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Vibrational relaxation of trapped molecules
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Vibrational relaxation of trapped molecules due to collisions with cold atoms is investigated using the results
of quantum-mechanical scattering calculations. Trap loss is analyzed using an exactly solvable kinetic model
that includes direct collisional quenching and an indirect process of vibrational predissociation. At low atom
density, the relaxation is due primarily to collisional quenching. At high atom density, the relaxation involves
additional time scales due to the formation and decay of van der Waals complexes. It is shown that the most
weakly bound state of the van der Waals complex for a given diatomic vibrational level controls the relaxation
at all atom densities. Possible experiments using trapped molecules are disf8%680-294®9)05303-2

PACS numbdrs): 32.80.Pj

. INTRODUCTION of helium interacting with vibrationally excited H Atomic
units are assumed throughout the paper.

Experimental efforts to trap molecul¢$—5] have moti-
vated recent investigations of collisional quenchi6g] and
vibrational predissociation[8,9] of diatomic systems.
Trapped molecules provide a unique opportunity to study the Relaxation of vibrationally excited trapped diatomic mol-
threshold behavior of collisions between atoms and molecules may occur through the direct collisional quenching
ecules[6]. Measurement of Feshbach resonances in scatteprocess
ing cross sections would give valuable information about the
atom-molecule potential energy surfd&s. A+BC* —-A+BC, (1)

Predissociation may play an important role in the relax-

ation of vibrationally excited molecules when the density ofyhereA is a trapped atonBC* is the initial excited diatom
surrounding atoms is high and the time scale for establishing,ith vibrational quantum number and rotational quantum
equilibrium of van der Waals molecules is short compared {Gumberj, and BC is any final state diatom with quantum
other relaxation prgcessé.]s(_)]. Therefore, it may be possible nymbersy’ andj’ different fromv andj. The internal en-

to use the relaxation of vibrationally excited trapped mol-grgy of the initially excited diatom is transferred to transla-
ecules as a means for obtaining the Feshbach resonance panal energy with rate coefficierR,;. The vibrational en-
rameters. In the present work, we investigate this possibilityergy spacing of the diatom is typically much larger than the
for trapped diatomic molecules by including predissociationgepths of experimental traps and we may assume that
in the kinetic theory of vibrational relaxation. Using calcu- guenched molecules are immediately removed from the trap.
lated quenching rates and predissociation lifetimes for a rea two-step mechanism may also remove molecules from the

alistic system, we make estimates of the relaxation time fograp |n the first step, the molecules form a van der Waals
vibrationally excited trapped molecules as a function of atoNtomplexA- - -BC*,

density. The role of the most weakly bound state of the van
der Waals complex is investigated for both the low and high
density limits. It is shown that a single measurement of vi-

brational relaxation of trapped molecules performed at high

atom density would uniquely determine the binding energ>}hrough collision with atom4\. If the binding energy of the

and predissociation lifetime of the van der Waals complex,compIex is less than the trap depth, then the van der Waals

the collisional rate of formation of the complex, and the molecule may _re_mai_n vyithin the trap. The complex may then
zero-temperature quenching rate of the excited diatom. decay after a finite lifetime,; through the process of vibra-

The paper is organized as follows. In Sec. Il we presen{Ional predissociation,
the kinetic model for trapped molecules. Section Il reviews
the exact close-coupling formulation for computing cross A---BC*—A+BC. ©)
sections and lifetimes. In Sec. IV, we use perturbation theory
to analyze the relationship between the binding energy of 4 the absence of radiative transitions, the collisional loss
weakly bound complex and its predissociation decay ratemay be described by the kinetic equations
Effective range theory is used in Sec. V to provide estimates

II. KINETIC MODEL

A+BC*+A—A..-BC*+A, )

of predissociation lifetimes for the most weakly bound lev- d . ) .

els. Section VI discusses the detailed balance between the il BC It (Ry[AI+ K AJ[BC” ]y
collisional rate of van der Waals formation and decay. In

