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Classical evolution of quantum elliptic states
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~Received 9 October 1998!

The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of
ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with aston-
ishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydro-
genic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of
SO(4),which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields theexactevolution in time of these quantum states, and so we explain the surprising
match between purely classical perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates that have
maximum total angular momentum and also maximum projection of the angular momentum along a fixed
direction.@S1050-2947~99!05203-8#

PACS number~s!: 32.80.Rm, 32.60.1i, 03.65.2w, 02.20.2a
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I. INTRODUCTION

In the past few years innovative experimental techniq
have made possible the study of the dynamics of ‘‘Rydbe
electrons, that is, atomic electrons that are promoted to v
high energy levels and that are only weakly bound to
atomic core@1#. The spectrum of such electrons is well d
scribed by a Rydberg-like formula~hence their name!, and
their wave functions are well approximated by eigenfun
tions of the hydrogen atom with very large principal qua
tum number~typically n*100) @2#. Indeed, to a very good
approximation the dynamics of Rydberg electrons is hyd
genic, and more complex atoms are often used in exp
ments merely as substitutes for hydrogen, because it is m
easier to excite their valence electron to a Rydberg state,
yet the far-flung Rydberg electron senses a field which d
not differ much from a pure Coulomb field. The recent e
perimental results have led to a renewed theoretical inte
in the hydrogen atom in external fields in the limit of larg
quantum numbers, which is an exemplar for the study
quantum-classical correspondence in nonintegrable sys
@3#.

Indeed, recent experiments have shown that the in
manifold dynamics of large-n Rydberg electrons depend
strongly on the presence of even surprisingly weak fie
This observation strongly suggests that it must be possib
manipulate accurately the quantum state of the electron
applying the appropriate combination of weak, slowly va
ing electric and magnetic fields. In fact, the theory of t
hydrogen atom in weak fields is the basis of the treatmen
slow ion-Rydberg collisions, which are generally conside
to be the mechanism for the stabilization of the high-n states
used in ZEKE ~zero-electron-kinetic-energy! spectroscopy
@4–6#. It also constitutes the starting point for the study
alkali-metal atoms in weak, circularly polarized microwa
fields @7–11#.

An external electric fieldF is ‘‘weak’’ when its magni-
tude is small compared to the average Coulomb field sen
PRA 591050-2947/99/59~3!/2139~7!/$15.00
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by the electron, that is, in atomic units~which we use
throughout this paper!

F!
1

n4
. ~1!

In classical mechanics Eq.~1! implies that the energy of the
Rydberg electron does not change significantly over a Ke
period, and classical perturbation theory applies. The co
tion on a magnetic fieldB is that the magnitude of the field
must be much smaller than the Kepler frequencyvK51/n3

of the electron.
On the other hand, the quantum constraint on elec

fields for negligible intermanifold mixing is the Inglis-Telle
limit @2#

F,
1

3n5
, ~2!

and for a very largen it may become a more stringent con
straint than the classical one. The quantum constraint o
magnetic fieldB is

B,
1

n4
. ~3!

However, it has been recently shown that the more rela
classical constraints hold also in quantum mechanics. T
is, even in the presence of some intermanifold mixing
slow seculardynamics, due to the external fields, is esse
tially the same as if the Rydberg electron were still confin
within a givenn-manifold, because the time-averaged corre
tions due ton-mixing are negligible for largen @12#. There-
fore, in this paper we consider only the intramanifold d
namics of the Rydberg electron, and we assume that
external fields satisfy the Inglis-Teller limit, and also Eq.~3!.

This paper is organized as follows: in Sec. II we discu
the evolution in time of atomic elliptic states in weak field
2139 ©1999 The American Physical Society
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and we show that they evolve exactly like the underlyi
classical ellipse; in Sec. III we propose an original approa
to the production of circular Rydberg states, which is ba
on the dynamics of the coherent states of SO(4); finally, in
Sec. IV we draw some general conclusions.

II. PERTURBATIVE DYNAMICS IN QUANTUM AND
CLASSICAL MECHANICS

The Hamiltonian for a hydrogen atom in crossed elec
and magnetic fields reads

H5
p2

2
2

1

r
1

B

2
Lz1Fx1

B2

8
~x21y2!, ~4!

where the electric field is parallel to thex axis and its
strength isF; the magnetic field is parallel to thez axis and
its strength isB.

