. 4 we magnify a small time window centere
around the delay timet5Tvib/4. The simulated data points a
the discrete timestn are shown by white circles. In order t
guide the eye we have marked the exact signal at the disc
timestn by black circles.

Figure 3~b! presents the Wigner function of the reco
structed superposition state. A comparison with Fig. 3~a!
demonstrates that the reconstruction reproduces nicely
exact state with all its phase-sensitive features despite
incorporation of measurement uncertainties.

As a measure for the fidelity of the reconstruction we u
the overlap integral

o[U(
n

an* an
~rec!U ~18!

between the exact state

uco&5(
n

anun& ~19!

and the reconstructed state

uco
~rec!&5(

n
an

~rec! un&. ~20!

An excellent fidelity witho50.98 is obtained in this case.

C. Role of the reference state

In the above example we have used the vibrational gro
state as the reference state. In this section we discuss the
of the reference state

uc r&5(
n

bnun& ~21!

in the performance of quantum-state holography. For t
purpose we reconstruct the squeezed, rotated, and disp
state@43#

c~r !5
1

A4 pu
expF ip0

~r 2r 0/2!

\ GexpF2~12 iv !
~r 2r 0!2

2u G ,
~22!

whose Wigner function is shown in Fig. 5~a!. Here we use
the parameters u50.025 a.u., p055 a.u., r 056 a.u.,
andv52.1. Such a state can be created by different meth
~see, for example, Ref.@44#, and references therein!. Again
we incorporate measurement errors, that is, the simula
data of the measurement fluctuate around the exact v
according to a Gaussian distribution with variances
50.1(Fo1Fr). Moreover, we have chosenN5200 simu-
lated data points equally spaced betweent50 and t
52Tvib .

In Fig. 5~b! we show the Wigner function of the recon
structed state, when we use the vibrational ground stateug&
5u f 50& of the ground Born-Oppenheimer potential as t
reference state. A comparison with the exact Wigner fu
tion shows that in this case the reconstruction was only p
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tially successful. Although the main features of the st
could be recovered, the wings of the reconstructed Wig
distribution differ from the exact one. This is an indicatio
that coefficientsan with large values ofn corresponding to
higher energies were discriminated in the reconstruct
This feature can be understood as follows.

From Eq.~9! we find that only those statesun& contribute
to the fluorescence signal for which the amplitudes ofboth
the signal statean and the reference statebn are nonzero.
Hence in order to reconstruct all contributing amplitudesan
which build up the quantum state to be measured, the re
ence wave packet has to cover the complete energy ra
populated by the coefficientsan . In the present example
however, the amplitudesbn for the reference stateu f 50& fall
off too rapidly for largen as can be seen from Fig. 6. In th
graph we show the probabilitiesPn5uanu2 for the squeezed
state, Eq.~22!, together with the probabilitiesPn5ubnu2 for

FIG. 5. The role of the reference state in the performance
quantum-state holography. In~a! we show the contour lines of th
exact Wigner function of a rotated and displaced squeezed s
whereas in~b! and~c! we show reconstructed states. For the rec
struction in ~b! and ~c! we use the ground stateu f 50& and the
excited stateu f 54& of the ground Born-Oppenheimer potential, r
spectively. In both cases the simulated fluorescence data inco
rate measurement errors. We recognize that the quality of the
construction in~c! is better compared to~b!. This shows that for this
object state the reference stateu f 54& is more suitable than the
reference stateu f 50&.

FIG. 6. The populationPn of the nth energy state for a rotate
and displaced squeezed state and different reference states. W
play the values ofPn5uanu2 for the squeezed state by bars.
contrast, the probabilitiesPn5ubnu2 for the two reference statesu f
50& and u f 54& are depicted by white and black circles, respe
tively. To guide the eye we have connected the discrete value
continuous curves.
e
er

n.

r-
ge

two different reference states, namely, the eigenstateu f
50& andu f 54& of the ground Born-Oppenheimer potentia
Whereas theu f 50& reference state does not cover the co
plete energy region spanned by the squeezed state, thu f
54& state does. Hence, for the reconstruction of
squeezed state, Eq.~22!, the reference stateu f 54& seems to
be more suitable.

