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Polarizability of the ground state of the hydrogen molecular ion
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~Received 1 April 1998!

The dipole polarizabilities of the ground states of the ions H2
1 and D2

1 have been calculated without
making use of the Born-Oppenheimer approximation. Instead, the ions were treated as three-body systems
whose ground states are spherically symmetric, and the polarizabilities were calculated using second-order
perturbation theory with intermediatep pseudostates. The wave functions of both the ground and intermediate
states are taken to be of generalized Hylleraas form, but it is necessary to use quite high powers of the
internuclear coordinate to simulate the localized motion of the nuclei. We obtain good values of the ground-
state energies, and report values of the polarizabilities, to be compared with recent measurements.
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PACS number~s!: 33.15.Kr, 31.15.2p
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I. INTRODUCTION

Recent experiments@1# on high Rydberg states of H2 have
made it possible to extract accurate properties of the mole
lar ion H2

1, which is the core of the excited molecul
Among the properties measured are the quadrupole mom
and the parallel and perpendicular polarizabilities. More
cently, Rydberg states of H2 and D2 have been observed
with the core in its spherically symmetric ground state@2#,
and the isotropic dipole polarizabilities have been de
mined with high precision. The traditional theoretical valu
@3# of these polarizabilities have been obtained from av
ages, over rotational and vibrational wave functions,
quantities calculated in the Born-Oppenheimer~BO! ap-
proximation, and they disagree significantly with expe
ments~see Table I!. In the present paper we avoid this a
proximation by treating the H2

1 molecular ion as a three
body quantum system, and computing the polarizability
second-order perturbation theory.

To do this we adapt the generalized Hylleraas basis fu
tions that had worked very well in previous calculations
the atomic helium system and a number of two-elect
atomic ions@4#. At first sight this may seem to be a bizar
way to deal with a molecule whose structure is so differ
qualitatively from a two-electron atom: instead of having o
heavy particle and two light ones, H2

1 contains two heavy
particles and one light one. In principle, however, there is
real reason why it should not be possible to treat all thr
particle systems on an equal footing. In fact, a we
converged variational calculation should give better res
than the BO method, since no fundamental approxima
has been made. The major advantage of treating a diato
ion as an ordinary three-body system lies in the fact that
the kinematic effects of ‘‘rotation’’ and ‘‘vibration’’~as they
would be called in the BO method! are automatically in-
cluded when we calculate the three-body wave functions.
the same token we will not be able to compute separate
ues of the axial and transverse polarizabilities, since we
not hold the internuclear axis fixed in space.~From this point
of view it would be just as silly to ask for the polarizabilit
of the helium atom along the interelectronic direction.! But it
is not just the simplicity and straightforwardness of t
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method that recommends it; there are discrepancies betw
the best BO calculations@3# and the recent measuremen
@2#, and we hope that these can be cleared up.

The problem is simply one of adequate convergence.
well known that although the power-exponential form of
Hylleraas function is well suited to describing electronic m
tions, the relative motion of the nuclei is fairly tightly loca
ized near an equilibrium point; the heavier the nuclei, t
more localized their motion becomes. An important part
this work is a simple method to overcome this problem. Ne
ertheless, convergence in this calculation is still rather sl
especially in the case of D2

1; we will discuss this below.
In Sec. II the formulation of the calculation is describe

in Sec. III the choice of trial functions is discussed, and
Sec. IV results and extrapolated results are shown.

II. FORMULATION

The unperturbed Hamiltonian of the H2
1 system is

H52
1

M
@¹A

21¹B
2 #2¹e

2

12F 1

urWA2rWBu
2

1

urWA2rWeu
2

1

urWB2rWeu
G , ~1!

TABLE I. Polarizabilities of H2
1 and D2

1 obtained in different
ways, both theoretically and experimentally. Quantities in paren
ses are errors in the last decimal place given; estimated errors o
present calculation are shown in Eq.~11!.

Method a1(H2
1) a1(D2

1)

Experimenta 3.1681~7! 3.0712~7!

Born-Oppenheimerb 3.1713 3.0731
Present 3.1680 3.0671
Finite elementc 3.1682~4! 3.0714~4!

aJacobsonet al. @2#.
bBishop and Lam@3#.
cShertzer and Greene@10#.
205 ©1999 The American Physical Society
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where rWA , rWB , and rWe are the position vectors of the tw
nuclei and the electron, respectively, measured in units of
Bohr radiusa0 , M is the nuclear mass in units of the electr
mass, and the energy is in rydbergs. The dipole polarizab
~in units of a0

3) is obtained by second-order perturbati
theory as

a154(
p

z^0u~rWA1rWB2rWe!• «̂up& z2

Ep2E0
. ~2!

We make the usual transformation to the center of mass
tem, where

RW CM5
MrWA1MrWB1rWe

2M11
, rW A,B5m@rWA,B2rWe#. ~3!

