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Casimir-Polder long-range interaction potentials between alkali-metal atoms

M. Marinescu and L. You
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 6 November 1997; revised manuscript received 14 October 1998!

A complete description of the multipolar Casimir-Polder effects between two alkali-metal atoms in the
ground state is presented. We give both general and particular expressions for the electric-electric, electric-
magnetic, magnetic-magnetic, diamagnetic-electric, and diamagnetic-magnetic two-photon multipole pro-
cesses, many of which have not been discussed previously in literature, to our knowledge. The asymptotic
behavior of the Casimir-Polder potential is studied in terms of theK7 , K9 , andK11 long-range coefficients.
We have established the range of validity of the Casimir-Polder potential by analyzing the first-order correction
to the energy given by the matrix element of the contact interaction term between the atomic charge distribu-
tions. Numerical values for the Casimir-Polder long-range interaction potentials for both homonuclear and
heteronuclear alkali-metal dimers are presented. Comparisons with previous analytical and numerical results
are included.@S1050-2947~99!03102-9#

PACS number~s!: 34.20.Cf, 31.30.Jv, 31.15.Md
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I. INTRODUCTION

Fifty years ago, Casimir and Polder~CP! @1# pointed out
that the true asymptotic behavior of the long-range inter
tion potential between two neutral spherically symmetric
oms is proportional to 1/R7, rather than to 1/R6 as given by
the London–van der Waals~LvdW! dispersion theory. The
CP result is a direct consequence of the retardation effect~in
the electric dipole interaction approximation!. Moreover, the
CP expression of the interaction potential between two id
tical atoms in the ground state@1# reduces, in the limit of
small values ofR, to the well-known LvdW electric dipole
interaction.

Since the pioneering work of CP@1#, substantial theoret
ical efforts have been devoted to this problem. These inv
tigations have resulted in an improved understanding of
CP effect@2–15#. Generalizations to multipolar interaction
among atoms@16–21# and molecules@22–26# have been also
made. Detailed numerical evaluations of the CP interac
have been presented for various atomic systems@27–33#. It
is now widely appreciated that the retardation effects may
well understood in the framework of quantum electrodyna
ics as a two-photon exchange coupling between atomic
molecular systems. Until now, virtually all theoretical inve
tigations of the retarded electric-multipolar interaction b
tween two neutral atoms in the ground state were limited
contributions which, in the limit of small values ofR, reduce
precisely to the LvdW electric multipole interaction
~quadrupole-dipole, quadrupole-quadrupole, and dipo
octupole!.

Recently, Salam and Thirunamachandran@26# pointed out
that the electric~dipole,dipole!-~octupole,octupole! interac-
tion leads to a new contribution given by the case where
of the atoms undergoes two octupole transitions througP
intermediate states. This contribution is in addition to th
involving F intermediate states~which in the limit of small
values ofR is given by the dipole-octupole contribution t
the C10 dispersion coefficient!. This new term, involvingP
intermediate states, has no counterpart in the LvdW form
ism. Moreover, it may be viewed in the limit of small value
PRA 591050-2947/99/59~3!/1936~19!/$15.00
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of R, as a correction proportional toa4 to theC6 dispersion
coefficient, while in the limitR→` it behaves as 1/R11.
Similar to this term, many other terms generated, for
stance, by the~dipole,octupole!-~dipole,dipole! interaction,
~dipole,octupole!-~octupole,dipole! interaction, etc., are
present in a complete description of the multipolar CP effe
None of them have counterparts in a LvdW formalism, a
none have been discussed in literature so far. In additio
the above mentioned electric-electric~e-e! multipolar inter-
actions there are also contributions from electric-magn
~e-m!, magnetic-magnetic~m-m!, diamagnetic-electric~d-e!,
and diamagnetic-magnetic~d-m! multipolar interactions. The
last one, the d-m interaction, has to our knowledge not b
studied before. For e-m, m-m, and d-e interactions,
dipole-dipole contributions have been studied in the gen
context of long-range intermolecular forces@4,9,10,19,24#.
Important results have been also obtained for the case of
hydrogen atoms@8# by including hyperfine interactions. In
general, one may conclude that the CP interaction poten
including all multipolar interactions, behaves in the limitR
→` as

V~R!52
K7

R7
2

K9

R9
2

K11

R11
2•••, ~1.1!

where K7 , K9 , and K11 have been the long-range coeffi
cients, while in the limit of small values ofR it behaves as

V~R!52
C6

R6
2

C8

R8
2

C10

R10
2•••, ~1.2!

where theC6 , C8 , and C10 coefficients are, up to correc
tions of ordera2, a4, etc. (a is the fine structure constant!,
the dispersion coefficients.

While the dispersion coefficientsC have been well stud-
ied, the long-range coefficientsK are not as well known, and
the complete form of the multipolar CP interaction potent
is missing. We have undertaken this investigation in light
recent advances in ultracold atomic physics. Although
1936 ©1999 The American Physical Society
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PRA 59 1937CASIMIR-POLDER LONG-RANGE INTERACTION . . .
retardation effects are small in comparison to the dispers
forces, they may be important in describing atomic proces
at very low temperature.

Our entire analysis of the multipolar CP interaction w
be focused on the particular case of alkali-metal atoms,
though an extension to other families of atoms and molec
is obvious. We will systematically investigate all two-photo
e-e, e-m, m-m, d-e, and d-m multipolar processes. Spe
attention will be directed toward processes which in the lim
R→` contribute to theK7 , K9 , andK11 long-range coeffi-
cients. We intend to establish expressions for the long-ra
interaction potentials between alkali-metal atoms suitable
explicit numerical evaluations. We choose to describe
alkali-metal atoms by single-active electron model potent
@34#, since the core excitation processes are unlikely to
important in the description of the long-range atomic int
actions~no overlapping between the atomic charge distrib
tions is assumed!. We also neglect the interaction betwe
electronic and nuclear spins. These hyperfine interact
may become relatively important in describing magnetic
teractions@8# and their consequences will be discussed e
where. We adopt the Power-Zienau-Woolley~PZW! repre-
sentation @2,35–38# for the long-range interaction
Hamiltonian in a multipolar expansion form,

H5
p1

2

2
1VA~r 1!1(

n
Q~n!~RW A ,rW1!1a(

n
M ~n!~RW A ,rW1!

1a2(
n,m

D ~n,m!~RW A ,rW1!1
p2

2

2
1VB~r 2!

1(
n

Q~n!~RW B ,rW2!1a(
n

M ~n!~RW B ,rW2!

1a2(
n,m

D ~n,m!~RW B ,rW2!1V~RW ,rW1 ,rW2!1HR , ~1.3!

where

Q~n!~RW ,rW !5
i n11

~n11!!(kWl
S 2pv

L3 D 1/2

~rW•êkWl!~rW•kW !n

3@akWleikW•RW 1~21!n11H.c.# ~1.4!

are the electric multipoles;

M ~n!~RW ,rW !5LW •MW ~n!1MW ~n!
•LW , ~1.5!

with

MW ~n!~RW ,rW !5
i n11

2~n12!n! (
kWl

S 2pv

L3 D 1/2

b̂kWl~rW•kW !n

3@akWleikW•RW 1~21!n11H.c.#, ~1.6!

are the magnetic multipoles,

D ~n,m!~RW ,rW !52~MW ~n!3rW !•~MW ~m!3rW !; ~1.7!

are the diamagnetic multipoles;
n
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V~RW ,rW1 ,rW2!54prW1•rW2E
0

1E
0

1

dj1dj2d~RW 2j1rW11j2rW2!,

~1.8!

is the contact interaction term between the two atomic cha
distributions; andHR is the free radiation field Hamiltonian
akWl† andakWl are the photon creation and annihilation ope
tors, êkWl , where l51 and 2 are the polarization vector
b̂kWl5êkWl3 k̂, RW A and RW B are the position vectors of th
nucleus relative to the laboratory frame,RW 5RW A2RW B is the
internuclear vector, andrW1 andrW2 are the position vectors o
the electrons relative to the nucleus. As usual, the radia
field satisfies periodic boundary conditions at the sides o
cube of edgeL. Later L will be made infinite and the sum
over the discrete values ofkW will be replaced by an integra
over kW according to (2p/L)3(kW→*dkW . We use the atomic
units (e5me5\51).

