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Dynamic role of coupled-channel wave phases on the structural determination
of angular distributions
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It is still a question of interest why the distorted-wave Born approximation theory predicts well the structure
of the angular distributions particularly at low energies, in good agreement with the coupled-channel wave
theory. The phases of the coupled-channel waves are found to be crucially important in determining the
structures of the angular distributions. The phases of coupled-channel wave functions are shown to be close to
the phase of the entrance channel in the classically forbidden region at low energies, thus allowing agreement
between the two theories.@S1050-2947~99!01803-X#
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I. INTRODUCTION

For the past two or three decades there has been a un
ing interest in the study of rearrangement collisions~reactive
scattering processes! involving atoms and molecules. For th
H1H2 benchmark exchange reaction, much effort has b
made to obtain the accurate dynamical reaction informa
by performing rigorous calculations of cross sections, th
mal rate constants, and state-to-state transition probabil
of reactive collision process near the threshold region, wh
the quantum-mechanical effects such as tunneling and r
nances are important. For this purpose, various ex
quantum-mechanical methods have been developed; the
the exact close-coupling methods@1–3#, theS-matrix version
of the Kohn-variational principle@4#, the log-derivative ver-
sion of the Kohn-variational principle@5#, the method of dis-
crete variable representation with absorbing boundary co
tion @6#, etc. For computational efficiency, various reliab
approximations@e.g., the single-channel distorted-wave Bo
approximation~DWBA! @7–10#, the coupled-channel-wav
~multichannel distorted-wave! Born approximation~CCBA!
@11–15#, the infinite-order sudden approximation@16#, etc.
@17## have been proposed.

Among the approximation methods the DWBA an
CCBA have been frequently used for the study of atom
diatomic-molecule reactive collisions at low collision ene
gies @18,19#. In the DWBA, coupling between channels
not taken into account. The DWBA seems to describe w
the relative~but not absolute! magnitudes of the integrate
cross sections, the angular distributions@20#, and the product
rotational-vibrational distributions@14,21,22#. The DWBA is
thus a useful tool for a qualitative description, although n
so good for quantitative accuracy. Earlier, comparisons
tween the DWBA and the exact close-coupling calculatio

*Electronic address: mhlee@m700.kumoh.ac.kr
†Electronic address: nnchoi@molecule.kumoh.ac.kr
‡Electronic address: salk@postech.ac.kr
PRA 591050-2947/99/59~3!/1966~15!/$15.00
as-

n
n
r-
es
re
o-
ct
are

i-

–

ll

t
e-
s

were reported@19,20#. These studies showed that the effe
of coupling strongly affects the absolute magnitude of
cross section, even at low energies, but not the relative
gular distribution. To take into account the effects of co
pling to inelastic channels, the CCBA method was propo
@12,14,15#. The coupled-channel~CC! wave functions de-
scribe the elastic and inelastic scattering in each arran
ment. The CCBA calculations are known to be in excelle
agreement with the exact ones at relatively low energ
~near the threshold region! @1,14#.

However, it is still an unanswered problem why th
DWBA theory works surprisingly well in the prediction o
the relative angular distributions at low collision energie
Only formal differences between the CCBA and DWB
methods were elucidated earlier@23#. Recently, in order to
resolve why the DWBA, which allows only a single chann
is a useful tool to explore the structures of angular distrib
tions at such low energies we have numerically investiga
connections between the CCBA and DWBA and showed t
constancy of the computed phases of CC wave function
important for structural agreement in angular distributio
@24#. In the present paper, employing a perturbative
proach, we present a full explanation of reasons why s
constancy often occurs and why the phases of CC waves
close to the phase of the entrance channel.

The CCBA transition amplitude is briefly described
Sec. II. In Sec. III we demonstrate the importance of the
wave phases in determining the angular distributions. In
dition, we present the numerical results on the phases of
waves with emphasis on their characteristics. In Sec. IV
introduce a perturbative expansion of CC waves and the c
pling potential matrix elements are investigated. In Sec
the phase of the distorted-wave~DW! Green’s function is
proved to be zero and the phases of CC waves are inv
gated on the basis of the perturbative approach.

II. STATE-TO-STATE REACTIVE
TRANSITION AMPLITUDES

The differential cross section for the state-to-state reac
scatteringA1BC(na , j a)→AB(nb , j b)1C is written as
1966 ©1999 The American Physical Society
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S ds

dV D
nbj b ,naj a

5
1

2 j a11

mA,BCmC,AB

4p2

Kb

Ka

3 (
mbma

uTnbj bmb ,naj ama
~V!u2, ~1!

where the reactive transition amplitudeTnbj bmb ,naj ama
(V)

can be expressed as@12,18#

Tnbj bmb ,naj ama
~V!

52( 4p2i La2Lb
Avbva

KbKa
^ j bLbmbMbuJM&

3^JMu j aLamaMa&YLbMb
~K̂b!YLaMa

* ~K̂a!

3Tnbj bLb ,naj aLa

J . ~2!

Here na(nb), j a( j b), andma(mb) are, respectively, the vi
brational, rotational, and polarizational quantum numbers
the reactant~product! molecule. mA,BC(mC,AB), Ka(Kb),
and va(vb) are, respectively, the reduced mass, the w
vector, and the velocity for the relative motion in the initi
~final! arrangement.J andM are the total angular momentum
and its projection quantum numbers, respectively.La (Lb)
is the orbital angular momentum of the initial~final! arrange-
ment andMa (Mb) its projection quantum number.V is the
solid angle of the wave vectorKb with respect to the wave
vector Ka . It can be seen from Eq.~2! that the essentia
physics ofTnbj bmb ,naj ama

(V) as a function ofmb , ma , and

V is ultimately understood from the nature ofTnbj bLb ,naj aLa

J .

The latter contains information on important dynamics
association with the angular momentumJ, Lb , andLa and
possesses rotational invariance, revealing the complete
namic properties of reactive collision processes.

In the framework of the CCBA,Tnbj bLb ,naj aLa

J is written

as

Tnbj bLb ,naj aLa

J

5E dRb dRa RbRa (
nb8 j b8Lb8 ,na8 j a8La8

xn
b8 j

b8L
b8 ,nbj bLb

J~2 !*

3~Rb!Kn
b8 j

b8L
b8 ,n

a8 j
a8L

a8
J

~Rb ,Ra!xn
a8 j

a8L
a8 ,naj aLa

J~1 !
~Ra!. ~3!