In terms of these new coordinates, the Hamiltonian takes
form

H̄52¹rA

2 2¹rB

2 22m¹W rA
•¹W rB

1
2

urW A2rW Bu
2

2

rA
2

2

rB
,

~4!

and the dipole operator becomes

FRW cm1
1

m~11m!
~rW A1rW B!G• «̂, ~5!

where the reduced massm5M /(M11), and energies are
now measured in reduced rydbergs,Rm5mR` . The center-
of-mass term can be omitted since it does not contribute
the polarizability. Nevertheless, the fact that the ion
charged and accelerates in the external field contribute
the coefficient appearing in the dipole operator.~Notice that
in this case the mass polarization cross-term inH̄ is of the
same order as the other kinetic-energy operators, rather
being small, as it is in a two-electron atom like helium!
Finally, we can write the polarizability in the following
form:

a15
4

m3~11m!2 (
p

z^0uzA1zBup& z2

Ep2E0
a0

3, ~6!

where zA,B5rW A,B• «̂, 0 signifies the spherically symmetri
ground state of the ion, andp denotes the excitedL51
states. It is worth emphasizing again that we are treating
three particles on an equal footing and will not refer to a
special ‘‘molecular’’ quantum numbers. Thus we will not b
interested here in the ‘‘axial’’ or ‘‘transverse’’ polarizabi
ities that appear in BO calculations.

III. CHOOSING THE FUNCTIONS

In the past, we have calculated atomic polarizabilities
ing S-wave Hylleraas trial functions to describe the unp
turbed state, andP-wave Hylleraas functions used as pse
dostates to approximate the intermediate-state sum in
~6!:

C05e2a~rA1rB!e2brAB (
l ,m,n50

V0

Cl ,m,nrA
l rB

mrAB
n 1@A�B#.

~7!
e

ty
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Cp52cos~uAB/2!~ f 1 f̄ !D1
112sin~uAB/2!~ f 2 f̄ !D1

12 ,

where

f ~rA ,rB ,rAB!5e2g~rA1rB!e2drABrA (
i , j ,k50

Vp

Ci , j ,krA
i rB

j rAB
k ,

~8!

and

f̄ ~rA ,rB ,rAB!5 f ~rB ,rA ,rAB!.

The rotational harmonicsD used here are those defined b
Bhatia and Temkin@5#, andrW AB5rW A2rW B .

Although the exponentials and powers appearing in E
~7! and ~8! are efficient for describing the correlation b
tween the nuclei and the electron, we know from the B
model~which is certainly a good first approximation! that the
internuclear motion will not be well described that way. It
much better described by Gaussian-like functions cente
around the equilibrium positions of the nuclei. The proble
is to adapt our trial functions so that they describe the mot
of the nuclei satisfactorily. The method we use is to incre
the powers ofrAB appearing in Eqs.~7! and ~8!.

In Fig. 1 we show the ground-state wave function o
tained from the Morse potential@6#, an approximation to the
exact BO potential for the H2

1 ion. Notice that it peaks jus
beyondrAB52a0 and has a half-width of about 1a0 . This
function can be well approximated by the formrNe2br, pro-
vided N is large, andb'N/2. In the figure we show the two
functions N516, b57.8431 andN532, b515.6863. The
latter ~normalized to unity! fits almost perfectly, while the
former is broader but qualitatively similar.~For the case of
D2

1, where the half-width is smaller, the required value ofN
is considerably higher, causing a decreased accuracy in t
ing this system.! This leads us to make a simple modificatio
of the trial functions of Eqs.~7! and ~8!—multiplying them
by rAB

N . For the ground state the nonlinear parameters
chosen to minimize the energy, as usual, but how should

FIG. 1. Demonstration of the similarity between functions of t
form rNe2br and solutions of the Morse oscillator for H2

1. The
solid line is the Morse function, the dotted line is forN516 and
b57.843 127, and the dashed line is forN532 and b
515.686 25. All three functions are normalized to unity.
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value ofN be chosen? We found in practice that an efficie
and tractable scheme was to keepN1V0 constant as we
increasedV0 itself. This has the effect of starting with
function roughly like that shown in Fig. 1, and gradua
filling in the lower powers ofrAB as the expansion lengt
increases. In this way we have obtained a value of
ground-state energyE~H2

1!521.194 277 909 Ry, differing
by only about 2.231027 Ry from the accurate value@7#. It is
important to emphasize that this procedure isnot intended to
produce a wave function exactly like the BO function. W
are simply trying to adjust the form of the conventional Hy
leraas trial function to simulate the physics of the BO fun
tion qualitatively, by localizing the nuclei close to their mo
probable positions in the expectation that this will impro
convergence, as indeed it does. Notice also that not e
term in the expansion has exactly the same dependenc
the internuclear coordinate, since various values ofn are
summed over. Our comparison with the Morse solution
Fig. 1 is not supposed to be quantitative.

