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Vibrational relaxation of trapped molecules

R. C. Forrey, V. Kharchenko, N. Balakrishnan, and A. Dalgarno
Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics,

60 Garden Street, Cambridge, Massachusetts 02138
~Received 20 October 1998!

Vibrational relaxation of trapped molecules due to collisions with cold atoms is investigated using the results
of quantum-mechanical scattering calculations. Trap loss is analyzed using an exactly solvable kinetic model
that includes direct collisional quenching and an indirect process of vibrational predissociation. At low atom
density, the relaxation is due primarily to collisional quenching. At high atom density, the relaxation involves
additional time scales due to the formation and decay of van der Waals complexes. It is shown that the most
weakly bound state of the van der Waals complex for a given diatomic vibrational level controls the relaxation
at all atom densities. Possible experiments using trapped molecules are discussed.@S1050-2947~99!05303-2#

PACS number~s!: 32.80.Pj
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I. INTRODUCTION

Experimental efforts to trap molecules@1–5# have moti-
vated recent investigations of collisional quenching@6,7# and
vibrational predissociation@8,9# of diatomic systems.
Trapped molecules provide a unique opportunity to study
threshold behavior of collisions between atoms and m
ecules@6#. Measurement of Feshbach resonances in sca
ing cross sections would give valuable information about
atom-molecule potential energy surface@9#.

Predissociation may play an important role in the rela
ation of vibrationally excited molecules when the density
surrounding atoms is high and the time scale for establish
equilibrium of van der Waals molecules is short compared
other relaxation processes@10#. Therefore, it may be possibl
to use the relaxation of vibrationally excited trapped m
ecules as a means for obtaining the Feshbach resonanc
rameters. In the present work, we investigate this possib
for trapped diatomic molecules by including predissociat
in the kinetic theory of vibrational relaxation. Using calc
lated quenching rates and predissociation lifetimes for a
alistic system, we make estimates of the relaxation time
vibrationally excited trapped molecules as a function of at
density. The role of the most weakly bound state of the v
der Waals complex is investigated for both the low and h
density limits. It is shown that a single measurement of
brational relaxation of trapped molecules performed at h
atom density would uniquely determine the binding ene
and predissociation lifetime of the van der Waals compl
the collisional rate of formation of the complex, and t
zero-temperature quenching rate of the excited diatom.

The paper is organized as follows. In Sec. II we pres
the kinetic model for trapped molecules. Section III revie
the exact close-coupling formulation for computing cro
sections and lifetimes. In Sec. IV, we use perturbation the
to analyze the relationship between the binding energy o
weakly bound complex and its predissociation decay r
Effective range theory is used in Sec. V to provide estima
of predissociation lifetimes for the most weakly bound le
els. Section VI discusses the detailed balance between
collisional rate of van der Waals formation and decay.
Sec. VII we give some numerical results for the two isotop
PRA 591050-2947/99/59~3!/2146~7!/$15.00
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of helium interacting with vibrationally excited H2 . Atomic
units are assumed throughout the paper.

II. KINETIC MODEL

Relaxation of vibrationally excited trapped diatomic mo
ecules may occur through the direct collisional quench
process

A1BC*→A1BC, ~1!

whereA is a trapped atom,BC* is the initial excited diatom
with vibrational quantum numberv and rotational quantum
number j, and BC is any final state diatom with quantum
numbersv8 and j 8 different from v and j. The internal en-
ergy of the initially excited diatom is transferred to trans
tional energy with rate coefficientRv j . The vibrational en-
ergy spacing of the diatom is typically much larger than t
depths of experimental traps and we may assume
quenched molecules are immediately removed from the t
A two-step mechanism may also remove molecules from
trap. In the first step, the molecules form a van der Wa
complexA•••BC* ,

A1BC* 1A→A•••BC* 1A, ~2!

through collision with atomsA. If the binding energy of the
complex is less than the trap depth, then the van der W
molecule may remain within the trap. The complex may th
decay after a finite lifetimetv j through the process of vibra
tional predissociation,

A•••BC*→A1BC. ~3!

