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Casimir-Polder long-range interaction potentials between alkali-metal atoms
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A complete description of the multipolar Casimir-Polder effects between two alkali-metal atoms in the
ground state is presented. We give both general and particular expressions for the electric-electric, electric-
magnetic, magnetic-magnetic, diamagnetic-electric, and diamagnetic-magnetic two-photon multipole pro-
cesses, many of which have not been discussed previously in literature, to our knowledge. The asymptotic
behavior of the Casimir-Polder potential is studied in terms ofkhe Ko, andK,, long-range coefficients.

We have established the range of validity of the Casimir-Polder potential by analyzing the first-order correction
to the energy given by the matrix element of the contact interaction term between the atomic charge distribu-
tions. Numerical values for the Casimir-Polder long-range interaction potentials for both homonuclear and
heteronuclear alkali-metal dimers are presented. Comparisons with previous analytical and numerical results
are included[S1050-294{®9)03102-9

PACS numbg(s): 34.20.Cf, 31.30.Jv, 31.15.Md

I. INTRODUCTION of R, as a correction proportional @* to the C4 dispersion
coefficient, while in the limitR—oe it behaves as R'.
Fifty years ago, Casimir and PoldéEP) [1] pointed out ~ Similar to this term, many other terms generated, for in-
that the true asymptotic behavior of the long-range interacstance, by the(dipole,octupolg(dipole,dipole interaction,
tion potential between two neutral spherically symmetric at-(dipole,octupolg-(octupole,dipolg interaction, etc., are
oms is proportional to B’, rather than to B® as given by  present in a complete description of the multipolar CP effect.
the London—van der Waald.vdW) dispersion theory. The None of them have counterparts in a LvdW formalism, and
CP result is a direct consequence of the retardation effects nhone have been discussed in literature so far. In addition to
the electric dipole interaction approximatjoMoreover, the  the above mentioned electric-elect(ie-e multipolar inter-
CP expression of the interaction potential between two idenactions there are also contributions from electric-magnetic
tical atoms in the ground stafd] reduces, in the limit of (€-m), magnetic-magneticm-m), diamagnetic-electri¢d-e),
small values ofR, to the well-known LvdW electric dipole and diamagnetic-magnetid-m) multipolar interactions. The
interaction. last one, the d-m interaction, has to our knowledge not been
Since the pioneering work of CR], substantial theoret- studied before. For e-m, m-m, and d-e interactions, the
ical efforts have been devoted to this problem. These inveglipole-dipole contributions have been studied in the general
tigations have resulted in an improved understanding of th€éontext of long-range intermolecular forcg$,9,10,19,24
CP effect[2—15]. Generalizations to multipolar interactions Important results have been also obtained for the case of two
among atom$16—21] and molecule§22—26 have been also hydrogen atomg8] by including hyperfine interactions. In
made. Detailed numerical evaluations of the CP interactiofeneral, one may conclude that the CP interaction potential,
have been presented for various atomic systgis-33. It including all multipolar interactions, behaves in the lirRit
is now widely appreciated that the retardation effects may be» as
well understood in the framework of quantum electrodynam-
ics as a two-photon exchange coupling between atomic and K; Ko Ky
molecular systems. Until now, virtually all theoretical inves- VIR)=——————7— ' 1.y
tigations of the retarded electric-multipolar interaction be-
tween two neutral atoms in the ground state were limited t
contributions which, in the limit of small values & reduce
precisely to the LvdW electric multipole interactions
(quadrupole-dipole, quadrupole-quadrupole, and dipole-
octupols. VR=——— ———— e (1.2
Recently, Salam and Thirunamachandr26] pointed out R¢ R® R
that the electric(dipole,dipolg-(octupole,octupoleinterac-
tion leads to a new contribution given by the case where onehere theCg, Cg, and C,q coefficients are, up to correc-
of the atoms undergoes two octupole transitions throBgh tions of ordera?, «o?, etc. (« is the fine structure constant
intermediate states. This contribution is in addition to thatthe dispersion coefficients.
involving F intermediate state@vhich in the limit of small While the dispersion coefficients have been well stud-
values ofR is given by the dipole-octupole contribution to ied, the long-range coefficienksare not as well known, and
the C, dispersion coefficieft This new term, involving®  the complete form of the multipolar CP interaction potential
intermediate states, has no counterpart in the LvdW formalis missing. We have undertaken this investigation in light of
ism. Moreover, it may be viewed in the limit of small values recent advances in ultracold atomic physics. Although the

Where K, Kg, andK;; have been the long-range coeffi-
cients, while in the limit of small values &® it behaves as
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retardation effects are small in comparison to the dispersion .. I R R R
forces, they may be important in describing atomic processes V(R,f1,r2) =4 - fzJ J d&1dE6(R—&1r1+ ol o),
at very low temperature. 0o (1.8
Our entire analysis of the multipolar CP interaction will '
be focused on the particular case of alkali-metal atoms, al
fthough an extension to other_ famll!es of atoms and mOIeCUIeaistributions; andHy, is the free radiation field Hamiltonian.
is obvious. We will systematically investigate all two-photon_ a[w anda;, are the photon creation and annihilation opera-
e-e, e-m, m-m, d-e, and d-m multipolar processes. Specia - o
attention will be directed toward processes which in the limitirS: €k, WhereA=1 and 2 are the polarization vectors,
R— o contribute to theK;, Kg, andK,; long-range coeffi- Pin=€i <k, Ra and Rg are the position vectors of the
cients. We intend to establish expressions for the long-rangeucleus relative to the laboratory framR= ﬁA— Rg is the
interaction potentials between alkali-metal atoms suitable fofyternuclear vector, and, andr,, are the position vectors of
explicit numerical evaluations. We choose to describe thghe electrons relative to the nucleus. As usual, the radiation

alkali-metal atoms by single-active electron model potentialsield satisfies periodic boundary conditions at the sides of a
[34], since the core excitation processes are unlikely to bg pe of edge.. Later L will be made infinite and the sum

Important in the des_crlptlon of the Iong-ra_nge atomic Inter-q 0 the discrete values &fwill be replaced by an integral
actions(no overlapping between the atomic charge distribu-

tions is assumed We also neglect the interaction between OVer K according to (Z/L)*3(— fdk. We use the atomic
electronic and nuclear spins. These hyperfine interaction&its €=me=7A=1). _ ,

may become relatively important in describing magnetic in- SiNCe we are interested in studying the long-range part of
teractiong 8] and their consequences will be discussed elset® interaction potential, no overlapping between the atomic
where. We adopt the Power-Zienau-Wooll@3ZW) repre- charge.d|str|butlons is assumed. Thus the contact interaction
sentation [2,35-39 for the long-range interaction termV in Eqg. (1.3) may be neglected. The long-range inter-

Hamiltonian in a multipolar expansion form,

is the contact interaction term between the two atomic charge

2
Py S ° 30T
H:?+VA(f1)+; Q(n)(RAyr1)+a; M (Ra.r1) ®, .7
Pl
ps -
+a22 D(n'm)(§A1F1)+ _2+VB(|‘2) //////
fm 2 “7 W,

+§ Q<“>(F33,Fz>+a§ MM (Rg,r>)

+a2§ D"™(Rg,r)+V(R,F1,f)+Hg, (1.3
where
0, »
. intl 270\ % . . N -7
QV(R,)= > (r-ep)(r-k)" -
(n+1)1< | |3 kA <~
X[ag e R+ (—1)"1H.c] (1.4) S~
. . 0,
are the electric multipoles;
MMR,F)=L- MM+ MM, (1.5
with
N
S~ 2
i”+1 2w 1/2 AN \\\
UM(R,F) = b, (1-K)" b ~
MORO= 52 2 ( s ) Palrk) h
\\
X [ag ek R+ (—1)"1H.c], (1.6) ® >
are the magnetic multipoles,
DMM(R, 1) =2(M™xr). (MMXr); (1.7 FIG. 1. Three topologically distinct two-photon diamagnetic-

electric (diamagnetic-magnetiaddiagrams. The other three may be
are the diamagnetic multipoles; obtained by a mirror inversion.
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action potential may be determined by perturbatively solvingaction potential is carried out for the particular case of two
the eigenvalue problem for E¢L.3), where the perturbation interacting potassium atoms. Numerical results for the long-
is given by the sums of electric, magnetic, and diamagneticange interaction potentials are presented for all alkali-metal
multipoles. The order of relevant multipoles which enter indimers, including the heteronuclear cases. Discussions about
our final computation will be decided in the perturbationthe range of validity of the LvdW dispersion form of the
procedure by our desire to evaluate only terms contributingnteraction potential are also included. Section VIl presents
in the large separation limit to thi€;, Kg, andK,; long-  our conclusions.

range coefficients. The perturbation procedure is carried out

up to the fourth order, retaining all terms proportionakfo II. DIAMAGNETIC-ELECTRIC AND DIAMAGNETIC-

In atomic units,e=1 and so the electronic charge is not a MAGNETIC MULTIPOLAR INTERACTIONS

visible quantity in our notations. However, one should bear ] ] .