Since we are interested in studying the long-range par
the interaction potential, no overlapping between the ato
charge distributions is assumed. Thus the contact interac
termV in Eq. ~1.3! may be neglected. The long-range inte

FIG. 1. Three topologically distinct two-photon diamagnet
electric ~diamagnetic-magnetic! diagrams. The other three may b
obtained by a mirror inversion.
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1938 PRA 59M. MARINESCU AND L. YOU
action potential may be determined by perturbatively solv
the eigenvalue problem for Eq.~1.3!, where the perturbation
is given by the sums of electric, magnetic, and diamagn
multipoles. The order of relevant multipoles which enter
our final computation will be decided in the perturbati
procedure by our desire to evaluate only terms contribu
in the large separation limit to theK7 , K9 , andK11 long-
range coefficients. The perturbation procedure is carried
up to the fourth order, retaining all terms proportional toe4.
In atomic units,e51 and so the electronic charge is not
visible quantity in our notations. However, one should b
in mind that in Eq.~1.3! the electric and magnetic multipole
are multiplied bye while the diamagnetic multipoles ar
multiplied by e2. Furthermore, onlyR-dependent terms wil
be considered. Other terms, such as those contributing to
atomic self-energies, were eliminated, since the interac
potential between atoms is given by the difference of
interaction energies at a givenR and at infinity. The two-
photon exchange processes between atoms are describ
terms of time-ordered diagrams. One may notice that th
are no contributions proportional toe, e2, ande3, and there
are no contributions from the first and second order of p
turbation. The d-e and d-m processes~which occur in the
third order of perturbation! are presented in Sec. II. The e-
e-m, and m-m multipolar interactions~which occur in the
fourth order of perturbation! are presented in Sec. III. Th
complete picture of the two-photon interactions which en
in our final description of the CP long-range interaction p
tential is presented in Sec. IV. Section V presents a sim
criterion for establishing the long-range domain of the tw
atom interaction~the minimum value ofR for which the
interaction potential is well approximated by the CP expr
sion alone!. This criterion is based on the analyses of t
first-order perturbation matrix element of the contact inter
tion between atomic charge distributions. It is intended
substitute the LeRoy radius criterion@39# in a more rigorous
way. The numerical results and discussions are presente
Sec. VI. A detailed quantitative analysis of different pr
cesses involved in the CP long-range expression of the in
g

ic

g

ut

r

he
n
e

d in
re

r-

r
-
le
-

-

-
o

in

r-

action potential is carried out for the particular case of t
interacting potassium atoms. Numerical results for the lo
range interaction potentials are presented for all alkali-m
dimers, including the heteronuclear cases. Discussions a
the range of validity of the LvdW dispersion form of th
interaction potential are also included. Section VII prese
our conclusions.

II. DIAMAGNETIC-ELECTRIC AND DIAMAGNETIC-
MAGNETIC MULTIPOLAR INTERACTIONS

d-e and d-m multipolar couplings between atoms occu
the third order of perturbation by matrix elements contain
one diamagnetic multipoleD (n,m) @Eq. ~1.7!#, and two elec-
tric @Eq. ~1.4!#, or two magnetic@Eq. ~1.5!#, multipoles, re-
spectively. These matrix elements may be represented
two-photon time-ordered diagrams, where the diamagn
vertex is a two-photon vertex. There are six topological d
tinct diagrams in total. Three of them are presented in Fig
The other three are similar, but with the diamagnetic ver
owned by the other atom~mirror symmetry!. We analyze all
multipolar interactions which contribute to theK7 , K9 , and
K11 long-range coefficients. We start by establishing the g
eral expression of the d-e~d-m! interaction involving one
(p1 ,p2)-order diamagnetic multipole and two (q1 ,q2)-order
electric ~magnetic! multipoles. For convenience, we deno
the electric multipoles~of order q) by letters ~q! and the
multipoles~of orderp) which involve magnetic interaction
by underscored letters (p). Consequently, a diamagnet
multipole of orderp11p2 will be denoted by (p1 ,p2).

A. Diamagnetic-electric interaction

The three diagrams from Fig. 1, with the first photo
emitted ~absorbed! in a p1 diamagnetic mode by the firs
atom and absorbed~emitted! via aq1 electric multipole tran-
sition by the second atom, have similar expressions and
may be studied together. The sum of their contributions
given by
rt
f p11p2q1q2
5

~21!q11q2i p11p21q11q2a2

2~p112!p1! ~p212!p2! ~q111!! ~q211!!
^r p11p212&

3(
n2l 2

(
kW1kW2

2pv1

L3

2pv2

L3
k1

p11q1k2
p21q2eikW1•RW eikW2•RW

1

Dn2l 2

~ng0ur q211un2l 2!~n2l 2ur q111ung0!

3 (
l1l2m2

^00u~ ê2• r̂ !~ k̂2• r̂ !q2u l 2m2&^ l 2m2u~ ê1• r̂ !~ k̂1• r̂ !q1u00&

3^00u@ b̂1•b̂22~ b̂1• r̂ !~ b̂2• r̂ !#~ k̂1• r̂ !p1~ k̂2• r̂ !p2u00&, ~2.1!

where the electronic radial and angular parts were factored and

1

Dnl
5

1

Dnl1v1
F 1

v11v2
2

1

v12v2
G1

1

Dnl1v2
F 1

v11v2
1

1

v12v2
G , ~2.2!

whereDnl5Enl2Eng0 is the atomic excitation energy from the ground state to thenl energy level. We have used the sho

notation ê1(2) for êkW1(2)l1(2)
and b̂1(2) for b̂kW1(2)l1(2)

. The radial matrix elements are denoted by (u u ), while the angular

matrix elements are denoted by^ u u &. The atomic states are denoted byunlm&, where ung00& is the ground state.̂r n&
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denotes the radial matrix element (ng0ur nung0) ~the average ofr n in the ground state!. We note thatf p11p2q1q2
is zero if

p11p2 or q11q2 are odd quantities, according to the atomic multipole transition selection rules~since the initial and final
atomic states are identical!. We start the computation off p11p2q1q2

by analyzing the triple sum over photon polarizationsl1

andl2 and the atomic magnetic quantum numberm2 from Eq. ~2.1!. It may be rewritten as

Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

DE @d i 0 j 0
Qt,i 1••• i q2

,r 1•••r p2

~p21q211!
~ k̂2!Qt, j 1••• j q1

,s1•••sp1

~p11q111!
~ k̂1!2Qi 0••• i q2

,r 1•••r p2

~p21q211!
~ k̂2!Qj 0••• j q1

,s1•••sp1

~p11q111!
~ k̂1!#

2e j 0r 0t2
e j 0s0t1

Ti 0••• i q2
,r 0•••r p2

, j 0••• j q1
,s0•••sp1

DE Qt2 ,i 1••• i q2
,r 1•••r p2

~p21q211!
~ k̂2!Qt1 , j 1••• j q1

,s1•••sp1

~p11q111!
~ k̂1!, ~2.3!

where

Qi 1••• i p , j 1••• j q
~p1q! ~ k̂!5 k̂i 1

••• k̂i p
k̂ j 1

••• k̂ j q
~2.4!

is a tensor of orderp1q, with k̂i the i th Cartesian component of thek̂ unit vector, and

Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

DE 5Dr 1•••r p2
,s1•••sp1

~00!~00! (
m2

Di 0••• i q2

~00!~ l 2m2!Dj 0••• j q1

~ l 2m2!~00!
~2.5!

