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Classical evolution of quantum elliptic states
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The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of
ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with aston-
ishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydro-
genic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of
SO(4),which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields thexactevolution in time of these quantum states, and so we explain the surprising
match between purely classical perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates that have
maximum total angular momentum and also maximum projection of the angular momentum along a fixed
direction.[S1050-294®9)05203-§

PACS numbsgs): 32.80.Rm, 32.60:i, 03.65—~w, 02.20—a

I. INTRODUCTION by the electron, that is, in atomic unitsvhich we use
throughout this papgr

In the past few years innovative experimental techniques
have made possible the study of the dynamics of “Rydberg” 1
electrons, that is, atomic electrons that are promoted to very F< ﬁ' (1)
high energy levels and that are only weakly bound to the
atomic coref1]. The spectrum of such electrons is well de- In classical mechanics E¢l) implies that the energy of the
scribed by a Rydberg-like formuléhence their nameand  Rydberg electron does not change significantly over a Kepler
their wave functions are well approximated by eigenfunc-period, and classical perturbation theory applies. The condi-
tions of the hydrogen atom with very large principal quan-tion on a magnetic field is that the magnitude of the field
tum number(typically n=100) [2]. Indeed, to a very good must be much smaller than the Kepler frequeagy=1/n3
approximation the dynamics of Rydberg electrons is hydroof the electron.
genic, and more complex atoms are often used in experi- On the other hand, the quantum constraint on electric
ments merely as substitutes for hydrogen, because it is mudf¢lds for negligible intermanifold mixing is the Inglis-Teller
easier to excite their valence electron to a Rydberg state, arlimit [2]
yet the far-flung Rydberg electron senses a field which does
not differ much from a pure Coulomb field. The recent ex- F<i ©
perimental results have led to a renewed theoretical interest 3n’
in the hydrogen atom in external fields in the limit of large
quantum numbers, which is an exemplar for the study ofind for a very large it may become a more stringent con-
quantum-classical correspondence in nonintegrable systersgraint than the classical one. The quantum constraint on a
[3]. magnetic fieldB is

Indeed, recent experiments have shown that the intra-
manifold dynamics of large- Rydberg electrons depends B<£ 3)
strongly on the presence of even surprisingly weak fields. nt’
This observation strongly suggests that it must be possible to
manipulate accurately the quantum state of the electron bidowever, it has been recently shown that the more relaxed
applying the appropriate combination of weak, slowly vary-classical constraints hold also in quantum mechanics. That
ing electric and magnetic fields. In fact, the theory of theis, even in the presence of some intermanifold mixing the
hydrogen atom in weak fields is the basis of the treatment oflow seculardynamics, due to the external fields, is essen-
slow ion-Rydberg collisions, which are generally consideredially the same as if the Rydberg electron were still confined
to be the mechanism for the stabilization of the higktates  within a givenn-manifold, because the time-averaged correc-
used in ZEKE (zero-electron-kinetic-energyspectroscopy tions due ton-mixing are negligible for large [12]. There-
[4-6]. It also constitutes the starting point for the study offore, in this paper we consider only the intramanifold dy-
alkali-metal atoms in weak, circularly polarized microwave namics of the Rydberg electron, and we assume that the
fields[7-11]. external fields satisfy the Inglis-Teller limit, and also E8).

An external electric field- is “weak” when its magni- This paper is organized as follows: in Sec. Il we discuss
tude is small compared to the average Coulomb field senseatie evolution in time of atomic elliptic states in weak fields,
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and we show that they evolve exactly like the underlyinglem [16]. It is convenient to decompose SO(4) in the direct
classical ellipse; in Sec. Ill we propose an original approactproduct of two rotation groups, i.e., SO(4)

to the production of circular Rydberg states, which is based=S0(3)x SO(3), and weconsider the following operators:
on the dynamics of the coherent states of(&)Q finally, in
Sec. IV we draw some general conclusions.