Here Kn
b8 j

b8L
b8 ,n

a8 j
a8L

a8
J

(Rb ,Ra) is the reaction kernel that de

pends on the total angular momentumJ. This kernel repre-
sents the intrinsic nature of rearrangement collisions invo
ing transitions from the intermediate channels$na8 j a8La8J% in
the initial arrangement to the intermediate chann
$nb8 j b8Lb8J% in the final arrangement. It is given by@12,14#

Kn
b8 j

b8L
b8 ,n

a8 j
a8L

a8
J

5E dR̂b dR̂a

un
b8 j

b8
~r b!

r b
Y j

b8L
b8

JM*
~ r̂b ,R̂b!

3FUa~Rb ,Ra ,R̂b•R̂a!
un

a8 j
a8
~r a!

r a
Y j

a8L
a8

JM
~ r̂a ,R̂a!
f

e

y-

-

s

2 (
na9 , j a9 ,La9

un
a9 j

a9
~r a!

r a
Y j

a9L
a9

JM
~ r̂a ,R̂a!

3@Ua~Ra!#n
a9 j

a9L
a9 ,n

a8 j
a8L

a8
J G . ~4!

Ra (Rb) is the channel radius vector from the center of ma
of the diatomic moleculeBC (AB) to the atomA (C) and
ra (rb) is the interatomic displacement of the diatomic mo
ecule in the initial ~final! arrangement.xn

a8 j
a8L

a8 ,naj aLa

J(1)
(Ra)

and xn
b8 j

b8L
b8 ,nbj bLb

J(2)
(Rb) are the outgoing and incoming CC

wave functions corresponding to the initial and final arran
ments, respectively.un

a8 j
a8
(r a) andun

b8 j
b8
(r b) are the molecu-

lar wave functions in the initial and final arrangemen
Ua(Rb ,Ra ,R̂b•R̂a) describes the interaction between t
projectile and the target. This interaction potential is set to
just the difference between the full three-body potential a
the molecular potential in the initial arrangemen
@Ua(Ra)#n

a9 j
a9L

a9 ,n
a8 j

a8L
a8

J
is the interaction matrix elemen

^na8 j a8La8uUauna9 j a9La9&
J that represents coupling between t

intermediate channels $na9 j a9La9J% and $na8 j a8La8J%.

Y j
a8L

a8
JM

( r̂a ,R̂a) is the bispherical harmonics@12,26#. The sum-

mation in Eq.~3! is over all the possible intermediate cha
nels due to coupling with the entrance or exit channel. In
DWBA such intermediate~inelastic! channels are ignored, a
is well known. The CC~or multichannel! wave functions
xn

a8 j
a8L

a8 ,naj aLa

J
, which describe the nonreactive scatteri

process in the initial arrangement, are obtained from
coupled differential equation

2
1

2mA,BC
S d2

dRa
2

2
La8~La811!

Ra
2

1kn
a8 j

a8
2 D xn

a8 j
a8L

a8 ,naj aLa

J
~Ra!

1 (
na9 , j a9 ,La9

^na8 j a8La8uUauna9 j a9La9&
Jxn

a9 j
a9L

a9 ,naj aLa

J
~Ra!50,

~5!

where the wave numbers are given bykn
a8 j

a8
2

52mA,BC(E

2en
a8 j

a8
) with the molecular energiesen

a8 j
a8
.

III. IMPORTANCE OF COUPLED-CHANNEL WAVE
PHASES FOR THE STRUCTURAL DETERMINATION

OF ANGULAR DISTRIBUTIONS

To properly understand the physics of reactive transiti
we focus on the transition amplitude ofTnbj bLb ,naj aLa

J in Eq.

~2! since it contains the dynamical information of the rea
tion. To the best of our knowledge, there has been no re
on the explicit study of dynamic phase distributions invo
ing the transition amplitudeTnbj bLb ,naj aLa

J,CCBA for the purpose of

explaining the cause of structural agreements in the predi
relative angular distributions between the DWBA a
CCBA. Earlier, the shape of the relative angular distributi
was discussed in terms of the examination of the reac
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TABLE I. Tnbj bJ21,naj aJ
J in the CCBA and DWBA. Numbers in square brackets indicate powers of 1

Magnitude ofTJ Argument ofTJ ~in units of p)

J Lb La CCBA DWBA CCBA DWBA

1 0 1 0.653@202# 0.714@203# 1.393 1.067
2 1 2 0.642@22# 0.709@23# 1.294 0.983
3 2 3 0.548@22# 0.609@23# 1.135 0.833
4 3 4 0.424@22# 0.472@23# 0.919 0.633
5 4 5 0.299@22# 0.333@23# 0.646 0.374
6 5 6 0.192@22# 0.214@23# 0.318 0.061
7 6 7 0.113@22# 0.126@23# 1.937 1.694
8 7 8 0.606@23# 0.678@24# 1.504 1.278
9 8 9 0.296@23# 0.333@24# 1.021 0.811
10 9 10 0.131@23# 0.150@24# 0.491 0.294
11 10 11 0.528@24# 0.615@25# 1.916 1.733
12 11 12 0.193@24# 0.231@25# 1.298 1.133
r

q.

io
e

ur
te
th
is
e

re

ri

ns
o

ns

-

c-
e
of

ce

sets

pre-
xi-

his
od
probability uTnbj bLb ,naj aLa

J u2 as a function of the total angula

momentumJ @14,15,18#. However, as can be seen from E
~2!, the transition amplitudeTnbj bmb ,naj ama

(V) is expressed

as a coherent sum ofTnbj bLb ,naj aLa

J . As the interference

terms are determined by not only the magnitude distribut
but also phase distributions, the phase distributions are
pected to play an important role in determining the struct
of angular distributions. In order to explicitly demonstra
the importance of the phase distribution, we compare
angular distributions resulting from two different phase d
tributions of Tnbj bLb ,naj aLa

J . In the first case, we choose th

actual phase distribution obtained by the CCBA for the
action H1H2(0,0)→H2(0,1)H1H ~see Tables I and II!. In
the second case, the phase distribution is chosen arbitra
The actual magnitude distribution ofTnbj bLb ,naj aLa

J is em-

ployed in both calculations of the the angular distributio
Even though the distributions of absolute magnitudes
Tnbj bLb ,naj aLa

J are identical, the different phase distributio

involving Tnbj bLb ,naj aLa

J give quite different angular distribu
n
x-
e

e
-

-

ly.

