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It is still a question of interest why the distorted-wave Born approximation theory predicts well the structure
of the angular distributions particularly at low energies, in good agreement with the coupled-channel wave
theory. The phases of the coupled-channel waves are found to be crucially important in determining the
structures of the angular distributions. The phases of coupled-channel wave functions are shown to be close to
the phase of the entrance channel in the classically forbidden region at low energies, thus allowing agreement
between the two theoriefS1050-2947®9)01803-X]

PACS numbd(s): 34.50.Lf

I. INTRODUCTION were reported19,20. These studies showed that the effect

of coupling strongly affects the absolute magnitude of the
For the past two or three decades there has been a unce&60ss section, even at low energies, but not the relative an-
ing interest in the study of rearrangement collisioreactive ~ gular distribution. To take into account the effects of cou-
scattering processemvolving atoms and molecules. For the PliNg to inelastic channels, the CCBA method was proposed

H-+H, benchmark exchange reaction, much effort has beeL\lz’M’la' The coupled-channgCC) wave functions de-

, . o - ~scribe the elastic and inelastic scattering in each arrange-
made to obtain the accurate dynamical reaction mformatlorl)nent The CCBA calculations are known to be in excellent

by performing rigorous calculations of cross sections, theragreement with the exact ones at relatively low energies
mal rate constants, and state-to-state transition probabilitiegear the threshold regiviil,14).

of reactive collision process near the threshold region, where However, it is still an unanswered problem why the
the quantum-mechanical effects such as tunneling and resp\wBA theory works surprisingly well in the prediction of
nances are important. For this purpose, various exaahe relative angular distributions at low collision energies.
quantum-mechanical methods have been developed; they abmly formal differences between the CCBA and DWBA
the exact close-coupling methods-3|, the Smatrix version  methods were elucidated earligt3]. Recently, in order to

of the Kohn-variational principlg4], the log-derivative ver- resolve why the DWBA, which allows only a single channel,
sion of the Kohn-variational principlgs], the method of dis- is a useful tool to explore the structures of angular distribu-
crete variable representation with absorbing boundary condtions at such low energies we have numerically investigated
tion [6], etc. For computational efficiency, various reliable connections between the CCBA and DWBA and showed that
approximationge.g., the single-channel distorted-wave Bornconstancy of the computed phases of CC wave functions is
approximation(DWBA) [7-10], the coupled-channel-wave important for structural agreement in angular dlstrlputlons
(multichannel distorted-wayeBorn approximationCCBA) ~ [24l- In the present paper, employing a perturbative ap-

[11-15, the infinite-order sudden approximati¢h6], etc. proach, we present a full explanation of reasons why such
[17]] have been proposed. constancy often occurs and why the phases of CC waves are

Among the approximation methods the DWBA and Cl0S€ t0 the phase of the entrance channel. L
CCBA have been frequently used for the study of atom— The CCBA transition amplitude is _brlefly described in
diatomic-molecule reactive collisions at low collision ener- S€C- II- In Sec. lll we demonstrate the importance of the CC
gies[18,19. In the DWBA, coupling between channels is wave phases in determining _the angular distributions. In ad-
not taken into account. The DWBA seems to describe welfition, we present the numerical results on the phases of CC
the relative(but not absolutemagnitudes of the integrated WaVeS With emphasis on their characteristics. In Sec. IV we
cross sections, the angular distributié@6], and the product ntroduce a perturbative expansion of CC waves and the cou-
rotational-vibrational distributionil4,21,22. The DWBA is  Pling potential matrix elements are investigated. In Sec. V
thus a useful tool for a qualitative description, although notth€® Phase of the distorted-wavBW) Green's function is
so good for quantitative accuracy. Earlier, comparisons belfOVed to be zero and the phases of CC waves are investi-
tween the DWBA and the exact close-coupling calculationglated on the basis of the perturbative approach.

Il. STATE-TO-STATE REACTIVE

) TRANSITION AMPLITUDES
*Electronic address: mhlee@m700.kumoh.ac.kr

TElectronic address: nnchoi@molecule.kumoh.ac.kr The differential cross section for the state-to-state reactive
*Electronic address: salk@postech.ac.kr scatteringA+BC(n,,j.) —AB(Nny,j,) + C is written as
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where the reactive transition amplitudﬁbjbmb,najama(ﬂ)
can be expressed #%2,18 R. (Rb)_ is thg channel radius vector from the center of mass
of the diatomic molecul8C (AB) to the atomA (C) and
Tnbibmb,naiama(ﬂ) ra (rp) is the interatomic displacement of the diatomic mol-
. Lo . J(+)
Joroa ecule in the initial (final) arrangementy i+ o 5| (Ry)
- _ 2iLy-L, Y7 bYa B alaba Malaka
=—> 4x?italo KoK, (jpLompMp|IM) and Xiijé)Ll;,nbijb(Rb) are the outgoing and incoming CC

wave functions corresponding to the initial and final arrange-
ments, respectivelyu,;(r,) and unéjé(rb) are the molecu-
aa

xT? 2) lar wave functions in the initial and final arrangements.