J=3(+a),
®
Il. PERTURBATIVE DYNAMICS IN QUANTUM AND 3, = l(l:—é.)
CLASSICAL MECHANICS 272 '
The Hamiltonian for a hydrogen atom in crossed electriclt is well known that; andJ, commute with each other and
and magnetic fields reads that their components constitute a realization of the angular
momentum algebrfil6]. The perturbation Hamiltonian can
H_D_Z_E+EL +Fx+B—2(x2+ 2) @ be rewritten as
T2 2 g Y ) ) )
H]_:_(!)]_'Jl_wz‘\]z, (9)

where the electric field is parallel to the axis and its
strength isF; the magnetic field is parallel to theaxis and  where
its strength isB.

For weak fields the diamagnetic term, which is propor- = w t wsg,
tional to the square of the field, can be neglected. The sim-
plified problem has been first solved quantum mechanically 0= W — ws. (10)

by Demkov et al [13,14. However, their formal solution

does not provide physical insight into the dynamics of theyioreover, [ anda obey two constraints:

angular momentum of the Rydberg electron; it also becomes

computationally intractable in the limit of larggs. {.5=0
The analysis of the intramanifold dynamics in the hydro- '

gen atom rests on Pauli's replacement, which is an operator

identity between the position operator and the scaled

Runge-Lenz vector operatar(throughout this paper we use and so one has

boldface letters for vectors, and we indicate a quantum op-

erator with a caret and which holds only within a hydro-
genicn manifold[15,16:

o (11
L2+a?=n%-1,

J=%=j(+1),

(12)
. 3 . 2j+1=n.
r=-gna (5)
Therefore both irreducible representations of SO(3) have the
same dimension, which is related to the principal quantum
numbern of the hydrogenic manifold.

Equation(9) reduces the problem to the dynamics of two

The scaled Runge-Lenz vector operadds a Hermitian op-
erator, which for a bound state is defined as

1 (1 ; uncoupled spins in the external “magnetic fieldsy; and
a= —— = (pXL—-Lxp)— -, (6) ®,. The analysis is particularly simple when the two “mag-
V—2El2 r netic fields” w; and e, have constant orientation in space.

_ ). However, all the considerations below also hold in the more
whereE=—1/2n" is the Kepler energy of the electron. general situation oérbitrary fields within the constraints of
The angular momentum and the Runge-Lenz vector argeryrhation theoryf17,18, and we discuss explicitly the

invariants of the Kepler problem, and they commute with theyeater generality of our analysis later in this section. In the
hydrogenic Hamiltonian. By neglecting the diamagnetic tefmase of “magnetic fields” with constant orientation, the
and using the identity of Ed5), in the interaction represen- propagator is simply

tation the perturbation Hamiltonian for external fields of ar-
bitrary orientation becomes Ot :eiff,wl-jldteiﬁ,wz-izdt_ 13
le_WS'é_wL'E, (7 L
The elliptic eigenstates of the hydrogen atft8—23 are
wherews=3nF/2 is the Stark frequency of the electric field, nothing other than the coherent states of SO(4) and therefore
andw, = —B/2 is the Larmor frequency of the magnetic field they can be expressed as the direct product of two coherent
(we define the Larmor frequency vector with a minus sign states of S@8). Inturn, the coherent states of SO(3) can be
so that the dynamics is formally identical to the one of aconstructed quite generally by applying any operator of the
negative charge in a noninertial rotating frame — see begroup(i.e., any rotatiopto the angular momentum eigenstate
low). with maximum projection of the angular momentum along
The components of the angular momentum, plus those dhe z axis[17,18:
the Runge-Lenz vector, constitute the generators of430 . .
which is the dynamical symmetry group of the Kepler prob- ling,jny) ="' i, =\®|jj,,=]), (14
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“magnetic fields” w; andw,. The net effect of the propa-
gator onto an elliptic state is

U@",t)jing,ing)=ling,ins), (15)

where the two final unit vectons; ,n; can be obtained from
the initial ones by a clockwiselassical precession around
w1 and ).