For weak fields the diamagnetic term, which is prop
tional to the square of the field, can be neglected. The s
plified problem has been first solved quantum mechanic
by Demkov et al. @13,14#. However, their formal solution
does not provide physical insight into the dynamics of
angular momentum of the Rydberg electron; it also becom
computationally intractable in the limit of largen’s.

The analysis of the intramanifold dynamics in the hyd
gen atom rests on Pauli’s replacement, which is an oper
identity between the position operatorr̂ and the scaled
Runge-Lenz vector operatorâ ~throughout this paper we us
boldface letters for vectors, and we indicate a quantum
erator with a caret!, and which holds only within a hydro
genicn manifold @15,16#:

r̂52
3

2
nâ. ~5!

The scaled Runge-Lenz vector operatorâ is a Hermitian op-
erator, which for a bound state is defined as

â5
1

A22E
H 1

2
~ p̂3L̂2L̂3p̂!2

r̂

r J , ~6!

whereE521/2n2 is the Kepler energy of the electron.
The angular momentum and the Runge-Lenz vector

invariants of the Kepler problem, and they commute with
hydrogenic Hamiltonian. By neglecting the diamagnetic te
and using the identity of Eq.~5!, in the interaction represen
tation the perturbation Hamiltonian for external fields of a
bitrary orientation becomes

Ĥ152vS•â2vL•L̂ , ~7!

wherevS53nF/2 is the Stark frequency of the electric fiel
andvL52B/2 is the Larmor frequency of the magnetic fie
~we define the Larmor frequency vector with a minus sig
so that the dynamics is formally identical to the one o
negative charge in a noninertial rotating frame — see
low!.

The components of the angular momentum, plus thos
the Runge-Lenz vector, constitute the generators of SO(4),
which is the dynamical symmetry group of the Kepler pro
h
d

c

-
-

ly

e
s

-
or

p-

re
e

-

,

-

of

-

lem @16#. It is convenient to decompose SO(4) in the dire
product of two rotation groups, i.e., SO(4
5SO(3)3SO(3), and weconsider the following operators

Ĵ15 1
2 ~ L̂1â!,

~8!
Ĵ25 1

2 ~ L̂2â!.

It is well known thatĴ1 andĴ2 commute with each other an
that their components constitute a realization of the ang
momentum algebra@16#. The perturbation Hamiltonian ca
be rewritten as

Ĥ152v1• Ĵ12v2• Ĵ2 , ~9!

where

v15vL1vS ,

v25vL2vS . ~10!

Moreover,L̂ and â obey two constraints:

L̂•â50,
~11!

L̂21â25n221,

and so one has

Ĵ1
25 Ĵ2

25 j ~ j 11!,
~12!

2 j 115n.

Therefore both irreducible representations of SO(3) have
same dimension, which is related to the principal quant
numbern of the hydrogenic manifold.

Equation~9! reduces the problem to the dynamics of tw
uncoupled spins in the external ‘‘magnetic fields’’v1 and
v2 . The analysis is particularly simple when the two ‘‘ma
netic fields’’ v1 and v2 have constant orientation in spac
However, all the considerations below also hold in the m
general situation ofarbitrary fields within the constraints o
perturbation theory@17,18#, and we discuss explicitly the
greater generality of our analysis later in this section. In
case of ‘‘magnetic fields’’ with constant orientation, th
propagator is simply

Û~ t9,t8!5ei *
t8
t9

v1• Ĵ1dtei *
t8
t9

v2• Ĵ2dt. ~13!

The elliptic eigenstates of the hydrogen atom@19–23# are
nothing other than the coherent states of SO(4) and there
they can be expressed as the direct product of two cohe
states of SO(3). In turn, the coherent states of SO(3) can
constructed quite generally by applying any operator of
group~i.e., any rotation! to the angular momentum eigensta
with maximum projection of the angular momentum alo
the z axis @17,18#:

u j n1 , j n2&5ei V1• Ĵ1ei V2• Ĵ2u j j 1,z5 j & ^ u j j 2,z5 j &, ~14!
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where V1 and V2 represent three-dimensional active ro
tions, which, respectively, overlap thez axis with the unit
vectorsn1 andn2 .