Npjplp,najal,

olbte falata U.(Ry,R,,Ry-R,) describes the interaction between the
Herena(ny), ja(jn), andmy(my,) are, respectively, the vi- projectile and the target. This interaction potential is set to be
brational, rotational, and polarizational quantum numbers oﬁjst the difference between the full three-body potential and
the reactant(product molecule. uagc(uc,as): Ka(Kp),  the molecular potential in the initial arrangement.

and v,(vp) are, respectively, the reduced mass, the wav J . . . .
vector, and the velocity for the relative motion in the initial(:[:U“(Ra)]n”J”l-;{,n,,;J;,L;i is the interaction matrix element

(final) arrangement] andM are the total angular momentum (n.j.L.|U|n%j2L")7 that represents coupling between the
and its projection quantum numbers, respectively.(L,)  intermediate  channels {n.jiL2J} and {nljiL.J}.

is the orbital angular momentum of the initidhal) arrange- 5, IM (f.,Ry) is the bispherical harmoni¢&2,26. The sum-
ment andM, (M) its projection quantum numbe® is the fgkatar @ _ I

solid angle of the wave vectdt, with respect to the wave mation in Eq.(3) is over all the possible mte_rmedlate chan-
vector K,. It can be seen from Eq2) that the essential nels due to coupling with the entrance or exit channel. In the
physics ofT, | m n m (Q) as a function ofm,, m,, and DWBA such intermediateinelastit_) channels are ignorgd, as
Qs uItimateTyb u%d?a?s?ood from the natureTﬁ is well known. The CC(or multichannel wave functions

o : . bloboMalata” 5 . which describe the nonreactive scattering
The latter contains information on important dynamics in” "ala-a'"ala™a

association with the angular momentum L,,, andL, and  Process in the initial arrangement, are obtained from the
possesses rotational invariance, revealing the complete dgoupled differential equation
namic properties of reactive collision processes. 5 L
In the framework of the CCBAT; i L, nj.L. IS written o1 d _ La(latd) J R
blbtb Nala-a 5 |\ T T 5 n’j! XnéjéL; L (Ra)

as 2upapc\ dRZ R2

X(IM]jalaMaMa)Yiu, (Kp) YE w1 (Ka)

Malala
J
T2 _
Npjnly Najal raryor mimyg omJ. Jd _
b'b™b Ta’aa + 2 <naJaLa|Ua|na]aLa> X" i L (Ra) =0,
” na]a a'na]a a

_ J(—)*
_deb dRa RyR4 ., ’2," an{)jt’)Lt’)'nbijb (5)

anbLb 'na]aLa

J I(+) where the wave numbers are given By, =2 (E
X (Rp)KG i i (RosRa) X i (Ra). () _ : ¥ij:=2HaBC
bbTbalara aaranaata — €qjr) with the molecular energies,’; .
aa a‘a
Here K?, /(Rp,Ry) is the reaction kernel that de-

Noipkp Majala
pends on the total angular momentdmThis kernel repre- IIl. IMPORTANCE OF COUPLED-CHANNEL WAVE
sents the intrinsic nature of rearrangement collisions involy- PHASES FOR THE STRUCTURAL DETERMINATION

ing transitions from the intermediate channgigj L J} in OF ANGULAR DISTRIBUTIONS

the initial arrangement to the intermediate channels 1o properly understand the physics of reactive transition,
{npjpLpd} in the final arrangement. It is given 92,14 we focus on the transition amplitude ®,; . j.(, in Ed.
alaTa

K2, (2) since it contains the dynamical information of the reac-
Mipbp Nalala tion. To the best of our knowledge, there has been no report
_ on the explicit study of dynamic phase distributions involv-
oo U)o ing the transition amplitud@)<$BA . for the purpose of
= de dRa—yj’L’(rbaRb) 9 o P Npiplp Nalala p P ]
b explaining the cause of structural agreements in the predicted
relative angular distributions between the DWBA and
M PR CCBA. Earlier, the shape of the relative angular distribution
y "L’(ra 1 a) . . . . .
Jata was discussed in terms of the examination of the reaction

Mp

A un;j;(ra)
Ua(vaRéURb' Ra)r—
a

X
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TABLE I. Tﬂbij,l,najaJ in the CCBA and DWBA. Numbers in square brackets indicate powers of 10.

Magpnitude ofT’ Argument of T (in units of 7r)
J L, L, CCBA DWBA CCBA DWBA
10 1 0.658—02] 0.714-03] 1.393 1.067
2 1 2 0.642—2] 0.709 — 3] 1.294 0.983
3 2 3 0.548—2] 0.609 — 3] 1.135 0.833
4 3 4 0.424—2] 0.477 - 3] 0.919 0.633
5 4 5 0.299-2] 0.333 - 3] 0.646 0.374
6 5 6 0.192-2] 0.214 -3] 0.318 0.061
7 6 7 0.1183-2] 0.126 — 3] 1.937 1.694
8 7 8 0.606—3] 0.679 —4] 1.504 1.278
9 8 9 0.296— 3] 0.333 — 4] 1.021 0.811
10 9 10 0.131-3] 0.150 — 4] 0.491 0.294
11 10 11 0.52B— 4] 0.615—5] 1.916 1.733
12 11 12 0.193- 4] 0.231-5] 1.298 1.133