For the intermediatep states, on the other hand, we ha
kept N54, and have chosen the parameters to maximize
value ofa1 as obtained from Eq.~6!, following Bishop and
Lam @8#. That is, if u0& were the exact ground-state functio
then the polarizability obtained from Eq.~6! would be varia-
tionally correct and would have errors of second order in
error in the set ofp-state functions included in the summ
tion. It would also give a rigorous lower bound, and this
the reason why we choose thep-state parameters to max
mizea1 . However, the error that remains in the approxim
ground-state function contributes a first-order error to
calculation ofa1 , through the matrix element appearing
the numerator.

IV. RESULTS AND DISCUSSION

In Table II we show how our results vary as we increa
the number of intermediatep-states for both molecular ions
keepingV0 fixed at 13. The ‘‘best’’ values of the polariz
abilities, that is, those obtained with the greatest expan
lengths in both the ground state and the intermediate p
dostates, are a1(H2

1)53.167 95a0
3, and a1(D2

1)
53.067 09a0

3. These should be compared with the cor
sponding experimental results shown in Table I.

In estimating the accuracy of these numbers, there are
different convergence processes that must be conside
convergence of the ground-state wave function with resp

TABLE II. The convergence ofa1 as a function ofVP for both
H2

1 and D2
1. In both casesV0513 (N05308).

VP NP a1(H2) a1(D2)

4 35 3.023 925 2.753 082
5 56 3.094 272 2.904 720
6 84 3.130 915 2.971 445
7 120 3.149 851 3.012 308
8 165 3.159 469 3.037 802
9 220 3.164 864 3.054 261

10 286 3.167 134 3.060 808
11 364 3.167 953 3.067 089
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to V0 , and convergence of the polarizability with respect
the length of the intermediatep-pseudostate sum, measure
by Vp . As we discussed above, if the ground-state funct
were exact, then the convergence inVp would certainly be
from below, and in practice we do find convergence ofa1
from below for each value ofV0 , so it is reasonable to tak
the two values of the polarizability given above to be low
bounds to the exact values, but these are not rigor
bounds. For the maximum valueV0513 andN510 we find
that a1 converges exponentially withVp

a1~Vp!5a11Ce2DVp, ~9!

and this equation actually fits very well for the H2
1 case and

fairly well for D2
1, as shown in Fig. 2. It is tempting to try

to extract a better value ofa1 by taking Eq.~9! literally and
using it to extrapolate toVp→`. The two curves shown in
Fig. 2 were obtained by least-squares fitting to all the cal
lated points, and they lead to extrapolated valuesa1(H2

1)
53.1698(3)a0

3, and a1(D2
1)53.0687(44)a0

3. The errors,
indicated in parentheses, represent the inadequacy of the
ponential form to describe the data; it is clear both nume
cally and by inspection that the D2

1 data fit significantly less
well. It might be reasonable to take these extrapolated va
to be upper bounds@9#.

On the other hand, adding terms to the ground-state fu
tion decreases the calculated polarizability. This observa
is physically reasonable, since as the system becomes m
tightly bound it should be more difficult to distort it. To
obtain an idea of how much the polarizability would d
crease ifV0 could be raised indefinitely, we can use th
energy error as a measure. The energy error is quadrat
the ground-state wave function error, while the polarizabil
does not have the variational property; thus we assume
relation

a1~V0!5a11C@E~V0!2Eexact#
1/2, ~10!

and use the calculated values forV0512 and 13 to estimate
the converged value of the polarizability for fixed value
Vp511 asV0→`. This procedure results in a decrease

FIG. 2. Convergence ofa1 with V0513 (N05308) as a func-
tion of Vp . The upper curve is for H2

1, and the lower is for D2
1.
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1024 for the case of the hydrogen ion, and 2.031023 for the
deuterium ion. We can then present the final results in
following forms:

a1~H2
1!53.168020.0001

10.0018,

a1~D2
1!53.067120.0020

10.0016. ~11!

It is unfortunate that the two expansions converge in op
site directions, making it difficult to obtain more rigorou
upper or lower bounds on the polarizability, but the val
given above is not inconsistent with the result for H2

1 ob-
tained in Ref.@2#, while the result for D2

1 is less satisfactory
The fact that that the convergence of the more massiv

the two ions is the poorer of the two may be surprising
those who are used to the BO approximation, where er
depend on the ratio of electron mass to nuclear mass.
important to remember that the present calculation start
the other end of the mass ratio scale, and it becomes m
and more difficult to apply our method as the nuclear m
increases. The reason why this happens has to do with
increasing difficulty of generating a well-enough localiz
two-nucleus part of the trial function. Clearly, in the limit o
n
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infinite nuclear mass, when the nuclei are stationary, our t
function will be completely incapable of representing t
situation, and this inability is already becoming evident f
D2

1. ~A recent calculation@10# of the same quantities use
the finite element method, avoids the basis-set problem,
obtains excellent results in good agreement with experim
see Table I.! It is rather interesting that the boundary b
tween applicability and inappropriateness of our meth
should be so close to the physically relevant systems con
ered here. We are currently investigating the polarizabilit
of the whole family of three-particle systems, from H2

through T2
1.
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