The original idea of studying the dynamics of elliptic
states in weak fields is due to Nauenbg2g], who treated in

FIG. 1. Probability densityaveraged along the axis) of an  detail the case of orthogonal, time-dependent electric and
atomic elliptic state localized on they plane. The principal quan- magnetic fields. In his analysis the connection with classical
tum number isn=30, and the eccentricity is;=0.6. Bothx andy ~ mechanics emerges for a configuration of the fields which
vary between-2n* and +2n? (recall that in atomic units the Bohr ¢onstitutes a realization of $@). We generalize his results
radius is equal to)] and the nucleus is at the origin of the frame of to arbitrary fields, that is, to realizations of &4, thefull
reference. The probability density is sharply concentrated oryhe dynamical symmetry group of the hydrogen atom. Indeed,

plane, and we have averaged it over thaxis to show that the )¢ ot the ‘interest concerning elliptic states has been fo-
electron is more likely to be far from the nucleus. The peak at the

aphelion, which reflects the larger probability of finding the electronCused on thequasiclassical localizatiorproperties of the

away from the nucleus, is a purely classical effect. Because thilectron in real spacfl9-23, and the representation of el-

classical electron is slower at the aphelion than at the perihelion, i ptic stateg as, a d'reCt_ p_rOdUCt of two coherent states of
spends a longer time away from the nucleus than in its proximity, O(8) (which yields their time dependence so naturally and
and the classical probability of finding a Rydberg electron far fromSC generally is not particularly suited for the study of the
the nucleus is larger. The figure was produced using the elegaftrobability density of Rydberg electrons in real space.

formula for the wave function of atomic elliptic states derived in ~ IN general, the classical object which corresponds to a
Ref. [21]. coherent state is the classical phase space point which labels

the state itself17,18. A point in phase space is equivalent

where 2, and Q, represent three-dimensional active rota-to a trajectory of the electron, which in the case of the Cou-
tions, which, respectively, overlap treaxis with the unit  |Jomb potential is a Kepler ellipse. Therefore the classical
vectorsn; andn,. counterpart to the motion of the coherent states of SO(4) is

Clearly, angular momentum eigenstates that have maxihe dynamics of classical ellipses in weak fields, which is the
mum projection along the axis are minimum uncertainty object of study in classical perturbation theory, where the
states for the angular momentyv,18, and the rotations of  ellipse becomes the dynamical object it§&f25—27.
Eq. (14) preserve this property. The coherent states of SO(3) In classical perturbation theory it is assumed that the elec-
are then states of minimum uncertainty for the angular motron still moves along an unperturbed ellipse, and the equa-
mentum, and in their representation on the unit sphere thejons of motion describe how the elemeriiis the sense of
are sharply localized along the direction of the correspondingelestial mechanicg28]) of the ellipse slowly vary in time.
classical angular momentum. Similarly, elliptic states are loClearly, an ellipse can be described by several equivalent
calized along the directions of both classical “angular mo-sets of elements, however if one chooses the angular mo-
menta” J; andJ,, i.e., along the unit vectons; andn,. It mentumL and the Runge-Lenz vectar (the magnitude of
follows from Eq.(8) that they also possess well localized, the latter being proportional to the eccentricity of the el-
quasiclassical angular momentumand Runge-Lenz vector |ipse), the equations of motion turn out to be particularly
a. simple. More formally, in classical mechanics the angular

The classical objects that correspond to elliptic states arghomentum and the Runge-Lenz vector are constants of mo-
points in the phase space of the Kepler problem. In the morgon for the pure Kepler problem, i.e., their Poisson brackets
familiar configuration space these points are the trajectoriegith the Hamiltonian vanish, just like the commutators of the
of a classical electron in a pure Coulomb potential, i.e.,corresponding guantum operators. Howeteanda become
Kepler ellipses, which are completely identified by the mag-time-dependent as soon as applied external fields break the
nitude and direction of the two classical vectdrsanda  SO(4) symmetry of the Hamiltonian. In the case of very
[24]. Indeed, the probability density of a hydrogenic electronweak fields the effects of the perturbation take place on a
in an elliptic state is peaked precisely along a Kepler ellips&ime scale much longer than the Kepler peribg=2mn3.
(see Fig. 1 By simply averaging the equations of motiomer a Kepler