probability |T; . . |2 as a function of the total angular tions as shown in Fig. 1. This explicitly shows that the struc-
blbtb 'naJaLa

momentumJ [14,15,18. However, as can be seen from Eg. ture of angular distribution is crucially determined by the
(2), the transition amplitudd o.i.m.(Q) is expressed phase distribution as well as by the magnitude distribution of
’ ala'la J

as a coherent sum ofy ;o
terms are determined by not only the magnitude distributio
but also phase distributions, the phase distributions are e WEA bibbb Nalala

pected to play an important role in determining the structureand Tnbijb'najaLa for the reaction process +H,(0,0)

of angular distributions. In order to explicitly demonstrate _,H,(0,1)+H at a total energy oE=0.5 eV. Converged

the importance of the phase distribution, we compare thgesults were obtained by using the molecular basis sets

a_ngu!ar distrilgutions resulting fror_n two different phase dis—{(n;,jé); n.=0,1,2,3 andj.,=0,2,4,§ for the initial ar-
tributions Oanbijb'najaLa' In the first case, we choose the rangement and(n;,,j;); n,=0,1,2,3 andj;,=1,3,5,% for
actual phase distribution obtained by the CCBA for the rethe final arrangement. Satisfactory convergence in the pre-
action H+Hy(0,0)—H,(0,1)H+H (see Tables | and )l In  dicted differential cross section was achieved with the maxi-
the second case, the phase distribution is chosen arbitrarilyaum value of the total angular momentum being 12. At this
The actual magnitude distribution d’fﬂbijb'naja,_a is em-  energy the CCBA cross section was found to be in good
ployed in both calculations of the the angular distributions.2greement with the exact ofi¢,14]. Surprisingly, as shown
Even though the distributions of absolute magnitudes ofn Tables I and I, the computed phasesTdf} >/, ; | are
Thuints.na L, &re identical, the different phase distributions in reasonable agreement with thoseTdff (5%, ., except
involving T

NpipMp » T
. As the interference " Mbiplp Nalala’ .

By choosing the Porter-Karplus potential-energy surface
25], we computed the transition amplitud@g <B4

Mpiplp Mool give quite different angular distribu- the common phase angle difference-660°. It is notable
TABLE II. Tﬂbjbhl’najaJ in the CCBA and DWBA. Numbers in square brackets indicate powers of 10.

Magnitude ofT” Argument of T® (in units of )
J Ly Lj CCBA DWBA CCBA DWBA
01 0 0.110-1] 0.116 — 2] 1.412 1.067
12 1 0.782—2] 0.80§ — 3] 1.332 0.978
2 3 2 0.596—2] 0.60Q — 3] 1.191 0.833
3 4 3 0.430-2] 0.42q —3] 0.992 0.633
4 5 4 0.288-2] 0.273-3] 0.735 0.372
5 6 5 0.178—2] 0.164 — 3] 0.422 0.058
6 7 6 0.10L—2] 0.909 — 4] 0.053 1.689
7 8 7 0.528—3] 0.463 — 4] 1.631 1.272
8 9 8 0.25p—3] 0.217-4] 1.158 0.806
9 10 9 0.110-3] 0.93¢ - 5] 0.635 0.292
10 11 10 0.436— 4] 0.371-5] 0.065 1.733
11 12 11 0.15[— 4] 0.135 5] 1.451 1.133
12 13 12 0.51¢—5] 0.448 — 6] 0.794 0.489
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Normalized Cross Section

Phase of Xn, 5, L Ly

e

= 1
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Scattering Angle (degree)

R, (units of a.u.)

FIG. 1. Normalized cross sections for the actual phase distribu-
tion (@) and an arbitrarily chosen phase distributiah)(with the

. ey FIG. 2. Phase angles of all possible intermediate channels
same magnitude distribution 61‘;]1aj

alapipls * (coupled-channel wave functionfor the set ofJ=2, n,=0, j,
=0, andL,=2 in units of w. The number of available channels is

that the common exponential factor arising from the com-40 in this case.

mon phase angle difference is extracted from the summation

in Eq. (2) and is canceled during the process of computingenergies. To put it otherwise, it is important to realize that
the absolute magnitude square to obtain the differential crogge memory of the initialfinal) phase of the entrandexit)

section in Eq(1). The predicted magnitudes 8f,7°%, ; | channel is not lost during the nonreactive scattering at such
are also in reasonable agreement with thos&:dt"’ 54 low collision energies. This is one of the reasons why the

nb]bLb’naja a ; : H
except the common multiplication factor ef10. This im- ggjlngfrz (fjéuir:jg;ﬂatr)edIssimit;;:l?nnfhgelitgfgﬂrtehe DWBA and

plies that coupling to inelastic channels enhances the abs
lute magnitude of the reactive cross section by 100 times
larger than the value without the channel coupling.