in mind that in Eq(1.3) the electric and magnetic multipoles  d-e and d-m multipolar couplings between atoms occur in
are multiplied bye while the diamagnetic multipoles are the third order of perturbation by matrix elements containing
multiplied by €2. Furthermore, onlyR-dependent terms will one diamagnetic multipol® ™™ [Eq. (1.7)], and two elec-

be considered. Other terms, such as those contributing to tHEC [EQ. (1.4)], or two magnetidEq. (1.5], multipoles, re-
atomic self-energies, were eliminated, since the interactiogPectively. These matrix elements may be represented by
potential between atoms is given by the difference of thdwo-photon time-ordered diagrams, where the diamagnetic
interaction energies at a giveR and at infinity. The two-  Vertex is a two-photon vertex. There are six topological dis-
photon exchange processes between atoms are describedtiftft diagrams in total. Three of them are presented in Fig. 1.
terms of time-ordered diagrams. One may notice that theréhe other three are similar, but with the diamagnetic vertex
are no contributions proportional & €2, ande?, and there owned by the other atorfmirror symmetry. We analyze all

are no contributions from the first and second order of permultipolar interactions which contribute to the,, Kq, and
turbation. The d-e and d-m procesdeshich occur in the Kiilong-range coefficients. We start by establishing the gen-
third order of perturbationare presented in Sec. Il. The e-e, eral expression of the d-@l-m) interaction involving one
e-m, and m-m multipolar interactionsvhich occur in the (P1.p2)-order diamagnetic multipole and twa{,qy)-order
fourth order of perturbationare presented in Sec. Ill. The e€leciric (magneti¢ multipoles. For convenience, we denote
complete picture of the two-photon interactions which entethe electric multipoleqof order q) by letters(g) and the

in our final description of the CP long-range interaction po-multipoles(of order p) which involve magnetic interactions
tential is presented in Sec. IV. Section V presents a simpldy underscored letterspf. Consequently, a diamagnetic
criterion for establishing the long-range domain of the two-multipole of orderp; + p, will be denoted by f;,p,).

atom interaction(the minimum value ofR for which the - -
interaction potential is well approximated by the CP expres-
sion along. This criterion is based on the analyses of the
first-order perturbation matrix element of the contact interac- The three diagrams from Fig. 1, with the first photon
tion between atomic charge distributions. It is intended toemitted (absorbedl in a p, diamagnetic mode by the first
substitute the LeRoy radius criteripg9] in a more rigorous atom and absorbe@mitted via aq, electric multipole tran-
way. The numerical results and discussions are presented #ition by the second atom, have similar expressions and they
Sec. VI. A detailed quantitative analysis of different pro- may be studied together. The sum of their contributions is
cesses involved in the CP long-range expression of the integiven by

A. Diamagnetic-electric interaction

(—1)91+a2jP1Hp2t a1t a2

Post 020492~ 2(p, 7 2)pyl (Pt 2)pot (Ga+ 1)1 (o 1)

<rp1+p2+2>

2Tw, 2TTW e
X 2 ! —2kgﬁqlkgﬁqze'kl'Re'kZ'R

1 1
2 3 3 (ng0[r%27 ¢ n,l,) Nyl o[r 914 ng0)
nala kik, L L nolp

X > (00/(ey- 1) (kg 1)%[1,ma)(1my| (&1 T)(ky - T)92/00)

Aihomy
X(00|[by- by = (by-1)(by-1)](ky-F)Pi(ky-1)P2|00), 2.9
where the electronic radial and angular parts were factored and

11[1 1 1[1 1

2.2

— - + + ,
Dn| An|+w1[w1+w2 w1~ Wy An|+w2[w1+w2 w1~ Wy
whereAn,=En,—Engo is the atomic excitation energy from the ground state torthenergy level. We have used the short

notatione ,y for égl(z))\l(z) andb; () for Blzl(z))‘l(z)' The radial matrix elements are denoted by ( ), while the angular
matrix elements are denoted Ky| | ). The atomic states are denoted mfm), where|ny00) is the ground state(r")
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denotes the radial matrix elememgo|r”|n90) (the average of" in the ground staje We note thatfEl+EquqZ is zero if

p1+p2 Or q;+q, are odd quantities, according to the atomic multipole transition selection (sitese the initial and final
atomic states are identigaWe start the computation dt)ﬁpquqz by analyzing the triple sum over photon polarizations

and\, and the atomic magnetic quantum number from Eq. (2.1). It may be rewritten as

DE o : (P2+qZ+1) 1+q1+1) (p2+Q2+1) (D1+q1+1
T'o'"'qz'rl"'rpz’JO"'Jql'sl"'spl[E'OJOQt|1 -C| ( )Qtj ( ) Q 'q N pz( )Q (kl)]
_ ] DE o (pz*Qz*l) (P1+ql+1
GJOrOtZEIOSOtlTlo"'qu'rO'"rpz*JO"'Jql’SO" p Qtz i q rl“'rpz( )Qtl Jl Jq (kl) (23)
where
(D+Q) K=k -k ki -k
Pt =k ok R,k 2.9

is a tensor of ordep+q, with k; theith Cartesian component of theunit vector, and

DE ) . — 7(00)(00) (00)(12my) (lzmg)(OO)
TIO"'qu’rl'”rpz’]o'ujqfsl'”SP1 Dr1~-~rp2,sl~--sp1% DIO ', D g, 29
is a tensor of ordep;+p,+q;+0q,+2, where
[ 1,my) -
D,(llml,)n( 2me =<Ilml|Qi(r-)uin(r)|l2m2> (2.6

is a tensor of orden. In Eq. (2.9 the Einstein summation convention over repeated indices is asswmeds the total
antisymmetric unit tensor. Replacing the sum over the discrete vaIdéﬁaﬁd k, by integrals in Eq(2.1), the integration
over the directions ofl and IZZ may be formally computed by introducing the quantity:

1 A s
P (woR)= 5 [ dogafl, (ke R @7
whereP(™ is a tensor of orden which depend orwR (in a.u.,k=aw). It can by shown thaP( has the structure

Pfr?_.in(u)=ei”®i(?,) , +c.c., (2.9

IU

where@i(f,). iy is a polynomial of orden with real coefficients. Then the integrals owey and w, may be rotated into the

complex plane along the imaginary axis. In doing this, one may notice that one of the integrals disappears in favor of the
residue of the integrand at the simple pale= w, [see Eq(2.2)]. After some algebraic transformations, the final expression
of fBl+22qlqz is given by

K
o
f =— _&Upﬁpﬁ%
P1¥Poti% 27 RP1tP2taAItar T
- 6 U\ —ouDE
X P1tpataitast i— e 2YUT: ) . )
2| jo duu R +195+1 'ar/€ {T'O""qz"l""pz'JO"'Jql’Sl"'Spl
(D2+Q2+1) (p1+a1+1) (D2+Q2+1) (p1+q1+1)
><[5|0J0. ST g Jg.sS1 S, .I NPRERIS ®J | R} ]
a1 Tp,  tl1ttlgpte Py 0 Mgyl T, s P1
DE (pz*Qz*l) (p1+a1+1)
—€ . .¢€ -, TPE . o ® (ONERES , 2.9
iofota“ipSots |O...|q2’,—0...rp2,10...]q1,s . pl tz I q rlA..rpz tlvll“'Jqllsl"'spl} ( )
|
where the argument of th® polynomials is—1/u and whereg; is the radial Green’s function for angular momen-

. tum I. To this end, specific expressions bgl+p2qlq2, for
Koypa,a,=[(P1+2)P1! (P24 2)Pl (A1 + DG+ DTS given values opy, p,, gy, andg,, may be obtained using
(210 maTHEMATICA, since both thaPE tensofEq. (2.5)], and the
D _ ® polynomials[Eq. (2.8)], may be easily generated. The
Rpoliw)=Re(ng0[rPgi(i®)r9ng0)],  (2.1)  summation ovet in Eqg. (2.9 involves only a finite number
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of terms, and the actual relevant valuesl ahay be estab-
lished at the outset by analyzing the selection rules of atomic ~ fj, gy=— 9<r2)f du v’R 3 ( “RIE
multipole transitions. In the limiR—c thef, . ;,q,q, quan- - 3607R

tities behave as H?P1+'32+q1+q2+7 with the full expression X (34 3u+u?)?, (2.16
given by Eq.(2.9) with R! +1q.+1 €valuated ati=0. Then,
gq;+1g,+1

only the fy, ggo term will contribute to theK; coefficient. It

is given by ~ f _ Y e fdeUARl(ii)e_zu 14u)2.
0+020 5401TR9< ) 0 3 'R ( )

(2.19

—2u

— @ 2 * 1 _-i -2 2
fo-000= 1&7R7<r )fo du UZRn( |aR)e U(14u)2.