.
f

tions as shown in Fig. 1. This explicitly shows that the stru
ture of angular distribution is crucially determined by th
phase distribution as well as by the magnitude distribution
Tnbj bLb ,naj aLa

J .

By choosing the Porter-Karplus potential-energy surfa
@25#, we computed the transition amplitudesTnbj bLb ,naj aLa

J,CCBA

and Tnbj bLb ,naj aLa

J,DWBA for the reaction process H1H2 (0,0)

→H2(0,1)1H at a total energy ofE50.5 eV. Converged
results were obtained by using the molecular basis
$(na8 , j a8); na850,1,2,3 and j a850,2,4,6% for the initial ar-
rangement and$(nb8 , j b8); nb850,1,2,3 andj b851,3,5,7% for
the final arrangement. Satisfactory convergence in the
dicted differential cross section was achieved with the ma
mum value of the total angular momentum being 12. At t
energy the CCBA cross section was found to be in go
agreement with the exact one@1,14#. Surprisingly, as shown
in Tables I and II, the computed phases ofTnbj bLb ,naj aLa

J,DWBA are

in reasonable agreement with those ofTnbj bLb ,naj aLa

J,CCBA , except

the common phase angle difference of;60°. It is notable
10.
TABLE II. Tnbj bJ11,naj aJ
J in the CCBA and DWBA. Numbers in square brackets indicate powers of

Magnitude ofTJ Argument ofTJ ~in units of p)

J Lb La CCBA DWBA CCBA DWBA

0 1 0 0.110@21# 0.116@22# 1.412 1.067
1 2 1 0.782@22# 0.808@23# 1.332 0.978
2 3 2 0.596@22# 0.600@23# 1.191 0.833
3 4 3 0.430@22# 0.420@23# 0.992 0.633
4 5 4 0.288@22# 0.273@23# 0.735 0.372
5 6 5 0.178@22# 0.164@23# 0.422 0.058
6 7 6 0.101@22# 0.909@24# 0.053 1.689
7 8 7 0.528@23# 0.463@24# 1.631 1.272
8 9 8 0.252@23# 0.217@24# 1.158 0.806
9 10 9 0.110@23# 0.936@25# 0.635 0.292
10 11 10 0.435@24# 0.371@25# 0.065 1.733
11 12 11 0.157@24# 0.135@25# 1.451 1.133
12 13 12 0.514@25# 0.448@26# 0.794 0.489
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that the common exponential factor arising from the co
mon phase angle difference is extracted from the summa
in Eq. ~2! and is canceled during the process of comput
the absolute magnitude square to obtain the differential c
section in Eq.~1!. The predicted magnitudes ofTnbj bLb ,naj aLa

J,CCBA

are also in reasonable agreement with those ofTnbj bLb ,naj aLa

J,DWBA

except the common multiplication factor of;10. This im-
plies that coupling to inelastic channels enhances the a
lute magnitude of the reactive cross section by 100 tim
larger than the value without the channel coupling.

It is readily seen from Eq.~3! that the dynamic~energy-
dependent! phases ofTnbj bLb ,naj aLa

J are determined by the

phases of the CC wavesxn
a8 j

a8L
a8 ,naj aLa

J
andxn

b8 j
b8L

b8 ,nbj bLb

J
. It

is notable that the reaction kernelKn
b8 j

b8L
b8 ,n

a8 j
a8L

a8
J

is real val-

ued. Investigating the distributions of the integrand of Eq.~3!
in (Rb ,Ra) space@24#, we find thatthe CC wave functions
xn

a8 j
a8L

a8 ,naj aLa

J
and xn

b8 j
b8L

b8 ,nbj bLb

J
in the classically forbidden

region (that is, in the range2.3 a.u., Ra , 3.5 a.u.)
dominantly contribute to the transition amplitud
Tnbj bLb ,naj aLa

J . In this contributive region, the predicte

phases ofxn
a8 j

a8L
a8 ,naj aLa

J
involving all possible intermediate

channels$na8 j a8La8% do not vary appreciably, as is shown
Fig. 2. Each curve represents the phase variation of
waves as a function of the initial channel radius. To av
typographical complexity, we avoid labeling each channe
the figure. We find that computed phases for all other ini
channel show a similar trend. All the computed phases of
CC waves in a given initial channel$naj aLa% are found to be
nearly the same as the phase of the elastic channel w
xnaj aLa ,naj aLa

J , allowing the maximum phase difference

20° between the elastic and contributive intermediate ch
nels. Further the magnitude of the phases are nearly inde
dent of the channel radiusRa, particularly in the classically
forbidden region of 2.3 a.u.,Ra,3.5 a.u. It is noted that
except the common phase angle difference of 30°,
weighted average of predicted phases ofxn

a8 j
a8L

a8 ,naj aLa

J,CCBA
is

nearly the same as that ofxnaj aLa ,naj aLa

J,DWBA at sufficiently low

FIG. 1. Normalized cross sections for the actual phase distr
tion (d) and an arbitrarily chosen phase distribution (n) with the
same magnitude distribution ofTnaj aLanbj bLb

J .
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energies. To put it otherwise, it is important to realize th
the memory of the initial~final! phase of the entrance~exit!
channel is not lost during the nonreactive scattering at s
low collision energies. This is one of the reasons why
structures of angular distributions between the DWBA a
CCBA are found to be similar in the literature.

IV. PERTURBATIVE EXPANSION
OF COUPLED-CHANNEL WAVES

The numerical results on the phases of the CC waves
that a perturbative approach might be employed to und
stand these results. Decomposing the interaction ma
^na8 j a8La8uUauna9 j a9La9&

J into the diagonal~elastic! and off-
diagonal~inelastic! parts, Eq.~5! can be rewritten as

2
1

2mA,BC
S d2

dRa
2

2
La8~La811!

Ra
2

1kn
a8 j

a8
2

22mA,BC^na8 j a8La8uUauna8 j a8La8&
JD

3xn
a8 j

a8L
a8 ,naj aLa

J
~Ra!