It is readily seen from Eq(3) that the dynamicenergy-
dependent phases Oﬂ_ﬂbibbenaJaLa are determined by the

J J The numerical results on the phases of the CC waves hint
phases of the CC WaVOKiiLL naiala andxﬂ{,iéL{,vnbibLb' that a perturbative approach might be employed to under-

is notable that the reaction kerﬁéﬂ,j,L, N is real val- stand these results. Decomposing the interaction matrix
b’b~b ' 'a’a"a rary ey m\J H .
ued. Investigating the distributions of the integrand of 4. éﬁajal‘ahu,alr?aj a.La> into_the dlagot?al(elas_tlc) and off-
in (R, ,R,) space[24], we find thatthe CC wave functions diagonal(inelastio parts, Eq.(5) can be rewritten as

J

IV. PERTURBATIVE EXPANSION
OF COUPLED-CHANNEL WAVES

J . . .
Xoli 7L ool and XnliiL! noiots in the classically forbidden ) o
region (that is, in the range2.3 a.u.< R, < 3.5a.u.) 1 d°  La(lat1) 2
d(J)mmantIy contribute to the transition amplitude 21A BC ng Rg nia

Thuiply naisl, - [N this contributive region, the predicted

J . . . . .
phases OanéjéL;*najaLa involving all possible intermediate
!

: _ _ _ —2papc{NaalalUalngisls)’
channels{n j,L.} do not vary appreciably, as is shown in

Fig. 2. Each curve represents the phase variation of CC %y R

waves as a function of the initial channel radius. To avoid XngJ;L;,naJaLa( a)
typographical complexity, we avoid labeling each channel in

the figure. We find that computed phases for all other initial - 3 (nLjILLUIntiiLna

channel show a similar trend. All the computed phases of the

CC waves in a given initial channéh,j ,L .} are found to be

nearly the same as the phase of the elastic channel wave =8y 18y 16 L,,)Xf],,.,, yo
J i i P a''a ‘a’a ~a'"a aalaNala

Xn,i.L,.n,i.L, allowing the maximum phase difference of

20° between the elastic and contributive intermediate chan-

nels. Further the magnitude of the phases are nearly indepehurther, introducing the coupling potential matrix

dent of the channel radiug,, particularly in the classically

forbidden region of 2.3 a.ttR,<3.5 a.u. It is noted that, it =g _

except the common phase angle difference of 30°, the Vn;,n§:<na|uw|na (1= ) ()

weighted average of predicted phasesxdf?ﬁ_EfAn i is
a’a a’ a'a~a
,DWBA

aj aLa 'naj aLa

noanoon
Ngiiasla

_(R).  (®

nearly the same as that at sufficiently low  and the DW differential operator
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d2  LiLl+1)

R

2 ~ =~ ~
+knéjé_2/"«A,BC<na|Ua|na>J &‘av“;’ 8

we rewrite Eq.(6) in the form of a matrix equation

A-x=—V-x. 9

Heren,={n,j,L,} was introduced for brevity. It is noted
that V allows inelastic processes. That is, ignoranceVof
corresponds to the DWBA.

The perturbative solutiop(%, I of Eq. (9) is

Y= X2+ GOV RO 4 GEONG N0 4
(10
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where x°(") is the DW function that satisfies the elastic
wave equationA- y=0 with an outgoing boundary condi-
tion. The DW Green’s functiorg(")=—A"1 is given by
[28,29

+ ’
Gy 5 (Ra R}

"
Syt [ Th(RGR (Ry),

=2upBc '
M ws | gn (R (RY),

a

R.<R}

11
R.>R,. 1

Here f;a(Ra) and g;,a(Ra) are, respectively, the regular and

irregular solutions of the elastic wave equatidn y=0.
They satisfy the asymptotic boundary conditions

i —L= 0
'(knRa~Ln, 725~ 1 for open channels
aa

Una
fiR) — § (12
Ry—®
a [e/IRa—e~K5[Ras? -~ ] for closed channels
Uﬁa a''a
and
[e'kn,Ra~Ln, ™27 for open channels
Un
g7, (Ra) — ’ (13
Ra— ~lky IR
[e *n"a]  for closed channels.
Uh,
|
The Wronskian\/\l;,a is given by where
d 49+1 (1 ~ A
Wi, = 7, g %, Or g, e LY
2i for open channels - P =
_|#'#asc p (14) X Paq(ra-Ra)d(ra-Ry). (16

—2uapc forclosed channels.

It is noted thatf, (Ry)=xgs 7 & 7, by definition. The
a a'Na a
regular and irregular function$ﬁa(Ra) and gﬁa(Ra) for

closed channels are real valued. This meansthi@aGreen’s
functionsgéf)ﬁ for closed channels are real valued
a’'a

The perturbation potential in EQL0) is just the coupling

potentialV. For the H+-H, reaction, the interaction potential

U“ is invariant with respect to the reflection- R,— —r,

-ﬁza. Hence we can expand it in a series of even-parity Leg-

endre polynomial$1]

ua(ra,Ra,Fa~ﬁea>=§0 U%4(Ta,Ra)P2q(Ta-Ra), (15)

Then the coupling potential matrix can be written as

oo

ARA 2
Vig 7R = 2 Coglialalabad) Vi

W . (Ra),  (17)

where
C,(jaLajaLlad)
=(—1)"" " (2) 1+ 1)(2La+ 1) 1Y%} 1x00]j ,0)
X (L ak00|L20YW(L 4jaL2j2;dK) (18

and
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{102} x20

-

{042} x60

-3

{064} x 30
302} x30

{020} x70
024} x 40

10% x Coupling Potential

-6

-9

3 3.5

R, (units of au.)