is a tensor of orderp11p21q11q212, where

Di 1••• i n

~ l 1m1!~ l 2m2!
5^ l 1m1uQi 1••• i n

~n! ~ r̂ !u l 2m2& ~2.6!

is a tensor of ordern. In Eq. ~2.3! the Einstein summation convention over repeated indices is assumed.e i jk is the total
antisymmetric unit tensor. Replacing the sum over the discrete values ofkW1 andkW2 by integrals in Eq.~2.1!, the integration
over the directions ofkW1 andkW2 may be formally computed by introducing the quantity:

Pi 1••• i n
~n! ~avR![

1

2pE dVkWQi 1••• i n
~n! ~ k̂!eikW•RW , ~2.7!

whereP (n) is a tensor of ordern which depend onavR ~in a.u.,k5av). It can by shown thatP (n) has the structure

Pi 1••• i n
~n! ~u!5eiuQ i 1••• i n

~n! S 1

iu D1c.c., ~2.8!

whereQ i 1••• i n
(n) is a polynomial of ordern with real coefficients. Then the integrals overv1 andv2 may be rotated into the

complex plane along the imaginary axis. In doing this, one may notice that one of the integrals disappears in favo
residue of the integrand at the simple polev15v2 @see Eq.~2.2!#. After some algebraic transformations, the final express
of f p11p2q1q2

is given by

f p11p2q1q2
52

a

2p

Kp1p2q1q2

Rp11p21q11q217
^r p11p212&

3(
l
E

0

`

du up11p21q11q216Rq111q211
l S i

u

aRDe22u$Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

DE

3@d i 0 j 0
Q t,i 1••• i q2

,r 1•••r p2

~p21q211!
Q t, j 1••• j q1

,s1•••sp1

~p11q111!
2Q i 0••• i q2

,r 1•••r p2

~p21q211!
Q j 0••• j q1

,s1•••sp1

~p11q111!
#

2e i 0r 0t2
e j 0s0t1

Ti 0••• i q2
,r 0•••r p2

, j 0••• j q1
,s0•••sp1

DE Q t2 ,i 1••• i q2
,r 1•••r p2

~p21q211!
Q t1 , j 1••• j q1

,s1•••sp1

~p11q111!
%, ~2.9!
n-

e

where the argument of theQ polynomials is21/u and

Kp1p2q1q2
5@~p112!p1! ~p212!p2! ~q111!! ~q211!! #21,

~2.10!

R pq
l ~ iv!5Re@~ng0ur pgl~ iv!r qung0!#, ~2.11!
wheregl is the radial Green’s function for angular mome
tum l. To this end, specific expressions off p11p2q1q2

, for

given values ofp1 , p2 , q1 , andq2 , may be obtained using
MATHEMATICA , since both theTDE tensor@Eq. ~2.5!#, and the
Q polynomials @Eq. ~2.8!#, may be easily generated. Th
summation overl in Eq. ~2.9! involves only a finite number
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of terms, and the actual relevant values ofl may be estab-
lished at the outset by analyzing the selection rules of ato
multipole transitions. In the limitR→` the f p11p2q1q2

quan-

tities behave as 1/Rp11p21q11q217 with the full expression
given by Eq.~2.9! with Rq111q211

l evaluated atu50. Then,

only the f 01000 term will contribute to theK7 coefficient. It
is given by

f 0100052
a

18pR7
^r 2&E

0

`

du u2R 11
1 S 2 i

u

aRDe22u~11u!2.

~2.12!

In the limit R→`, it becomes

f 0100052
7a

72pR7
^r 2&R 11

1 ~0!. ~2.13!

For theK9 coefficient we have to consider all terms whic
satisfy the conditionsp11p21q11q252, p11p25even,
and q11q25even. They are f 11100, f 21000

5 f 01200, f 01011, and f 010205 f 01002. The equalities are
due to the general symmetryf p11p2q1q2

5 f p21p1q2q1
. This is

a result of the fact that the set of diagrams which contrib
to the expression off p21p1q2q1

may be obtained from the se

of diagrams corresponding tof p11p2q1q2
by interchanging

the label of the photon lines. Finally, we have

f 1110052
a

405pR9
^r 4&E

0

`

du u2R 11
1 S i

u

aRDe22u

3~21142u135u2114u314u4!, ~2.14!

f 2100052
a

180pR9
^r 4&E

0

`

du u4R 11
1 S i

u

aRDe22u~11u!2,

~2.15!
ic

e

f 0101152
a

360pR9
^r 2&E

0

`

du u2R 22
2 S i

u

aRDe22u

3~313u1u2!2, ~2.16!

f 0102052
a

540pR9
^r 2&E

0

`

du u4R 31
1 S i

u

aRDe22u~11u!2.

~2.17!

In the asymptotic limit,R→`, the f terms have the follow-
ing expressions:

f 1110052
32a

135pR9
^r 4&R 11

1 ~0!, ~2.18!

f 2100052
9a

160pR9
^r 4&R 11

1 ~0!, ~2.19!

f 0101152
33a

320pR9
^r 2&R 22

2 ~0!, ~2.20!

f 0102052
3a

169pR9
^r 2&R 31

1 ~0!. ~2.21!

For theK11 coefficient we have to consider all terms satisf
ing the conditionp11p21q11q254, with p11p2 and q1
1q2 even quantities. They aref 410005 f 01400, f 31100

5 f 11300, f 21200, f 210205 f 012025 f 210025 f 01220, f 21011

5 f 01211, f 111205 f 11102, f 11111, f 010405 f 01004, f 01031

5 f 01013, and f 01022. Their expressions are given by
f 4100052
a

5040pR11
^r 6&E

0

`

du u6R 11
1 S i

u

aRDe22u~11u!2, ~2.22!

f 3110052
a

9450pR11
^r 6&E

0

`

du u4R 11
1 S i

u

aRDe22u~33166u155u2122u316u4!, ~2.23!

f 2120052
a

10080pR11
^r 6&E

0

`

du u2R 11
1 S i

u

aRDe22u~4501900u1810u21420u31139u4138u519u6!, ~2.24!

f 2102052
a

5400pR11
^r 4&E

0

`

du u6R 31
1 S i

u

aRDe22u~11u!2, ~2.25!
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f 2101152
a

3600pR11
^r 4&E

0

`

du u4R 22
2 S i

u

aRDe22u~313u1u2!2, ~2.26!

f 1112052
a

12150pR11
^r 4&E

0

`

du u4R 31
1 S i

u

aRDe22u~21142u135u2114u314u4!, ~2.27!

f 1111152
a

8100pR11
^r 4&E

0

`

du u2R 22
2 S i

u

aRDe22u~4951990u1891u21462u31147u4130u514u6!, ~2.28!

f 0104052
a

25200pR11
^r 2&E

0

`

du u6R 51
1 S i

u

aRDe22u~11u!2, ~2.29!

f 0103152
a

10080pR11
^r 2&E

0

`

du u4R 42
2 S i

u

aRDe22u~313u1u2!2. ~2.30!
a

for

1,
In the expression off 01022 @Eq. ~2.9!#, l is allowed to take
two values 1 and 3. Thus we write its expression asf 01022

5 f 01022
P 1 f 01022

F , where f 01022
P is the contribution forl

51 and f 01022
F is the contribution forl 53. Then we have

f 01022
P 52

a

16200pR11
^r 2&

3E
0

`

du u6R 33
1 S i

u

aRDe22u~11u!2, ~2.31!

f 01022
F 52

a

14175pR11
^r 2&

3E
0

`

du u2R 33
3 S i

u

aRDe22u~15115u16u21u3!.

~2.32!