(2.12 In the asymptotic limitR—«, thef terms have the follow-

e . ing expressions:
In the limit R—, it becomes g exp

Ta s 1 4
f9+goo:_ —(r )R 11(0). (2.13 f11100= — (rYR14(0), (2.18

727R =Ts 1357R°
For theKq coefficient we have to consider all terms which
satisfy the conditiong;+p,+q;+0,=2, p;+p,=even, 9a
and qg;+g,=even. They are fi1100, F2:000 f2+000= ~ 160mR 9<r4>R11(0) (2.19
=fo12000 foro1, @andfoyo20="Ffor002- The equalities are
due to the general symmetl‘)glerquq2 fszrplqqu This is
a result of the fact that the set of diagrams which contribute ¢ _ N D
to the expression dfp2+p1q2q1 may be obtained from the set 0+0117 ™ 32077R9<r YR 2A0), (2.20
of diagrams corresponding tq31+r>qu% by interchanging
the label of the photon lines. Finally, we have

f = rR 3,(0 2.2
. - 0+020 16977R9< YR 31(0). (2.21
For theK 1, coefficient we have to consider all terms satisfy-
2 3 4 11
X (21+42u+ 350"+ 14u”+4u%), (219 ing the conditionp, + py+ gy +qp=4, with p,+p, and g,
+0, even quantities. They aré,,oo0=fo+a000 f3+100
u =f f f =f =151 002=F0+220 f210
£ _ r4 f duu*rl (|_> “20(14 )2, 1+300+ T2+2000 T2+020= T0+202= T2+002= To+220: T2+011
Zro00 1807TR9< ) M aR ( =for2110 Far1207 11020 Frv111s For0a0=Foro04r forosn
(2159  =fyip013, andfy, 2. Their expressions are given by~
|
f =———(r® f duu®Rr} ( e 2Y(1+u)?, (2.22
Arane 504077Rll ™ (
o © u
f§+f°°:_ m“%fo du wRil(lﬁ e’2“(33+ 66u+55u2+2213+6u4), (2.23
6 ” 21| u —-2u 2 3 4 5 6
fz+goo=—m(r ) . du PR 33| i — | €7 24(450+900u+ 810u+ 420u°+ 13+ 38u°+ 0u®),  (2.29

@ O T T P 2
fg+920=—m<r > 0 duuR3l |ﬁ e (l+u) ) (225}
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w u
_ 4 2 2 J4-2u 2\2
farou 36007rR11<r )fo du u4R22(| aR)e (3+3u+u?)?, (2.26
% u
_ 4 1: = 1 ,-2 2 3 4
f1+320— 12150;7R11<r >fo du u4R31(| aR)e U(21+42u+ 35u°+ 14us+4u?), (2.27
o u
—_ 4 2| 2 |a-2u 2 3 4 5 6
fran 8100”R11<r >f0 du u2R22(| aR)e (495+ 990U + 8912+ 46203+ 147U+ 30uS+ 4u8),  (2.28
o u
- /¢2 6pl|:_— |A—2 2
f9+940— 25200:7R11<r )fo duu R51(| aR)e Y(1+u)e, (2.29
* u
f =——|(r? f duu4R2(i— e 2Y(3+3u+ud)?. 2.3
0ron= = Jooe () ), B i—= e ) (2.30
In the expression of, g2 [EQ. (2.9)], | is allowed to take 1
two values 1 and 3. Thus we write its expressionf @sy,, foron=— 1—Rll<r4>7€§2(0), (2.37
=f0, 0001 Th40200 Where (., o0, is the contribution” forl T 6007
=1 andff, o, is the contribution fol =3. Then we have
f1i100= = ———5(r"YR51(0), (2.38
for020= — g3 (r%) o oromR
-T- 162007R™M
> u f1i11=— ———(r"YR3,0), 2.3
Xf du UGR%S(IE) e—ZU(l_,r_u)Z, (23]) E-%—Ell 4507TR11< > 22( ) ( 9)
0
F @ 2 foso o:_l—<r2>R2(0) (2.40
forozr= = oo —n(r) 9r 2240rRM e
o u
xf du qugs(i—>e2“(15+15u+6u2+u3). f _ 22
=——(r )R ,0), 24
0 aR 0+031 448077R11< )R 30) (2.41
(2.32
L 1
In the asymptotic limitR—«, these terms become P = — ———— (1R 1(0), 2.4
0+022 14407TR11< )R 35(0) (2.42
— _ 6 1
f£_1+900_ 4487TR11<r >R11(0)1 (233) fF 143« < 2>R3 (0) (2 43)
=——Ar ) )
g2 12607RI T
f3+100= — 1—<r6>7€11(0) (2.34
S 1707R B. Diamagnetic-magnetic interaction
The general expression for the d-m interaction involving a
¢ _ S (p1,p2)-order diamagnetic multipolgEq. (1.7)], and twoq;
2+2007 896rnR11<r YR 11(0), 239 ghd q, magnetic multipoles, Eq1.5), may be obtained Tol-
lowing a procedure similar to that discussed in Sec. Il A for
the d-e interaction. The final expression for tf};el+p2q1q2
fos0p0= — ;<r4>73é1(0)' (2.39  term (the sum of the contribution of diagrams from Fig. 1,
=g 4807RM but with g, andq, magnetic multipole vertexgss given by
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f - o’ KElEZElEZ pi+po+2 2 OQd P1+P2+dy+dpt 67! . U e 2u T
PitPothi% ™ 8q Rp1+p2+ql+t12+7<r ) = Jo uu P2\ ' oR { dgpfaTp,lonigyS1Sp,
(P2+Q2) (p1+dy) (P2+Q2) (p1+d;+2)
X SPLT P17
[5'010. Iy qu’rl"'rp2®Jl"']ql’sl"'Spl .'1 'q2 r1"'rpz®Jo"'lq 19:Sy7 - Sp,
@(P2+Q2+2) fplﬂh) @(92+Q2+2) (pp+di+2) ]
‘o lgplo M '1"'1%’31'”591 lgpbrfaTp, Jolqptsy=-Sp,
_TDbM o , , (p2+ap) (p1+dy)
T'o""qz’ro"'rpz'lo"'Jql'SO"'Sp1[5'0r051050®i1'"iqz'rl"'rp ®J1"'jq1’51"'sp1
(p2+4dp) (p1+q1+2) _ (P2+CI2+2) (p1+djp)
O 0®'1 N ®JO S0t Spy JOSO@'O a0 JilqySySpy
(P2+Q2+2) (P1+Q1+2)
+®'o igyTo ®Jo “iqyps ~Sp1]}’ (2.449
|
where =even, =1, and g,=1. They are
_ | | fZJrOE, fl+111, f0+0312f0+%, and f9+%, and their
Kppyay0,=L(P1F2)P1! (P2 +2)p2! expressions are given by
X(a1+2)a1! (4 +2)g2! 174 (249 3 - u
f S (r“)f dutrRyli—|e 24 (1+u)?
and 2 easorr® o 1 aR !
Tom o (2.50
'O'"'qz*rl'"rpzvlo"'Jqlvsl‘"Spl
a
f =——(r* f duu*r} ) —au
— (0000 D £<00><|m>£(lm><00) v 14580,TR9 ) =
1 TSy Sy, & o,
(246 X (21+ 42u+ 35u°+ 14us+4u?), (2.51
: 3
is a tensor of ordep;+p,+q;+g,+2 and _ a 2
for0a1=— ———(r)
(| m ) my) _ (n) ~ — 108007R
L=, my{Li,, Qi (D}HIimy) (2.47)
. . . _ xf du uﬁRgl(ii>e—ZU(1+u)2, (2.52
is a tensor of orden+ 1, whereL; is theith Cartesian com- 0 aR
ponent of the atomic orbital angular momentunand{ , }
denotes the anticommutator. In the asymptotic limit, 3 (r?)
+p2+qq+Qp+7 = —
fpl+p2qlqz behaves as RP1 P01t 92%7 where the full ex- 0+022 38407 R?
pression is given by Eq.2.44 for R evaluated atu
=0. We mention that thép p.q,q, terms are zero ifg,; xf du ngz(iiR) e~ 29(3+3u+u?)2,
=0 org,=0, since theC! (00)(”“) tensor is zero and so are the 0 @
correspondingr°E tensors Thus there is no contribution in (2.53

1/R” from the d-m interaction in the asymptotic limit. For the

Kg coefficient only one terrrfom11 contributes. It has the In the asymptotic limitR— ¢, these become

following expression: 1103
ferE: 5767TR11< > 11(0 (254)
f = rzf duu'r} ( ) “24(14u)?.
(2.48 _ 49«
' f£+lll_ - 8107TR11< > ll(o (255)
In the limit R—oo, it is given by
: f e (r)R3,(0) (256
a - r ' '
foron=— ———5(rAHR1,(0). (2.49 TEL geomR1
- — 647R
3
For the K,; coefficient, the contributing terms satisfy the fouop= — (r)yR20). (2.57)

conditions  p;+p,+0q;+0,=4, p;+p,=even, g;+0; - == 5120mRY
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We note that the contribution of the d-m termsd$ times  ute to theK,, Kq, andKy; long-range coefficients. Thus,
smaller than that of the d-e terms. we start by studying the general expressions for e-e, e-m, and
m-m multipole interaction's

IIl. ELECTRIC-ELECTRIC, ELECTRIC-MAGNETIC, AND
MAGNETIC-MAGNETIC INTERACTIONS A. Electric-electric interactions

The e-e, e-m, and m-m multipolar coupling between two In this case, the vertexes of all twelve diagratas of
atoms in the ground state occur in the fourth order of perturwhich are presented in Fig,) 2orrespond to electric multi-
bation as a result of two-photon exchange. The perturbatiopoles. One may easily show that the twelve diagrams which
matrix elements involving four electric and magnetic multi- involve p;-, p,-, q;-, and g,-order electric multipoles,
poles operators may be represented by two-photon timesuch that the first photon is emitted and absorbed as a result
ordered diagrams. There are 12 topologically distinct dia-of p; andq, electric multipole atomic transitions, and where
grams in total. Six of them are presented in Fig. 2. The othethe first atom is experiencing only; andp, electric multi-
six are the mirror symmetric versions of those from Fig. 2.polar transitions, have similar expressions and they may be
As in Sec. Il we will investigate all diagrams which contrib- studied together. The sum of their contribution is given by

(—1)%1FG2jP1t P21tz
Foup29: =~ (o, D)1 (py+ 1) (0 + 1)1 (Gp+ 1!