52 (
na9 , j a9 ,La9

^na8 j a8La8uUauna9 j a9La9&
J~1

2dn
a8 ,n

a9
d j

a8 . j
a9
dL

a8 ,L
a9
!xn

a9 j
a9L

a9 ,naj aLa

J
~Ra!. ~6!

Further, introducing the coupling potential matrix

Vñ
a8 ,ñ

a9
[^ña8uUauña9&

J~12d ñ
a8 ,ñ

a9
! ~7!

and the DW differential operator

u-

FIG. 2. Phase angles of all possible intermediate chan
~coupled-channel wave functions! for the set ofJ52, na50, j a

50, andLa52 in units ofp. The number of available channels
40 in this case.
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D ña ,ñ
a8
52

1

2mA,BC
S d2

dRa
2

2
La8~La811!

Ra
2

1kn
a8 j

a8
2

22mA,BC^ña8uUauña8&
JD d ña ,ñ

a8
, ~8!

we rewrite Eq.~6! in the form of a matrix equation

D•x52V•x. ~9!

Here ña[$naj aLa% was introduced for brevity. It is noted
that V allows inelastic processes. That is, ignorance oV
corresponds to the DWBA.

The perturbative solutionx ñ
a8 ,ña

J
of Eq. ~9! is

x5x0~1 !1G ~1 !Vx0~1 !1G ~1 !VG ~1 !Vx0~1 !1•••,
~10!
l

eg
where x0(1) is the DW function that satisfies the elast
wave equationD•x50 with an outgoing boundary condi
tion. The DW Green’s functionG (1)52D21 is given by
@28,29#

G ña ,ñ
a8

~1 !
~Ra ,Ra8!

52mA,BC

d ña ,ñ
a8

Wña

S f ña
~Ra!gña

~Ra8!, Ra,Ra8

gña
~Ra! f ña

~Ra8!, Ra.Ra8 .
~11!

Here f ña
(Ra) andgña

(Ra) are, respectively, the regular an

irregular solutions of the elastic wave equationD•x50.
They satisfy the asymptotic boundary conditions
f ña
~Ra! →

Ra→`5
1

Av ña

@e2 i ~kña
Ra2Lña

p/2!2ei ~kña
Ra2Lña

p/2!Sña ,ña

0
# for open channels

1

Av ña

@eukña
uRa2e2ukña

uRaSña ,ña

0
# for closed channels

~12!

and

gña
~Ra! →

Ra→`5
1

Av ña

@ei ~kña
Ra2Lña

p/2!# for open channels

1

Av ña

@e2ukña
uRa# for closed channels.

~13!
The WronskianWña
is given by

Wña
5 f ña

d

dRa
gña

2gña

d

dRa
f ña

5H 2imA,BC for open channels

22mA,BC for closed channels.
~14!

It is noted that f ña
(Ra)[x ñ

a8 ,ña

0(1) d ñ
a8 ,ña

by definition. The

regular and irregular functionsf ña
(Ra) and gña

(Ra) for
closed channels are real valued. This means thatthe Green’s
functionsG ña ,ña

(1)
for closed channels are real valued.

The perturbation potential in Eq.~10! is just the coupling
potentialV. For the H1H2 reaction, the interaction potentia
Ua is invariant with respect to the reflectionr̂a•R̂a→2 r̂a

•R̂a . Hence we can expand it in a series of even-parity L
endre polynomials@1#

Ua~r a ,Ra , r̂a•R̂a!5 (
q50

`

U2q
a ~r a ,Ra!P2q~ r̂a•R̂a!, ~15!
-

where

U2q
a ~r a ,Ra!5

4q11

2 E
21

1

Ua~r a ,Ra , r̂a•R̂a!

3P2q~ r̂a•R̂a!d~ r̂a•R̂a!. ~16!

Then the coupling potential matrix can be written as

Vñ
a8 ,ña

~Ra!5 (
q50

`

C2q~ j a8La8 j aLaJ!Vñ
a8 ,ña

~2q!
~Ra!, ~17!

where

Ck~ j a8La8 j aLaJ!

5~21!J1La1k@~2 j a811!~2La11!#1/2^ j a8k00u j a0&

3^Lak00uLa80&W~Laj aLa8 j a8 ;Jk! ~18!

and
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Vñ
a8 ,ña

~2q!
~Ra!5^un

a8 j
a8
~r a!uU2q

a ~r a ,Ra!uunaj a
~r a!&. ~19!

The Racah coefficientsW in Eq. ~18! are expressed in th
notation of Edmonds@27#. SinceC2q( j a8La8 j aLaJ)50 for j a8
1 j a odd or La81La odd, V does not couple even with od
rotational~orbital! channels.Ua, which represents the inter
action between the target and the projectile, decrease
Ra

26 at large Ra . U0
a(r a ,Ra) also decreases asRa

26 by
inheritance. The 2q pole of the interaction potentia
U2q

a (r a ,Ra) with nonzeroq measures the anisotropy. Ac
cordingly, asq grows larger,U2q

a (r a ,Ra) decreases more
rapidly. This means that the coupling potential matrix e
mentVñ

a8 ,ña
is mainly determined by the first nonzero ter

with q5q0 in the series of Eq.~17! and that the channe
coupling with smallerq0 corresponds to a stronger one.
addition, for a fixedq0 , the smaller difference of the vibra
tional quantum numbersDn5na82na , the stronger channe
coupling. In summary,channels are most strongly couple
with their nearest neighborsand the elements of the couplin
potential matrix are monotonically decreasing functions
Ra at sufficiently largeRa . Numerical results of the coupling
potential matrix elements are presented in Fig. 3, which
shown to be consistent with the arguments above.

V. EXAMINATION OF COUPLED-CHANNEL
WAVE PHASES

To investigate the CC wave phases on the basis of
perturbative expansion~10! we plan to examine the phase
and amplitudes of f ña

,gña
, and G (1)Vx0(1), including

higher-order terms such asG (1)VG1Vx0(1). To illustrate
the procedure, we consider the case in which the entra
channel is specified by$na50,j a50,La52,J52% as an ex-
ample.