Clearly, angular momentum eigenstates that have m
mum projection along thez axis are minimum uncertainty
states for the angular momentum@17,18#, and the rotations of
Eq. ~14! preserve this property. The coherent states of SO
are then states of minimum uncertainty for the angular m
mentum, and in their representation on the unit sphere t
are sharply localized along the direction of the correspond
classical angular momentum. Similarly, elliptic states are
calized along the directions of both classical ‘‘angular m
menta’’ J1 andJ2 , i.e., along the unit vectorsn1 andn2 . It
follows from Eq. ~8! that they also possess well localize
quasiclassical angular momentumL and Runge-Lenz vecto
a.

The classical objects that correspond to elliptic states
points in the phase space of the Kepler problem. In the m
familiar configuration space these points are the trajecto
of a classical electron in a pure Coulomb potential, i
Kepler ellipses, which are completely identified by the ma
nitude and direction of the two classical vectorsL and a
@24#. Indeed, the probability density of a hydrogenic electr
in an elliptic state is peaked precisely along a Kepler ellip
~see Fig. 1!.

Most importantly, it is easy to see that the propagator
Eq. ~13! is also an operator of SO(4), and sowhen the
propagator acts on an elliptic state it naturally yields so
other elliptic state. More precisely, elliptic states are co
structed by applying two rotation operators which map thz
axis ~that is, the direction of the angular momenta of t
original states! onto some desired directionsn1 and n2 .
Similarly, the propagator of Eq.~13! consists of two rota-
tions, respectively, around the spatial axes given by

FIG. 1. Probability density~averaged along thez axis! of an
atomic elliptic state localized on thexy plane. The principal quan
tum number isn530, and the eccentricity isec50.6. Bothx andy
vary between22n2 and12n2 ~recall that in atomic units the Boh
radius is equal to 1!, and the nucleus is at the origin of the frame
reference. The probability density is sharply concentrated on thexy
plane, and we have averaged it over thez axis to show that the
electron is more likely to be far from the nucleus. The peak at
aphelion, which reflects the larger probability of finding the electr
away from the nucleus, is a purely classical effect. Because
classical electron is slower at the aphelion than at the perihelio
spends a longer time away from the nucleus than in its proxim
and the classical probability of finding a Rydberg electron far fr
the nucleus is larger. The figure was produced using the ele
formula for the wave function of atomic elliptic states derived
Ref. @21#.
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‘‘magnetic fields’’ v1 andv2 . The net effect of the propa
gator onto an elliptic state is

Û~ t9,t8!u j n1 , j n2&5u j n18 , j n28&, ~15!

where the two final unit vectorsn18 ,n28 can be obtained from
the initial ones by a clockwiseclassicalprecession around
v1 andv2 .

The original idea of studying the dynamics of ellipt
states in weak fields is due to Nauenberg@23#, who treated in
detail the case of orthogonal, time-dependent electric
magnetic fields. In his analysis the connection with class
mechanics emerges for a configuration of the fields wh
constitutes a realization of SO(3). Wegeneralize his results
to arbitrary fields, that is, to realizations of SO(4), the full
dynamical symmetry group of the hydrogen atom. Inde
most of the interest concerning elliptic states has been
cused on thequasiclassical localizationproperties of the
electron in real space@19–23#, and the representation of e
liptic states as a direct product of two coherent states
SO(3) ~which yields their time dependence so naturally a
so generally! is not particularly suited for the study of th
probability density of Rydberg electrons in real space.

In general, the classical object which corresponds t
coherent state is the classical phase space point which la
the state itself@17,18#. A point in phase space is equivale
to a trajectory of the electron, which in the case of the Co
lomb potential is a Kepler ellipse. Therefore the classi
counterpart to the motion of the coherent states of SO(4
the dynamics of classical ellipses in weak fields, which is
object of study in classical perturbation theory, where
ellipse becomes the dynamical object itself@5,25–27#.