Sec. VIl we give some numerical results for the two isotopes =kp[A][A---BC*];, 4
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where[BC*]; and[A- - - BC*]; are the respective densities R [A]+K[A]?
of BC* andA---BC* at timet after an initial source of y= LA RN A (16)
BC* has been turned off. The density of cold ato$ is Tv’jl+ kp[A]

assumed to be constant. The rate coefficients for the forward ) )
and backward reactio() are given byk; andk,, respec- and assume that<1, then the relaxation path is controlled
tively. Equations(4) and (5) may be combined into a single by the value ofy. For y>1 or y<1, the time scales are

second-order differential equation, given by
2 d N=(1- 7 te)(R,[A]+ K[ AT?), 17
—[BC* |, +{7, 1+ (R, +ky,)[A]+ ki A]?}=[BC*
—F[BC I {r+ (Ryy ko) [A]+ KA} [BCY o= (1= ) (A s
+{T;leUj[A]+(kvaj+T,jjlkf)[A]z}[BC*]t with ¢;=1—ye and c,=ye. For y=1, the assumptiore
<1 breaks down and the formulé®)—(13) must be used. In
-0 6) the low density limit,y<<1 and the relaxation is controlled

by the quenching time scale, = R,;;[A]. In the high density
limit, y>1 and the relaxation is controlled by the predisso-

ciation time scale\,=7,;".

with the solution

[BC*],=[BC*]o(cie Mi+cre 2, (7) The above discussion may be generalized to include van
der Waals interactions that support more than one bound
where state. For example, if we consider a two-level system labeled

A---BC7 andA---BC}, then the kinetic equationig) and

M=3(atp), (8)  (5) must be replaced by
A =1 , 9 d
2=z(eh) © S [BC I+ (Ry[AT+k; AT +k; ZATI[BCH],
=714 (R, +kp)[A]+ k[ A]? 1
a TUJ ( v] b)[ ] f[ ] ) ( 0) =kb'][A][ABC’l‘]t-i-kbiA][ABC;]t, (19)
B=I7,;"+ (ko= Ry IAT— K[ AP? + 4kiko[ AT, d R .
11 gilA BCI It (myat ke lADIA- - -BCT ],
[A---BC*]o =k; [AJ[BC*];, (20)

Ry [AT+ K[ A]? =N~ k[ A]

. [BC*Io q
! Ai—A; ’ gilA - BC it (12t ke AADIA- - -BC3 ;
(12
=ki AA][BC*]; 21
and '
resulting in a third-order differential equation. In Eq$9)—
5 [A---BC*]y (21) we have assumed that inelastic atom-complex collisions
N =Ry [A] =k A]"+ kb[A]W are negligible. The solution to Eqe9)—(21) may be written
C2— )\1_)\2 ’ [BC*]t=[BC*]O(Cle_)‘1t+Cze_)‘2t+C3e_>‘3t), (22)
(13
where
If the time scale for establishing equilibrium of van der .
Waals molecules is short compared to other relaxation pro- N=Tyi 1 (23
cesses, then we may assume a steady-state solution ¢6)Eq.
during the time that the trapped molecules are being pro- N2=17,05, (24)
duced. The initial condition needed by Eq%2) and(13) is
then given by Na= R, [A]+K¢ [ Al + ke f A]? (29

" 2 in the high density limit. The above discussion is similar to
[A---BC*], ki A] . X .
= ] (14)  the usual master equation analysis where the time scales are
[BC*]o TU_J-1+ ko[ A] determined by the eigenvalues of a rate matrix. In the present
case, however, we see that at high densities the important
If we define time scales are related directly to the predissociation life-
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times and the relaxation time is given by the quasibound - *
level with the longest lifetime. avvj%,,j,:mgo (23+1)
ll. CLOSE-COUPLING EQUATIONS NESIRE NN ,
The kinetic model described above depends on input pa- ><|:§ij| |r:‘§;’_1/‘ |5”/5”/5””/_Sj]j""””'| '

rameters that may be computed using an exact quantum-
mechanical close-coupling formulation. Therefore, we pro-
vide a brief review of the close-coupling procedure used in
the present work. The atom-diatom Hamiltonian in the

(31)