In Fig. 5~c! we show the Wigner function of the squeez
state reconstructed with the help of the reference stateu f
54&. Again measurement errors were included in the sim
lation in the same manner as done before. Indeed, we fin
this case a better agreement between the exact and the r
structed Wigner function. Here, the fidelity parameter iso
50.94 in contrast to the valueo50.87 for the reference stat
u f 50&.

IV. COIN HOLOGRAPHY

In the last section we have assumed that the interfer
eter used to produce the sequence of object and refer
pulses is stable in the sense that the relative phasef between
the two pulses is reproducible in each run of the experim
for a fixed delayt between the pulses. If, however, a pul
shaper is introduced into one arm of the interferometer,
may be a very demanding experimental task, especiall
this arm becomes very long due to the pulse shaping ap
ratus@26#.

The first experiments on wave packet interferometry@31#
exercised a precise control of the relative phase by ph
locking the two laser pulses. In Refs.@45–47# a different
phase-sensitive technique was used. The presence of a s
phase noise washes out all the interference components
the time-averaged signal, thereby seemingly preventing
use of incoherent pulses for wave packet interferometry.

The new technique@22# of coherence observation by in
terference noise shows that the above statement is not
essarily true. The COIN technique concentrates onfluctua-
tions in the population excited by a pair of time-delaye
randomly phasedpulses. Although the interference comp
nent is not present in themeansignal, the effect of interfer-
ences can still be felt by measuring thefluctuationsof the
signal about its mean value@22,23#. For example, when the
two excitation pathways interfere strongly, fluctuations
the relative phase between the pump and probe pulses
rise to large fluctuations in the observed signal. Convers
when the processes are independent of each other one m
observes the ‘‘mean’’ degree of fluctuations. The CO
technique has been experimentally demonstrated both
atomic @22,48# and molecular@49# systems~see also@50#!.
The method possesses interferometric sensitivity with
stringent stability requirements on the system.

In the presence of noise the relative phasef between the
two laser pulses is a stochastic quantity and may there
vary for different runs of the experiment at a fixed delay tim
t. Since the coherent interaction of the two pulses with
molecule maps this relative phase onto the relative ph
between the two excited wave packets, the quantityF int(t)
becomes a stochastic quantity. In contrast to the de
independent contributionsFr and Fo the interference term
depends onf, that is,F int(t)5F int(t,f). Nevertheless, as
we will show now, the COIN method@22,23# is especially
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suitable to reconstructing molecular vibrational wave pa
ets.

A. Inversion method

For definiteness, we assume that the relative phasef is
uniformly distributed in the interval@0,2p), that is, that each
time the experiment is run at some fixed delayt, the phasef
takes on an arbitrary value between 0 and 2p.

From Eqs.~6! and ~9! we find that in the case of wav
packet cross interferometry the fluctuations

DF tot
2 ~t![F tot

2 ~t!2F tot~t!2[DF int
2 ~t! ~23!

around the mean valueF tot(t )̄[Fr1Fo of the total signal
are given by

DF int
2 ~t!52U(

n
ãnb̃n* e2 ivntU2

52(
n,m

ãnãm* b̃n* b̃me2 i ~vn2vm!t. ~24!

Hence the signalDF int
2 (t) containsall the phase information

about the object wave packet embodied in thean coeffi-
cients.

For the purpose of reconstructing the coefficientsãn from
the measured quantityDF int

2 (t) we join together then andm
indices to a single indexk5(n,m). Following our previous
approach described in the last section we measure the
tuationsDF int

2 (t) at discrete timestn , and write the resulting
set of equations in matrix form

DF int
2 ~tn!5(

k
en,kx̃k , ~25!

with the unknown coefficients

x̃k[ãnãm* 5 x̃n,m ~26!

and the known matrix

en,k[2b̃n* b̃me2 i ~vn2vm!tn. ~27!