In classical perturbation theory it is assumed that the e
tron still moves along an unperturbed ellipse, and the eq
tions of motion describe how the elements~in the sense of
celestial mechanics@28#! of the ellipse slowly vary in time.
Clearly, an ellipse can be described by several equiva
sets of elements, however if one chooses the angular
mentumL and the Runge-Lenz vectora ~the magnitude of
the latter being proportional to the eccentricity of the
lipse!, the equations of motion turn out to be particular
simple. More formally, in classical mechanics the angu
momentum and the Runge-Lenz vector are constants of
tion for the pure Kepler problem, i.e., their Poisson brack
with the Hamiltonian vanish, just like the commutators of t
corresponding quantum operators. However,L anda become
time-dependent as soon as applied external fields break
SO(4) symmetry of the Hamiltonian. In the case of ve
weak fields the effects of the perturbation take place o
time scale much longer than the Kepler periodTK52pn3.
By simply averaging the equations of motionover a Kepler
periodandalong an unperturbed Kepler ellipseone can eas-
ily derive the dynamics for thetime-averagedangular mo-
mentum and thetime-averagedRunge-Lenz vector, which
for the sake of simplicity we still indicate withL anda, and
one has@5,25–27#

dL

dt
52vS3a2vL3L , ~16!

e

e
it
,

nt



rl
la

a-

do
e
pl
f

re

nd
r

e
c

se
th

o

f
te
t

er
na
re
th

or
ld
u-
te
c
e
e
en
ag
ia
im

pl
l

h

w-

en
he
tic
t and
nd

d
ing
y
t so
n-
n
g
at-

on
in
of

se
al-
or-
tes

r is

s
ed

s of

s-

it

2142 PRA 59PAOLO BELLOMO AND C. R. STROUD, JR.
da

dt
52vS3L2vL3a.

Like in quantum mechanics, the dynamics is particula
straightforward when it is expressed in terms of the ‘‘angu
momenta’’J1 andJ2 , which obey simple, uncoupled equ
tions:

dJ1

dt
52v13J1 ,

~17!
dJ2

dt
52v23J2 ,

where the two frequencies are the same as in Eq.~10!. The
two classical spin vectorsJ1 and J2 simply precess clock-
wise around the ‘‘magnetic fields’’v1 andv2 , just like their
quantum counterparts.

This shows that elliptic states in weak fields not only
evolve into elliptic states, and therefore retain their coh
ence properties and their localization along a classical Ke
ellipse, but they also evolveexactlyaccording to the laws o
classical mechanics~in the perturbative limit!. This result has
been already observed numerically and discussed theo
cally for special fields configurations in Refs.@29,30#, and
also in Ref.@23#, where the case of orthogonal electric a
magnetic fields is discussed. Most importantly, the same
sult has been observed also experimentally@7#.

Indeed, we have illustrated explicitly the connection b
tween quantum and classical mechanics only for a spe
configuration of the fields. However, our approach is ba
on the dynamics of the coherent states of SO(4) and
guarantees—see below—that our conclusions hold forarbi-
trary fields ~within the constraints of perturbation theory!.
Therefore, our study provides an analytical explanation
the numerical results and it alsogeneralizesthe previous
theoretical arguments@23,29,30#. The main conclusions o
our analysis do not depend on the particular choice of ex
nal fields; instead, they rest on the equivalence between
intramanifold dynamics of a Rydberg electron in weak ext
nal fields and the motion of two uncoupled spins in exter
magnetic fields, and also on the properties of the cohe
states of the angular momentum. It is well known that
coherent states of SO(3) inarbitrary magnetic fields evolve
in time exactly like the corresponding classical spin vect
@17,18#, and that is the reason why our demonstration ho
for arbitrary electric and magnetic fields. Although the arg
ments for the classical evolution of quantum elliptic sta
hold in general, for fields with complicated time dependen
the explicit form of the propagator may be difficult to deriv
analytically. However, it is easy to see that it must be giv
by some combination of rotation operators and that in g
eral the Euler angles of the propagator for a spin in a m
netic field obey some complicated, nonlinear different
equations that must be solved numerically, when the t
dependence of the field is not trivial@17,18#. However, when
a numerical treatment is necessary, it is clearly much sim
to solve the classical, linear Eqs.~17!. In fact, the classica
equations yield directly the unit vectorsn18 and n28 , which
label and determine completely the coherent state after it
evolved in time.
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The quantum propagator of Eq.~13! is just the solution
for a very special configuration of the external fields, ho
ever it is very useful because of itsillustrative character, and
of its relevance to ion-Rydberg collisions, which have be
investigated experimentally. Moreover, for such fields t
classical dynamics of the unit vectors labeling the ellip
state becomes amenable to an exact analytical treatmen
it yields a most intuitive understanding of the dynamics, a
we exploit this final characteristic in the next section.