In the absence of radiative transitions, the collisional lo
may be described by the kinetic equations

d

dt
@BC* # t1~Rv j@A#1kf@A#2!@BC* # t

5kb@A#@A•••BC* # t , ~4!
2146 ©1999 The American Physical Society
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PRA 59 2147VIBRATIONAL RELAXATION OF TRAPPED MOLECULES
d

dt
@A•••BC* # t1~tv j

211kb@A# !@A•••BC* # t

5kf@A#2@BC* # t , ~5!

where@BC* # t and @A•••BC* # t are the respective densitie
of BC* and A•••BC* at time t after an initial source of
BC* has been turned off. The density of cold atoms@A# is
assumed to be constant. The rate coefficients for the forw
and backward reaction~2! are given bykf and kb , respec-
tively. Equations~4! and ~5! may be combined into a singl
second-order differential equation,

d2

dt2
@BC* # t1$tv j

211~Rv j1kb!@A#1kf@A#2%
d

dt
@BC* # t

1$tv j
21Rv j@A#1~kbRv j1tv j

21kf !@A#2%@BC* # t

50 ~6!

with the solution

@BC* # t5@BC* #0~c1e2l1t1c2e2l2t!, ~7!

where

l15 1
2 ~a1b!, ~8!

l25 1
2 ~a2b!, ~9!

a5tv j
211~Rv j1kb!@A#1kf@A#2, ~10!

b5Autv j
211~kb2Rv j !@A#2kf@A#2u214kfkb@A#3,

~11!

c15
S Rv j@A#1kf@A#22l22kb@A#

@A•••BC* #0

@BC* #0

l12l2

D ,

~12!

and

c25
S l12Rv j@A#2kf@A#21kb@A#

@A•••BC* #0

@BC* #0

l12l2

D .

~13!

If the time scale for establishing equilibrium of van d
Waals molecules is short compared to other relaxation p
cesses, then we may assume a steady-state solution to E~5!
during the time that the trapped molecules are being p
duced. The initial condition needed by Eqs.~12! and ~13! is
then given by

@A•••BC* #0

@BC* #0

5
kf@A#2

tv j
211kb@A#

. ~14!

If we define
rd

o-

-

e5
kfkb@A#3

utv j
211~kb2Rv j !@A#2kf@A#2u2

~15!

and

g5
Rv j@A#1kf@A#2

tv j
211kb@A#

~16!

and assume thate!1, then the relaxation path is controlle
by the value ofg. For g.1 or g,1, the time scales are
given by

l15~12g21e!~Rv j@A#1kf@A#2!, ~17!

l25~12ge!~tv j
211kb@A# ! ~18!

with c1512ge and c25ge. For g51, the assumptione
!1 breaks down and the formulas~8!–~13! must be used. In
the low density limit,g,1 and the relaxation is controlle
by the quenching time scalel15Rv j@A#. In the high density
limit, g.1 and the relaxation is controlled by the prediss
ciation time scalel25tv j

21 .
The above discussion may be generalized to include

der Waals interactions that support more than one bo
state. For example, if we consider a two-level system labe
A•••BC1* andA•••BC2* , then the kinetic equations~4! and
~5! must be replaced by

d

dt
@BC* # t1~Rv j@A#1kf ,1@A#21kf ,2@A#2!@BC* # t

5kb,1@A#@A•••BC1* # t1kb,2@A#@A•••BC2* # t , ~19!

d

dt
@A•••BC1* # t1~tv j ,1

21 1kb,1@A# !@A•••BC1* # t

5kf ,1@A#2@BC* # t , ~20!

d

dt
@A•••BC2* # t1~tv j ,2

21 1kb,2@A# !@A•••BC2* # t

5kf ,2@A#2@BC* # t ~21!

resulting in a third-order differential equation. In Eqs.~19!–
~21! we have assumed that inelastic atom-complex collisi
are negligible. The solution to Eqs.~19!–~21! may be written

@BC* # t5@BC* #0~c1e2l1t1c2e2l2t1c3e2l3t!, ~22!

where

l15tv j ,1
21 , ~23!

l25tv j ,2
21 , ~24!

l35Rv j@A#1kf ,1@A#21kf ,2@A#2 ~25!

in the high density limit. The above discussion is similar
the usual master equation analysis where the time scale
determined by the eigenvalues of a rate matrix. In the pres
case, however, we see that at high densities the impor
time scales are related directly to the predissociation l
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2148 PRA 59FORREY, KHARCHENKO, BALAKRISHNAN, AND DALGARNO
times and the relaxation time is given by the quasibou
level with the longest lifetime.