In the asymptotic limit,R→`, these terms become

f 4100052
11a

448pR11
^r 6&R 11

1 ~0!, ~2.33!

f 3110052
101a

170pR11
^r 6&R 11

1 ~0!, ~2.34!

f 2120052
363a

896pR11
^r 6&R 11

1 ~0!, ~2.35!

f 2102052
11a

480pR11
^r 4&R 31

1 ~0!, ~2.36!
f 2101152
143a

1600pR11
^r 4&R 22

2 ~0!, ~2.37!

f 1112052
49a

675pR11
^r 4&R 31

1 ~0!, ~2.38!

f 1111152
209a

450pR11
^r 4&R 22

2 ~0!, ~2.39!

f 0104052
11a

2240pR11
^r 2&R 42

2 ~0!, ~2.40!

f 0103152
143a

4480pR11
^r 2&R 42

2 ~0!, ~2.41!

f 01022
P 52

11a

1440pR11
^r 2&R 33

1 ~0!, ~2.42!

f 01022
F 52

143a

1260pR11
^r 2&R 33

3 ~0!. ~2.43!

B. Diamagnetic-magnetic interaction

The general expression for the d-m interaction involving
(p1 ,p2)-order diamagnetic multipole@Eq. ~1.7!#, and twoq1

andq2 magnetic multipoles, Eq.~1.5!, may be obtained fol-
lowing a procedure similar to that discussed in Sec. II A
the d-e interaction. The final expression for thef p11p2q1q2

term ~the sum of the contribution of diagrams from Fig.
but with q1 andq2 magnetic multipole vertexes! is given by



1942 PRA 59M. MARINESCU AND L. YOU
f p11p2q1q2
52

a3

8p

Kp1p2q1q2

Rp11p21q11q217
^r p11p212&(

l
E

0

`

du up11p21q11q216Rp1p2

l S i
u

aRDe22u$Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

DM

3@d i 0 j 0
Q i 1••• i q2

,r 1•••r p2

~p21q2!
Q j 1••• j q1

,s1•••sp1

~p11q1!
2Q i 1••• i q2

,r 1•••r p2

~p21q2!
Q j 0••• j q1

,i 0 ,s1•••sp1

~p11q112!

2Q i 0••• i q2
, j 0 ,r 1•••r p2

~p21q212!
Q j 1••• j q1

,s1•••sp1

~p11q1!
1Q i 0••• i q2

,t,r 1•••r p2

~p21q212!
Q j 0••• j q1

,t,s1•••sp1

~p11q112!
#

2Ti 0••• i q2
,r 0•••r p2

, j 0••• j q1
,s0•••sp1

DM @d i 0r 0
d j 0s0

Q i 1••• i q2
,r 1•••r p2

~p21q2!
Q j 1••• j q1

,s1•••sp1

~p11q1!

2d i 0r 0
Q i 1••• i q2

,r 1•••r p2

~p21q2!
Q j 0••• j q1

,s0•••sp1

~p11q112!
2d j 0s0

Q i 0••• i q2
,r 0•••r p2

~p21q212!
Q j 1••• j q1

,s1•••sp1

~p11q1!

1Q i 0••• i q2
,r 0•••r p2

~p21q212!
Q j 0••• j q1

,s0•••sp1

~p11q112!
#%, ~2.44!
it

e

in
e

e

where

Kp1p2q1q2
5@~p112!p1! ~p212!p2!

3~q112!q1! ~q212!q2! #21, ~2.45!

and

Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

DM

5D r 1•••r p2
,s1•••sp1

~00!~00! (
m
L i 0••• i q2

~00!~ lm!L j 0••• j q1

~ lm!~00! ,

~2.46!

is a tensor of orderp11p21q11q212 and

L i 0••• i n

~ l 1m1!~ l 2m2!
5^ l 1m1u$Li 0

,Q i 1••• i n
~n! ~ r̂ !%u l 1m1& ~2.47!

is a tensor of ordern11, whereLi is the i th Cartesian com-
ponent of the atomic orbital angular momentumLW and $ , %
denotes the anticommutator. In the asymptotic lim
f p11p2q1q2

behaves as 1/Rp11p21q11q217, where the full ex-

pression is given by Eq.~2.44! for Rp1p2

l evaluated atu

50. We mention that thef p11p2q1q2
terms are zero ifq1

50 or q250, since theL i 0
(00)(lm) tensor is zero and so are th

correspondingTDE tensors. Thus there is no contribution
1/R7 from the d-m interaction in the asymptotic limit. For th
K9 coefficient only one termf 01011 contributes. It has the
following expression:

f 0101152
a3

648pR9
^r 2&E

0

`

du u4R 11
1 S i

u

aRDe22u~11u!2.

~2.48!

In the limit R→`, it is given by

f 0101152
a3

64pR9
^r 2&R 11

1 ~0!. ~2.49!

For the K11 coefficient, the contributing terms satisfy th
conditions p11p21q11q254, p11p25even, q11q2
,

5even, q1>1, and q2>1. They are
f 21011 , f 11111 , f 010315 f 01013 , and f 01022 , and their
expressions are given by

f 2101152
a3

6480pR9
^r 4&E

0

`

du u6R 11
1 S i

u

aRDe22u~11u!2,

~2.50!

f 1111152
a3

14580pR9
^r 4&E

0

`

du u4R 11
1 S i

u

aRDe22u

3~21142u135u2114u314u4!, ~2.51!

f 0103152
a3

10800pR9
^r 2&

3E
0

`

du u6R 31
1 S i

u

aRDe22u~11u!2, ~2.52!

f 0102252
a3

3840pR9
^r 2&

3E
0

`

du u4R 22
2 S i

u

aRDe22u~313u1u2!2.

~2.53!

In the asymptotic limit,R→`, these become

f 2101152
11a3

576pR11
^r 4&R 11

1 ~0!, ~2.54!

f 1111152
49a3

810pR11
^r 4&R 11

1 ~0!, ~2.55!

f 0103152
11a3

960pR11
^r 2&R 31

1 ~0!, ~2.56!

f 0102252
429a3

5120pR11
^r 2&R 22

2 ~0!. ~2.57!
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We note that the contribution of the d-m terms isa2 times
smaller than that of the d-e terms.

III. ELECTRIC-ELECTRIC, ELECTRIC-MAGNETIC, AND
MAGNETIC-MAGNETIC INTERACTIONS

The e-e, e-m, and m-m multipolar coupling between t
atoms in the ground state occur in the fourth order of per
bation as a result of two-photon exchange. The perturba
matrix elements involving four electric and magnetic mu
poles operators may be represented by two-photon ti
ordered diagrams. There are 12 topologically distinct d
grams in total. Six of them are presented in Fig. 2. The ot
six are the mirror symmetric versions of those from Fig.
As in Sec. II we will investigate all diagrams which contrib
r-
n

e-
-
r

.

ute to theK7 , K9 , and K11 long-range coefficients. Thus
we start by studying the general expressions for e-e, e-m,
m-m multipole interactions1.

A. Electric-electric interactions

In this case, the vertexes of all twelve diagrams~six of
which are presented in Fig. 2! correspond to electric multi-
poles. One may easily show that the twelve diagrams wh
involve p1-, p2-, q1-, and q2-order electric multipoles,
such that the first photon is emitted and absorbed as a re
of p1 andq1 electric multipole atomic transitions, and whe
the first atom is experiencing onlyp1 andp2 electric multi-
polar transitions, have similar expressions and they may
studied together. The sum of their contribution is given b
-e
f p1p2q1q2
52

~21!q11q2i p11p21q11q2

~p111!! ~p211!! ~q111!! ~q211!!

3 (
n1l 1n2l 2

(
kW1kW2

2pv1

L3

2pv2

L3
k1

p11q1k2
p21q2eikW1•RW eikW2•RW

3
1

Dn1l 1n2l 2

~ng0ur q211un2l 2!~n2l 2ur q111ung0!~ng0ur p211un2l 2!~n2l 2ur p111ung0!