First, we examine the phases and amplitudes off ña
and

gña
for open channels. In the case of the present exam

FIG. 3. Coupling potential matrix elementsVñ
a8 ,ña

(Ra) between

ña5$002% and ña85$020%, $024%, $042%, $064%, $102%, and
$302% in a.u. The scale factors indicated are the numbers by wh
the coupling potential matrix elements were multiplied before be
plotted.
as

-

f

is

e

ce

le,

there are seven open channels that can be coupled to
entrance channel. As shown in Figs. 4 and 5, each of
complex regular functionsf ña

is sinusoidal in the region o

largeRa , has a maximum absolute magnitude~or modulus!
near the classical turning point, and exponentially decrea
in the classically forbidden region. This results from the
pulsive nature of the effective elastic~distorting! potential

Uña ,ña

e f f
~Ra![

La~La11!

2mA,BCRa
2

1^ñauUuña&, ~20!

as shown in Fig. 6. In particular,the wave function fña
in the

classically forbidden region does not oscillate (no change
sign), its argument (phase) being constant in that region. As
the kinetic energykña

2 /2mA,BC in the open channel decrease

the turning point quickly moves to largeRa . This is due to
rapid broadening of the classical forbidden region, which
related to the shape ofUña ,ña

e f f (Ra) ~see Fig. 6!.

The magnitudes of the irregular functionsgña
are seen to

be very large in the classically forbidden region. They exp
nentially decrease asRa increases and approach a consta
1/Av ña

for largeRa ~see Fig. 4!. The phase remains consta
in the classically forbidden region and linearly increases w
Ra , following kña

Ra , outside the region, as shown in Fig.

Surprisingly, it is found thatthe sum of phases of fña
and

gña
remains unchanged with the value of;1.5p in most of

the classically forbidden region.In order to explain this im-
portant finding, let us first explain the constancy of the ph
of gña

. We consider the fluxF associated with the irregula

function gña
:

F~g!5
1

2imA,BC
S gña

* ~Ra!
dgña

~Ra!

dRa
2

dgña
* ~R!

dRa
gña

~Ra!D
5

1

mA,BC
@Gña

~Ra!#2
d

dRa
f ña

~Ra!. ~21!

HereGña
(Ra) andf ña

(Ra) are, respectively, the magnitud

and phase~argument! of gña
(Ra). Using the asymptotic form

of the irregular functiongña
@Eq. ~13!# and the flux conser-

vation law, we can see thatF(g)51 at anyRa . Since the
magnitudeGña

(Ra) in the classically forbidden region is ex

tremely large,df ña
(Ra)/dRa must have a very small value

Thus the phasef ña
(Ra) is nearly constant in the classicall

forbidden region.
Let us now determine the value of phasef ña

in the clas-
sically forbidden region. It is reminded that the irregul
functiongña

has the following relation with the regular func

tion f ña
@28#:

h
g
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FIG. 4. Amplitudes of regular and irregular wave functionsf ña
~solid line! andgña

~dotted line! in a.u.~a!–~d! correspond to the actively
open channels,~e! and ~f! the barely open channels, and~g! the closed channel.
be
he

d

gña
~Ra!5 f ña

~Ra!FWña
E

q

Ra 1

f ña

2
~Ra8!

dRa81
gña

~q!

f ña
~q! G ,

~22!

where the pointq can be arbitrarily chosen and is taken to
`. In the classically forbidden region, the first term on t
right-hand side of Eq.~22! is more dominant than the secon
term. This is becausef ña

2 (Ra8)/Wña
is very small in this re-

gion. Therefore, we can approximategña
as

gña
~Ra!' f ña

~Ra!Wña
ÈRa 1

f ña

2
~Ra8!

dRa8 . ~23!
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Using theconstant phase shifth ña

0 , which is related toSña ,ña

0

such asSña ,ña

0
5e2ih

ña

0

, the asymptotic form off ña
@Eq. ~12!#

is written as

f ña
~Ra! →

Ra→`

2ei ~h
ña

0
13p/2!

Av ña

sinS kña
Ra2

La

2
p1h ña

0 D
~24!

for open channels. Hence, in the entire region
Ra , f ña

(Ra) can be expressed as@30#

f ña
~Ra!5eih ñaFña

~Ra!, ~25!

where h ña
5h ña

0
13p/2 and Fña

is the real-valued regula

solution of the elastic wave equationD•x50, which satisfies
the asymptotic boundary condition

Fña
→

Ra→`

2

Av ña

sin S kña
Ra2

La

2
p1h ña

0 D . ~26!

In terms ofFña
(Ra) andh ña

, Eq. ~23! is written as

gña
~Ra!'2mA,BCei [ ~3/2!p2h ña

]Fña
~Ra!E

Ra

` 1

@Fña
~Ra8!#2

dRa8 ,

~27!

where we usedWña
52mA,BCeip/2 for open channels. Be

cause the sign ofFña
(Ra) in the classically forbidden region

does not change as we mentioned above, the phase~argu-
ment! of gña

is given by 3
2 p2h ña

.

FIG. 4. ~Continued!.
f

In summary, from the flux conservation law and the fa
that the magnitude off ña

/AmA,BC is very small in the clas-

sically forbidden region, we find thatthe phasef ña
(Ra) of

the irregular function becomes constant with the value of

f ña
~Ra!'

3

2
p2h ña

~28!

in this region.By using Eqs.~28!, ~25!, and~11! we clearly
see that the phase of the DW Green’s functio
G ña ,ña

(1) (Ra ,Ra8) for the open channel becomes zero wh

both Ra and Ra8 are in the classically forbidden region.
Now we examine the property of the first-order perturb

tion term x (1)5G (1)Vx0(1) in Eq. ~10!, which can be ex-
plicitly written as

x ñ
a8 ,ña

~1!
~Ra!