As in Refs.@14,15#, we face the problem that the matrixen,k
as defined in Eq.~27! cannot be inverted, since it contains
number of columns, explicitly then[m columns, which are
composed of asinglenumber. This is due to the fact that fo
n[m the phase of the exponential is always zeroindepen-
dentof the delaytn . As a result,en,k is a singular matrix.

One can solve this problem@14,15# by subtracting all di-
agonal terms withn[m from Eq. ~25!,

S~tn![DF int
2 ~tn!22(

n
uãnu2ub̃nu2. ~28!

The second term can be derived from the observed si
DF int

2 (tn) by integrating the measured fluctuationsDF int
2 (tn)

over a single vibrational period of the excited wave pack
-

c-

al

,

I[E
0

Tvib
dtDF int

2 ~t!52(
n,m

ãnãm* b̃n* b̃mE
0

Tvib
dte2 i ~vn2vm!t.

~29!

For a weakly anharmonic potential the Dunham expansio

vn5v n̄1
2p

Tvib
~n2n̄!6

2p

Trev
~n2n̄!26••• ~30!

yields in this case a revival timeTrev, which is much larger
than the vibrational periodTvib ,

Trev@Tvib . ~31!

With the help of this expansion we find, for the energy d
ference,

vn2vm[
2p

Tvib
~n2m!6•••. ~32!

Since in Eq.~29! the delayt is of the order ofTvib , we can
neglect higher-order terms in the exponent and find

I .2(
n,m

ãnãm* b̃n* b̃mE
0

Tvib
dte2 i ~2p/Tvib!~n2m!t, ~33!

which reduces with the help of the representation

dn,m5
1

Tvib
E

0

Tvib
dte2 i ~2p/Tvib!~n2m!t ~34!

for the Kronecker deltadn,m to

I .2Tvib (
n

uãnu2ub̃nu2. ~35!

Now the set of equations

S~tn!.DF int
2 ~t!2

I

Tvib
5 (

k5~n,m!
nÞm

en,kx̃k ~36!

can be numerically inverted to yield the coefficientsx̃k

[ãnãm* for which, via Eq. ~10!, one obtains the product
xk[anam* 5xn,m for nÞm.

By squaring the modulus ofxn,m and summing over all
mÞn we find

(
mÞn

uxn,mu25uanu2 (
mÞn

uamu2[uanu2~12uanu2!, ~37!

where in the last step we have used the normalization c
dition (muamu2[1. Hence the solution of the quadratic equ
tions

uanu42uanu21 (
mÞn

uxn,mu250 ~38!

yields uanu. Here, we only use the solution, which lies in th
range 0<uanu2<1.

To find thephasesof the $an% coefficients, we note tha
this set of complex-valued numbers is only determined up
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a commonphase factor. Fixing, say,an0
, to be real and posi-

tive, the phases of all the other coefficientsan are given as

arg@an#[arg@xn,n0
#. ~39!

B. Example: Reconstruction of a ‘‘chirped’’ state

We demonstrate the above procedure for the case of
object wave packet excited by a linearly chirped pulse w
envelope

E~ t !5E0expS 2
t2

2D t
2

1 iat2D . ~40!

The use of chirped pulses in the field of coherent con
has been investigated theoretically in detail by many auth
@51–53#. Recently, experiments on quantum control w
chirped pulses have been successfully performed@27,54,28#.