FIG. 3. Coupling potential matrix elememﬁévﬁa(Ra) between

n,={002} andn,={020}, {024}, {042}, {064}, {102}, and
{302} in a.u. The scale factors indicated are the numbers by whic
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there are seven open channels that can be coupled to the
entrance channel. As shown in Figs. 4 and 5, each of the
complex regular function#na is sinusoidal in the region of

largeR,, has a maximum absolute magnitu@e modulus

near the classical turning point, and exponentially decreases
in the classically forbidden region. This results from the re-
pulsive nature of the effective elasfidistorting potential

+(nylU[Ny), (20)

2
MaBCRa

as shown in Fig. 6. In particulathe wave function;ia1 in the

classically forbidden region does not oscillate (no change in
sign), its argument (phase) being constant in that regis

ghe kinetic energycﬁ 21 gc in the open channel decreases,
a

the coupling potential matrix elements were multiplied before beingihe turning point quickly moves to large,. This is due to

plotted.

(2q)
n

é’na(Ra):<un;j;(ra)|ugq(ravRa)|unaja(ra)>- (19)
The Racah coefficient®/ in Eq. (18) are expressed in the
notation of Edmond$27]. SinceCyq(jaLzjalad) =0 for j,
+jq 0dd orL.+L, odd,V does not couple even with odd
rotational(orbital) channelsU“, which represents the inter-

action between the target and the projectile, decreases a

R, ® at largeR,. U§(r,,R,) also decreases &, ° by
inheritance. The @ pole of the interaction potential
U34(ra;Ra) with nonzeroq measures the anisotropy. Ac-
cordingly, asq grows larger,U3,(r,,R,) decreases more
rapidly. This means that the coupling potential matrix ele-

mentVﬁé ny is mainly determined by the first nonzero term

with g=qq in the series of Eq(17) and that the channel
coupling with smallerq, corresponds to a stronger one. In
addition, for a fixedgy, the smaller difference of the vibra-
tional quantum number&n=n/—n,, the stronger channel
coupling. In summarychannels are most strongly coupled
with their nearest neighborand the elements of the coupling

potential matrix are monotonically decreasing functions of

R, at sufficiently largeR, . Numerical results of the coupling

rapid broadening of the classical forbidden region, which is
related to the shape dﬂg;f’ﬁa(Ra) (see Fig. 6.

The magnitudes of the irregular functiog'ﬁ‘.a are seen to
be very large in the classically forbidden region. They expo-
nentially decrease aR, increases and approach a constant
1/\/1;_;,a for largeR, (see Fig. 4 The phase remains constant
in the classically forbidden region and linearly increases with
R,, following kﬁaRa, outside the region, as shown in Fig. 5.

Surprisingly, it is found thathe sum of phases oﬂafand
gr, remains unchanged with the value of1.57 in most of
the classically forbidden regionin order to explain this im-

portant finding, let us first explain the constancy of the phase
of Or,- We consider the flu¥r associated with the irregular

function Oh,:

dgr,(R) 49, (R)
a a

*

gﬁ ( Ra)

a

F(9)

" 2ipasc

= (21)
MABC

d
[G?la( Ra) ] Zd_F\’a d’ﬁa( Ra) .

potential matrix elements are presented in Fig. 3, which is

shown to be consistent with the arguments above.

V. EXAMINATION OF COUPLED-CHANNEL
WAVE PHASES

To investigate the CC wave phases on the basis of th
perturbative expansiofl0) we plan to examine the phases
and amplitudes off; g7, and GMVx°™), including
higher-order terms such a("VG*Vx°™*). To illustrate

HereGaa(Ra) and ¢53(Ra) are, respectively, the magnitude
and phaséargumeny of g;a(Ra). Using the asymptotic form
of the irregular functiorgr,_[Eqg. (13)] and the flux conser-

vation law, we can see tha(g)=1 at anyR,. Since the
?nagnitudeGﬁa(Ra) in the classically forbidden region is ex-

tremely Iarge,dq&;,a(Ra)/d R, must have a very small value.
Thus the phasesﬁa(Ra) is nearly constant in the classically

the procedure, we consider the case in which the entrand@rbidden region.

channel is specified bjn,=0,j,=0,L,=2J=2} as an ex-
ample.
First, we examine the phases and amplitude$;9fand

Let us now determine the value of phasﬁza in the clas-

sically forbidden region. It is reminded that the irregular
function gn, has the following relation with the regular func-

gn, for open channels. In the case of the present exampléion f7_ [28]:
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1 ARG

right-hand side of Eq(22) is more dominant than the second
dR,+ ,
f5.(Q)

term. This is becaust% (R(:\)/V\lﬁa is very small in this re-
22 gion. Therefore, we can approximagga as
22

Ra
Oh,(Ra) =17 (Ra) Waf Y R
n a n a n fﬁa(Ra)

Re 1
where the poing can be arbitrarily chosen and is taken to be On,(Ra)~ 17 ( Ra)WﬁaL dea' (23
. In the classically forbidden region, the first term on the ng' @
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Using theconstant phase shiﬂq? , which is related t(S% -
a a’a