III. CLOSE-COUPLING EQUATIONS

The kinetic model described above depends on input
rameters that may be computed using an exact quan
mechanical close-coupling formulation. Therefore, we p
vide a brief review of the close-coupling procedure used
the present work. The atom-diatom Hamiltonian in t
center-of-mass frame is given by

H52
1

2m
¹ r

22
1

2m
¹R

21v~r !1VI~r ,R,u!, ~26!

wherer is the distance between atomsB andC of the diatom,
R is the distance between atomA and the center of mass o
the diatom,u is the angle betweenr andR, m is the reduced
mass of the diatom, andm is the reduced mass of the ato
with respect to the diatom. The diatomic Schro¨dinger equa-
tion

F 1

2m

d2

dr2
2

j ~ j 11!

2mr2
2v~r !1ev j Gxv j~r !50 ~27!

is solved by expanding the rovibrational wave functi
xv j (r ) in a Sturmian basis set. The full wave function
expanded in a set of channel functions@n[(v j l )#,

CJM~RW ,rW !5
1

R(
n

Cn~R!fn~R̂,rW !, ~28!

fn~R̂,rW !5
1

r
xv j~r !

3(
mj

(
ml

~ j lJ umj ,M2ml !Ymj

j ~ r̂ !Yml

l ~R̂!,

~29!

where l is the orbital angular momentum of the atom wi
respect to the diatom,J is the total angular momentum,M is
the projection of J onto the space-fixedz axis, and
( j lJ umj ,M2ml) denotes a Clebsch-Gordon coefficient. O
erating the Hamiltonian~26! on the channel functions~28!
leads to a set of coupled equations

F d2

dR2
2

l m~ l m11!

R2
12mEmGCm~R!

5(
n

Cn~R!^fmuVI ufn&, ~30!

where Em is the translational energy andl m is the orbital
angular momentum in themth channel. The close-couplin
equations~30! are solved using the general inelastic scatt
ing programMOLSCAT @11#. The cross sections and rate c
efficients are given by@12#
d

a-
m-
-
n

-

-

sv, j→v8, j 85
p

2mEv j~2 j 11!(J50

`

~2J11!

3 (
l 5uJ2 j u

uJ1 j u

(
l 85uJ2 j 8u

uJ1 j 8u

ud j j 8d l l 8dvv82Sj j 8 l l 8vv8
J u2,

~31!

Rv, j→v8, j 8~T!5~8kBT/pm!1/2
1

~kBT!2

3E
0

`

sv, j→v8, j 8~Ev j !

3exp~2Ev j /kBT!Ev jdEv j , ~32!

whereT is the temperature andkB is the Boltzmann constant
The total quenching rate coefficientsRv j needed in the ki-
netic model of Sec. II are given by

Rv j~T!5 (
v8 j 8

Rv j→v8 j 8~T!. ~33!

To obtain the predissociation lifetimes, the close-coupl
equations are solved for energies below threshold, theSma-
trix is diagonalized, and the eigenphase sum is differentia
with respect to energy to obtain numerically exact resona
widths. The predissociation lifetime is then given bytv j ,n
51/Gv j ,n , wheren is the quantum number of the bound sta
of the van der Waals complex.

IV. PERTURBATION THEORY

Because the kinetic model presented above shows tha
relaxation rate depends most strongly on the quasibo
level with the longest predissociation lifetime, it is useful
examine the relationship between decay rate and binding
ergy for a weakly bound complex. We assume that the bi
ing energyI of the van der Waals complexA•••BC* is
small, but well defined, i.e.,G i!I . The predissociation rate
may then be calculated using perturbation theory. The w
functions in zero-order approximation are calculated by
glecting nondiagonal matrix elementsVi f , and the decay
process is calculated using the standard rule

G i5(
f

G i , f52p(
f

g~ f !U E x i
0~R!Vi f ~R!x f

0~R!dRU2

,

~34!

where x i , f
0 (R)5Rw i , f

0 (R) are the unperturbed radial func
tions andg( f ) is the degree of degeneracy of the final sta
For a spherically symmetric initial stateJ50, l 50, and j
50, the degeneracy of the final states is given byg( f )
5(2l 811). If the momentum transfer is large, then the fin
continuum wave function will have many oscillations in th
region of overlap, and the decay width will be small. The
fore, the largest partial widths are generally found for valu
of l 8 that minimize the amount of transferred momentu
@13#.



o
n

:

ne

d

m

y

be
nd

ter

-

f

ral
e

in-
ex.
ex
-

d
n-
e

. It
g

at
em
is-
era-
-
gh
ut

ure.
in-
ntly

p-

tion
e

:
ea

PRA 59 2149VIBRATIONAL RELAXATION OF TRAPPED MOLECULES
We now derive an asymptotic formula for the prediss
ciation decay rate~34!. The initial bound state wave functio
x i

0(R) may be calculated from the equation

d2x i
0~R!

dR2
2@k212mVii ~R!#x i

0~R!50, ~35!

wherek252mI. The binding energyI is an arbitrary small
value satisfying the condition of a weakly bound stateI
!max$uVii (R)u% for a long-range potential ork2R0

2!1 for a
short-range potential of radiusR0 . The strengthj of the
binding potentialVii should be enough to support at least o
bound state:

j52mE
0

`

Vii ~R!RdR>1. ~36!