A slowly rotating electric field is equivalent to crosse
electric and magnetic fields in the noninertial frame rotat
with the field@5,14,24#. Therefore our analysis explains wh
calculations based on purely classical methods accoun
well for several experimental results, ranging from slow io
Rydberg collisions@4–6# to the dynamics of circular states i
circularly polarized fields@7,9#, and to the anomalous scalin
of the autoionization lifetimes of alkaline-earth Rydberg
oms also in circularly polarized microwave fields@8,10#. In-
deed, a classical trajectory Monte Carlo simulation based
Eqs. ~17! is almost equivalent to a quantum treatment,
which the initial state is represented as a superposition
coherent states of SO(4). That is, an elliptic state which is
localized along a classical ellipse follows that same ellip
during its time evolution. Clearly, the quantum state is
ways somewhat diffuse, which is not true for a classical
bit. On the other hand, the overlap between two elliptic sta
with different angular momentum and Runge-Lenz vecto
@17,18#

z^ j n1 , j n2u j n18 , j n28& z25S 11n1•n18

2 D n21S 11n2•n28

2 D n21

,

~18!

and becauseni•n8i<1 in the limit of large quantum number
elliptic states behave more and more like sharply localiz
classical ellipses.

The time evolution of the classical vectorsJ1 and J2
which describe a Kepler ellipse can be expressed in term
a classical propagator, that is,

Ji~ t9!5Ui
cl~ t9,t8!Ji~ t8!, i 51,2, ~19!

and we conclude this section by writing explicitly the cla
sical propagator for the important case whenv1 andv2 have
constant orientation in space, that is,

vi5v i~ t !nv i
, nv i

5~ṽ ix ,ṽ iy ,ṽ iz!, i 51,2, ~20!

where ṽ ix , ṽ iy , and ṽ iz are the components of the un
vectornv i

that points alongvi . First we set

f i5E
t8

t9
dtv i~ t !, i 51,2, ~21!

and the classical propagator is

Ui
cl~ t9,t8!5cosf i I 2sinf iNi1~12cosf i !Pi , i 51,2,

~22!

whereI is the identity matrix and the matricesNi andPi are,
respectively, defined as follows:
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Ni5S 0 2ṽ iz ṽ iy

ṽ iz 0 2ṽ ix

2ṽ iy ṽ ix 0
D , i 51,2 ~23!

and

Pi5S ṽ ix
2 ṽ ixṽ iy ṽ ixṽ iz

ṽ iyṽ ix ṽ iy
2 ṽ iyṽ iz

ṽ izṽ ix ṽ izṽ iy ṽ iz
2
D , i 51,2. ~24!

As we argued before, the very same classical propagator
maps the unit vectorsn1 and n2 , which identify an elliptic
state, precisely into the new unit vectorsn18 and n28 of Eq.
~15!, i.e., the unit vectors which label the elliptic state afte
has evolved in time according to the quantum-mechan
propagator.

However, whenv1 andv2 have constant orientation th
dynamics can be understood more intuitively by ageometric
interpretation, as we illustrate more clearly in the next s
tion.

III. EXCITATION OF CIRCULAR STATES

As a first application, in this section we describe an alt
native method for the excitation of circular states, that
hydrogenic states of maximum angular momentum.

Several diverse techniques have already been prop
and successfully implemented for the excitation of circu
states and more generally of large-L elliptic states@31–35#.
However, all these methods are based on theadiabaticma-
nipulation of the Rydberg electron wave function. First, t
electron is excited to an eigenstate of the Hamiltonian of
hydrogen atom in weak fields, and next the external fields
slowly varied in time while the electron always remai
adiabatically in the same eigenstate of the Hamiltonia
Therefore, in all such techniques the time scale that defi
the adiabatic regime is determined by the inverse of the s
ing of the energy levels of the hydrogen atom in weak fiel
In practice, this means that a transformation is ‘‘adiabatic’
it takes place during a time much longer than the Stark
Larmor period of the Rydberg electron.

However, ground-state electrons are typically excited
high-n Rydberg states via a few optical transitions, and i
tially they are confined to low angular momentum stat
This causes some problems, because low-l Rydberg elec-
trons are strongly coupled to the atomic~or molecular! core,
which enhances the probability of decaying out of t
Rydberg state. To the end of stabilizing the Rydberg elect
it is then useful to increase the angular momentum of
state as quickly as possible@36#. We propose a techniqu
which is adiabatic with respect of the Kepler period of t
electron, which is a much shorter time than the Stark
Larmor periods~by a factor;1/n). In fact, we do not try to
maintain the electron in an eigenstate of the Hamiltonian
all times, and we only require that the dynamics must
confined within a hydrogenicn manifold.

