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Polarizability of the ground state of the hydrogen molecular ion
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The dipole polarizabilities of the ground states of the iong lnd D,* have been calculated without
making use of the Born-Oppenheimer approximation. Instead, the ions were treated as three-body systems
whose ground states are spherically symmetric, and the polarizabilities were calculated using second-order
perturbation theory with intermediapepseudostates. The wave functions of both the ground and intermediate
states are taken to be of generalized Hylleraas form, but it is necessary to use quite high powers of the
internuclear coordinate to simulate the localized motion of the nuclei. We obtain good values of the ground-
state energies, and report values of the polarizabilities, to be compared with recent measurements.
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PACS numbdss): 33.15.Kr, 31.15-p

[. INTRODUCTION method that recommends it; there are discrepancies between
the best BO calculationE3] and the recent measurements
Recent experimen{d] on high Rydberg states of,Hhave  [2], and we hope that these can be cleared up.
made it possible to extract accurate properties of the molecu- The problem is simply one of adequate convergence. It is
lar ion H,", which is the core of the excited molecule. Well known that although the power-exponential form of a
Among the properties measured are the quadrupole momehtylleraas function is well suited to describing electronic mo-
and the parallel and perpendicular polarizabilities. More retions, the relative motion of the nuclei is fairly tightly local-
cently, Rydberg states of Hand D, have been observed, ized near an equilibrium point; the heavier the nuclei, the
with the core in its spherically symmetric ground stf2é more localized their motion becomes. An important part of
and the isotropic dipole polarizabilities have been deterthis work is a simple method to overcome this problem. Nev-
mined with high precision. The traditional theoretical valuesertheless, convergence in this calculation is still rather slow,
[3] of these polarizabilities have been obtained from averespecially in the case of D; we will discuss this below.
ages, over rotational and vibrational wave functions, of In Sec. Il the formulation of the calculation is described,
guantities calculated in the Born-Oppenheim@&O) ap- in Sec. Il the choice of trial functions is discussed, and in
proximation, and they disagree significantly with experi-Sec. IV results and extrapolated results are shown.
ments(see Table)l In the present paper we avoid this ap-
proximation by treating the JI molecular ion as a three-
body quantum system, and computing the polarizability by Il. FORMULATION
second-order perturbation theory.
To do this we adapt the generalized Hylleraas basis func-
tions that had worked very well in previous calculations for
the atomic helium system and a number of two-electron

The unperturbed Hamiltonian of the,Hsystem is

atomic ions[4]. At first sight this may seem to be a bizarre He o — [VA+V3]-V3

way to deal with a molecule whose structure is so different M

qualitatively from a two-electron atom: instead of having one 1 1 1

heavy particle and two light ones,,H contains two heavy 2l D
[Fa—Tsl [Fa—Tel [F—Tel

particles and one light one. In principle, however, there is no
real reason why it should not be possible to treat all three-
particle systems on an equal footing. In fact, a well- TABLE I. Polarizabilities of H* and D,* obtained in different
converged variational calculation should give better resultgvays, both theoretically and experimentally. Quantities in parenthe-
than the BO method, since no fundamental approximatio§es are errors in the last decimal place given; estimated errors of the
has been made. The major advantage of treating a diatomResent calculation are shown in H4.).

ion as an ordinary three-body system lies in the fact that aff

the kinematic effects of “rotation” and “vibration'{as they ~ Method ay(H") 1(D;")
would be called in the BO methpdare automatically in-  gxperiment 3.16817) 3.07127)
cluded when we calculate the three-body wave functions. B¥sorn-oppenheimér 3.1713 3.0731

the same token we will not be able to compute separate vap,qant 31680 3.0671
ues of the axial and transverse polarizabilities, since we d%inite clemerft 3.16824) 3.07144)

not hold the internuclear axis fixed in spa@érom this point
of view it would be just as silly to ask for the polarizability 2Jacobsoret al.[2].

of the helium atom along the interelectronic directjdBut it bBishop and Lan{3].

is not just the simplicity and straightforwardness of theShertzer and Greerjé0].
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wherer,, fg, andf, are the position vectors of the two 14
nuclei and the electron, respectively, measured in units of the
Bohr radiusay, M is the nuclear mass in units of the electron
mass, and the energy is in rydbergs. The dipole polarizability
(in units of ag) is obtained by second-order perturbation

1.2

14

theory as E 0.8
0|(FatFg—Fe)-2|p)J2
a=43 [{O(Fa+Tg—Te) - &|p)| . @) Z oef
p Ep_ EO k=t
) & 0.4
We make the usual transformation to the center of mass sys-
tem, where 0.24

- MFPa+MFPg+fe . . 0 . ' : . . ‘ ,
RCM:—2M+1 . Pap=m[fap—TFel 3 0 05 1 15 2 25 3 35 4
Internuclear distance p 5 (units of a,)