In the external areaR.R0 of a potential well, where the
binding energy is larger than the potentialI 5k2/2m@uVii u,
the potential energy may be neglected in the Schro¨dinger
equation. The functionx i

(0)(R) may then be approximate
by

x i
~0!~R!.H x.~R!5N~ I !e2kR, R.R0

x,~R!5N~ I !c0~R!, R,R0 ,
~37!

whereN(I ) is a normalization coefficient. The leading ter
of the internal solutionx,(R) may be obtained by solving
the Schro¨dinger equation at zero energy,

d2c0~R!

dR2
22mVii ~R!c0~R!50, ~38!

and matching to the external solutionx.(R) in the boundary
areaR;R0 :

x i
0~R0!5N~ I !e2kR0,

d

dR
ln@x i

0~R!#R5R0
52k. ~39!

For weakly bound states,kR0!1, the boundary conditions
for the internal solutionc0(R) may be written as energ
independent conditions

c0~R0!51;
dc0~R!

dR U
R5R0

52k.0. ~40!

The internal part of solutionx,(R) depends on the binding
energy via the normalization factorN(I ), which may be cal-
culated as follows:

E ux i
0u2dR5E

0

R0
ux,~R!u2dR1E

R0

`

ux.~R!u2dR

5N2~ I !S constR01
1

2k D51. ~41!

Because the binding energyI is small, the normalization is
given by

N~ I !5A2k5~8mI!1/4. ~42!
- Accurate evaluation of the rate of predissociation may
done numerically with the exact radial wave functions a
nonadiabatic matrix elementsVi f (R) using Eq.~34!. Since
the matrix elementsVi f (R) decrease at large distances fas
than all other functions in Eq.~34!, the effective integration
area is restricted to distancesR,R0 . Therefore, the predis
sociation rate is given asymptotically by

G i54~2mI!1/2(
f

g~ f !U E c0~R!Vi f ~R!x f
0~R!dRU2

.

~43!

Since all terms of the sum in Eq.~43! are independent o
binding energy, the decay width varies asI 1/2 for small I. In
the Appendix, we demonstrate the validity of the gene
asymptotic formula~43! for the special case of the Mors
potential.

V. EFFECTIVE RANGE THEORY

In Sec. IV, we showed that predissociation lifetimes
crease with decreasing binding energy of the compl
Therefore, the lifetime of the most weakly bound compl
will control the relaxation for high atom densities. This life
time may be estimated using the effective range formula@9#

tv j
215

2bv j

mr v j uav j u2
H F12

2av j r v j

uav j u2
G21/2

21J , ~44!

whereav j5av j2 ibv j is the complex scattering length an
r v j is the effective range. We follow the notational conve
tion that the labeln will be suppressed when referring to th
most weakly bound level of the van der Waals complex
has been shown@8,9# that the imaginary part of the scatterin
length is given by

bv j5
m

4p
lim
T→0

Rv j~T!. ~45!

Recalling the kinetic model of Sec. II, we conclude th
when the density of atoms in the trap is large, the syst
relaxes primarily through the process of vibrational pred
sociation. This relaxation process is independent of temp
ture. However, using Eqs.~44! and ~45! we see that a mea
surement of the vibrational relaxation performed at hi
temperature and high density would yield information abo
the total collisional quenching rate also at zero temperat
This piece of information is extremely valuable in determ
ing whether a trapped molecular species could be efficie
cooled to ultracold temperatures.

If the effective range is small, the scattering length a
proximation may be used to obtain

lim
T→0

tv j
21

Rv j~T!
5

1

2pav j
3

5
~2mI !3/2

2p
. ~46!