. 0
such a§ga e e’ the asymptotic form off, [Eq.(12)]
is written as

Zei(vg +3m/2)
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In summary, from the flux conservation law and the fact
that the magnitude Olfﬁa/\/,u,A’BC is very small in the clas-
sically forbidden region, we find thahe phases; (R,) of
the irregular function becomes constant with the value of

3
¢ (Ra)~ 57— 175, (28)

in this region.By using Eqs.(28), (25), and(11) we clearly
see that the phase of the DW Green's function

géf)ﬁ (Ra,R}) for the open channel becomes zero when
a’a

both R, and R, are in the classically forbidden region

Now we examine the property of the first-order perturba-
tion term Y=gV in Eq. (10), which can be ex-
plicitly written as

1
X! 7.(Ra)

~ Ra
= Wai gr(Ra) f , m(RIVR, 7 (R, (Ry)dR

a . L 0 o0
f7.(Ra) — ——=——sin kﬁaRa_7a77+ U + 13 (Ry) f gr(Ra)Vir 7 (RO (ROAR, |, (29
Ry— Una a R, @ a
(24)
for open channels. Hence, in the entire region of\’\’herev\/ﬁ;= — 1 for the open channels amlr“éz —1 forthe
Ra, 5 (R,) can be expressed &30] closed channels. Note that we focus 9%1,);] (Ry) in the
a a'Na
range 2.3 a.&R,;<3.5 a.u.
o (1) ,
fﬁa( Ry)=¢€ ”naF;a( R,), (25) We study the phase Q‘fn;,na(Ra) for the following three

where 7h,= ngaJr 37/2 and Fr. is the real-valued regular

solution of the elastic wave equatian y =0, which satisfies
the asymptotic boundary condition

2 L
Fo - sin ( ki Ra— — 7+ 7- (26)
aRaHoo\/UF,a a 2 a

In terms ofF7,_(Ra) and 75, Eq. (23) is written as

a !

(27)

. _ o 1
On,(Ra)=~2uppcel®?7 mlF; (R )f ———dR]
Nt ta n\'ta Ra[Fﬁa(Ra)]z

where we used\; =2uapce ™ for open channels. Be-
cause the sign dﬁa(Ra) in the classically forbidden region

does not change as we mentioned above, the ptage-
men} of gr_is given by37— 7 .

kinds of channel§1;: actively open channeléhaving rela-
tively large kinetic energy barely open channeléhaving
substantially small kinetic energyand closed channels. If
Ra,turning<3.5 a.u., we takE; as an actively open channel.
In the present example{n;=0,j,=0L.;=2}, {n,=0,
ja=2L,=0}, {n}=0j,=2L.=2}, and {n,=0,j.=2,
L,=4} are actively open channels, whilgn,=0,,=4,
L,=2}, {n,=0j,=4L.=4}, and {n,=0,,=4L.=6}
are barely open channelsee Fig. 6.

(i) Actively open channel§he deviation oqu;é(Ra) from
the constant phase In5- o

Adni(Ra)= ¢ (Ra) = (1.5m— 7). (30)

starts to increase monotonically near the turning point, being
roughly 20°~30° atR,=3.5 a.u.(see Fig. 5. The channel
coupling Vﬁ; ;,a is found to decrease monotonically in the

regionR,>3.0 a.u. and to be very small in the regiéy
>4.0 a.u.(see Fig. 3 Neglecting the contribution of the
region 4.0 a.uR, in the second integrand in E(R9), we
can approximate(ﬁl,t as

nl.ny
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, -
X5 5. (Ry)~—elh,

a''a

G (Ry) eld¢n (Ra)
a

0

4.0 a.u. iAder (R ,
+ FE;( Ra)J’ e 44 a)Gﬁ;( Ra)

a

Ra ! ! ! !
X J Frr(Ra)Va 7 (Ra)F7 (Ra) AR,

Vi 7, (Ra)FR (Ry)AR; |

(31)

Due to the influence of ¢7:(Ry), the phase ok~ (Ra)

in the regionR,<3.5 a.u. differs from the phase of the en-
trance channeby;,a, showing a small variation, with 20°
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FIG. 6. Effective potentlaI$J~ ~ (Ra) plotted (solid line) in

FIG. 5. (Continued. a.u. The horizontal lines correspond to kinetic energies: The solid
line is {002}, the dashed lin¢020}, {022}, and{024}, and the
~30° (see Fig. 7. Owing to increment in the magnitude of dash-dotted lind042}, {044}, and046}.
the phase deviation ¢;é(Ra) asR, increases, the phase of