In terms of these new coordinates, the Hamiltonian takes the f G, 1. pemonstration of the similarity between functions of the

form form pNe™P? and solutions of the Morse oscillator for,H The
solid line is the Morse function, the dotted line is fdr=16 and

O v2 _v2 0, % % 2 2 2 b=7.843127, and the dashed line is fdi=32 and b
H=—V2 —V2 —2,V, .V, + , , : |
Pa P8 AP | pa—pel pPa PB =15.686 25. All three functions are normalized to unity.
4
_ ra 1+ . e 1—
and the dipole operator becomes W,=—cog0ap/2)(f+f)D1" —sin(ap/2)(f—f)D7
- 1 ) where
R+ ——— (pa+pp) |- €, 5
cm ,LL(].‘l‘M) (pA PB) o

k=]

where the reduced mags=M/(M+1), and energies are |(PA:PB.PaB)=€ Veatrele ﬁpABPAi’j’ o Cij kPAPBPA
now measured in reduced rydbergs, = uR... The center- (8)
of-mass term can be omitted since it does not contribute to

the polarizability. Nevertheless, the fact that the ion isand

charged and accelerates in the external field contributes to

the coefficient appearing in the dipole opera(gotice that f(pa,pg.pag)=TF(pPs.PA,PAB)-

in this case the mass polarization cross-terntiris of the ] ) ]

same order as the other kinetic-energy operators, rather thadi1e rotational harmonic® used here are those defined by
being small, as it is in a two-electron atom like heliym. Bhatia and Temkin5], andpag=pa—ps - o
Finally, we can write the polarizability in the following _ Although the exponentials and powers appearing in Egs.

x|
Il

form: (7) and (8) are efficient for describing the correlation be-
tween the nuclei and the electron, we know from the BO

4 [{0|za+ zg| ) I? 3 model(which is certainly a good first approximatiptiat the
R T zp: E,— Eo 0 ( internuclear motion will not be well described that way. It is

much better described by Gaussian-like functions centered

where ZA,B:/;A,B'ér 0 Signifies the Spherica"y Symmetric around the equilibrium pOSitiOﬂS of the nuclei. The problem
ground state of the ion, ang denotes the excitedl =1 is to adapt our trial functions so that they describe the motion
states. It is worth emphasizing again that we are treating aRf the nuclei satisfactorily. The method we use is to increase
three particles on an equal footing and will not refer to anythe powers ofp g appearing in Eqs(7) and(8).

special “molecular” quantum numbers. Thus we will not be  In Fig. 1 we show the ground-state wave function ob-
interested here in the “axial” or “transverse” polarizabil- tained from the Morse potentif], an approximation to the

ities that appear in BO calculations. exact BO potential for the 51 ion. Notice that it peaks just
beyondpag=2a, and has a half-width of abouta}. This
I1l. CHOOSING THE FUNCTIONS function can be well approximated by the fopﬂe_b”, pro-

vided N is large, ando~N/2. In the figure we show the two

In the past, we have calculated atomic polarizabilities usfunctions N=16, b=7.8431 andN=32, b=15.6863. The

ing Swave Hylleraas trial functions to describe the unper-jatter (normalized to unity fits almost perfectly, while the

turbed state, an@-wave Hylleraas functions used as pseu-former is broader but qualitatively similafFor the case of

dostates to approximate the intermediate-state sum in E@,* where the half-width is smaller, the required valué\of
(6): is considerably higher, causing a decreased accuracy in treat-

Q ing this system).This leads us to make a simple modification
_ a—a(patps)a—bp I m n — of the trial functions of Eqs(7) and (8)—multiplying them

Wo=e Trariee AB|,m§:o CimnPapepaet [A=BI. by phg. For the ground state the nonlinear parameters are
(7) chosen to minimize the energy, as usual, but how should the
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TABLE Il. The convergence of; as a function of) for both 3.2
H,* and D,*. In both case$),=13 (N,=308). 15
Qp Np ay(Hy) a1(Dy) Kl
4 K
4 35 3.023 925 2.753 082 ‘g 3.054
5 56 3.094 272 2.904 720 ;;3 3
6 84 3.130 915 2.971 445 Kl
7 120 3.149 851 3.012 308 3 %%
8 165 3.159 469 3.037 802 2.9
9 220 3.164 864 3.054 261 2851
10 286 3.167 134 3.060 808 '
11 364 3.167 953 3.067 089 281
275 T T T T T
4 ] 6 7 8 9 10 11
. . - Q
value ofN be chosen? We found in practice that an efficient ’
and tractable scheme was to kel (), constant as we FIG. 2. Convergence af; with Q,=13 (N,=308) as a func-

increased(), itself. This has the effect of starting with a tion of Q,. The upper curve is for }f, and the lower is for B'.
function roughly like that shown in Fig. 1, and gradually