The relationship between rate coefficient and predissocia
lifetime given in Eq.~46! may be understood from a simpl
physical picture. The typical spreadL of the wave function
for a weakly bound state depends on the binding energyL
51/A2mI . The effective density of atoms in the active ar
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is estimated as@A#;1/L3. The decay rate of predissociatio
may then be calculated astv j

215 limT→0 Rv j (T)@A# in accor-
dance with Eq.~46!.

VI. COMPLEX FORMATION AND DECAY

In order to complete our analysis of the kinetic mod
presented in Sec. II, we need to determine the forward
backward rate coefficientskf and kb . In general, these pa
rameters are extremely difficult to compute, and are bey
the scope of this work. However, we may use detailed b
ance to remove the backward rate coefficientkb from the
analysis. At low temperatures, the forward rate coefficienkf
is independent of temperature due to Wigner’s threshold
for inelastic collisions. Therefore, in the following discu
sion, we ignore the temperature dependence ofkf . If we
restrict the complex formation and decay process~2! to in-
clude onlys waves, then

kb~T!5kf@A#exp~2I /kBT!. ~47!

The temperature dependence of the relaxation parametg
defined in Eq.~16! is then given by

g~T!

@A#
5

Rv j~T!1kf@A#

tv j
211kf@A#2 exp~2I /kBT!

. ~48!

When I !kBT,

g~T!5H tv jRv j~T!@A#, @A#→0,

exp~ I /kBT!, @A#→`.
~49!

When I @kBT,

g~T!5H 2pav j
3 @A#, @A#→0,

tv j kf@A#2, @A#→`.
~50!

At low temperatures, the predissociation relaxation path
important when the density satisfies the condition@A#
@(tv j kf)

21/2. In the zero-temperature limit, the backwa
rate coefficientkb approaches zero exponentially fast and
predissociation relaxation path becomes negligible.

VII. RESULTS

The kinetic model is tested for the two isotopes of heliu
interacting with vibrationally excited H2 . The parameters ar
obtained from full quantum-mechanical calculations on a
liable potential energy surface: the HeH2 interaction poten-
tial of Muchnick and Russek@14# and the H2 potential of
Schwenke@15#. We find that the weakly bound He•••H2
complex supports one bound state for each of its associ
diatomic vibrational levels. Figure 1 shows the channel
tential and the bound state wave functions for thev50, j
50 complex of3He•••H2 and 4He•••H2. Both wave func-
tions are very diffuse, extending to distances of 100 Å a
beyond. The binding energy of the3He•••H2 complex is
0.0016 cm21 whereas for 4He•••H2 it is 0.0298 cm21.
This difference in binding energy is responsible for the la
difference in the elastic scattering cross sections for3He and
4He collisions with H2 shown in Fig. 2. The inelastic sca
l
d

d
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w

is

e
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d
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tering cross sections for3He and4He collisions with H2 are
shown in Fig. 3. The difference between the two cross s
tions in Fig. 3 is due to the differences in the two bindin
energies of the He•••H2 complexes forv51.

Figure 4 shows the relaxation of@H2(v51, j 50)# t due
to interaction with4He atoms at a temperature of 10 mK. Fo
the calculation, we used the predissociation lifetime a
binding energy given by Forreyet al. @9# of 0.069 sec and
0.0282 cm21, respectively. We assumedg56.9 which is
equivalent tokf@A#25100. It is clear from Fig. 4 that a mea
surement of vibrational relaxation with time in theg@1 case
would provide valuable information. The short time sca
would give the forward rate coefficientkf and the long time
scale the predissociation lifetimetv j . The binding energy of
the van der Waals complex could be obtained from the m
surement using the formula

I 52kBT ln~c2 /g!, ~51!

wherec2 is they intercept of the coefficient predissociatio
curve. The zero-temperature quenching rate could then
determined fromtv j and I using Eq.~46!.

FIG. 2. Elastic scattering cross section for3He and 4He colli-
sions with H2(v50, j 50).

FIG. 1. Channel potential~solid curve! and bound state wave
functions for the v50, j 50 complex of 3He•••H2 and
4He•••H2 .
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PRA 59 2151VIBRATIONAL RELAXATION OF TRAPPED MOLECULES
The discussion given above may be generalized to
tems possessing more than one bound level of the van
Waals complex. Figure 5 shows how the high density rel
ation plot would look for a system that supports two bou
levels. As before, the short time scale would be given by
collisional process. The intermediate time scale would
given by the predissociation lifetime corresponding to
most deeply bound state, and the long time scale would
given by the predissociation lifetime of the loosely bou
complex.