Our approach is based on the dynamics of elliptic state
weak external fields~a method based on the same dynam
was suggested in Refs.@23,29#!, and because we have show
lso
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that the evolution of these states is purely classical, we
discuss the excitation of circular states using classical
chanics. For a hydrogen atom in an electric field, the red
blue Stark states withm50 (m being the usual magneti
quantum number! are two limit cases of elliptic states@19–
23#. They correspond to two classical ellipses with maximu
eccentricity, which have collapsed to a straight line. In
vidual high-n Stark states can be accessed directly from l
energy states via an optical transition, and we assume
the Rydberg electron is initially placed in the blue Sta
state, withm50 ~the same derivation applies also to ele
trons initially in the red Stark state!. The fields configuration
under which the Stark state evolves into a circular state co
be derived analyzing the classical propagator of Eq.~22!,
however we present a more intuitive interpretation of t
dynamics, which is based on a geometrical description of
time evolution.

The external Stark field points along the positivez axis,
and so does the Runge-Lenz vector of the blue Stark s
which means that the two angular momentaJ1 andJ2 point,
respectively, along the1z and2z axis ~see Fig. 2!. Clearly,
the angular momentumL of the state vanishes, as it must fo
an extreme Stark state. Our goal is to maximizeL , and there-
fore we need a configuration of external fields which w
align J1 and J2 so to maximize their sum (L5J11J2) and
minimize their difference (a5J12J2). We construct such
fields by rotating the Stark field counterclockwise~recall that
a rotating electric field is equivalent to crossed electric a

FIG. 2. Dynamics in the rotating frame of the classical sp
vectorsJ1 and J2 in an external field which satisfies the requir
ments described in the text, withp50. At time t50 the two vectors
point, respectively, along the1z and 2z axis, which maximizes
their difference, i.e., the Runge-Lenz vector, as it must be for
initial blue Stark state. Next, they precess clockwise, respectiv
around the two axesv1 andv2 ~which lie in theyz plane!, and at
the final time t both vectors are aligned along they axis. This
means that the state has maximum angular momentum, and it i
desired circular state. The dashed curved lines show the traject
described by the tips ofJ1 andJ2 , while the dashed straight line
represent the same vectors at some intermediate times. From
point of view shown in the figure,J1 passesbehind its axis of
rotationv1 , whereasJ2 passesin front of v2 .
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magnetic fields@5,14,24#! around they axis, and we also
vary in time both the magnitude of the field and its rotati
frequency, that is,

F~ t !5F~ t !FcosS E
0

t

vR~ t8!dt8D nz1sinS E
0

t

vR~ t8!dt8D nxG ,
~25!

wherenz and nx are, respectively, unit vectors along thez
and x axis, andvR(t) is the time-dependent rotation fre
quency. We also set some final timet, which must be long
compared to the Kepler period to insure that the motion
confined within ann manifold. We require that at such tim
t the field vanishes, so that the evolution of the elliptic st
halts exactly when it becomes a circular state, that is,

F~t!50. ~26!

In other words, as we slowly rotate the Stark field we a
slowly turn it off.

The effect of the field of Eq.~25! is best analyzed in a
frame rotating with the field. A rotating frame is not
Galilean frame, and the inertial effects of the Coriolis forc
can be described exactly by introducing an effective Larm
frequency equal to the rotation frequencyvR of the frame of
reference@24,14,5#. Therefore the equations of motion in th
rotating frame are

dJ1

dt
52~vR1vS!3J1 ,

~27!
dJ2

dt
52~vR2vS!3J2 ,

wherevR andvS point, respectively, along they andz axis.
We then require that at all times

vR~ t !5vS~ t !, ~28!

so that the axes of precession forJ1 and J2 have constant
orientation in space. The axes of precession have cons
orientation in space also when the two frequencies are s
ply proportional to each other, but the analysis of the dyna
ics is much simpler when the Stark and rotation frequenc
are exactly equal.

As we argued before, the two spin vectors precess aro
the two following ‘‘magnetic fields’’:

v15vR1vS ,
~29!

v25vR2vS ,

wherev1 andv2 lie in theyzplane, andv1 bisects the angle
between the1y and1z axes, whereasv2 bisects the angle
between the1y and2z axes.