3 (
l1l2m1m2

^00u~ ê2• r̂ !~ k̂2• r̂ !q2u l 2m2&^ l 2m2u~ ê1• r̂ !~ k̂1• r̂ !q1u00&

3^00u~ ê2• r̂ !~ k̂2• r̂ !p2u l 1m1&^ l 1m1u~ ê1• r̂ !~ k̂1• r̂ !p1u00&, ~3.1!

where the electronic radial and angular part have been factored, and where

1

Dn1l 1n2l 2

52
2

Dn1l 1
2 2Dn2l 2

2 H Dn2l 2

Dn1l 1
1v1

S 1

v11v2
2

1

v12v2
D2

Dn1l 1

Dn2l 2
1v2

S 1

v11v2
1

1

v12v2
D

1
Dn2l 2

Dn1l 1
1v2

S 1

v11v2
1

1

v12v2
D2

Dn1l 1

Dn2l 2
1v1

S 1

v11v2
2

1

v12v2
D J . ~3.2!

Similar notations to those in Eq.~2.1! have been adopted. As in Sec. II we start the analysis of thef p1p2q1q2
terms by rewriting

the sum from Eq.~3.1! over the photon polarizationsl1 andl2 and atomic magnetic quantum numbersm1 andm2 according
to

Ti 0••• i p2
,r 0•••r q2

, j 0••• j q1
,s0•••sp1

EE @d i 0r 0
d j 0s0
Qi 1••• i q2

,r 1•••r p2

~p21q2!
~ k̂2!Qj 1••• j q1

,s1•••sp1

~p11q1!
~ k̂1!

2d i 0r 0
Qi 1••• i q2

,r 1•••r p2

~p21q2!
~ k̂2!Qj 0••• j q1

,s0•••sp1

~p11q112!
~ k̂1!2d j 0s0

Qi 0••• i q2
,r 0•••r p2

~p21q212!
~ k̂2!Qj 1••• j q1

,s1•••sp1

~p11q1!
~ k̂1!

1Qi 0••• i q2
,r 0•••r p2

~p21q212!
~ k̂2!Qj 0••• j q1

,s0•••sp1

~p11q112!
~ k̂1!#, ~3.3!

1An alternative expression for the e-e multipolar interaction was presented in Ref.@26#. However, our general expression of the e
multipolar interaction is different and suitable for final numerical computation.
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where

Ti 0••• i p2
,r 0•••r q2

, j 0••• j q1
,s0•••sp1

EE 5 (
m1m2

D i 0••• i q2

~00!~ l 2m2!D r 0•••r p2

~ l 2m2!~00!D j 0••• j q1

~00!~ l 1m1!D s0•••sp1

~ l 1m1!~00!
~3.4!

is a tensor of orderp11p21q11q214. The tensorsQ, from Eq.~3.3!, andD, from Eq.~3.4!, are defined by Eqs.~2.4! and
~2.6!, respectively. Replacing the sum over the discrete values ofkW1 andkW2 by integrals, the integral over the directions ofkW1

andkW2 may be computed formally in terms of theP tensors defined by Eq.~2.7!. Finally the double integral overv1 andv2
may be rotated into the complex plane along the imaginary axis. In doing so, one may notice that one of the integ
disappear in favor of the residue of the integrand at the simple polev15v2 @see Eq.~3.2!#. The final expression of the
f p1p2q1q2

term is given~after some algebraic transformations! by

f p1p2q1q2
52

2

pa

Kp1p2q1q2

Rp11p21q11q217(l 1l 2
E

0

`

du up11p21q11q216Rp111p211
l 1 S i

u

aRD
3Rq111q211

l 2 S i
u

aRDe22uTi 0••• i p2
,r 0•••r q2

, j 0••• j q1
,s0•••sp1

EE

3@d i 0r 0
d j 0s0

Q i 1••• i q2
,r 1•••r p2

~p21q2!
Q j 1••• j q1

,s1•••sp1

~p11q1!
2d i 0r 0

Q i 1••• i q2
,r 1•••r p2

~p21q2!
Q j 0••• j q1

,s0•••sp1

~p11q112!

2d j 0s0
Q i 0••• i q2

,r 0•••r p2

~p21q212!
Q j 1••• j q1

,s1•••sp1

~p11q1!
1Q i 0••• i q2

,r 0•••r p2

~p21q212!
Q j 0••• j q1

,s0•••sp1

~p11q112!
#, ~3.5!
nt
a
ic

s

e
n

th
o
a
f

.

ic
where theQ polynomials are defined by Eq.~2.8!, and they
enter into Eq.~3.5! with argument21/u. TheR quantities
are defined in Eq.~2.11!. The summations overl 1 and l 2
involve only a finite number of terms. Actually, significa
values ofl 1 and l 2 may be established at the outset by an
lyzing the selection rules for the electric multipole atom
transitions. We note that thef p1p2q1q2

terms are zero unles

p11p21q11q2 is an even quantity. This is a result of th
fact that the atomic initial and final states are identical. O
may also note thatf p1p2q1q2

5 f p2p1q2q1
, since the 12 dia-

grams involved in the latter term may be obtained from
diagrams involved in the first term by interchanging the ph
ton labels. In the special case of identical atoms we also h
f p1p2q1q2

5 f q1q2p1p2
. To this end, explicit expressions o

f p1p2q1q2
for particular values ofp1 , p2 , q1 , andq2 may

be easily obtained from Eq.~3.5! by usingMATHEMATICA . In
the limit R→`, the f p1p2q1q2

term behaves as

1/Rp11p21q11q217 with the full expression given by Eq
~3.5! for R evaluated atu50. Thus for theK7 coefficient
only the f 0000 term contributes. It has the expression

f 000052
4

9paR7E0

`

du FR 11
1 S i

u

aRD G2

3e22u~316u15u212u31u4!, ~3.6!

which in the limit R→` becomes

f 000052
23

9paR7
@R 11

1 ~0!#2. ~3.7!
-

e

e
-
ve

FIG. 2. Six topologically distinct two-photon electric-electr
~electric-magnetic, and magnetic-magnetic! diagrams. The other six
may be obtained by mirror inversion.
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For theK9 coefficient, terms for whichp11p21q11q252
contribute whenp11p2 and q11q2 are even quantities
They are f 11005 f 0011 and f 20005 f 02005 f 00205 f 0002. Their
expressions are given by

f 110052
1

45paR9E0

`

duR 22
2 S i

u

aRDR 11
1 S i

u

aRDe22u

3~901180u1162u2184u3127u416u51u6!,

~3.8!

f 200052
2

135paR9E0

`

du u2R 31
1 S i

u

aRDR 11
1 S i

u

aRDe22u

3~316u15u212u31u4!. ~3.9!

In the limit R→`, Eqs.~3.8! and ~3.9! become
f 110052
177

40paR9
R 22

2 ~0!R 11
1 ~0!, ~3.10!

f 200052
43

180paR9
R 31

1 ~0!R 11
1 ~0!. ~3.11!

For the K11 coefficient, terms for whichp11p21q11q2
54 contribute, whenp11p2 andq11q2 are even quantities
They are f 40005 f 04005 f 00405 f 0004, f 3100 5 f 13005 f 0031
5 f 0013, f 22005 f 0022, f 20205 f 02025 f 02205 f 2002, f 1102
5 f 1120, and f 1111. We note that forf 2200 there are two pos-
sible values forl 1 @in the sum from Eq.~3.5!#: 1 and 3. Thus
we split the f 2200 term as f 22005 f 2200

P 1 f 2200
F , where f 2200

P

corresponds tol 151 and f 2200
F corresponds tol 153. The

expressions of the abovef terms are given by
f 400052
1

3150paR11E0

`

du u4R 51
1 S i

u

aRDR 11
1 S i

u

aRDe22u~316u15u212u31u4!, ~3.12!

f 310052
1

1260paR11E0

`

du u2R 42
2 S i

u

aRDR 11
1 S i

u

aRDe22u~901180u1162u2184u3127u416u51u6!, ~3.13!

f 2200
P 52

1

2025paR11E0

`

du u4R 33
1 S i

u

aRDR 11
1 S i

u

aRDe22u~316u15u212u31u4!, ~3.14!

f 2200
F 52

1

14175paR11E0

`

duR 33
3 S i

u

aRDR 11
1 S i

u

aRDe22u

3~472519450u18775u214950u311863u41486u5190u6112u71u8!, ~3.15!

f 202052
1

2025paR11E0

`

du u4FR 31
1 S i

u

aRD G2

e22u~316u15u212u31u4!, ~3.16!

f 110252
1

1350paR11E0

`

du u2R 22
2 S i

u

aRDR 31
1 S i

u

aRDe22u~901180u1162u2184u3127u416u51u6!, ~3.17!

f 111152
1

900paR11E0

`

du FR 22
2 S i

u

aRD G2

e22u~5040110080u19360u215280u311983u41510u5189u6110u71u8!.