5W̃ñ
a8Fgñ

a8
~Ra!E

0

Ra
f ñ

a8
~Ra8!Vñ

a8 ,ña
~Ra8! f ña

~Ra8!dRa8

1 f ñ
a8
~Ra!E

Ra

`

gñ
a8
~Ra8!Vñ

a8 ,ña
~Ra8! f ña

~Ra8!dRa8G , ~29!

whereW̃ñ
a8
52 i for the open channels andW̃ñ

a8
521 for the

closed channels. Note that we focus onx ñ
a8 ,ña

(1)
(Ra) in the

range 2.3 a.u.,Ra,3.5 a.u.
We study the phase ofx ñ

a8 ,ña

(1)
(Ra) for the following three

kinds of channelsña8 : actively open channels~having rela-
tively large kinetic energy!, barely open channels~having
substantially small kinetic energy!, and closed channels. I
Ra,turning,3.5 a.u., we takeña8 as an actively open channe
In the present example,$na850,j a850,La852%, $na850,
j a852,La850%, $na850,j a852,La852%, and $na850,j a852,
La854% are actively open channels, while$na850,j a854,
La852%, $na850,j a854,La854%, and $na850,j a854,La856%
are barely open channels~see Fig. 6!.

(i) Actively open channels. The deviation off ñ
a8
(Ra) from

the constant phase 1.5p2h ña
,

Df ñ
a8
~Ra!5f ñ

a8
~Ra!2~1.5p2h ñ

a8
!, ~30!

starts to increase monotonically near the turning point, be
roughly 20°;30° atRa53.5 a.u.~see Fig. 5!. The channel
coupling Vñ

a8 ,ña
is found to decrease monotonically in th

region Ra.3.0 a.u. and to be very small in the regionRa
.4.0 a.u.~see Fig. 3!. Neglecting the contribution of the
region 4.0 a.u.,Ra in the second integrand in Eq.~29!, we
can approximatex ñ

a8 ,ña

(1)
as
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FIG. 5. Phase angles of regular and irregular wave functionsf ña
~solid line! andgña

~dotted line! for the open channels in units ofp. The
phase sumsf ña ,g1h ña , f at Ra52.0 a.u. are indicated.
n-
x ñ
a8 ,ña

~1!
~Ra!'2eih ñaFGñ

a8
~Ra!eiDf ña8

~Ra!

3E
0

Ra
Fñ

a8
~Ra8!Vñ

a8 ,ña
~Ra8!Fña

~Ra8!dRa8

1Fñ
a8
~Ra!E

Ra

4.0 a.u.

eiDf ña8
~Ra8!Gñ

a8
~Ra8!
Vñ
a8 ,ña

~Ra8!Fña
~Ra8!dRa8G . ~31!

Due to the influence ofDf ñ
a8
(Ra), the phase ofx ñ

a8 ,ña

(1)
(Ra)

in the regionRa,3.5 a.u. differs from the phase of the e
trance channelh ña

, showing a small variation, with 20°
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;30° ~see Fig. 7!. Owing to increment in the magnitude o
the phase deviationDf ñ

a8
(Ra) asRa increases, the phase o

x ñ
a8

(1)
(Ra) steadily increases asRa approaches 4.0 a.u. It i

worth noting thatthe phases ofx ñ
a8 ,ña

(1)
(Ra) for the actively

open channels are close to each other, showing small de
tions from the phaseh ña

of the regular function of the en

trance channel.The magnitude ofx ñ
a8 ,ña

(1)
(Ra) in the region

Ra,3.5 a.u. has a feature similar to that of the entran
channel f ña

(Ra), but the absolute magnitude is abo

1/5–1/4 times smaller than that of entrance channelf ña
(Ra)

~see Fig. 8!. For example, while the maximum amplitude
f $0,0,2%(Ra) is 41.47, that ofx$0,2,0%,$0,0,2%

(1) (Ra) is 7.777.
(ii) Barely open channels. For barely open channel th

classically forbidden region is wider (Ra<4.3 a.u.) than
that of the actively open channel. Hence the deviat
Df ñ

a8
(Ra).0 in the region of interest, as shown in Fig.

For example,Df$0,4,2%(Ra)51.8° andDf$0,4,6%(Ra)50.0°
at Ra53.5 a.u. Therefore, as we can see from Eq.~31!, the
phase ofx ñ

a8 ,ña

(1)
(Ra) is nearly the same as that of entran

channelf ña
(Ra) up to p, depending on the sign change

Vñ
a8 ,ña

(Ra). In Fig. 7, for example, we can see that the pha

of x$0,4,2%,$0,0,2%
(1) (Ra) is plotted as a nearly solid straight line

The magnitude ofx ñ
a8 ,ña

(1)
(Ra) is found to be very small in

comparison to those of actively open channels~see Fig. 8!.
For example, the maximum amplitude ofx$0,4,2%,$0,0,2%

(1) (Ra) is
0.2086. This is due to the weakness of the channel coup
Vñ

a8 ,ña
between the barely open channel and the entra

channel, as was mentioned in Sec. IV.
(iii) Closed channels. Since the phases off ñ

a8
andgñ

a8
for

closed channels are zero, the phases ofx ñ
a8 ,ña

(1)
(Ra) are the

same as that of entrance channelf ña
(Ra) up to p ~by a sign

change of the coupling matrix element! ~see Fig. 7!. How-
ever, similarly to the barely open channels,x ñ

a8 ,ña

(1)
(Ra) have

much smaller magnitudes~see Fig. 8!. For example, the
maximum amplitude ofx$0,6,4%,$0,0,2%

(1) (Ra) is 5.09631023.

FIG. 5. ~Continued!.
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Finally, we examine the properties ofG (1)VG (1)Vx0(1)

and the higher-order terms. The second-order perturba
term x (2)[G (1)VG (1)Vx0(1)5G (1)Vx (1) in Eq. ~10! is
written as

x ñ
a9 ,ña

~2!
~Ra!5(

ña8
W̃ñ

a9Fgñ
a9
~Ra!E

0

Ra
f ñ

a9
~Ra8!Vñ

a9 ,ñ
a8
~Ra8!

3x ñ
a8 ,ña

~1!
~Ra8!dRa8

1 f ñ
a9
~Ra!E

Ra

`

gñ
a9
~Ra8!Vñ

a9 ,ñ
a8
~Ra8!

3x ñ
a8 ,ña

~1!
~Ra8!dRa8G . ~32!

As was done for the first-order perturbation, we can appro
matex ñ

a9 ,ña

(2)
as

x ñ
a9 ,ña

~2!
~Ra!'2eih ña(

ña8
FGñ

a9
~Ra!eiDf ña9

~Ra!