It is easy to see from Fig. 2 that a clockwise precession
J1 aroundv1 by an anglef5p ~or any odd integer multiple
of p) overlaps that spin vector with the1y axis. Similarly,
a clockwise precession by the same angle and aroundv2
alignsJ2 along the1y axis. The net result of the time evo
lution is to align the two vectors with one another exact
and so the blue Stark state evolves into the desired circ
state, with angular momentum pointing along the1y axis.
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Therefore, we impose a final constraint on the total angle
precession, which translates to a condition on the magnit
of the Stark frequency of the external field:

E
0

t
AvS

2~ t !1vR
2~ t !dt5A2E

0

t

vS~ t !dt5~2p11!p,

~30!

wherep is some integer. Equation~30! also means that the
total angle of rotation of the electric field is (2p11)p/A2,
which concludes our prescription for the excitation of circ
lar states.

Finally, note that our analysis does not impose any c
straint on ‘‘how’’ the field is switched off. The only con
straint is on the total angle of precession, and the functio
form of the time dependence of the field amplitude may
chosen in the experimentally most convenient way@36#.

IV. CONCLUSIONS

In this paper we have shown that the dynamics of qu
tum elliptic states in weak external fields is describedexactly
by classical perturbation theory. Therefore, the problem
evaluating a complicated quantum propagator is reduce
the solution of the simple, linear equations of motion of t
classical system. Clearly, in the case of fields with comp
cated time dependence, one may have to solve the clas
equations numerically, but that is still a relatively simp
task. Moreover, our work explains previous merely nume
cal observations of the connection between classical
quantum dynamics; it alsogeneralizes to arbitrary fields
some theoretical arguments which were limited to some s
cial configurations of the fields@23,29,30#. Indeed, because
of the properties of the coherent states of SO(4)@17,18#, our
demonstration of the classical evolution of elliptic states
weak fields holds for arbitrary fields~although in this paper
we did not solve such a case analytically!. That is why our
analysis provides a solid theoretical explanation for the s
prising agreement between calculations based on clas
mechanics @5,6,9,10# and several experimental resul
@4,7,8#. It also indicates that it would be appropriate to u
perturbative, classical methods to analyze the dynamic
Rydberg electrons in the complicated, time-dependent fie
that are expected under realistic ZEKE conditions@36#.

Atomic elliptic states ‘‘sit’’ on classical Kepler ellipses
and in a sense theysew the wave flesh on the classical bon
@37# made of periodic orbits. Indeed, as the classical orb
slowly evolve in time under the perturbation due to exter
weak fields, elliptic states follow exactly the same dynami
and remain confined along the very same ellipse through
its motion. Clearly, the argument can also be stated the o
way around, and one may prefer to say that it is the class
orbit which is following the more fundamental quantu
state. Be that as it may, note that in the theory of atom
elliptic states there is no semiclassical approximation, a
the correspondence with classical mechanics is made dire
from the purely quantum domain.

More technically, the dynamical equivalence between
motion of quantum elliptic states and the time-averaged
namics of classical orbits relies on the properties of the
herent states of SO(4), and on thefact that the externa
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perturbations can be expressed in terms of the generato
the group. Our work then opens the question of the gene
ity of our results. That is: is the present example of quantu
classical equivalence a special property of the hydro
atom only, or can it be extended to a wider class of wea
perturbed integrable systems? This is a fundamental prob
in modern physics, as it has been shown in the past
decades by the amount of research on the quantum
classical transition in nonintegrable systems@3#.

Finally, we have proposed an alternative, fast method
the production of ultrastable circular Rydberg states, wh
is based on the dynamics of atomic elliptic states. In
derivation we make use of the exact quantum propagator
the purely hydrogenic Hamiltonian, which is only an a
proximation to the case of more complex atoms. There,
to be expected that the efficacy of the method may be
tially spoiled by complex core effects. It is likely that the
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effects are of minor magnitude and that they can be comp
sated by a slight modification of the electric field, or by t
introduction of some magnetic field. Our prescription pr
vides then a starting point for the search of the most effec
fields configuration, which can be reasonably expected to
‘‘in the neighborhood’’ of the hydrogenic solution, and th
tools of optimal control theory can in principle be used
improve the efficiency of the method. Further research in t
area is currently in progress in our group.
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