X2(R,) steadily increases a8, approaches 4.0 a.u. Itis  Finally, we examine the properties GlIVG vyt
a (1) and the higher-order terms. The second-order perturbation
worth noting thatthe phases of;, - (Ra) for the actively  term y@=gHvgHv 0 =gy in Eq. (10) is
a’''a

open channels are close to each other, showing small deviddritten as
tions from the phasem1 of the regular function of the en-

trance channelThe magnitude Of)( (Ra) in the region R,
R,<3.5 a.u. has a feature similar to that of the entrance Xn" 7. a):Z Wﬁg[ gr(Ra) fo frr(Ra)Var 7 (Ra)
channel f7 a(Ra) but the absolute magnitude is about Ma
1/5-1/4 times smaller than that of entrance Charﬁnae(IRa)
(see Fig. 8 For example, while the maximum amplitude of
f(002(Ra) is 41.47, that ofy{o), g (0.02(Ra) is 7.777. )
(ii) Barely open channelsFor barely open channel the +fﬁ"(Ra)f grr(RY)Vir 7/(RY)
classically forbidden region is widerR(=4.3 a.u.) than a
that of the actively open channel. Hence the deviation
A¢;;(Ra):0 in the region of interest, as shown in Fig. 5.
For example,A ¢ 42(Ra) =1.8° and A ¢g 4 6(Ra) =0.0°
atR,=3.5 a u. Therefore, as we can see from(&f, the
phase ofX~ ~ (Ra) is nearly the same as that of entranceAs was done for the first-order perturbation, we can approxi-

Xxiy 5 (RAR,

x5 R;>dR;}. (32

(2)
channelfr, (Ra) up to m, depending on the sign change of Matexy 7 as
Vn/ ; (Ra) In Fig. 7, for example, we can see that the phase
of X{042} 1002(Ra) Is plotted as a nearly solid straight line. X%/)}] (Ry)~—ei ",
The magnitude ob(~ ~ (Ra) is found to be very small in ara

Y
i

[Gw/ma)emrﬁr%)
a

comparison to those of actively open channskse Fig. 3. Ra R
For example, the maximum amplitude)@3%?4’2}’{0’0’2}(Ra) is X fo 'T’ n R P rr(Ra) Vi 7r(Ry)
0.2086. This is due to the weakness of the channel coupling

\CIN between the barely open channel and the entrance 1) , ,
a . . X|xn 7 (Ry)|dRy
channel, as was mentioned in Sec. IV. aNa
(i) Closed channelsSince the phases déf+ andg;, for a0
a a . . ~ ’
closed channels are zero, the phases(ﬁorﬁ (Ryp) are the +F;;(Ra)f el A (Ry)
a’a Ry

same as that of entrance chanﬁ;%l( R,) up tow (by a sign o

change of the coupling matrix elemegrisee Fig. 7. How- x e 7. (RIGri(R) Vi 7(RL)

ever, similarly to the barely open chanm—:;{'iﬁ);1 (R,) have
a''a

much smaller magnitudeésee Fig. 8 For example, the X

Y- (RY)
. . 1) . — 3 an;’na a
maximum amplitude of{g)s 4 10.0.2(Ra) is 5.096<10"2,

d R;} , (33
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FIG. 7. Phasesgt

line X

J=2, na 0, andL,=2.

0, ju=

wherer,’
(R ) of x&
DW x~ 7. (Ra),

(1) _ o
'}’ﬁ; ’ﬁa( Ra) = 77;1; ,Fla( Ra) — 74

For the actively open channﬁg, y%l,);]
a''a

stant with the phase angle of 20°-30° ®®4<3.0 a.u. and
slowly increases aR,—4.0 a.u., while for barely open and
(l)’ (Ra)=0 (see the solid lines in

closed channels,,

Fig. 7). For example, 7{0,2,0},{0,0,2}(Ra)—27-43° at R,
=3.0 a.u. and 49.46° &R,=3.5 a.u.(this is an actively
at R,

open channgl and (), 5 0.02(Ra)=1.458°
=3.5 a.u.(this is a barely open channel

(a) Actively open channel§or the actively open channel
1
ﬁ;),ﬁa(Ra)’ the argu-

n,, by the effects ofA qb;,g(Ra) and y:

ment of Xff,);] (Ry) is noticeably changed from that of
a'a

Xﬁ}/)’ﬁ (Ry), the difference of phases betwe,eﬁ)yﬁ (R,) and

(Ra) is the deviation of the phas@rgument

4 (Ry) from the constant phasg;, of the

(34)

(Ry,) is nearly con-
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plotted in units ofrr. The solid line i |5)(n T the dashed Ilnqn o the dash-dotted I|n,en F and the dotted

(4 ) . For then} —O ia=0, andL,=2 case, the solid line corresponds to the phasf%ofo] —oL, —»(Ry)- The entrance channel is

%%,)’ﬁa(Ra) being about 50° aR,=3.5 a.u. AR, increases,
th(;1 phase increases more rapidly than thax%))f’ﬁ (R,) (see
Fig. 7). However, the magnitude Qf%?,ﬁa(R:) giminishes
and becomes smalléabout 1/5 time)scompared to that of
Xn”, (Ra) (see Fig. 8 Therefore, the surrp( (Ra)

X~~ ~ (Ra) is changed only a little frony~,, e (Ra) (see
Figs. 9 and 1D That is, the argumen(tphase of X~,, "

><(Ra)+,\~,, (Ra) is close to the phasez;vna of the flrst-
order perturbatlon term, which shows a small deviation
yf{i‘)ﬁa from Th,-