3E
0

Ra
eig

ña8 ,ña

~1!
~Ra8!Fñ

a9
~Ra8!Vñ

a9 ,ñ
a8
~Ra8!

3Ux ñ
a8 ,ña

~1!
~Ra8!UdRa8

1Fñ
a9
~Ra!E

Ra

4.0

eiDf ña9
~Ra8!

3eig
ña8 ,ña

~1!
~Ra8!Gñ

a9
~Ra8!Vñ

a9 ,ñ
a8
~Ra8!

3Ux ñ
a8 ,ña

~1!
~Ra8!UdRa8G , ~33!

FIG. 6. Effective potentialsUña ,ña

e f f (Ra) plotted ~solid line! in

a.u. The horizontal lines correspond to kinetic energies: The s
line is $002%, the dashed line$020%, $022%, and$024%, and the
dash-dotted line$042%, $044%, and$046%.
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FIG. 7. Phases ofx ñ
a8 ,ña

( i ) plotted in units ofp. The solid line isx ñ
a8 ,ña

(1) , the dashed linex ñ
a8 ,ña

(2) , the dash-dotted linex ñ
a8 ,ña

(3) , and the dotted

line x ñ
a8 ,ña

(4) . For thena850, j a850, andLa852 case, the solid line corresponds to the phase off na50,j a50,La52(Ra). The entrance channel i

J52, na50, j a50, andLa52.
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whereg ñ
a8 ,ña

(1)
(Ra) is the deviation of the phase~argument!

h ñ
a8 ,ña

(1)
(Ra) of x ñ

a8 ,ña

(1)
(Ra) from the constant phaseh ña

of the

DW x ña ,ña

(0) (Ra),

g ñ
a8 ,ña

~1!
~Ra!5h ñ

a8 ,ña

~1!
~Ra!2h ña

. ~34!

For the actively open channelña8 , g ñ
a8 ,ña

(1)
(Ra) is nearly con-

stant with the phase angle of 20° –30° forRa,3.0 a.u. and
slowly increases asRa→4.0 a.u., while for barely open an
closed channelsña8 , g ñ

a8 ,ña

(1)
(Ra).0 ~see the solid lines in

Fig. 7!. For example, g$0,2,0%,$0,0,2%
(1) (Ra)527.43° at Ra

53.0 a.u. and 49.46° atRa53.5 a.u.~this is an actively
open channel! and g$0,4,2%,$0,0,2%

(1) (Ra)51.458° at Ra

53.5 a.u.~this is a barely open channel!.
(a) Actively open channels. For the actively open channe

ña9 , by the effects ofDf ñ
a9
(Ra) and g ñ

a8 ,ña

(1)
(Ra), the argu-

ment of x ñ
a9 ,ña

(2)
(Ra) is noticeably changed from that o

x ñ
a9 ,ña

(1)
(Ra), the difference of phases betweenx ñ

a9 ,ña

(2)
(Ra) and
x ñ
a9 ,ña

(1)
(Ra) being about 50° atRa53.5 a.u. AsRa increases,

the phase increases more rapidly than that ofx ñ
a9 ,ña

(1)
(Ra) ~see

Fig. 7!. However, the magnitude ofx ñ
a9 ,ña

(2)
(Ra) diminishes

and becomes smaller~about 1/5 times! compared to that of
x ñ

a9 ,ña

(1)
(Ra) ~see Fig. 8!. Therefore, the sumx ñ

a9 ,ña

(1)
(Ra)

1x ñ
a9 ,ña

(2)
(Ra) is changed only a little fromx ñ

a9 ,ña

(1)
(Ra) ~see

Figs. 9 and 10!. That is, the argument~phase! of x ñ
a9 ,ña

(1)

3(Ra)1xñ
a9 ,ña

(2)
(Ra) is close to the phaseh ñ

a8 ,ña

(1)
of the first-

order perturbation term, which shows a small deviati
g ñ

a8 ,ña

(1)
from h ña

.

(b) Barely open and closed channels. Since the barely
open and closed channels are far from the entrance chan
the second-order perturbations mediated by the actively o
channelsña8 lying betweenña9 and ña are larger than the
first-order perturbations arising from the direct couplings.
can be seen from Fig. 8, for the barely open and clos
channels, the magnitude ofx ñ

a9 ,ña

(2)
(Ra) is larger by about

5 –8 times than that ofx ñ
a9 ,ña

(1)
(Ra). Df ñ

a9
(Ra)'0 for the
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FIG. 8. Normalized amplitudes ofx ñ
a8 ,ña

( i ) are plotted in a.u. The maximum values are presented. The solid line isx ñ
a8 ,ña

(1) , the dashed line

x ñ
a8 ,ña

(2) , the dash-dotted linex ñ
a8 ,ña

(3) , and the dotted linex ñ
a8 ,ña

(4) . For the na850, j a850, and La852 case, the solid line corresponds

f na50,j a50,La52(Ra). The entrance channel isJ52, na50, j a50, andLa52.
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barely open and closed channelsña9 , as was mentioned
above. Thus, from Eq.~33!, we can be see that the phase
x ñ

a9 ,ña

(2)
(Ra) is mainly affected by the deviationsg ñ

a8 ,ña

(1)
of the

actively open channelsña8 . Since the deviationsg ñ
a8 ,ña

(1)
for

the actively open channelsña8 are nearly all the same and a
slowly increasing~i.e., nearly constant! functions ofRa , the
phase ofx ñ

a9 ,ña

(2)
(Ra) becomes close to the phasesh ñ

a8 ,ña

(1)
of

the first-order CC waves. For example, in Fig. 7 we can
that the phase ofx$0,4,2%,$0,0,2%

(2) is very close to the phase o

x$0,2,0%,$0,0,2%
(1) . Thus the phase ofx ñ

a9 ,ña

(1)
(Ra)1x ñ

a9 ,ña

(2)
(Ra),

which is determined mainly by the second-order perturba
termx ñ

a9 ,ña

(2)
(Ra), is close to the phases of the first-order p

turbation termx ñ
a8 ,ña

(1)
(Ra) for the actively open channelsña8 ,

which mediate between the barely open~or closed! channel
ña9 and the entrance channelña . In Fig. 9 we can see that th
phases of x$0,4,2%,$0,0,2%

(1) 1x$0,4,2%,$0,0,2%
(2) and x$0,6,4%,$0,0,2%

(1)

1x$0,6,4%,$0,0,2%
(2) are very similar to the phase ofx$0,2,0%,$0,0,2%

(1) .
(c) Higher-order terms. For the higher-order perturbatio

terms, we can argue with the same logic as discussed ab
f

e

n
-

ve.