Most importantly, it is easy to see that the propagator ofperiodandalong an unperturbed Kepler ellipsme can eas-
Eq. (13) is also an operator of §@), and sowhen the ly derive the dynamics for théime-averagedangular mo-
propagator acts on an elliptic state it naturally yields somenentum and thd@ime-averagedRunge-Lenz vector, which
other elliptic state. More precisely, elliptic states are con-or the sake of simplicity we still indicate with anda, and
structed by applying two rotation operators which mapzhe one hagd5,25-21
axis (that is, the direction of the angular momenta of the
original stateps onto some desired directions; and n,.
S_imiIarIy, the propagator of Eq13) cc_msists of two rota- d_'-: — wexa—a XL, (16)
tions, respectively, around the spatial axes given by the dt
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da The quantum propagator of E¢L3) is just the solution
ai wsXL—w Xa for a very special configuration of the external fields, how-

ever it is very useful because of ithistrative character, and
Like in guantum mechanics, the dynamics is particu]aﬂyOf its relevance to ion-Rydberg collisions, which have been
straightforward when it is expressed in terms of the “angularnvestigated experimentally. Moreover, for such fields the
momenta”J; andJ,, which obey simple, uncoupled equa- classical dynamics of the unit vectors labeling the elliptic

tions: state becomes amenable to an exact analytical treatment and
it yields a most intuitive understanding of the dynamics, and
dJ; we exploit this final characteristic in the next section.
TR Xy, A slowly rotating electric field is equivalent to crossed
17) electric and magnetic fields in the noninertial frame rotating
dJ, with the field[5,14,24. Therefore our analysis explains why
ar —wyXJ,, calculations based on purely classical methods account so

well for several experimental results, ranging from slow ion-

where the two frequencies are the same as in(Eg). The  Rydberg collisiong4—6] to the dynamics of circular states in
two classical spin vectord; andJ, simply precess clock- circularly polarized field$7,9], and to the anomalous scaling

wise around the “magnetic fieldsé, andw,, just like their of the autoionization lifetimes of alkaline-earth Rydberg at-
quantum counterparts. oms also in circularly polarized microwave fieltg10]. In-

This shows that elliptic states in weak fields not only dodeed, a clgssical trajectc_)ry Monte Carlo simulation based_on
evolve into elliptic states, and therefore retain their coherEdS: (17) is almost equivalent to a quantum treatment, in
ence properties and their localization along a classical Keplefhich the initial state is represented as a superposition of
ellipse, but they also evolvexactlyaccording to the laws of Ccoherent states of @). That is, an elliptic state which is
classical mechanidén the perturbative limjt This result has localized along a classical ellipse follows that same ellipse
been already observed numerically and discussed theoreflHring its time evolution. Clearly, the quantum state is al-
cally for special fields configurations in Ref®9,30, and  Ways somewhat diffuse, which is not true for a cla_\ss_,lcal or-
also in Ref.[23], where the case of orthogonal electric and bl_t. On_ the other hand, the overlap between two elliptic stat_es
magnetic fields is discussed. Most importantly, the same reith different angular momentum and Runge-Lenz vector is
sult has been observed also experimentally 17,19

Indeed, we have illustrated explicitly the connection be- 1 i1 q et
tween quantum and classical mechanics only for a special |/ in tins jno2= +n1~n1) +n2~n2)
configuration of the fields. However, our approach is based LITell T2 2 2 '
on the dynamics of the coherent states of SO(4) and that (18
guarantees—see below—that our conclusions holdafbi- ) o
trary fields (within the constraints of perturbation thepry @nd because;-n’;<1 in the limit of large quantum numbers
Therefore, our study provides an analytical explanation oflliptic states behave more and more like sharply localized
the numerical results and it alsgeneralizesthe previous ~classical ellipses. .
theoretical argument23,29,30. The main conclusions of ~ The time evolution of the classical vectods and J,
our analysis do not depend on the particular choice of exter’hich describe a Kepler ellipse can be expressed in terms of
nal fields; instead, they rest on the equivalence between tt classical propagator, that is,
intramanifold dynamics of a Rydberg electron in weak exter- . oo vr ,
nal fields and the motion of two uncoupled spins in external Jit)=U7(t" ) Ji(t),
magnetic fields, and also on the properties of the coherent

states of the angular momentum. It is well known that the2nd W€ conclude this section by writing explicitly the clas-

coherent states of SO(3) arbitrary magnetic fields evolve i@l Propagator for the important case whepandw, have
in time exactly like the corresponding classical spin vector£onstant orientation in space, that is,