Using first-order perturbation theory we find the probab
ity amplitudes

an5N^nug&expS 2
Dn

2D t
2

218a2D t
4D expS 2 i

Dn
2aD t

4

114a2D t
4D ,

~41!

whereN is a constant. We see that an increase in the c
factor a increases the width of thean distribution while in-
troducing an additional phase factor. In Figs. 7~a! and 7~b!
we show the Wigner functions for the state, Eq.~41!, for the
two different valuesa50 and a53/D t

2 , respectively (D t

50.2Tvib). Thus, the chirp not only shifts the center of th
Wigner function to positive momentum values, but also d
torts considerably its internal structure. The state used for
reconstruction shown in Fig. 7~b!, which has a rather com
plicated Wigner function, poses quite a challenge .

FIG. 7. Effect of a linear chirp in the exciting laser pulse on t
resulting wave packet. In~a! and~b! we show Wigner functions of
states excited by Gaussian pulses of durationD t50.2Tvib . In ~a!,
the pulse contains no chirp, whereas in~b! a linear chirp with rate
a53/D t

2 is employed. The chirp leads to a nontrivial distortion
the Wigner function.
he
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-
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In our numerical simulation of quantum state holograp
for an unstable interferometer we again allow for experim
tal noise. In this case, the noise leads to an additional c
tribution DFs

2 to the total fluorescence fluctuationsDF tot
2 (t).

For simplicity, we treat this ‘‘system noise’’ as independe
of the delayt. In addition, we assume that the interferen
fluctuationsDF int

2 (t) and the system noiseDFs
2 are statisti-

cally independent and therefore simply add up to the to
fluctuations as

DF tot
2 ~t!5DF int

2 ~t!1DFs
2 . ~42!

For the simulation we therefore replaceDF int
2 (t) in Eq. ~36!

by DF tot
2 (t) as given in Eq.~42!, sampled at 400 equally

spaced data points at the discrete valuestn betweent50
andt510Tvib .

Figure 8 shows the total fluorescence fluctuatio
DF tot

2 (t) for different values of the system noiseDFs
2 for the

‘‘chirped’’ state shown in Fig. 7~b!. As the reference state w
have used the ground stateug&. We find an oscillating func-
tion with a period of aboutTvib , reflecting the quasiclassica
oscillation of the wave packet to be reconstructed. In cont
to Fig. 4, no rapid oscillations with the optical frequencyvL
are present. We find that the envelope of the oscillatio
changes only slowly in time, thereby justifying the harmon
approximation in Eq.~33! for a single period.

In Fig. 9 we display the contour lines of reconstruct
Wigner functions of the ‘‘chirped’’ state shown in Fig. 7~b!.
Here, we study the fidelity of the reconstruction for differe
values of additional system noise. In Fig. 9~a! where we use
the valueDFs

250.02(Fo1Fr)
2, an excellent agreement wit

the exact Wigner function is achieved. This reflects itself
the large fidelity parametero50.98. Even in Figs. 9~b! and
9~c! where we increase the system noise toDFs

250.05(Fo

1Fr)
2 and DFs

250.1(Fo1Fr)
2, respectively, one finds a

good agreement between the exact and the reconstru
states, as evidenced by the fidelity parameterso50.96 and
o50.90, respectively.

C. Case of a highly anharmonic potential

In the last section we have assumed that the wave pa
only slightly changes its shape afteroneperiod which justi-
fies the approximation in Eq.~33!. This has allowed us to

FIG. 8. COIN hologram of the ‘‘chirped’’ state shown in Fig
7 ~b!. The hologram shows the total fluorescence fluctuations
different values of the system noiseDFs

2 . The solid, dashed, dotted
and dashed-dotted lines correspond to the noise intens
DFs

2/(Fo1Fr)
250, 0.02, 0.05, and 0.1, respectively.
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subtract the diagonal terms from the fluctuationsDF int
2 (t)

which removes the singularities in the matrixen,k , Eq. ~27!.
For a highly anharmonic potential, this approximation

not valid. In this case one has to look for a different meth
to find the diagonal terms. One possibility is to apply o
method of quantum state holography to reconstruct
moduli uanu2 and ubnu2 from an autointerferometricsetup.
Another possibility is to measure in addition to the fluctu
tions of the total~time- and frequency-integrated! fluores-
cence fluctuationsDF int

2 (tn) the dispersed~frequency-
resolved! fluorescence@14# of the object and the referenc
wave packet, respectively: The dispersed fluorescence

Fdisp~v!5F(
n, f

z^ f un& z2uanu2vn, f
4 dv,vn, f

~43!

of the wave packet Eq.~41! for a53/D t
2 is shown in Fig. 10.