1
R j—or,j(T)= (8kBT/7T,u)1/2—

center-of-mass frame is given by (kgT)?
He - —v2- iV2+u(r)+V(|r R,6), (26 Xfmovmr,-r(Euj)
2m " 2u R R o T

wherer is the distance between ato®&ndC of the diatom, e~ E,j/ke DB, dE,j, (32

R is the distance between atofnand the center of mass of
the diatom, is the angle betweenandR, mis the reduced
mass of the diatom, and is the reduced mass of the atom
with respect to the diatom. The diatomic Safirmer equa-
tion

whereT is the temperature arlg; is the Boltzmann constant.
The total quenching rate coefficien®; needed in the ki-
netic model of Sec. Il are given by

Ryj(T)=2 Ryjourj(T). (33)
1 d® j(j+1) o'j’
s s v T e [x(N=0 (@27
To obtain the predissociation lifetimes, the close-coupling
equations are solved for energies below thresholdStima-
is solved by expanding the rovibrational wave functiontrix is diagonalized, and the eigenphase sum is differentiated
X,j(r) in a Sturmian basis set. The full wave function is with respect to energy to obtain numerically exact resonance
expanded in a set of channel functigms=(vjl)], widths. The predissociation lifetime is then given by ,

=1, n, wherenis the quantum number of the bound state

w1 -~ L of the van der Waals complex.
VMR =22 CoR)$n(R D), (28
IV. PERTURBATION THEORY
b (é = } (N Because the kinetic model presented above shows that the
men r Xvi relaxation rate depends most strongly on the quasibound

level with the longest predissociation lifetime, it is useful to

XE 2 (jIJImj M _ml)Yin_(F)Yln (Ii), examine the relationship between decay rate and binding en-
m i ! ergy for a weakly bound complex. We assume that the bind-
(29) ing energyl of the van der Waals comple&---BC* is

small, but well defined, i.eI’;<<I. The predissociation rate
may then be calculated using perturbation theory. The wave
functions in zero-order approximation are calculated by ne-
glecting nondiagonal matrix element4;, and the decay
process is calculated using the standard rule

wherel is the orbital angular momentum of the atom with
respect to the diatond, is the total angular momentuny] is
the projection of J onto the space-fixedz axis, and
(jl3|m; ,M —m,) denotes a Clebsch-Gordon coefficient. Op-
erating the Hamiltoniar{26) on the channel function&8)

2
leads to a set of coupled equations Fi:Z Fi,f=2wzf g(f)f X (RIVit(R)x{(R)dR
d2  I(la+1) (34
—————+2uE,|C(R)
dR? R where x?((R)=Re¢?((R) are the unperturbed radial func-
tions andg(f) is the degree of degeneracy of the final state.
=, Co(R{ bl Vi| bn), (300  For a spherically symmetric initial state=0, |=0, andj
n

=0, the degeneracy of the final states is given diy)

=(2l"+1). If the momentum transfer is large, then the final
where E,,, is the translational energy arg, is the orbital continuum wave function will have many oscillations in the
angular momentum in theth channel. The close-coupling region of overlap, and the decay width will be small. There-
equationg30) are solved using the general inelastic scatterfore, the largest partial widths are generally found for values
ing programMOLSCAT [11]. The cross sections and rate co- of |’ that minimize the amount of transferred momentum
efficients are given byl12] [13].
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We now derive an asymptotic formula for the predisso- Accurate evaluation of the rate of predissociation may be
ciation decay rat€34). The initial bound state wave function done numerically with the exact radial wave functions and
X?(R) may be calculated from the equation nonadiabatic matrix elemeni#;(R) using Eq.(34). Since

the matrix element¥;;(R) decrease at large distances faster
) 0 than all other functions in Eq34), the effective integration
—[«k“+2mV;(R) Jx;{ (R)=0, (39 area is restricted to distancBs<R,. Therefore, the predis-
sociation rate is given asymptotically by

d?x{(R)
dR?

where x2=2ml. The binding energy is an arbitrary small 2
value satisfying the condition of a weakly bound state: [i=4(2mNY2>, g(f)“ Yo(R)\Vis(R) xY(R)AR| .
<max|V;i(R)|} for a long-range potential at?R3<1 for a f
short-range potential of radiuR,. The strengthé of the (43
binding potentiaV;; should be enough to support at least onesjnce all terms of the sum in E¢43) are independent of
bound state: binding energy, the decay width varies &€ for smalll. In
" the Appendix, we demonstrate the validity of the general
5:2mj V;(R)RAR=1. (36)  asymptotic formula(43) for the special case of the Morse
0 potential.