[17,18, and that is the reason why our demonstration holds -~ ~ o~ )

for arbitrary electric and magnetic fields. Although the argu- @ =w{()N,, Ny, =(wi,0y,0z), =12, (20)
ments for the classical evolution of quantum elliptic states o 5

hold in general, for fields with complicated time dependencevhere vy, wjy, and w;, are the components of the unit
the explicit form of the propagator may be difficult to derive vectorn, that points alongw; . First we set

analytically. However, it is easy to see that it must be given '

by some combination of rotation operators and that in gen- t )

eral the Euler angles of the propagator for a spin in a mag- = f dtwi(t), =12, (21
netic field obey some complicated, nonlinear differential ‘

equations that must be solved numerically, when the timgng the classical propagator is

dependence of the field is not trivigl7,18. However, when

a numerical treatment is necessary, it is clearly much simpler y¢l(t” t")=cos¢;| —sin;N; + (1—cos¢)P;, i=1,2,
to solve the classical, linear Eq4l7). In fact, the classical (22)
equations yield directly the unit vectors andn;, which

label and determine completely the coherent state after it hasherel is the identity matrix and the matricé§ andP; are,
evolved in time. respectively, defined as follows:

i=1,2, (19
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0 _Z’iz Z’iy z
N=| o 0 —wyl|, i=12 @3 AT *

—wy iy 0 J AN
1(0) :
and @,

~5 ~ o~ ~ ~
Wix Wix Wiy  WixWiz

~ ~ ~5 ~ o~ )

Pi =| wiywix Wiy WiyWiz |, i=1,2. (24) _____
~ o~ ~ o~ ~9 N\ Tl R
WjzWix Wiz Wiy Wiy

J,(1)=J,(1)
As we argued before, the very same classical propagator also /
maps the unit vectore; andn,, which identify an elliptic
state, precisely into the new unit vectar$ and n; of Eq.
(15), i.e., the unit vectors which label the elliptic state after it ; -
has evolved in time according to the quantum-mechanical eeen : o,
propagator.

However, whenw,; and e, have constant orientation the FIG. 2. Dynamics in the rotating frame of the classical spin
dynamics can be understood more intuitively byesmetric  vectorsJ; andJ, in an external field which satisfies the require-

interpretation, as we illustrate more clearly in the next seciments described in the text, wih=0. At timet=0 the two vectors
tion. point, respectively, along the-z and —z axis, which maximizes