Here, we neglect the finite widths of the spectral lines. T
peaks in this graph correspond to all those terms in the
in Eq. ~43!, which have nonvanishing probabilitiesuanu2 to-
gether with nonvanishing Franck-Condon factorz^ f un& z2.
Hence the heights of these peaks directly yield the coe
cientsuanu2.

FIG. 9. Quantum-state holography of the ‘‘chirped’’ state d
played in Fig. 7~b!. ~a!, ~b!, and~c! correspond to the dashed, do
ted, and dashed-dotted curves in Fig. 8, respectively. We emph
that even in the presence of large measurement errors the re
structed Wigner functions still contain the main nontrivial featu
of the exact Wigner function.

FIG. 10. Frequency-resolved fluorescenceFdisp(v) of the
‘‘chirped’’ wave packet.
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V. SUMMARY AND FURTHER APPLICATIONS
OF THE METHOD

In this paper we propose the method ofquantum-state
holography to measure the quantum state of a vibration
wave packet in a molecule excited by a femtosecond la
pulse. Our technique is based on wave packet cross inte
ometry. This allows us to read out this state with the help
a known reference wave packet similar as in ordinary opt
holography. The reference wave packet is excited by a s
ond probe pulse which is delayed in time with respect to
pump pulse. By recording the subsequent incoherent fluo
cence as a function of the delay between the two laser pu
one obtains the cross interferogram which reflects the in
ference between the two wave packets. In contrast to a
interferograms, for which two identical wave packets a
used, cross interferograms are phase sensitive and hence
tain all the necessary information for reconstructing the co
plex wave function of the unknown wave packet in
moduli and phases.

We have demonstrated the feasibility of our method
numerically simulating realistic quantum-state holograp
experiments. We have considered the case of a stable i
ferometer as well as a noisy COIN interferometer and h
tested the robustness of the method by including simula
measurement errors. Our numerical studies clearly dem
strate the feasibility of quantum-state holography for u
stable interferometers even in the presence of additional
tem noise. One can subtract this additional noise contribu
from the measured signal by separately exciting the objec
the reference wave packet, which yields directly the syst
noise.

COIN holography is less sensitive to experimental no
than the linear variant of the method. However, the price o
has to pay for this is that the inversion of the system
equations~36! is numerically less stable than the inversion
the corresponding system of equations~14! for the case of a
stable interferometer. This is due to the fact that in Eq.~36!

the unknown coefficientsãn enterbilinearly, whereas in Eq.
~14! they enterlinearly.

We emphasize that in contrast toemission tomography
@13# our technique does not rely on weakly anharmonic p
tentials and is capable of recovering even highly nonclass
features of quantum states. Moreover, this method also
lows us to reconstruct the quantum state of an electro
wave packet in Rydberg atoms. Indeed, after the present
per was prepared for publication, we became aware of
experiment@48# in which a variant of the COIN holograph
scheme was applied to a full amplitude and phase recons
tion of a Rydberg wave packet. A related scheme for
reconstruction of engineered atomic wave functions
phase-sensitive measurements was suggested recent
@55#.

We conclude by noting that quantum-state holograp
might also be a powerful tool to determine the spectral a
plitudes and phases of ultrashort laser pulses: Here, we
the molecule as a ‘‘grating’’ to chop the unknown pulse in
its spectral amplitudes and phases which we later read
with the help of a simple reference pulse. This techniq
might be complimentary to the established method
‘‘frequency-resolved optical gating’’~FROG! @56,57#.
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