VIII. DISCUSSION

Effective range theory is often used to show that the
sition of the last bound state for a radially symmetric pote
tial has a strong influence on the elastic scattering cross
tion as the collision energy is reduced to zero. In the pres
work, we have extended the theory to include potentials
are not radially symmetric. It is shown that the position
the last bound state has a strong influence on both the el
and the inelastic scattering cross sections when the collis
energy is small.

FIG. 4. Vibrational relaxation of trapped H2(v51, j 50) due
to interaction with4He at 10 mK. The dotted curve is the time sca
due to collisions, and the dashed curve is the time scale du
predissociation. The solid curve is the total relaxation time.

FIG. 3. Inelastic scattering cross section for3He and 4He col-
lisions with H2(v51, j 50).
s-
er
-

e
e
e
e

-
-
c-
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Using a simple kinetic model, we have shown that if t
density of atoms in a trap is large, vibrationally excited m
ecules relax primarily through the process of vibrational p
dissociation. The rate of predissociation of the weakly bou
complex decreases with the binding energy of the comp
so that the predissociating state with the smallest bind
energy controls the relaxation rate at high densities. At l
atom densities, the relaxation is determined primarily by
direct collisional quenching process. Therefore, the m
weakly bound state of the van der Waals complex actu
controls the relaxation for all atom densities.

Measurement of relaxation in the high density case wo
provide direct information about the rate coefficientskf ,n and
kb,n as well as the predissociation lifetimestv j ,n and binding
energes I v j ,n of the complex and the zero-temperatu
quenching rate coefficientsRv j . We argue that the use o
trapped molecules to measure Feshbach resonance pa
eters would provide a stringent test of atom-molecule pot
tial energy surfaces@9#. The high density limit of the kinetic
model described in the present work may provide a use
experimental method for obtaining such information.
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APPENDIX: MORSE POTENTIAL

To illustrate the general formulas derived in Sec. III, w
analyze the physical properties of weakly bound states fo
exactly solvable problem. If the interaction in the initial sta
can be described by the Morse potential

Vii ~R!5V0~e22~R2Rc! /a22e2~R2Rc!/a!, ~A1!

then the energy and wave function of the weakly bound s
will depend on the potential strengthj52mV0a2 as follows:

I 5V0S 12
1

2Aj
D 2

~A2!to

FIG. 5. Simulated relaxation for a system possessing two q
sibound levels. At high atom density, the relaxation is controlled
the quasibound level with the longest lifetime.
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and

x i~R!5A 1

aG~2ka!
~2Aje2~R2Rc! /a!ka

3exp@2Aje2~R2Rc! /a#. ~A3!

The condition of a weakly bound state is satisfied if t
potential strength can be expressed asj51/41b, whereb
!1. Asymptotic expressions for the binding energy and
wave function of weakly bound states are then given by

I .4b2V0 , b!1, ~A4!

x i~R!.A2ke2k~R2Rc! expF2
1

2
e2~R2Rc! /aG . ~A5!

Asymptotic solutions for the Morse potential can be co
pared with the general asymptotic solutions given in Sec.
The normalization factorNMorse5A2k given in Eq.~A5! is
equal to the normalization constant for the general case g
by Eq.~42!. The wave function of the weakly bound state f
the Morse potential in the external areaR.R0 is described
by the same asymptotics as Eq.~37!,

x i~R!.x.~R!5A2ke2kR, R.R05Rc1ha, ~A6!
ev

ys

u-

. A

J

ys

ev

al-
e

-
I.

en

whereh is an arbitrary number of units. For simplificatio
we assume that the radiusRc of the equilibrium position is
comparable with the widtha of the Morse potential well, i.e.
ka;kRc!1. Internal solution in the active areaR;Rc
6ha depends on the binding energy from the normalizat
factor N(I ) only,

x i~R!.x,~R!5A2kexpF2
1

2
e2~R2Rc! /aG , ~A7!

as shown in Sec. III. The radial part of the internal soluti
c0(R) corresponds with exponential accuracy to the solut
with zero energy boundary conditions atR05Rc1ha given
by

c0~R5R0!5expF2
1

2
e2hG.1 ~e2h!1!, ~A8!

dc0~R!

dR U
R5R0

52
e2h

2a
c0~R5R0!.0. ~A9!

Matrix elements of predissociative decay for different cha
nels will depend on the binding energy only via the norm
ization factorN(I ), and the total predissociation rateG i will
includeN(I ) as the only dependence on the binding ener
l-

ct
rch
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