their difference, i.e., the Runge-Lenz vector, as it must be for the
initial blue Stark state. Next, they precess clockwise, respectively,
around the two axe&, and w, (which lie in theyz plang, and at
As a first application, in this section we describe an alterthe final time 7 both vectors are aligned along tlyeaxis. This
native method for the excitation of circular states, that ismeans that the state has maximum angular momentum, and it is the
hydrogenic states of maximum angular momentum. desire_d circular state. The dashed cgrved lines show thg traj_ectories
Several diverse techniques have already been propos@&scr'bed by the tips af, andJ,, Whlle_the dashed s_tralght lines
and successfully implemented for the excitation of circularr€Present the same vectors at some intermediate times. From the
states and more generally of largeelliptic states[31—35. pomt_ of view shown in the f_lgureJl passesbehindits axis of
However, all these methods are based onatiabaticma- ~ "012lon @, whereasl, passesn front of w,
nipulation of the Rydberg electron wave function. First, the
electron is excited to an eigenstate of the Hamiltonian of théhat the evolution of these states is purely classical, we can
hydrogen atom in weak fields, and next the external fields argiscuss the excitation of circular states using classical me-
slowly varied in time while the electron always remains chanics. For a hydrogen atom in an electric field, the red and
adiabatically in the same eigenstate of the Hamiltonian.blue Stark states wittn=0 (m being the usual magnetic
Therefore, in all such techniques the time scale that defineguantum numberare two limit cases of elliptic stat¢49—
the adiabatic regime is determined by the inverse of the spa@3]. They correspond to two classical ellipses with maximum
ing of the energy levels of the hydrogen atom in weak fieldseccentricity, which have collapsed to a straight line. Indi-
In practice, this means that a transformation is “adiabatic” if vidual highn Stark states can be accessed directly from low
it takes place during a time much longer than the Stark oenergy states via an optical transition, and we assume that
Larmor period of the Rydberg electron. the Rydberg electron is initially placed in the blue Stark
However, ground-state electrons are typically excited tcstate, withm=0 (the same derivation applies also to elec-
high-n Rydberg states via a few optical transitions, and ini-trons initially in the red Stark stakeThe fields configuration
tially they are confined to low angular momentum statesunder which the Stark state evolves into a circular state could
This causes some problems, because lloRydberg elec- be derived analyzing the classical propagator of &9),
trons are strongly coupled to the atontie moleculay core, however we present a more intuitive interpretation of the
which enhances the probability of decaying out of thedynamics, which is based on a geometrical description of the
Rydberg state. To the end of stabilizing the Rydberg electroiime evolution.
it is then useful to increase the angular momentum of the The external Stark field points along the positwexis,
state as quickly as possib[@6]. We propose a technique and so does the Runge-Lenz vector of the blue Stark state,
which is adiabatic with respect of the Kepler period of thewhich means that the two angular momedtaandJ, point,
electron, which is a much shorter time than the Stark orespectively, along the-z and—z axis(see Fig. 2 Clearly,
Larmor periodgby a factor~1/n). In fact, we do not try to  the angular momenturn of the state vanishes, as it must for
maintain the electron in an eigenstate of the Hamiltonian a&n extreme Stark state. Our goal is to maxinitizeand there-
all times, and we only require that the dynamics must bdore we need a configuration of external fields which will
confined within a hydrogenio manifold. align J; andJ, so to maximize their sumL(=J,+J,) and
Our approach is based on the dynamics of elliptic states iminimize their difference §=J;—J,). We construct such
weak external fieldéa method based on the same dynamicdields by rotating the Stark field counterclockwigecall that
was suggested in Refi3,29), and because we have shown a rotating electric field is equivalent to crossed electric and

IIl. EXCITATION OF CIRCULAR STATES
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magnetic fields[5,14,24) around they axis, and we also
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Therefore, we impose a final constraint on the total angle of

vary in time both the magnitude of the field and its rotationprecession, which translates to a condition on the magnitude

F(t)=F(t) n,+sin

frequency, that is,
t t
cos(f wg(t")dt’ wa(t’)dt’)nX
0 0
(25)

wheren, and n, are, respectively, unit vectors along the

and x axis, andwg(t) is the time-dependent rotation fre-

guency. We also set some final time which must be long

of the Stark frequency of the external field:
JT\/wsz(t)+sz(t)dt= \/EJ'TwS(t)dt=(2p+ 1),
0 0
(30)

wherep is some integer. Equatiof80) also means that the
total angle of rotation of the electric field is §2- 1)7/+/2,

compared to the Kepler period to insure that the motion iwhich concludes our prescription for the excitation of circu-
confined within am manifold. We require that at such time 'ar states.

7 the field vanishes, so that the evolution of the elliptic state

halts exactly when it becomes a circular state, that is,

F(r)=0. (26)

Finally, note that our analysis does not impose any con-
straint on “how” the field is switched off. The only con-
straint is on the total angle of precession, and the functional
form of the time dependence of the field amplitude may be
chosen in the experimentally most convenient Wa§|.

In other words, as we slowly rotate the Stark field we also

slowly turn it off.

The effect of the field of Eq(25) is best analyzed in a
frame rotating with the field. A rotating frame is not a

IV. CONCLUSIONS

In this paper we have shown that the dynamics of quan-

Galilean frame, and the inertial effects of the Coriolis forcestum elliptic states in weak external fields is descrileadctly
can be described exactly by introducing an effective Larmoby classical perturbation theory. Therefore, the problem of

frequency equal to the rotation frequenmy of the frame of

referencd 24,14,3. Therefore the equations of motion in the

rotating frame are

dJ;

W:_(wR‘Fws)XJl,

43 (27)
2

F:_(wR_ws)XJz,

wherewg and wg point, respectively, along theandz axis.
We then require that at all times

wr(t)=og(t), (28)

orientation in space also when the two frequencies are si
ply proportional to each other, but the analysis of the dynam
ics is much simpler when the Stark and rotation frequencie

are exactly equal.