2Twq 2Ty

% kP1+CI1kP2+C12e|k1 e|k2

P 3
nilinals Kk, L L3

1
XD—(ngO|rq2+l| Nol2) (ol o[ r 914 Ng0) (ng0[rP2 1yl ) (Nl o[ P11 ng0)
nylanoly

X > {00(ey1)(ky-T)%2|1my)( 1 ,mal(&y-T) (ky-T)92/00)

Aghpmym;

X (00/(€;-T) (k- 1)P2[l;my)(11my| (e 1) (ke T)P1|00), (3.2)

where the electronic radial and angular part have been factored, and where

1 2 [ A, |1 1 ) Ang, [ 2 L1 )
Dn,iyn,l, Aﬁl|1—Aﬁ2|zlAnl|l+w1\w1+w2 wi— @) Ap Tt wy\ w1ty 01— wp
Ayl 1 1 Anyi 1 1
b | + ol —~ : 3.2
Anl|1+0)2\¢!’1+<1’2 w1~ W3 An2|2+w1\w1+w2 w1~ W3

Similar notations to those in E€.1) have been adopted. As in Sec. Il we start the analysis of the, o, terms by rewriting
the sum from Eq(3.1) over the photon polarizations;, and\, and atomic magnetic quantum numbersandm, according
to

EE (P2+qZ) (91+Q1) A
Tio_,.ipz’ro...rqz’jo...jq 1Sp°* S [ IOrO IOSOQ q2 (k )Q 1 ..,Spl(kl)
_ (p2t+ady) (Pl+ql+2) _ (p2+0z+2) (p1+q1) T
D QP QPR (k)= Q0P (R QP (k)
+ +2 +qp+2 e
QI (g qls? < (ko). (3.3
q2 ql'O Py

*An alternative expression for the e-e multipolar interaction was presented inZ&f.However, our general expression of the e-e
multipolar interaction is different and suitable for final numerical computation.
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where

TEE o -3 D(oo>(|2m2)D(|2m2)<00)D(00 lml)D 1m1)(00 3.4

[P U PRI SR DRI s .S
0 pyfo Taylo Jq S0 Sp, mymsy o 1q, "p, Ja, Sp,

is a tensor of ordep,+ p,+q;+d,+4. The tensor®, from Eq.(3.3), andD, from Eq.(3.4), are defined by Eqg2.4) and

(2.6), respectively. Replacing the sum over the discrete valud?sf ahd IZZ by integrals, the integral over the directionsl?qf

andk, may be computed formally in terms of tfiztensors defined by Eq2.7). Finally the double integral oven; andw,

may be rotated into the complex plane along the imaginary axis. In doing so, one may notice that one of the integral will
disappear in favor of the residue of the integrand at the simple pgtew, [see Eq.(3.2)]. The final expression of the
fplpquqz term is given(after some algebraic transformatigrsy

K
o2 TR [T ppgraytag el u
P1P20102 T Rpl+p2+ql+q2+7|1|2 0 pytip,+1 aR
u
| —-2uTEE
XR'2 R : ) ) )
quﬂq +1(I R)e T'O""pzvro‘"rqz*JO"‘Jql'SO"'Spl
+ + + +q1+2
x[5 6] S, @ p2 q2 Fqe--T ®(plq1)s ...s _5| r ®|(p2 |q2)r r ®(p1q1 S, )S
0°0 qz, 1 P, I Jqu 1 Py 0'o 1 a1 P, Jo Jqu 0 Py
_ @(p2+_(12+2) @(pl'*'qﬂ +®(p2+_q2+2) @(p1+91+2) ] (35)
JOSO ig- q To - Jl'”Jql'sl'”Spl q To - JOHIJql'SO'“Spl ’

where the® polynomials are defined by E.8), and they

enter into Eq.(3.5 with argument—1/u. The R quantities
are defined in Eq(2.11). The summations ovelr; and |, 0, L
involve only a finite number of terms. Actually, significant 7 ® ey
values ofl ; andl, may be established at the outset by ana- 77 2’7// -
lyzing the selection rules for the electric multipole atomic a e,
transitions. We note that thk, , 4 terms are zero unless L7 e
) 1P24192 o 1 )
p1+pP2+Qi+Qs is an even quantity. This is a result of the 1
fact that the atomic initial and final states are identical. One
may also note thafplpququfpzplngl' since the 12 dia-
grams involved in the latter term may be obtained from the
diagrams involved in the first term by interchanging the pho- ®
ton labels. In the special case of identical atoms we also have 21 1
fplpquqZ:fqquplpz' To this end, explicit expressions of - \(’32 /,’
fplpquqz for particular values op;, p,, q;, andg, may _ R
be easily obtained from E@3.5) by usingMATHEMATICA. In -7 P
the limit R—o, the fy, .o term behaves as ) g o,
1/RP1HP2ta1t a2t 7 with the full expression given by Eq.
(3.5 for R evaluated au=0. Thus for theK; coefficient
only the f 9o term contributes. It has the expression
4 u 2 [~ 0)2 - ('02
fooooz_mf du Rll( “R RSN \\\\ _
/\/\
Xe 2(3+6u+5u+2u3+ut), (3.6 e Lo
- L~
o ®,

which in the limit R— o becomes

FIG. 2. Six topologically distinct two-photon electric-electric
s 1 2 (electric-magnetic, and magnetic-magnget@grams. The other six
fo000= — -[R11(0)]°. (3.7 =T A TeS ; '
97aR may be obtained by mirror inversion.
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For theKy coefficient, terms for whiclp;+p,+q;+0,=2
contribute whenp;+p, and q;+q, are even quantities.
They arefy;06= foo11 @and f20006= fo200= fo020= fooo2: Their
expressions are given by

i~ ey W i
= e
1100 45’77a’R9 22 11 R

X (90+ 180u+ 16242+ 84u+ 27u*+ 6u°+ u®),
(3.8

f :——f du @R i — )Rl i |2
2000 1357TaR9 31 aR 11 aR
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f10= — ———=R5,(0)R1,(0), 3.10
1100 OmaR® 2 0)R 11(0) (

fo000= R 3,(0)R 14(0) (3.11
2000 oraRe 11(Y). .

For the K,; coefficient, terms for whichp;+p,+d;+0d,
=4 contribute, whem, + p, andq; + g, are even quantities.
They are f4000= fos00= fooas™ foooss Faroo = F1300= Foosr
=foo1s,  f2200=fooozs  f2000= Fo202= fo220= f2002,  f1102
=1f11209, andf111. We note that foif 5,oq there are two pos-
sible values fot, [in the sum from Eq(3.5]: 1 and 3. Thus
we split the f,500 term asf 0= fhoot Fhooo, Where f oo

X (34 6u+5u’+2ud+u?). (3.9 E
corresponds td,;=1 and f5,,, corresponds td,=3. The
In the limit R—«, Egs.(3.8) and(3.9) become expressions of the abofgerms are given by
|
1 * u —2u 2 3 4
f4000—= — m du U4R51 Rll I—R (3+6u+5u“+2u+u”), 3.12
u
f310= — Eiig_ﬁﬁf dUL?R44 R)R,< aR)2%90+1&n+1eaﬁ+smﬁ+2nﬁ+6u5+u%, (3.13
o
u
£ 0= — EBE&ZQEEJ dutfR34 R)Rﬁ4 R e 2U(3+6u+5u+2ud+u?), (3.19
u
fgzoo: —f dURss R11 i—]e
14175raRM aR
X (4725+ 9450+ 87752+ 49503+ 1863u% + 486u°+ 90u®+ 12u” + u®), (3.15
f =—~———£———fxduu1R4 i 2e—ZU(3+6u+5u2+2u~’*+u4) (3.16
2029 H0257aRM0 3" aR ’ '
u
fri0=— I&iﬂ_ﬁﬁf duu%zﬂ( )R34|—§)2%9O+1&h+16m2+84ﬁ+2hﬁ+6uinL (3.17
o

2

f1111=

<o)

——— | du
90077aR11f

In the limit R— o, they become

71

f4000= — 1400m aR1L R 5:(0)R 1;(0), (3.19
319, .
f3100= — WR42(0)R11(0)1 (3.20

e~ 2Y(5040+ 1008+ 9360u%+ 5283+ 1983u*+ 510u°+ 89u’+ 10u” + u®).