In the external are®>R, of a potential well, where the

S . V. EFFECTIVE RANGE THEORY
binding energy is larger than the potentiat k2/2m=|V;;|,

the potential energy may be neglected in the Sdimger In Sec. IV, we showed that predissociation lifetimes in-
equation. The functiony”(R) may then be approximated crease with decreasing binding energy of the complex.
by Therefore, the lifetime of the most weakly bound complex
R will control the r_elaxation f_or high atom_densities. This life-
X-(O)(R)z‘X>(R) N(l)e™ ", R>R, @7 time may be estimated using the effective range fornp@la
' X<(R)=N()¢o(R), R<Ry, 28 I e ]2
—1_ vj vi vj
whereN(l) is a normalization coefficient. The leading term Toj Cur,la .|2l a2 _1]’ “4
of the internal solutiony-(R) may be obtained by solving ol .
the Schrdinger equation at zero energy, wherea,j= a,;—i8,; is the complex scattering length and
ryj is the effective range. We follow the notational conven-
d?yo(R) tion that the labeh will be suppressed when referring to the
——— —2mV;i(R)¢o(R)=0, (38)

most weakly bound level of the van der Waals complex. It
has been show{8,9] that the imaginary part of the scattering

and matching to the external solutiqa (R) in the boundary ~ !ength is given by
areaR~Ry: 9
d Boi= g7 M Ri(T). (45
XP(Ro)=N(1)e™ o, —In[x?(R)]r-r,= ~ . (39)
Recalling the kinetic model of Sec. Il, we conclude that
For weakly bound stateR,<1, the boundary conditions when the density of atoms in the trap is large, the system
for the internal so|ution¢o(R) may be written as energy relaxes primarily through the process of vibrational predis—
independent conditions sociation. This relaxation process is independent of tempera-
ture. However, using Eq$44) and (45) we see that a mea-
dio(R) surement of the vibrational relaxation performed at high
$o(Ro)=1; drR temperature and high density would yield information about
the total collisional quenching rate also at zero temperature.
This piece of information is extremely valuable in determin-
ing whether a trapped molecular species could be efficiently
cooled to ultracold temperatures.
If the effective range is small, the scattering length ap-
proximation may be used to obtain

=— k=0. (40)
R=R,

The internal part of solutiory(R) depends on the binding
energy via the normalization factd(l), which may be cal-
culated as follows:

Ro w
JIX?ZdR=f IX<(R)|2dR+f lx=(R)|2dR B /
0 Ro i Tyj 1 (2ul)3?
im = -
T—0 Rvj(T) 27Ta3j 2m

(46)
=1. (42

1
=N2(l )( constRy+ 5—
The relationship between rate coefficient and predissociation
Because the binding enerdyis small, the normalization is lifetime given in Eq.(46) may be understood from a simple
given by physical picture. The typical spreddof the wave function
for a weakly bound state depends on the binding endrgy:

N(I)=2k=(8mI)Y4 (42)  =1/\J2ul. The effective density of atoms in the active area
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30

is estimated apA]~1/L3. The decay rate of predissociation
may then be calculated a§’j1=limp0 R,;(T)[A] in accor-
dance with Eq(46).