As we argued before, the two spin vectors precess arou

the two following “magnetic fields”:

w1=wR+ wWg,

(29

W= WR™ Ws,

wherew; andw, lie in theyzplane, andw, bisects the angle
between thety and +z axes, wherea&, bisects the angle
between thety and —z axes.

evaluating a complicated quantum propagator is reduced to
the solution of the simple, linear equations of motion of the
classical system. Clearly, in the case of fields with compli-
cated time dependence, one may have to solve the classical
equations numerically, but that is still a relatively simple
task. Moreover, our work explains previous merely numeri-
cal observations of the connection between classical and
quantum dynamics; it alsgeneralizes to arbitrary fields
some theoretical arguments which were limited to some spe-
cial configurations of the fields23,29,30Q. Indeed, because
of the properties of the coherent states of SQ(#),18], our
demonstration of the classical evolution of elliptic states in
weak fields holds for arbitrary fieldalthough in this paper
we did not solve such a case analyticallyhat is why our
analysis provides a solid theoretical explanation for the sur-
H{ising agreement between calculations based on classical
nechanics [5,6,9,10 and several experimental results
4,7,8. It also indicates that it would be appropriate to use
erturbative, classical methods to analyze the dynamics of
ydberg electrons in the complicated, time-dependent fields

nijat are expected under realistic ZEKE conditipBe].

Atomic elliptic states “sit” on classical Kepler ellipses,
and in a sense thesew the wave flesh on the classical bones
[37] made of periodic orbits. Indeed, as the classical orbits
slowly evolve in time under the perturbation due to external
weak fields, elliptic states follow exactly the same dynamics,
and remain confined along the very same ellipse throughout
its motion. Clearly, the argument can also be stated the other
way around, and one may prefer to say that it is the classical
orbit which is following the more fundamental quantum

It is easy to see from Fig. 2 that a clockwise precession o§tate. Be that as it may, note that in the theory of atomic

J; aroundw, by an anglep= = (or any odd integer multiple
of 7r) overlaps that spin vector with they axis. Similarly,
a clockwise precession by the same angle and arawnd

alignsJ, along the+y axis. The net result of the time evo-

elliptic states there is no semiclassical approximation, and
the correspondence with classical mechanics is made directly
from the purely quantum domain.

More technically, the dynamical equivalence between the

lution is to align the two vectors with one another exactly, motion of quantum elliptic states and the time-averaged dy-
and so the blue Stark state evolves into the desired circularamics of classical orbits relies on the properties of the co-
state, with angular momentum pointing along thg axis.  herent states of S@), and on thefact that the external
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perturbations can be expressed in terms of the generators effects are of minor magnitude and that they can be compen-
the group. Our work then opens the question of the generakated by a slight modification of the electric field, or by the
ity of our results. That is: is the present example of quantumintroduction of some magnetic field. Our prescription pro-
classical equivalence a special property of the hydrogerides then a starting point for the search of the most effective
atom only, or can it be extended to a wider class of weaklyfields configuration, which can be reasonably expected to be
perturbed integrable systems? This is a fundamental problemp the neighborhood” of the hydrogenic solution, and the
in modern physics, as it has been shown in the past fewyols of optimal control theory can in principle be used to
decades by the amount of research on the quantum-tgmprove the efficiency of the method. Further research in this

classical transition in nonintegrable systef8§ area is currently in progress in our group.
Finally, we have proposed an alternative, fast method for

the production of ultrastable circular Rydberg states, which

is t_)ase_d on the dynamics of atomic elliptic states. In our ACKNOWLEDGMENTS

derivation we make use of the exact quantum propagator for

the purely hydrogenic Hamiltonian, which is only an ap- We wish to thank M. Nauenberg for useful comments that
proximation to the case of more complex atoms. There, it idelped us to improve the clarity of our work. This work was
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