~3.18!
In the limit R→`, they become

f 400052
71

1400paR11
R 51

1 ~0!R 11
1 ~0!, ~3.19!

f 310052
319

560paR11
R 42

2 ~0!R 11
1 ~0!, ~3.20!
f 2200
P 52

71

900paR11
R 33

1 ~0!R 11
1 ~0!, ~3.21!

f 2200
F 52

10582

1575paR11
R 33

3 ~0!R 11
1 ~0!, ~3.22!

f 202052
71

900paR11
@R 31

1 ~0!#2, ~3.23!
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f 110252
319

600paR11
R 22

2 ~0!R 21
1 ~0!, ~3.24!

f 111152
5591

400paR11
@R 22

2 ~0!#2. ~3.25!

B. Electric-magnetic interactions

The e-m interaction terms are given by the same 12
grams~see Fig. 2!, but now two of the vertexes represe
electric multipoles and the other two magnetic multipol
The computation of the e-m interaction diagrams is simila
that for the e-e case. Therefore, only the final results
-

.
o
re

presented here. We note that only the processes where
electric multipole transitions are experienced by the sa
atom give a nonzero contribution. Other processes, where
atoms experience a magnetic multipolar transition follow
by an electric one, or vice versa, cancel each other out
that the overall contribution of these diagrams is zero. Th
by e-m interaction terms we refer only to the case where
of the atoms is emitting or absorbing photons as a resul
electric multipolar transitions and the other atom is abso
ing or emitting photon as a result of magnetic multipo
transitions. The sum of the corresponding 12 diagrams~in
which the first atom experiences only magnetic transitions! is
denoted byf p1p2q1q2

, where the underscore marks the ma
netic multipoles. Its general expression is given by
ibutions
n

d
-

f p1p2q1q2
52

a

2p

Kp1p2q1q2

Rp11p21q11q217(l 1l 2
E

0

`

du up11p21q11q216Rp1p2

l 1 S i
u

aRDRq111q211
l 2 S i

u

aRD
3e22uTi 0••• i q2

,r 1•••r p2
, j 0••• j q1

,s0•••sp1

EM Q i 0••• i q2
,r 1•••r p2

~p21q211!
Q j 0••• j q1

,s1•••sp1

~p11q111! , ~3.26!

where theR quantities are defined by Eq.~2.11!, theKp1p2q1q2
coefficient is defined by Eq.~2.10!, theQ polynomial, which

enter in Eq.~3.26! with argument21/u are defined by Eq.~2.8!, and

Ti 0••• i q2
,r 1•••r p2

, j 0••• j q1
,s1•••sp1

EM 5e i 0r 0t1
e j 0s0t2 (

m1m2

Dt1i 1••• i q2

~00!~ l 2m2!Dt2 j 1••• j q1

~ l 2m2!~00!Lr 0•••r p2

~00!~ l 1m1!Ls0•••sp1

~ l 1m1!~00! , ~3.27!

is a tensor of orderp11p21q11q212 with D andL tensors defined by Eqs.~2.6! and ~2.47!, respectively. In the limitR
→` the f p1p2q1q2

term behaves as 1/Rp11p21q11q217, where the full expression is also given by Eq.~3.26!, but for R
evaluated atu50. We note thatf p1p2q1q2

is zero if p150 or p250, sinceL i 0
(00)(lm) is zero and so isTEM. Also, p11p2 and

q11q2 must be even quantities, since the initial and final atomic states are identical. Therefore, there is no e-m contr
to theK7 coefficient. The first nonzero e-m contribution is given by thef 1100 term to theK9 coefficient. It has the expressio

f 110052
a

81pR9E0

`

du u2FR 11
1 S i

u

aRD G2

~316u15u212u31u4!, ~3.28!

which in the limit R→` becomes

f 110052
43a

81pR9
@R 11

1 ~0!#2. ~3.29!

For theK11 coefficient, terms which satisfy the conditionsp11p21q11q254, p11p2 andq11q2 are even quantities, an
p1>1 andp2>1 contribute. These terms aref 31005 f 1300, f 2200, f 11205 f 1102, and f 1111. They have the following expres
sions:

f 310052
a

1350pR11E0

`

du u4R 31
1 S i

u

aRDR 11
1 S i

u

aRDe22u~316u15u212u31u4!, ~3.30!

f 220052
a

720pR11E0

`

du u2R 11
1 S i

u

aRDR 22
2 S i

u

aRDe22u~901180u1162u2184u3127u416u51u6!, ~3.31!

f 112052
a

2430pR11E0

`

du u4R 31
1 S i

u

aRDR 11
1 S i

u

aRDe22u~316u15u212u31u4!, ~3.32!

f 111152
a

1620pR11E0

`

du u2R 11
1 S i

u

aRDR 22
2 S i

u

aRDe22u~901180u1162u2184u3127u416u51u6!. ~3.33!
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In the limit R→`, they become

f 310052
71a

1296pR11
R 11

1 ~0!R 31
1 ~0!, ~3.34!

f 220052
319a

320pR11
R 11

1 ~0!R 22
2 ~0!, ~3.35!

f 112052
71a

1080pR11
R 11

1 ~0!R 31
1 ~0!, ~3.36!

f 111152
319a

720pR11
R 11

1 ~0!R 22
2 ~0!. ~3.37!

C. Magnetic-magnetic interactions

The m-m interaction is described by the same 12 topologically distinct diagrams~see Fig. 2! involved in the description of
the e-e interaction, but now all four vertexes are given by magnetic multipoles. The sum of the twelve diagrams in
p1 , p2 , q1 , andq2 magnetic multipoles takes the following expression:

f p1p2q1q2
52

a3

8p

Kp1p2q1q2

Rp11p21q11q217(l 1l 2
E

0

`

duup11p21q11q216Rp1p2

l 1 S i
u

aRDRq1q2

l 2 S i
u

aRDe22u

3Ti 0••• i q2
,r 0•••r p2

, j 0••• j q1
,s0•••sp1

MM @d i 0r 0
d j 0s0

Q i 1••• i q2
,r 1•••r p2

~p21q2!
Q j 1••• j q1

,s1•••sp1

~p11q1!
2d i 0r 0

Q i 1••• i q2
,r 1•••r p2

~p21q2!
Q j 0••• j q1

,s0•••sp1

~p11q112!

2d j 0s0
Q i 0••• i q2

,r 0•••r p2

~p21q212!
Q j 1••• j q1

,s1•••sp1

~p11q1!
1Q i 0••• i q2

,r 0•••r p2

~p21q212!
Q j 0••• j q1

,s0•••sp1

~p11q112!
#, ~3.38!
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where theR matrix elements are given by Eq.~2.11!, the
coefficientKp1p2q1q2

is given by Eq.~2.45!, and

Ti 0••• i q2
,r 0•••r p2

, j 0••• j q1
,s0•••sp1

MM

5 (
m1m2

L i 0••• i q2

~00!~ l 2m2!L j 0••• j q1

~ l 2m2!~00!L r 0•••r p2

~00!~ l 1m1!L s0•••sp1

~ l 1m1!~00!