---- ’He (E=—0.0016 cm ™)
20 b ——— "He (B=—0.0298 cm™)

VI. COMPLEX FORMATION AND DECAY

In order to complete our analysis of the kinetic model
presented in Sec. Il, we need to determine the forward and
backward rate coefficients; andk,. In general, these pa-
rameters are extremely difficult to compute, and are beyond
the scope of this work. However, we may use detailed bal-
ance to remove the backward rate coefficikptfrom the
analysis. At low temperatures, the forward rate coefficignt
is independent of temperature due to Wigner's threshold law
for inelastic collisions. Therefore, in the following discus-
sion, we ignore the temperature dependence;of If we
restrict the complex formation and decay procé3sto in-
clude onlys waves, then

V(R) (em™)

~——

10
R (A)

100

FIG. 1. Channel potentialsolid curve and bound state wave
functions for the v=0, j=0 complex of °He---H, and
“He- - - H,.

kp(T)=k;[Alexp(—1/kgT). 47
tering cross sections foiHe and“He collisions with H are
The temperature dependence of the relaxation parameter shown in Fig. 3. The difference between the two cross sec-

defined in Eq.(16) is then given by

tions in Fig. 3 is due to the differences in the two binding
energies of the He - H, complexes fow =1.

y(T) R,j(T)+k¢[A] 48) Figure 4 show§1 the relaxation pH,(v=1, j=0)]; due
T 2 _ : to interaction with*He atoms at a temperature of 10 mK. For
[Al 7+ ke Al exp(—1/KgT) the calculation, we used the predissociation lifetime and
When | <kgT binding energy given by Forregt al. [9] of 0.069 sec and
’ 0.0282 cm?!, respectively. We assumeg=6.9 which is
7Ry (TI[A], [A]—0, equivalent tok;A]>=100. It is clear from Fig. 4 that a mea-
y(T)z{ kT Al (49 surement of vibrational relaxation with time in the>1 case
expl/kgT),  [A]—ee. would provide valuable information. The short time scale
When|skgT would give the forward rate coefficiekt and the long time
' scale the predissociation lifetime; . The binding energy of
2mad[A], [A]—-0, the van der Waals complex could be obtained from the mea-
'y(T)Z[ ) (500  surement using the formula
KAl [A]l—ee.

|=—kBT|n(C2/'y), (51)

At low temperatures, the predissociation relaxation path is

important when the density satisfies the conditipA] = wherec; is they intercept of the coefficient predissociation
>(7,iKe) ~ 12 |n the zero- temperature limit, the backward curve. The zero-temperature quenching rate could then be
rate coefﬁuenkb approaches zero exponentially fast and thedetermined fromr,; and| using Eq.(46).

predissociation relaxation path becomes negligible. .

10
VII. RESULTS

The kinetic model is tested for the two isotopes of helium 10°
interacting with vibrationally excited H The parameters are ~g
obtained from full guantum-mechanical calculations on a reo 0
liable potential energy surface: the Heliteraction poten- 'S
tial of Muchnick and Russekl4] and the H potential of g
Schwenke[15]. We find that the weakly bound He-H, 310
complex supports one bound state for each of its associate #
diatomic vibrational levels. Figure 1 shows the channel po- ¢
tential and the bound state wave functions for the0, | ©
=0 complex of3He-: - -H, and “He- - - H,. Both wave func-
tions are very diffuse, extending to distances of 100 A anc 1
beyond. The binding energy of théHe- - -H, complex is 1010710 o TS o7 07 T’

0.0016 cm?® whereas for*He---H, it is 0.0298 cm®.
This difference in binding energy is responsible for the large
difference in the elastic scattering cross sections’fée and

FIG.

Kinetic Energy (eV)

2. Elastic scattering cross section ftie and“He colli-

“He collisions with H shown in Fig. 2. The inelastic scat- sions with H(v=0, j=0).



PRA 59 VIBRATIONAL RELAXATION OF TRAPPED MOLECULES 2151
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FIG. 5. Simulated relaxation for a system possessing two qua-
FIG. 3. Inelastic scattering cross section fitte and“He col-  sjbound levels. At high atom density, the relaxation is controlled by
lisions with H,(v=1, j=0). the quasibound level with the longest lifetime.