(b) Barely open and closed channeBince the barely

open and closed channels are far from the entrance channel,
the second-order perturbations mediated by the actively open

channelsn), lying betweenn? andn, are larger than the
first-order perturbations arising from the direct couplings. As
can be seen from Fig. 8, for the barely open and closed

channels, the magnitude qff1 (R) is larger by about

5-8 times than that 0)‘(( (Ra) A¢n;(Ra)~0 for the
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’
rlarl

fo .=0j,=0L, —»(Ry). The entrance channel =2, n,=0, ja O andL,=2.

barely open and closed channéﬂg, as was mentioned For an actively open channEL, the higher-order perturba-
above Thus, from Eq33), we can be see that the phase oftion terms are negligible compared to the first-order term

x~,, i (Ry) is mainly affected by the dewauor*:é;I ). of the XL )ﬁ and the CC waves: &, in Eq. (10) converges well

act|ve|y open channelaa. Since the deV'at'O”S”n' - for W|th the inclusion of only about four or five perturbation

~ ara r = i ’(‘1)"‘
the actively open channefg, are nearly all the same and are terms. Hence the phase %a!“a is close to that Oan; n

slowly increasing(i e., nearly constapfunctions ofR,, the  On the other hand, for a closgar barely opehchannein’,,
phase oan,, i (R,) becomes close to the phaseﬁ) of  the most contributive perturbation terms correspond to the

the first- order CC waves. For example, in Fig. 7 we can seultistep couplings in which the intermediate channels are
that the phase O/f({042} 1002 is very close to the phase of coupled with their nearest channels at each step. For ex-

Thus the phase o R+ R ample, for the closed channal={0,6,4, the third-order

X{OZO} {00.3 P ;( ( 2 N ( 2 perturbation term is the most contributive one, which results
which i |s determined mainly by the second order perturbatloqrom the multistep couplings{0,0,2—1{0,2,21—1{0,4,2
term Xn” ~ (Ra) is close to the phases of the first-order per-{0,6,4, {0,0,2—{0,2,2—-{0,4,4—{0,6,4, {0,022
turbation term)(;]; ,ﬁa(Ra) for the actively open channefg,, :ig é %_}{gn?j 2}{B)éozfj}{o 22?3?%:%’3}?%2%)42'1
which mediate between the barely opem closed channel  ghould be noted that only one actively open channel is in-

a and the entrance channe{ In Fig. 9 we can see that the volved in each multistep coupling as an intermediate chan-
phasc)as of X{042} {002}+X{042} 002 and Xlgoezt}{ooz} nel. Thus the phase Qf’ﬁg i, is close to the phase of the
+ X{0)6.4,(002 @re very similar to the phase ®3 g 1003 first-order perturbation termyy)~ for the intermediate ac-

(c) Higher-order termsFor the higher-order perturbation ~ N Na
terms, we can argue with the same logic as discussed abovévely open channeh). For the closed(or barely opeh
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(10)

+X . ~ . The entrance channel

. in Eq. (10) converge well with the distributions between the CCBA and DWBA, which are con-

cerned with rearrangement collisions at low energies. Spe-
cifically the phases of CC wave functions were examined
and compared with the phase of the elagsingle-channel

DW function. We found that the CC wave functlopzrﬁ, ~

n a
the classically forbidden region 2.3 ailRa
<3.5 a.u. dominantly contribute to the transition amplitude.
In low-energy collision processes the phases of CC wave
functions are close to the constant phafﬁe of the elastic
channel, particularly in the classically forb|dden region. This
is the cause of agreement between the CCBA and DWBA. It
nels T, and is close to that of the distorted-wave for theis crucial for the understanding of the constancy of the CC
entrance channel g1 showing only a small deviatiorit is ~ wave phases that the phase of the irregular funogipnin
remarkable to note that the propensity of phase variatiohe classically forbidden region is nearly constant with the
with channel membersig,J,Lp,,L ) is identical for both the  value 3/27— 7;_. It is important to realize that the memory
CCBA and DWBA results, as shown in Tables I and Il. s jinjtial (final) phase of the entrano@xit) channel is not
lost during the reactive scattering process and as a conse-
guence the structure of the angular distributions is not modi-
fied by the(nonreactive channel coupling in the low-energy

By paying attention to the dynamic phases of the CCcollision process.

wave functions, we have presented physical interpretations However, at higher energiés.g., above 0.7 eV for theH
on the cause of agreement in the structure of the angulaystem the DWBA treatment should be avoided, as such a

channelsn;, the x5 7
inclusion of ten perturbat|on terms.

Finally, for a given entrance channe|, the phases of the
the first-order perturbation ternx#t for the actively open

channelsn are nearly all the same, showing only small de-pa5,
viations from the phase of the DW(O) The phase of
Xr! T, for any channeh’ is close to the phases of the first-

order perturbation terms for the actively open channels.
Hencethe phase oifn n is nearly independent of the chan-

VI. SUMMARY
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memory effect will be lost. The reactive zone of interest, thatcourse, important to the determination of the structure of the
is, the most contributive zone to the transition amplitude,angular distributions. We plan to discuss it elsewhere later.
becomes larger in area, by covering the region beyond the

classical forbidden region in which the phases of actively

open channels are no longer the same as that of the entrance ACKNOWLEDGMENTS
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