~3.39!

is a tensor ofp11p21q11q214 order, with theL tensors
defined by Eq.~2.47!. The polynomialQ are defined by Eq.
~2.8!, and they enter into Eq.~3.38! with argument21/u.
We note thatf p1p2q1q2

is zero if any ofp1 , p2 , q1 , andq2

is zero, since theL i 0
(00)(lm) tensor is zero and so isTMM.

Also, p11p2 andq11q2 must be even quantities, accordin
to the magnetic multipole selection rules, since the initial a
final atomic states are identical. In the asymptotic limit t
f p1p2q1q2

term behaves as 1/Rp11p21q11q217, while the full

expression is given by Eq.~3.38! for R evaluated atu50.
Thus the m-m interaction will make no contributions to t
K7 and K9 coefficients, since in these cases at least one
the indicesp1 , p2 , q1 , andq2 is zero. The contribution to
theK11 coefficient is given byf 1111 . The explicit expression
of f 1111 is given by
d

of

f 111152
a3

2916pR11E0

`

du u4FR 11
1 S i

u

aRD G2

3e22u~316u15u212u31u4!, ~3.40!

which in the limit R→` becomes

f 111152
71a3

1296pR11
@R 11

1 ~0!#2. ~3.41!

IV. CASIMIR-POLDER POTENTIAL

The final expression of the CP long-range interaction
tential is obtained by adding all e-e, e-m, m-m, d-e, and d
multipolar contributions. In Table I we present all distincf
terms, together with their multiplicity factors, which enter
the final expression of the CP potential, grouped accordin
their asymptotic behavior. Their explicit expressions we
presented in Secs. II and III. The multiplicity factors com
from the number of equivalences for eachf term. For ex-
ample, as we mentioned in Sec. III, sincef 11005 f 0011, in
Table I we report only thef 1100 term with multiplicity 2. All
e-m, d-e, and d-m terms enter with an even multiplici
since the electric multipole transitions, in the first case, a
the diamagnetic multipole transition, in the latter two cas
may occur in the first or second atom. Relative to the
interactions, the contributions of the e-m and d-e interacti
are of ordera2, while the contributions of the m-m and d-m
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interactions are of ordera4. Thus one may expect the e-
interaction terms to be dominant. The long-range coefficie
K7 , K9 , andK11 may be written as

K75K7
~0!1a2K7

~2! , ~4.1!

K95K9
~0!1a2K9

~2!1a4K9
~4! , ~4.2!

K115K11
~0!1a2K11

~2!1a4K11
~4! , ~4.3!

whereK7
(0) , K9

(0) , andK11
(0) are given only by the e-e inter

action terms,K7
(2) , K9

(2) , andK11
(2) are given by the e-m and

d-e interaction terms, andK9
(4) and K11

(4) are given by the
m-m and d-m interaction terms. We note that the ter
which contribute to the sameKn

(m) coefficient are of similar
magnitude. In our model, there are no e-m, m-m, and d
contributions to theK7 long-range coefficient, since the ele
tronic spins were not considered. However, by including
spin-spin interactions the dipole-dipole e-m, m-m, and d
interactions are allowed, and can be explored furthe
needed. Also, all terms involving magnetic transitions w
be corrected by the spin-spin interactions. We note t
among all terms listed in Table I, only the expressions
f 0000, f 1100, f 2200

P , f 2200
F , f 1111, and f 01000 were men-

tioned previously in the literature.
It is customary to present the expressions off in terms of

the integrals over products of atomic multipole polarizab
ities of imaginary frequencies. However, we prefer to use
R pq

l matrix elements, defined by Eq.~2.11!, rather than the
atomic polarizabilities, since not all thef terms listed in
Table I may be written in terms of the atomic polarizabilitie
We mention that in our notation the atomic 2l-polarizability
may be written as

TABLE I. The f terms, together with their multiplicity, which
enter into the final expression of the Casimir-Polder long-range
tential. In the left column we indicate the asymptotic behavior
terms of 1/R powers.

e-e e-m d-e m-m d-m

1/R7 f 0000 2 f 01000

1/R9 2 f 1100 2 f 1100 2 f 11100 2 f 01011

4 f 2000 4 f 21000

2 f 01011

4 f 01020

1/R11 4 f 4000 4 f 3100 4 f 41000 f 1111 4 f 21011

4 f 3100 2 f 2200 4 f 31100 2 f 11111

2 f 2200
P 4 f 1120 2 f 21200 4 f 01031

2 f 2200
F 2 f 1111 8 f 21020 2 f 01022

4 f 2020 4 f 21011

4 f 1120 4 f 11120

f 1111 2 f 11111

4 f 01040

4 f 01031

2 f 01022
P

2 f 01022
F

ts

s

e

if
l
at
f

-
e

.

a l~v!5
2

2l 11
R l l

l ~v!. ~4.4!

The entire formalism developed in the previous sectio
was written for the case of two identical atoms. The exte
sion to the case of two different interacting atoms is simp
In the final expressions for thef terms the atomic contribu
tions are factored~actually the entire two center molecula
problem was reduced to one center atomic problem!. The
expression for the d-e and d-m terms always contain a
neric product aŝ r n&Rp1p2

l , where the first factor̂ r n& be-

longs to the first atom and the second factorRp1p2

l belongs to

the second atom. For the case of two different atoms, in
final expression of thef terms, one must replace this produ
by 1

2 @^r n&ARp1p2 ;B
l 1^r n&BRp1p2 ;A

l #, where A designates

quantities related to the first atom andB quantities related to
the second atom. In the case of e-e, e-m, and m-m inte
tions, the generic productRp1p2

l 1 Rq1q2

l 2 , which appears in the

f term expressions, needs to be replaced
1
2 @Rp1p2 ;A

l 1 Rq1q2 ;B
l 2 1Rp1p2 ;B

l 1 Rq1q2 ;A
l 2 #. In doing so, all the re-

sults obtained for the homonuclear case may be easily g
eralized to the heteronuclear case. A generalization to m
electron atoms case is also possible.

From the numerical point of view, the main quantitie
which have to be computed are theR pq

l matrix elements
@Eq. ~2.11!#, for both real and imaginary arguments. They a
radial matrix elements containing Green’s functions. The
fore, they may be efficiently computed using the Dalgarn
Lewis method@40#. A full description of the numerical ap
proach adopted by us was presented in Refs.@34,41#. The
final numerical results for the long-range interaction betwe
alkali-metal atoms are presented in Sec. VI.

V. RANGE OF VALIDITY OF THE CASIMIR-POLDER
FORM OF THE INTERACTION POTENTIAL

The multipolar CP interaction potential was obtained
suming the long-range approximation, in which the cont
interaction termV @Eq. ~1.8!#, is neglected in the expressio
of the PZW Hamiltonian@Eq. ~1.3!#. In order to establish the
long-range domain where this approximation is valid, o
must estimate the first-order correction to the energy gi
by V. We mention that the functional

F@ f #5E E drW1drW2

3E
0

1E
0

1

dj1dj2 d~RW 1j1rW12j2rW2! f ~rW1 ,rW2!