For an actively open channelña8 , the higher-order perturba
tion terms are negligible compared to the first-order te

x ñ
a8 ,ña

(1)
and the CC wavex ñ

a8 ,ña
in Eq. ~10! converges well

with the inclusion of only about four or five perturbatio

terms. Hence the phase ofx ñ
a8 ,ña

is close to that ofx ñ
a8 ,ña

(1)
.

On the other hand, for a closed~or barely open! channelña9 ,
the most contributive perturbation terms correspond to
multistep couplings in which the intermediate channels
coupled with their nearest channels at each step. For

ample, for the closed channelña95$0,6,4%, the third-order
perturbation term is the most contributive one, which resu
from the multistep couplings$0,0,2%→$0,2,2%→$0,4,2%
→$0,6,4%, $0,0,2%→$0,2,2%→$0,4,4%→$0,6,4%, $0,0,2%
→$0,2,0%→$0,4,2%→$0,6,4%, $0,0,2%→$0,2,4%→$0,4,2%
→$0,6,4%, and $0,0,2%→$0,2,4%→$0,4,4%→$0,6,4%. It
should be noted that only one actively open channel is
volved in each multistep coupling as an intermediate ch
nel. Thus the phase ofx ñ

a9 ,ña
is close to the phase of th

first-order perturbation termx ñ
a9 ,ña

(1)
for the intermediate ac-

tively open channelña8 . For the closed~or barely open!
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FIG. 9. Phase angles ofx ñ
a8 ,ña

( i ) plotted in units ofp. The solid line isx ñ
a8 ,ña

(1) , the dashed linex ñ
a8 ,ña

(1)
1x ñ

a8 ,ña

(2) , the dash-dotted line

x ñ
a8 ,ña

(1)
1x ñ

a8 ,ña

(2)
1x ñ

a8 ,ña

(3) , the dotted linex ñ
a8 ,ña

(1)
1•••1x ñ

a8 ,ña

(4) , and the dash-dot-dot-dotted line,x ñ
a8 ,ña

(1)
1•••1x ñ

a8 ,ña

(10) . The entrance channe

is J52, na50, j a50, andLa52. The solid line of the first figure~a! is the phase off na50,j a50,La52(Ra).
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channelsña9 , the x ñ
a9 ,ña

in Eq. ~10! converge well with the

inclusion of ten perturbation terms.
Finally, for a given entrance channelña , the phases of the

the first-order perturbation termsx ñ
a8 ,ña

(1)
for the actively open

channelsña8 are nearly all the same, showing only small d
viations from the phase of the DWx ña ,ña

(0) . The phase of

x ñ
a8 ,ña

for any channelña8 is close to the phases of the firs

order perturbation terms for the actively open chann
Hencethe phase ofx ñ

a8 ,ña
is nearly independent of the chan

nels ña8 and is close to that of the distorted-wave for t

entrance channel n˜
a , showing only a small deviation.It is

remarkable to note that the propensity of phase varia
with channel members (na ,J,Lb ,La) is identical for both the
CCBA and DWBA results, as shown in Tables I and II.

VI. SUMMARY

By paying attention to the dynamic phases of the C
wave functions, we have presented physical interpretat
on the cause of agreement in the structure of the ang
-

s.

n

ns
lar

distributions between the CCBA and DWBA, which are co
cerned with rearrangement collisions at low energies. S
cifically the phases of CC wave functions were examin
and compared with the phase of the elastic~single-channel!
DW function. We found that the CC wave functionsx ñ

a8 ,ña

J

near the classically forbidden region 2.3 a.u.,Ra

,3.5 a.u. dominantly contribute to the transition amplitud
In low-energy collision processes the phases of CC w
functions are close to the constant phaseh ña

of the elastic
channel, particularly in the classically forbidden region. Th
is the cause of agreement between the CCBA and DWBA
is crucial for the understanding of the constancy of the
wave phases that the phase of the irregular functiongña

in
the classically forbidden region is nearly constant with t
value 3/2p2h ña

. It is important to realize that the memor
of initial ~final! phase of the entrance~exit! channel is not
lost during the reactive scattering process and as a co
quence the structure of the angular distributions is not mo
fied by the~nonreactive! channel coupling in the low-energ
collision process.

However, at higher energies~e.g., above 0.7 eV for the H3
system! the DWBA treatment should be avoided, as such
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FIG. 10. The amplitudes ofx ñ
a8 ,ña

( i ) are plotted in the unit of a.u. The solid line isx ñ
a8 ,ña

(1) , the dashed linex ñ
a8 ,ña

(1)
1x ñ

a8 ,ña

(2) , the dash-dotted

line x ñ
a8 ,ña

(1)
1x ñ

a8 ,ña

(2)
1x ñ

a8 ,ña

(3) , the dotted linex ñ
a8 ,ña

(1)
1•••1x ñ

a8 ,ña

(4) , and the dash–triple-dotted linex ñ
a8 ,ña

(1)
1•••1x ñ

a8 ,ña

(10) . The entrance

channel isJ52, na50, j a50, andLa52. The solid line of~a! is the magnitude off na50,j a50,La52(Ra).
ha
de
th

el
a
in
c
e
d
to
e

the
er.

o-
u-
s
a

er-
er-
memory effect will be lost. The reactive zone of interest, t
is, the most contributive zone to the transition amplitu
becomes larger in area, by covering the region beyond
classical forbidden region in which the phases of activ
open channels are no longer the same as that of the entr
channel. Further, the number of actively open channels
creases with collision energy and channel-coupling effe
will be increasingly important to allow for a large differenc
in phases between the entrance channel and the interme
channels. This is the main reason why the DWBA fails
predict even the relative angular distributions at higher en
gies.

The magnitude distributions ofTnaj aLanbj bLb

J are, of
s

t
,
e

y
nce
-

ts

iate

r-

course, important to the determination of the structure of
angular distributions. We plan to discuss it elsewhere lat
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