filling in the lower powers ofpag as the expansion length 4 () and convergence of the polarizability with respect to
increases. In this way we have obtained a value of thgne |ength of the intermediatepseudostate sum, measured
ground-state energl;‘t_(7H2 )=—1.194 277 909 Ry, differing p, Q,. As we discussed above, if the ground-state function
by only about 2.X10™" Ry from the accurate valUg]. Itis  \ere exact, then the convergence(ly would certainly be
important to emphasize that this proceduredasintended to  f.oy, below, and in practice we do find convergenceagf
produce a wave function exactly like the BO function. We som pelow for each value of,, so it is reasonable to take
are simply trying to adjust the form of the conventional Hyl- e o values of the polarizability given above to be lower
leraas trial function to simulate the physics of the BO func-p,unds to the exact values, but these are not rigorous

tion qualitatively, by localizing the nuclei close to their most p51nds. For the maximum valu®.= 13 andN= 10 we find
probable positions in the expectation that this will improvethatal converges exponentially (\)Nitﬂ
P

convergence, as indeed it does. Notice also that not every
term in the expansion has exactly the same dependence on
the internuclear coordinate, since various valuesnddre
summed over. Our comparison with the Morse solution in
Fig. 1 is not supposed to be quantitative. and this equation actually fits very well for the Hcase and
For the intermediate states, on the other hand, we have fairly well for D,", as shown in Fig. 2. It is tempting to try
keptN=4, and have chosen the parameters to maximize tht9 extract a better value af, by taking Eq.(9) literally and
value of a; as obtained from Eq$6), following Bishop and ~ using it to extrapolate t6),—o. The two curves shown in
Lam [8]. That is, if|0) were the exact ground-state function, Fig. 2 were obtained by least-squares fitting to all the calcu-
then the polarizability obtained from E¢5) would be varia- lated points, and they lead to extrapolated valagéH, ")
tionally correct and would have errors of second order in the= 3.1698(3)18, and al(D2+)=3.0687(44)18. The errors,
error in the set of-state functions included in the summa- indicated in parentheses, represent the inadequacy of the ex-
tion. It would also give a rigorous lower bound, and this isponential form to describe the data; it is clear both numeri-
the reason why we choose tipestate parameters to maxi- cally and by inspection that the,D data fit significantly less
mize a4 . However, the error that remains in the approximatewell. It might be reasonable to take these extrapolated values
ground-state function contributes a first-order error to theo be upper boundg].
calculation ofay, through the matrix element appearing in  On the other hand, adding terms to the ground-state func-
the numerator. tion decreases the calculated polarizability. This observation
is physically reasonable, since as the system becomes more
tightly bound it should be more difficult to distort it. To
IV. RESULTS AND DISCUSSION obtain an idea of how much the polarizability would de-

In Table Il we show how our results vary as we increaseréase if{lo could be raised indefinitely, we can use the
the number of intermediate-states for both molecular ions, ENErgy error as a measure. The energy error is quadratic in
keepingQ), fixed at 13. The “best” values of the polariz- the ground-state wave function error, while the polarizability

abilities, that is, those obtained with the greatest expansiof©€S Not have the variational property; thus we assume the

lengths in both the ground state and the intermediate psedi€/ation

dostates, are a;(H,")=3.1679%3, and a;(D,") /
=3.067 0%3. These should be compared with the corre- a1(Q)= a3+ C[E(Qo) — Eexacd (10)
sponding experimental results shown in Table I.

In estimating the accuracy of these numbers, there are twand use the calculated values fog=12 and 13 to estimate
different convergence processes that must be considerethie converged value of the polarizability for fixed value of
convergence of the ground-state wave function with resped ,=11 as{),—c. This procedure results in a decrease of

a;(Qp)=a;+Ce P, 9
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104 for the case of the hydrogen ion, and 2.00" 2 for the  infinite nuclear mass, when the nuclei are stationary, our trial
deuterium ion. We can then present the final results in théunction will be completely incapable of representing the

following forms: situation, and this inability is already becoming evident for
. 0.0018 D,". (A recent calculatiorj10] of the same quantities uses

ay(H,")=3.1680 gg001: the finite element method, avoids the basis-set problem, and

N 0.0016 obtains excellent results in good agreement with experiment;
a1(D,")=3.0671 50020 (1)) see Table ). It is rather interesting that the boundary be-

Iti ¢ hat th . . tween applicability and inappropriateness of our method
tis g_n ortunate t ?(t the tv(\j/%.exlpansmtr;s CONVEIge I OPPOgq1q be so close to the physically relevant systems consid-
site directions, making it difficult to obtain more rgorous ooy here. We are currently investigating the polarizabilities

upper or lower bounds on the polarizability, but the value ¢ 1o \whole family of three-particle systems, from H
given above is not inconsistent with the result fos Hob- through T* ’

tained in Ref[2], while the result for B" is less satisfactory.
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