(3.18
|
. 71
f2200= — 900mwR R 330)R 1,(0), (3.2
_ 10582
f2200= — m 33(0)7311(0)’ (3.22
1 1 2
fzozoz—m[Rgl(O)] ; (3.23
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presented here. We note that only the processes where the

f110=— = R3(0)R 3,(0), (3.24  electric multipole transitions are experienced by the same
600mraR atom give a nonzero contribution. Other processes, where the
atoms experience a magnetic multipolar transition followed
5591 ) ) by an electric one, or vice versa, cancel each other out, so
f1110=— W[R 2A0)]°. (829 that the overall contribution of these diagrams is zero. Thus

by e-m interaction terms we refer only to the case where one
. o _ of the atoms is emitting or absorbing photons as a result of

B. Electric-magnetic interactions electric multipolar transitions and the other atom is absorb-

The e-m interaction terms are given by the same 12 dialng or emitting photon as a result of magnetic multipolar

grams(see Fig. 2 but now two of the vertexes represent transitions. The sum of the corresponding 12 diagraims
electric multipoles and the other two magnetic multipoles.which the first atom experiences only magnetic transifids
The computation of the e-m interaction diagrams is similar todenoted byf, ; ¢ o, Where the underscore marks the mag-
that for the e-e case. Therefore, only the final results ar@etic multipoles. Its general expression is given by

K
f :_1&2 du uP1+p2+Q1+qZ+6'Rl . U R'z u
P1P28192 21 RP1TP2 A1t 27T, Jo P1P2 a’R qp+lgp+1 a’R
- +q,+1 +qq+1
X e 2uT|EM ) <(p2 _QZ ) @(pl Fll ) ' (326)

0 'qu'rl"'rpz’JO'"]ql'so"'spl |o~~»|q2,rl--~rp2 J()-"]q:l,S]_“-Sp:l

where theR quantities are defined by E(R.11), the K, , q 4, COefficient is defined by Eq2.10, the® polynomial, which
enter in Eq.(3.26 with argument—1/u are defined by Eq2.8), and

EM

EM o (OO)(I2m2) (1,m2)(00) (00)(I1m1) (Ilml (00
fo i1 Tpyior iqyS1Sp, D D E E (3.27)

:éirte'stz
001Joozmlm2 SLERER P thig-- Jq T, Sp,

is a tensor of ordep;+ p,+0q;+g,+2 with D and £ tensors defined by Eq§2.6) and (2.47), respectively. In the limiR
—oo the fy p q,q, term behaves as RP1+P2ta1td2t7 where the full expression is also given by H§.26), but for R

evaluated ati=0. We note thaf, ;,q,q, is zero if p;=0 or p,=0, smceﬁ(oo)('m) is zero and so iFEM. Also, p;+p, and

g, +d, must be even quantities, since the initial and final atomic states are identical. Therefore, there is no e-m contributions
to theK- coefficient. The first nonzero e-m contribution is given by thgterm to theKq coefficient. It has the expression

f “ J du? R} ( - )
=————| du
B e i

which in the limit R—« becomes
3a 1 )
—[R1(0)]% (3.29

817R®

2
(3+6u+5u?+2ud+u?), (3.28

f1100=—

For theK,; coefficient, terms which satisfy the conditiops+ p,+q;+9,=4, p;+p, andq,+Qq, are even quantities, and
p;=1 andp,=1 contribute. These terms af@loo—f13oo, fzzoo, f1120—f1102a andfllll They have the following expres-
sions:

o u e—2u 2 34,4
fa100= Tseordilo uu“R31 Rll | —=|e (3 +6u+5u+2ui+ut), (3.30
[e% u
fo000= — Wf u u2R11< )R22(|—R e~ 2990+ 180u+ 162u%+ 84uc+ 27u*+ 6u°+u®), (3.3D
f1100= L du R} R . e 243+ 6u+5u+2ud+u?) (3.32
22 2430mRM 0 1 aR '"aR ’ '

from——— [ Tdu L i~ | R2| |~ | e~24(90+ 180u+ 16212+ 84uP+ 27U+ 6US+uS).  (3.33
(L pcry ul 'R 22 'R : :
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In the limit R— o, they become
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fa100= ~ WGTR“R 1(0)R3,(0), (3.39
S 1 2

f2200= — WR 11(0)R 20), (3.39

f1120=— WR 11(0)R 3,(0), (3.36
3% _,

f1110= = 7R 1(0)R240). (3.37

7207R

C. Magnetic-magnetic interactions

The m-m interaction is described by the same 12 topologically distinct diagisssedig. 2 involved in the description of

the e-e interaction, but now all four vertexes are given by

magnetic multipoles. The sum of the twelve diagrams involving

P1, P2, 41, andg, magnetic multipoles takes the following expression:

3 IC o
f & P f dutPrtPatarta Rl [ Rz |j—|e-2u
P1P20192 87 RP1tP2tA1t A+ 71T, Jo PiP2\ " R/ 1%\ aR
MM o : : (P2+dp) (P1+4y) _ s (P2t4d2) (P1+01+2)
XT|O...|q2’r0...rszJO...]ql‘so--»Sp1[5|0r05j050®i1...iqzvrl...rp2®jl...quysl...spl 5|0r0®i14..iqzvrl...rp2®j0..4quyso...spl
(p2t+dx+2) (p1+dp) (p2+02+2) (p1+a;+2)
-8 O 2" e +0.72" (SR , 3.3
JoSo |0-~~|qz,r0~~rpz jl~~-jq1,sl'-~sp1 |0'-~|qz,r0~~rpz jO~~'Jq1,SO~-~Sp1] ( 8)
|
where theR matrix elements are given by EQ.11), the o3 o u\12
coefficient is given by Eq.(2.45), and f :——j du| RL|i—
Koipsaa, 1S 9 y Bq(2.49 ™ 59167RM1) 0 1" aR
- X e 2Y(3+6u+5u?+2ud+u?), (3.40
g g To" Tp do igySo S L .
0 Tan 0 TR0 Hap0n Py which in the limitR— becomes
-3 e i e 1 ron
mym b2 % Pa P1 1111~ ~ T L1 . .
==  1296rR™

(3.39

is a tensor ofp; +p,+q,+q,+4 order, with thel tensors
defined by Eq(2.47). The polynomial® are defined by Eq.
(2.8, and they enter into Eq:3.38 with argument—1/u.
We note thaifplpquqz is zero if any ofp;, p», qi, andq,
is zero, since thec{°”!™ tensor is zero and so E"M.

Also, p; +p, andg; +d, must be even quantities, according

to the magnetic multipole selection rules, since the initial ancﬁ
final atomic states are identical. In the asymptotic limit the

fo.p,0,0, lFM behaves as RP1FP2t A1+ A2+7 \while the full

expression is given by Eq3.38 for R evaluated au=0.

IV. CASIMIR-POLDER POTENTIAL

The final expression of the CP long-range interaction po-
tential is obtained by adding all e-e, e-m, m-m, d-e, and d-m
multipolar contributions. In Table | we present all distirict
terms, together with their multiplicity factors, which enter in
the final expression of the CP potential, grouped according to
their asymptotic behavior. Their explicit expressions were
resented in Secs. Il and Ill. The multiplicity factors come
om the number of equivalences for eatherm. For ex-
ample, as we mentioned in Sec. lll, sinEg o= fgp11, IN
Table | we report only thé ;qoterm with multiplicity 2. All
e-m, d-e, and d-m terms enter with an even multiplicity,

Thus the m-m interaction will make no contributions to thesince the electric multipole transitions, in the first case, and
K7 andKjy coefficients, since in these cases at least one ofhe diamagnetic multipole transition, in the latter two cases,

the indicesp,, p,, Q4;, andq, is zero. The contribution to
the K, coefficient is given byf;,11 . The explicit expression
of f1111 is given by T

may occur in the first or second atom. Relative to the e-e
interactions, the contributions of the e-m and d-e interactions
are of ordera?, while the contributions of the m-m and d-m
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TABLE I. The f terms, together with their multiplicity, which 2
enter into the final expression of the Casimir-Polder long-range po- a(w)= mR:,(a}). (4.9
tential. In the left column we indicate the asymptotic behavior in
terms of 1R powers.

The entire formalism developed in the previous sections
was written for the case of two identical atoms. The exten-
sion to the case of two different interacting atoms is simple.
1R’ foo000 2f91000 In the final expressions for thieterms the atomic contribu-
T tions are factoredactually the entire two center molecular

e-e e-m d-e m-m d-m

9
1R [21;1100 2f1100 i;l*loo 2foron problem was reduced to one center atomic problehie
2000 2f£*9°° expression for the d-e and d-m terms always contain a ge-
g+oul neric product agr™R. ., where the first factotr") be-
4f01020 . P1P2
= longs to the first atom and the second fad&fbrlpz belongs to
11
1R 4t 000 4f£00 4f‘_‘r+900 fﬂ 4f3+ﬂ the second atom. For the case of two different atoms, in the
4:3;100 2]‘:200 4]‘:§+100 2]‘:1+ﬁ final expression of théterms, one must replace this product
2500 41120 2M24200 o031 by [(rMaRL . s+(r™gR. ], where A designates
2fF 2f111 8faio20 2f01022 y 2[< ) P1P2:B < >B plpz,A]’ . g
4 f22°° s e o+022 guantities related to the first atom aBdjuantities related to
4f2°2° 4f2*911 the second atom. In the case of e-e, e-m, and m-m interac-
1120 1+120 ; ; I I ; .
frins 2101 tions, the generic produdtplszqlqz, which appears in the
454000 f term expressions, needs to be replaced by
o+2 irph I2 I I2 i -
4f%+931 2[Rplpz;Aquqz;B+Rp1p2;Bquq2;A]' In doing so, all the re
2fg+922 sults obtained for the homonuclear case may be easily gen-
2f01022 eralized to the heteronuclear case. A generalization to multi-

electron atoms case is also possible.