The discussion given above may be generalized to sys- Using a simple kinetic model, we have shown that if the
tems possessing more than one bound level of the van deensity of atoms in a trap is large, vibrationally excited mol-
Waals complex. Figure 5 shows how the high density relaxecules relax primarily through the process of vibrational pre-
ation plot would look for a system that supports two bounddissociation. The rate of predissociation of the weakly bound
levels. As before, the short time scale would be given by theomplex decreases with the binding energy of the complex
collisional process. The intermediate time scale would beso that the predissociating state with the smallest binding
given by the predissociation lifetime corresponding to theenergy controls the relaxation rate at high densities. At low
most deeply bound state, and the long time scale would batom densities, the relaxation is determined primarily by the
given by the predissociation lifetime of the loosely bounddirect collisional quenching process. Therefore, the most
complex. weakly bound state of the van der Waals complex actually
controls the relaxation for all atom densities.

Measurement of relaxation in the high density case would
provide direct information about the rate coefficiekitg and

Effective range theory is often used to show that the poky , as well as the predissociation lifetimeg , and binding
sition of the last bound state for a radially symmetric poten-energesl,; , of the complex and the zero-temperature
tial has a strong influence on the elastic scattering cross seguenching rate coefficient®,;. We argue that the use of
tion as the collision energy is reduced to zero. In the preseritapped molecules to measure Feshbach resonance param-
work, we have extended the theory to include potentials thagters would provide a stringent test of atom-molecule poten-
are not radially symmetric. It is shown that the position oftial energy surfacefd]. The high density limit of the kinetic
the last bound state has a strong influence on both the elastisodel described in the present work may provide a useful
andthe inelastic scattering cross sections when the collisioxperimental method for obtaining such information.
energy is small.

VIIl. DISCUSSION
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APPENDIX: MORSE POTENTIAL

o} ~

0)] (arbitrary units)
7

N ] To illustrate the general formulas derived in Sec. lll, we
analyze the physical properties of weakly bound states for an
exactly solvable problem. If the interaction in the initial state

/

Hyv=1, ]

\ can be described by the Morse potential
\\ Vii(R)=Vy(e 2R-R/a_2e (R-Re)la), (A1)
107 L
o0 rong) o2 then the energy and wave function of the weakly bound state

will depend on the potential strengéh=2mV,a? as follows:
FIG. 4. Vibrational relaxation of trapped.fb =1, j=0) due

to interaction with*He at 10 mK. The dotted curve is the time scale
due to collisions, and the dashed curve is the time scale due to 1=V,
predissociation. The solid curve is the total relaxation time.

1 )2
1- — (A2)

2V¢
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and where 7 is an arbitrary number of units. For simplification
il we assume that the radil&. of the equilibrium position is
Ci(R)= / (2 JEe~ (R~Re)/ayxa comparable with the widta of the-Morse pot-ent|al well, i.e.,
al'(2ka) ka~kR.<1. Internal solution in the active arel~R,
C(RoR)/ + n»a depends on the binding energy from the normalization
xex] —ge~(R7Ro/a), (A3)  factorN(1) only,
The condition of a weakly bound state is satisfied if the 1
potential strength can be expressedéasl/4+ B, where 8 Xi(R)=x(R)= ZKGXF{— Eef(R’R& fal (A7)

< 1. Asymptotic expressions for the binding energy and the

wave function of weakly bound states are then given by a5 shown in Sec. Ill. The radial part of the internal solution
a2 . ¥o(R) corresponds with exponential accuracy to the solution
|=45Vo, B=<1, (A4) with zero energy boundary conditionskR§=R.+ na given

by

1
Xi(R)=2ke *“R-Ro) ex;{_ze(RRcwa_ (A5)

~1 (e 7<1), (AS8)

Po(R=Rg) = eXF{ - %97 K
Asymptotic solutions for the Morse potential can be com-
pared with the general asymptotic solutions given in Sec. ll. diho(R)
The normalization factoNyyse= \2x given in Eq.(A5) is 0
equal to the normalization constant for the general case given dR
by Eq.(42). The wave function of the weakly bound state for
the Morse potential in the external arBaR, is described Matrix elements of predissociative decay for different chan-
by the same asymptotics as E§7), nels will depend on the binding energy only via the normal-
ization factorN(l), and the total predissociation rdite will
xi(R)=x=(R)=+2ke R, R>R,=R.+ na, (A6) includeN(l) as the only dependence on the binding energy.

e 7
=~ —Jo(R=Ry)=0.  (A9)
R=R, 2a ° °
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