From the numerical point of view, the main quantities
interactions are of orde®. Thus one may expect the e-e which have to be computed are tfie! = matrix elements
interaction terms to be dominant. The long-range coefficientsgq. (2.11)], for both real and imaginarﬁ‘;rgumem& They are

K7, Kg, andKy; may be written as radial matrix elements containing Green’s functions. There-
fore, they may be efficiently computed using the Dalgarno-
K;=K®+a?K?, (4.1)  Lewis method[40]. A full description of the numerical ap-

proach adopted by us was presented in Rgg4,41]. The
final numerical results for the long-range interaction between
k(0 202 A (4) , )
Ko=Kg T aKg +a’Kyg", 42 alkali-metal atoms are presented in Sec. VI.
_ 0 21 (2 41, (4
Ku=K{9 + oK + oKLY, (4.3 V. RANGE OF VALIDITY OF THE CASIMIR-POLDER
FORM OF THE INTERACTION POTENTIAL

whereK ), K, andK{y are given only by the e-e inter- The multipolar CP interaction potential was obtained as-
action termsK(?), K¢, andK{? are given by the e-m and suming the long-range approximation, in which the contact
d-e interaction terms, _anb{g"') and K{Y are given by the interaction term [Eq. (1.8)], is neglected in the expression
m-m and d-m interaction terms. We note that the termsyf the PZW HamiltoniaiEq. (1.3)]. In order to establish the
which contribute to the san1éf1m) coefficient are of similar long-range domain where this approximation is valid, one
magnitude. In our model, there are no e-m, m-m, and d-nmust estimate the first-order correction to the energy given
contributions to thé<; long-range coefficient, since the elec- by V. We mention that the functional
tronic spins were not considered. However, by including the
spin-spin interactions the dipole-dipole e-m, m-m, and d-m ..
interactions are allowed, and can be explored further if F[f]:J Jdrldrz
needed. Also, all terms involving magnetic transitions will
be corrected by the spin-spin interactions. We note that 1Mn - - - -
among all terms listed in Table I, only the expressions of X fo fo d1082 SR+ &1r1— &) f(ry.ro)
foooor f1100r F52000 fho00r f1111, @nd foio00 Were men-
tioned previously in the literature. T

It is customary to present the expressiong f terms of
the integrals over products of atomic multipole polarizabil-
ities of imaginary frequencies. However, we prefer to use the o
R'pq matrix elements, defined by E(.11), rather than the F[f]:f dGL L dp,d

(5.9

may by rewritten, after some transformations, as

P2pP1P2

R .
P15 ~Ul.p2

atomic polarizabilities, since not all theterms listed in
Table | may be written in terms of the atomic polarizabilities.
We mention that in our notation the atomitablarizability
may be written as

R .
=+u

X f >

(5.2
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Thus, the expectation value dffrom Eq. (1.8) is given by TABLE Il. The contributions of thd terms from Table | to the
K long-range coefficient&¢he multiplication factors are includgdf
S [ = 2 9 R? 2 the potassium dimer, in a.u. The numbers in square brackets indi-
(V)=4m | du A dpadp, pipa| 5~ —U cate powers of ten.
(ﬁ RIE R _\]? e-e e-m d-e m-m d-m
X =—Uu =+u , (6.3
¢o| P1| 5 ¢o| P2| 5 5.3 K, 2.15Q7] 5.5350]
where ¢, is the atomic ground-state wave function. Al- Ko 2.1199] 4.7572] 6.20Q2] 4.737-5]
though exact numerical evaluation of the integrals in Eq. 3.9548] 2.9432]
(5.9 is possible, we intend to obtain a simple analytical es- 1.6712]
timate of Eq.(5.3. The main contribution to the integrals 1.05Q2]

comes from the overlapping region of the two atomic wave

functions. We assume in our computation that the valu@ of Ki 6.2209] = 1.0434] 9.0223] 1.307-3] 5320 -3]

is large enough, such that the overlapping occurs only in the 3.97§10] 2.5434] 2.1835] 8.42¢ - 3]
asymptotic part of the atomic wave functions. Thus, for the 3.9349]  5.79§3] 7.4434] 3417 -3]
atomic wave functions in E(¢5.3), we use their asymptotic 1.59411] 1.13Q4] 1.1794] 7.229-3]
form. 6.4239] 1.3314]
2.50910] 1.86§4]
. A L 9.52910] 3.4574]
do(r)= Er(lla) lgmar, (5.9 2.0383]
7.53713]
wherea= «/—ZEngo- and.A is the asymptotic algebraic co- 1.2893]
efficient of the normalized atomic ground-state wave func- 9.1143]

tion. Numerical values of for alkali-metal atoms were pre-
sented in Refl42]. Then the integrals over; andp, may be

carried out by using the identity much smaller than the corresponding value of the CP poten-

tial. We denote byR, the smallest value dr for which the

interactions between atoms may be described by the CP
, (5.5 long-range potential form alone. The result of E8.7) may

be generalized to the heteronuclear case by the expression

® 2
2lan—Bp— p— (2/la) —1 -
L dp p““e B r—+1p

wherel'(a,B) is the incomplete gamma function. In our case 1 1
B is proportional toR, and so, the right-hand side of Eq. Jr M—+—-1
. . i1~ . m ap ap
(5.5), we use for its asymptotic expressigh ~e~*, which (v)y~
leads to the approximation 16apap T i+ i+ 1
ap apg 2
A4 R2 (2la)—2
V)~ fdﬁ (——uz) X A2 A2R@lan+ (2lag)~lg=(aptasR (5 g)
16ma? 4
. . where A and B denoted the first and the second atoms, re-
R . R . spectively. Numerical estimates B, are presented in Sec.
Xexr{—Za >~ u —2a §+u . (5.9 VFI). y B P
Further, neglecting tha dependency in the exponential and VI. NUMERICAL RESULTS AND DISCUSSION

integrating overu from 0 to R we obtain the following

. . . Before presenting the final numerical results, we need to
simple estimate of the expectation value(d): P g

address two questions. First, what is the relative importance
2 of the different processes which enter into the description of
/7 1“(——1) the CP long-range interaction potentigee Table )? Sec-
T\« N AR —1g—20R (5.7 ond, how does the CP potential compare with the LvdwW
162 [2 1 ' ' dispersion form of the potential? To clarify our discussion,
I ;+ 2 we choose to study the case of two interacting potassium
atoms, although the final conclusions are valid for any two
This result is similar to the expression of the exchange eninteracting alkali-metal atoms.
ergy obtained by Smirnov and Chibis¢¥3], although it Table Il presents the contributions of tlig¢erms from
does not represent the exchange energy. In the evaluation ®&ble | to theK;, Kg, and K;; long-range coefficients.
the exchange energy one also has to analyze the influence ©hey are computed using the asymptotic expressions df the
the distortion of the wave functions as a result of the atomiaerms presented in Secs. Il and Ill, omitting th&2.Hepen-
interactions, by considering contributions from the higher or-dences. By analyzing Table II, it is clear that in the
ders of perturbation. However, E(.7) gives an upper limit  asymptotic limit the e-e interaction is the dominant one. The
to the exchange energy terms. We use &) in order to  e-m and d-e contributions are corrections of ordérelative
define the long-range domain & by requiring(V) to be to the e-e terms. Thus one may expect their contributions to

V)=
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TABLE lll. The value of thef terms from Table (including the multiplication factojsof the potassium
dimer, in a.u.,, aR=30 a.u. The numbers in square brackets indicate powers of ten.

e-e e-m d-e m-m d-m

-5.229-6] —2.729 - 14]
—6.241-7] —3.079 - 21] —1.886 —15] —6.32Q — 23]
—5.987—-12] —3.926 —16]

—1.87§ —15]

—1.416 —16]
—2.587 - 16] —4.917 —22] —6.33§ — 18] —6.110 —29] —3.738§ — 24]
—9.713 - 13] —6.53§ —19] —4.981 —-17] —7.871—24]
—3.101 - 16] —2.729-22] —1.614—16] —2.424 - 24]
—5.145 - 8] —2.906 —19] —8.366 — 18] —2.516 — 23]
—3.048 — 16] —4.631—17]
—6.279 - 13] —-1.763 - 17]
—3.736 - 8] —2.936 —16]

—5.845 —17]

—2.317-17]

—1.543 - 18]

—4.129-18]

be small. This is indeed the case. The numerical results fromitude smaller tharfygq9. The rest of the e-e, e-m, d-e, the
Table Il show that the e-m and d-e contributions are sevem-m, and d-m terms may be neglected in many practical
orders of magnitude smaller than the e-e contributions. Simiapplications. However, we note that the d-e contributions are
larly, the m-m and d-m contributions, which are correctionsjarger than the e-m contributions, and the d-m interactions
of order a* relative to the e-e terms, are eight orders ofgre larger than the m-m contributions.

magnitude smaller than those of e-m and d-e terms. There- To conclude, the main contribution to the CP long-range
fore, e-m, d-e, m-m, and d-m contributions may be nepotential is given by the e-e multipolar interactions. For

glected. However, we note that.the e-m and d-e contributiongmall values ofR the main contributions are given by the
are of the same order of magnitude, as are the m-m and d-# - ., 5., and f;1;; terms, with a possible small

contributions. Al§q, the differer)t contributiqns to the safne  orrection from the ~oooterm. In the asymptotic limit, all e-e
long-range coefficients, from different multipole terms of themultipolar processes contribute to thelong-range coeffi-
same type of procese-e, etc), are of the same order of gjents. However, in this limit one should realize that the
magnitude. Thus, none of the d-erms may be neglected in rgative importance of th&, and K,, coefficients is very

the final expression of thi long-range coefficients. small, since forR>10° a.u. the potential is essentially de-
In order to study the limit of small values &, in Table  ¢qiiped only by thek , coefficient.

[l we present numerical evaluations of theerms(including
the multiplication factorsfrom Table | atR=30 a.u. Again

1.0 T

the e-e interaction is the dominant one. Among the e-e mul-
tipole interactions we notice that the most important contri-
butiqn comes fronf gg00, f1100s f;m, andfq,11 terms. In 08 L i
the limit of small values oR, we have[31]
Ce -y ]
fooooz_g, (6.7) g
2
Cs % 04 -
2f1106= — =8’ (6.2
02| 4
Cio
2f5500t F111= — —, (6.3
22007 11111 R10 00 L . . . S
10 10 10 10 10
R (a.u.)

where Cg, Cg, and C,, are the dispersion coefficients.
Thus, for small values dR the LvdW dispersion form of the FIG. 3. Relative deviation of the dispersion forfsolid line)
potential is expected to be a good approximation. In additiofigq. (1.2)], and asymptotic fornfdashed ling[Eq. (1.1)], from the

to these terms, the next important contribution is given byCasimir-Polder long-range potential, for a potassium dimer, as a
the fog00 term which, however, is almost six orders of mag- function of R.
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We have computed the CP long-range potential including>10° a.u. the asymptotic expressipiq. (1.1)], becomes a
all the contributions of théterms presented in Table 1. Then good approximation. ' ' .
our numerical results were compared to numerical estimates The numerical results of the CP interaction potential are

order to gauge the importance of the retardation effectsY and VI for heteronuclear cases. The numerical values of
he R, radius are included at the top of each table. Also, in

Also, the numerical results of the CP long-range potential ble VIl we present the numerical values of e K
were compared to the numerical estimates obtained based o P 8. Mo,

the asymptotic form of the potentifiEq. (1.1)], in order to g? ?J:gg&gﬁ::ﬁg?a? ;?Oe;]flsments for all possible combinations
estimate the convergence at large valueRoFigure 3 pre- — The Cp |ong-range interaction potential between two dif-
sents the relative deviation from the exact computation of thgerent alkali-metal atoms has not yet been presented in lit-
dispersion form of the potential as a function Rf(solid  erature. For the homonuclear cases, an alternative numerical
line), and the relative deviation of the asymptotic expressiorestimate was presented in RE81]. There, the numerical

as a function ofR (dashed ling for two interacting potas- computations were based on the Au and Feinj@ ap-
sium atoms. It is clear that f{dR<200 a.u. the LvdW dis- proximation results, which conside(s our notation only
persion form of the potential is a good approximation. Forthe contributions fronf y509, 1100, fgzoo, andfqqqq terms.
values ofR larger than 200 a.u. the contribution of the retar-Moreover, the Au and Feinberg expressig@f] (see also
dation effects becomes essential. Also, we note thatRfor Ref.[31]) for the f 100, fgzoo, andf;,, terms are given by

f :ijduw(ii R2| i — e~ 2Y(45+90u+ 84u?+ 48u3+ 19u*+ 6u®+2u®) (6.9
1100 4507R) 0 ' Gyr/ M2 'R ’ :

TABLE IV. The Casimir-Polder long-range potential as a functiorRpfn a.u., for homonuclear alkali-
metal dimers. The values of ti®&, radius are indicated in the second line. The numbers in square brackets
indicate powers of ten.

Li-Li Na-Na K-K Rb-Rb Cs-Cs
R 28 29 34 35 36

1.q1] —2.95702—03] -3.69685—03] —1.3151]1—-02] —1.75884—02] —3.11436—02]
1.91] —1.67132-04] —1.92064—04] —5.85357—-04] —7.36021—04] —1.19452—03]
2.01] —2.56633—05] —2.84505—05] —8.06745—05] —9.81119—05] —1.51306—04]
3.01] —2.04370—06] —2.20840—06] —5.94144—06] —7.03762—06] —1.04044—05]
5.01] —9.10447-08] -9.71683-08] —2.54939—07] —2.98005—07] —4.31146—07]
7.01] —1.19437—08] —1.27046—08] —3.31194—08] —3.85796—08] —5.54994—08]
1.02] —1.39562—09] —1.48197—09] —3.85109—09] —4.47793—09] —6.42306—09]
1.92] —1.21992—10] —1.29404—10] —3.3583]1—10] —3.90133—10] —5.58795— 10]
2.02] -2.1658[—11] -2.29619—11] —5.9590%—11] —6.92057—11] —9.90873—11]
3.02] -1.89322-12] —2.00558-12] -5.21076—12] —6.05073—12] —8.66371—12]
5.02] —8.74376—14] —9.24649—14] —2.4119%-13] -2.80121—13] —4.01488—13]
7.02] —1.14663—14] -1.20996—14] —3.1723¢—14] —3.6855§—14] —5.28999— 14]
1.03] —1.3187%—-15] -1.3863§—15] —3.66693—15] —4.26269—15] —6.13425— 15]
1.§3] -—1.10761—16] -1.15634—16] —3.10738—16] —3.61637—16] —5.22957— 16]
2.03] —1.87712—17] —1.94565—17] —5.31309—17] —6.19082—17] —8.99834—17]
3.03] —148579—18] —1.51908—18] —4.27508—18] —4.99305—18] —7.3305%— 18]
5.03] —5.64430—20] —5.64488—20] —1.66714—19] —1.95494—19] —2.92016¢—19]
7.03] -6.21091-21] -6.11660—21] —1.86887—20] —2.19810—20] —3.32690— 20]
1.04] —5.7222-22] -555290—-22] —1.75354-21] —2.06885—21] —3.17480—21]
1.94] —3.62764—23] —3.47563—23] —1.13011-22] —1.33728—22] —2.07961—22]
2.04] —5.00891—24] -4.76950—24] —1.5733¢—23] —1.86457—23] —2.9203¢— 23]
3.04] -3.01180—25] —2.85257—-25] —9.53041—25] —1.13102—24] —1.78326—24]
5.04] —8.5585§—27] —8.08053—27] —2.72040—26] —3.23127—26] —5.11619—26]
7.04] —8.15401—28] —7.69142—28] —2.5953]—27] —3.0835P—27] —4.88859—27]
1.05] —6.73076—29] —6.3456§—29] —2.14389—28] —2.54756—28] —4.0417§— 28]
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TABLE V. The Casimir-Polder long-range potential as a functiorRpfn a.u., for heteronuclear alkali-
metal dimers Li-Na, Li-K, Li-Rb, Li-Cs, and Na-K. The values of tRg radius are indicated in the second
line. The numbers in square brackets indicate powers of ten.

Li-Na Li-K Li-Rb Li-Cs Na-K
R 29 31 32 32 32

1.1] —3.30529—03] -6.29110—03] —7.3152]1—-03] —9.82177—03] —6.9776¢—03]
1.91] —1.7892]1—04] —3.1237§—04] —3.50220—04] —4.44753—04] —3.33323—04]
2.01] —2.69806—05] —4.53742—05] —4.99858—05] —6.17220—05] —4.75449—05]
3.01] -2.12123-06] —3.4740]1—-06] —3.77693—06] —4.56425—06] —3.5918]—06]
501] —9.39127-08] —1.51881—07] —1.64047—07] —1.96120—07] —1.56012—07]
7.01] —1.22991—08] —1.98267—08] —2.13779—08] —2.54848—08] —2.03310—08]
1.02] —1.43594—09] —2.31111—-09] —2.48968—09] —2.96366—09] —2.36773—09]
1.92] —1.25451—10] -2.0177§—10] —2.17269—10] —2.58449—10] —2.06611— 10]
2.02] -2.22664—11] -3.58141—11] —3.8558]—11] —4.58587—11] —3.66628—11]
3.02] -194563-12] —3.13132-12] -3.37105—12] —4.00966—12] —3.2043§—12]
5.02] -8.97817—14] -—1.44798-13] —1.55901—13] —1.8555¢—13] — 1.4806%— 13]
7.02] —1.17615-14] —1.90192—14] —2.04814—14] —2.43996—14] —1.94306—14]
1.03] —1.35025—-15] -2.19334—15] —2.36280—15] —2.81930—15] —2.23727—15]
1.93] —1.13026—16] —1.85096—16] —1.99528—16] —2.38778—16] —1.88237—16]
2.03] —1.90886—17] —3.15170—17] —3.3997%—17] —4.08088—17] —3.19524—17]
3.03] —1.50096—18] —2.51635—18] —2.71796—18] —3.28165—18] —2.5359%— 18]
5.03] —5.64137-20] —9.69114—20] —1.04906—19] —1.27919—19] —9.67179—20]
7.03] -6.16139—21] -1.07672—-20] —1.1674%5—20] —1.43408—20] —1.06715—20]
1.04] —5.63591—22] —1.00139—21] —1.0875¢—21] —1.34611—21] —9.85811—22]
1.94] —3.55058—23] —6.40204—23] —6.96370—23] —8.68110—23] —6.26497— 23]
2.04] —4.88760—24] -—8.87689—24] —9.66332—24] —1.20916—23] —8.6612]—24]
3.04] -2.93108-25 —5.35750—25] —5.83633—25] —7.32808—25] —5.2138]—25]
5.04] —8.31609—27] —1.52586—26] —1.66297—26] —2.0925]—26] —1.48263—26]
7.04] —7.91933—28] —1.45472—27] —1.58565—27] —1.99653—27] —1.41285—27]
1.05] —6.5353§—29] —1.20125-28] —1.30946—28] —1.64937—28] —1.1663§—28]

f5 =—deuR1(ii)R1(ii e 2
209 11028 7RM)o M @R/ T T aR
X (630+ 126Qu+ 12157+ 750+ 333u*+ 114u°+ 32u6 + 8u’ + 2u?), (6.5
fim——— | du|R2|i = Ze*2u
M 225 R o 2" aR
X (630+ 126Qu+ 121547+ 7503+ 333u*+ 114u°+ 3208+ 8u” + 2u8), (6.6)

and are different from those provided by the QED formal-given by the sum of all the terms from Table |, the numerical
ism, given in Eqs(3.8), (3.15, and(3.18 respectively. In  differences between these two results are very small. The
the limit of small values oR they obey the same relations relative error given by the Au-Feinberg approximation is
from Eqgs.(6.2) and(6.3). In the limit R— o the Au-Feinberg smaller than 10°. Thus, for many applications the numeri-
approximation obviously is failing to provide the correct ex- cal results from[31] are reliable. Recently Yan, Dalgarno,
pressions for th&Ky and K; long-range coefficients. The and Babkh32] computed the long-range interaction potential
analytical differences between the Au-Feinberg approximabetween two Li atoms using only the contributions of the
tion and the QED results for the CP potential were alsof ;590 and f4150 terms. Their numerical evaluation consists of
pointed out in Refs[21,26. However, as we indicate in a highly accurate computation of the atomic dynamic dipole
Table Il, the termg o000, 1100, Too00: Foooor @Ndfi111pro-  and quadrupole polarizabilities, by employing Hyleraas-type
vide an incomplete result for tH€¢, andK; long-range co- base functions for the three electron problem. It is claimed
efficients. It is interesting to note that despite the major anathat the results of Ref32] are the besab initio estimations
lytical differences between Au-Feinberg approximation andof the fygoo and f119q terms for Li-Li long-range potential.
the complete QED expression of the CP long-range potentiaHowever, by neglecting the contributions of th’lEl200 and
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TABLE VI. The Casimir-Polder long-range potential as a functiorRpfn a.u., for heteronuclear alkali-
metal dimers Na-Rb, Na-Cs, K-Rb, K-Cs, and Rb-Cs. The values d®ghadius are indicated in the second
line. The numbers in the square brackets indicate powers of ten.

Na-Rb Na-Cs K-Rb K-Cs Rb-Cs
R 32 33 34 35 36
1.g1] -—8.09731—-03] —1.08210—-02] —1.52187—-02] -—2.0301%5—02] —2.34204-02]
1.91] —3.73477-04] —4.7299%—-04] —6.56390—04] —8.35214—-04] —9.36752—04]
2.J1] —5.23513—-05] —6.44742—-05] —8.89587—05] —1.10252—-04] —1.21674—04]
3.1] —3.90273—-06] —4.70312—-06] —6.46578—06] —7.84528—-06] —8.54479—-06]
5.1] —1.68402—-07] -—2.00744—-07] -—2.75612—-07] -—3.30839—-07] —3.57943-07]
7.01] —2.1907%—08] —2.60402—08] —3.57429—-08] —4.27837—-08] —4.62078—08]
1.J02] —2.54903—-09] —3.02546—09] —4.15241—-09] —4.96316—09] —5.35554—09]
1.92] —2.22330—-10] —2.63698—10] —3.61940—10] —4.32299—-10] —4.66259—10]
2.02] —3.94464—-11] -—-4.67787—11] -—6.42139—11] -—7.66828—11] —8.26945—11]
3.02] —3.44750-12] —4.08874—12] -—5.61467—-12] -—6.70518—12] —7.23032—-12]
50J2] —1.59319—-13] -—1.89087—13] —2.59913-13] -—3.10562—-13] —3.34907—-13]
7.02] —2.09117—-14] -—2.4843%—14] —3.41911-14] -—4.08856—14] —4.40970—14]
1.03] —2.40867—15] —2.86646—15] —3.9533¢—15] —4.73393—15] —5.10716—15]
193] —2.02806—16] —2.4211%—-16] —3.35204—16] —4.02427—-16] —4.34381-16]
2.03] —3.4450%—17] —4.12624—-17] —5.73489—17] —6.90363—17] —7.45592—-17]
3.03] —2.7380%—18] —3.3000T—18] —4.61995—18] —5.59092—-18] —6.04474—18]
5.03] —1.04671—-19] -—1.27487—-19] -—1.80527—-19] —2.20453—19] —2.38792—-19]
7.03] —1.15689—20] —1.42006—20] —2.02677—20] —2.49206—20] —2.70317-—20]
1.g4] —1.07056—21] —1.32453—21] —1.90466—21] —2.35870—21] —2.56228—21]
1.94] —6.81432—-23] —8.49354—-23] —1.2293]1—22] -—153282-22] -—1.6674%—22]
2.04] —9.42840—24] —1.17968—23] —1.71278—23] —2.14340-23] —2.33339-23]
3.4] —5.67977—25] —7.13137—-25] —1.03822-24] —1.30363—24] —1.42016—24]
5.04] —1.61586—26] —2.03322—26] —2.9648%5—26] —3.73068—26] —4.06592—26]
7.04] —1.54002—-27] —1.93906—27] —2.82890—27] —3.56193—27] —3.88253—27]
1.05] —1.2714%-28] —1.60149—28] —2.33702—28] —2.94366—38] —3.20884—28]

f1111terms an error of 1% is assumed in the final expressiomRef.[32], ranges from 3% for small values Bf to 0.1% for

of the potentialas suggested by Table )Jlat least for small

large values ofR The main difference between these two

values ofR. The relative error between our Computation of Computations is the numerical value of tm dispersion
the CP potential for Li-Li, and that based on the results ofcoefficient generated in our case by a model potential for-

TABLE VII. The values of theK;, Kq, andK,; long-range

malism[34] and in Ref[32] by anab initio computation of
the three electron problem. Kharchenko, Babb, and Dalgarno

coefficients for alkali-metal dimers, in a.u. The numbers in the[33] presented an accurate estimation of fhgy, electric
square bracket indicate powers of ten.

K7 K9 K 11
Li-Li 6.74591[6] 4.15815%8] 3.7230510]
Li-Na 6.548476] 4.693268] 4.5178610]
Li-K 1.204397] 1.075439] 1.1937011]
Li-Rb 1.312947] 1.309459] 1.5211411]
Li-Cs 1.65437] 1.947239] 2.4054711]
Na-Na 6.3568[5] 5.193498] 5.3743410]
Na-K 1.169147] 1.161239] 1.3764511]
Na-Rb 1.274567] 1.398969] 1.7372111]
Na-Cs 1.605977] 2.051319] 2.7139311]
K-K 2.1502§7] 2.514639] 3.3606%511]
K-Rb 2.344157] 2.986069] 4.1737711]
K-Cs 2.953607] 4.293289] 6.3871011]
Rb-Rb 2.5555(7] 3.522069] 5.1548411]
Rb-Cs 3.2200[T7] 5.016509] 7.8305711]
Cs-Cs 4.05729) 7.050009] 1.17785%12]

dipole term for two interacting Na atoms. The authors of
Ref. [33] estimated the dynamic dipole polarizability of Na
by an extended analysis of the available experimental data of
the discrete oscillator strengths and photoionization cross
sections. The final numerical results presented in RBS]

are probably the best empirical estimates for thgyterm.

We emphasize that thig, term may approximate the CP
potential only at very large values & (=10* a.u.). The
relative error between our computation of the CP potential of
Na-Na and that based on the results of R88] is approxi-
matively 4%.

The R, radius (the minimum value ofR for which the
interaction between atoms is still well approximated by the
CP form of the potential alonevas computed such thav),
given by Egs(5.7) and(5.8), is approximatively four orders
of magnitude smaller than the CP potential. In general, the
numerical values oR,, presented in Tables IV, V, and VI
are 50% larger than the LeRoy raditg9],

Rir=2[(r)*+(r3)g?. (6.7)
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Thus theR=R, condition is more restrictive than thR  values ofR, we found that the CP potential is well described
=R, g condition, but it has a more rigorous mathematicalby the electric dipole-dipole, dipole-quadrupole, quadrupole-
support. HoweverR, should not be understood as a thresh-quadrupole, and dipole-octupole interactions which were
old value but rather as a point below which one have tgpreviously mentioned in the literature. Based on a numerical
consider the exchange energy contributions to the interactionomparison we found that the Au-Feinberg approximation
potential. [20] gives reliable results. We were also able to estimate that
the dispersion form of the potential interaction is a good
approximation foR up to several hundred a.u. Analyzing the
contribution of the contact interaction term between the
We have presented a complete analysis of the CP effechtomic charge distributions to the first-order correction to the
including the e-e, e-m, m-m, d-e, and d-m multipole interac-energy, we were able to establish the range of validity of the
tions between two alkali-metal atoms. Based on the PZWEp |ong-range form of the interaction potential. Numerical

muItipoIe form of the interaction Hamiltonian, gengral eX- evaluations of the CP potential were given for all alkali-
pressions for all two-photon processes were established. Exyetal dimers.

plicit analytical forms were derived for all diagrams involved

in the expression oK;, Kg, and K;; long-range coeffi-
cients. Based on a quantitative analysis we have studied the
importance of various two-photon processes which contrib- We thank Professor Turgay Uzer for helpful discussions.
ute to the final expression of the CP long-range potential. W& his work was supported in part by the NSF under Grant No.
found that the main contribution to the long-range coeffi-PHY-9722410, and by the ONR under Grant No. 14-97-1-
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