~5.1!

may by rewritten, after some transformations, as

F@ f #5E duW E
1

`E
1

`

dr1dr2 r1r2

3 f Fr1S RW

2
2uW D ,r2S RW

2
1uW D G . ~5.2!

o-
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Thus, the expectation value ofV from Eq. ~1.8! is given by

^V&54pE duW E
1

`E
1

`

dr1dr2 r1
2r2

2S R2

4
2u2D

3Uf0Fr1S RW

2
2uW D GU2Uf0Fr2S RW

2
1uW D GU2

, ~5.3!

where f0 is the atomic ground-state wave function. A
though exact numerical evaluation of the integrals in E
~5.3! is possible, we intend to obtain a simple analytical
timate of Eq.~5.3!. The main contribution to the integral
comes from the overlapping region of the two atomic wa
functions. We assume in our computation that the value oR
is large enough, such that the overlapping occurs only in
asymptotic part of the atomic wave functions. Thus, for
atomic wave functions in Eq.~5.3!, we use their asymptotic
form,

f0~rW !5
A
4p

r ~1/a!21e2ar , ~5.4!

wherea5A22Eng0, andA is the asymptotic algebraic co
efficient of the normalized atomic ground-state wave fu
tion. Numerical values ofA for alkali-metal atoms were pre
sented in Ref.@42#. Then the integrals overr1 andr2 may be
carried out by using the identity

E
1

`

dr r2/ae2br5b2 ~2/a! 21GS 2

a
11,b D , ~5.5!

whereG(a,b) is the incomplete gamma function. In our ca
b is proportional toR, and so, the right-hand side of Eq
~5.5!, we use for its asymptotic expressionb21e2b, which
leads to the approximation

^V&'
A 4

16pa2E duW S R2

4
2u2D ~2/a!22

3expF22aURW
2

2uWU22aURW
2

1uWUG . ~5.6!

Further, neglecting theuW dependency in the exponential an
integrating overu from 0 to R we obtain the following
simple estimate of the expectation value of^V&:

^V&'
Ap

16a2

GS 2

a
21D

GS 2

a
1

1

2DA
4R~4/a!21e22aR. ~5.7!

This result is similar to the expression of the exchange
ergy obtained by Smirnov and Chibisov@43#, although it
does not represent the exchange energy. In the evaluatio
the exchange energy one also has to analyze the influen
the distortion of the wave functions as a result of the atom
interactions, by considering contributions from the higher
ders of perturbation. However, Eq.~5.7! gives an upper limit
to the exchange energy terms. We use Eq.~5.7! in order to
define the long-range domain ofR by requiring ^V& to be
.
-

e

e
e

-

-

of
of

ic
-

much smaller than the corresponding value of the CP po
tial. We denote byR0 the smallest value ofR for which the
interactions between atoms may be described by the
long-range potential form alone. The result of Eq.~5.7! may
be generalized to the heteronuclear case by the express

^n&'
Ap

16aAaB

GS 1

aA
1

1

aB
21D

GS 1

aA
1

1

aB
1

1

2D
3A A

2A B
2R~2/aA!1~2/aB!21e2~aA1aB!R, ~5.8!

whereA and B denoted the first and the second atoms,
spectively. Numerical estimates forR0 are presented in Sec
VI.

VI. NUMERICAL RESULTS AND DISCUSSION

Before presenting the final numerical results, we need
address two questions. First, what is the relative importa
of the different processes which enter into the description
the CP long-range interaction potential~see Table I!? Sec-
ond, how does the CP potential compare with the Lvd
dispersion form of the potential? To clarify our discussio
we choose to study the case of two interacting potass
atoms, although the final conclusions are valid for any t
interacting alkali-metal atoms.

Table II presents the contributions of thef terms from
Table I to theK7 , K9 , and K11 long-range coefficients
They are computed using the asymptotic expressions of tf
terms presented in Secs. II and III, omitting the 1/Rn depen-
dences. By analyzing Table II, it is clear that in th
asymptotic limit the e-e interaction is the dominant one. T
e-m and d-e contributions are corrections of ordera2 relative
to the e-e terms. Thus one may expect their contribution

TABLE II. The contributions of thef terms from Table I to the
K long-range coefficients~the multiplication factors are included! of
the potassium dimer, in a.u. The numbers in square brackets
cate powers of ten.

e-e e-m d-e m-m d-m

K7 2.150@7# 5.535@0#

K9 2.119@9# 4.757@2# 6.200@2# 4.737@25#

3.955@8# 2.943@2#

1.671@2#

1.050@2#

K11 6.220@9# 1.043@4# 9.022@3# 1.307@23# 5.320@23#

3.976@10# 2.542@4# 2.183@5# 8.426@23#

3.936@9# 5.795@3# 7.443@4# 3.417@23#

1.594@11# 1.130@4# 1.179@4# 7.229@23#

6.423@9# 1.331@4#

2.505@10# 1.868@4#

9.525@10# 3.457@4#

2.038@3#

7.537@3#

1.289@3#

9.110@3#
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TABLE III. The value of thef terms from Table I~including the multiplication factors! of the potassium
dimer, in a.u., atR530 a.u. The numbers in square brackets indicate powers of ten.

e-e e-m d-e m-m d-m

25.229@26# 22.729@214#

26.241@27# 23.075@221# 21.886@215# 26.320@223#

25.987@212# 23.926@216#

21.878@215#

21.416@216#

22.582@216# 24.912@222# 26.338@218# 26.110@229# 23.738@224#

29.713@213# 26.538@219# 24.981@217# 27.871@224#

23.101@216# 22.729@222# 21.614@216# 22.424@224#

25.145@28# 22.906@219# 28.366@218# 22.516@223#

23.048@216# 24.631@217#

26.279@213# 21.763@217#

23.736@28# 22.936@216#

25.845@217#

22.317@217#

21.543@218#

24.129@218#
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be small. This is indeed the case. The numerical results f
Table II show that the e-m and d-e contributions are se
orders of magnitude smaller than the e-e contributions. S
larly, the m-m and d-m contributions, which are correctio
of order a4 relative to the e-e terms, are eight orders
magnitude smaller than those of e-m and d-e terms. Th
fore, e-m, d-e, m-m, and d-m contributions may be n
glected. However, we note that the e-m and d-e contributi
are of the same order of magnitude, as are the m-m and
contributions. Also, the different contributions to the sameK
long-range coefficients, from different multipole terms of t
same type of process~e-e, etc.!, are of the same order o
magnitude. Thus, none of the e-ef terms may be neglected i
the final expression of theK long-range coefficients.

In order to study the limit of small values ofR, in Table
III we present numerical evaluations of thef terms~including
the multiplication factors! from Table I atR530 a.u. Again
the e-e interaction is the dominant one. Among the e-e m
tipole interactions we notice that the most important con
bution comes fromf 0000, f 1100, f 2200

F , and f 1111 terms. In
the limit of small values ofR, we have@31#

f 000052
C6

R6
, ~6.1!

2 f 110052
C8

R8
, ~6.2!

2 f 2200
F 1 f 111152

C10

R10
, ~6.3!

where C6 , C8 , and C10 are the dispersion coefficients
Thus, for small values ofR the LvdW dispersion form of the
potential is expected to be a good approximation. In addit
to these terms, the next important contribution is given
the f 2000 term which, however, is almost six orders of ma
m
n
i-
s
f
e-
-
s

-m

l-
-

n
y

nitude smaller thanf 0000. The rest of the e-e, e-m, d-e, th
m-m, and d-m terms may be neglected in many pract
applications. However, we note that the d-e contributions
larger than the e-m contributions, and the d-m interactio
are larger than the m-m contributions.

To conclude, the main contribution to the CP long-ran
potential is given by the e-e multipolar interactions. F
small values ofR the main contributions are given by th
f 0000, f 1100, f 2200

F , and f 1111 terms, with a possible smal
correction from thef 2000 term. In the asymptotic limit, all e-e
multipolar processes contribute to theK long-range coeffi-
cients. However, in this limit one should realize that t
relative importance of theK9 and K11 coefficients is very
small, since forR.105 a.u. the potential is essentially de
scribed only by theK7 coefficient.

FIG. 3. Relative deviation of the dispersion form~solid line!
@Eq. ~1.2!#, and asymptotic form~dashed line! @Eq. ~1.1!#, from the
Casimir-Polder long-range potential, for a potassium dimer, a
function of R.
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We have computed the CP long-range potential includ
all the contributions of thef terms presented in Table I. The
our numerical results were compared to numerical estim
based on the dispersion form of the potential@Eq. ~1.2!#, in
order to gauge the importance of the retardation effe
Also, the numerical results of the CP long-range poten
were compared to the numerical estimates obtained base
the asymptotic form of the potential@Eq. ~1.1!#, in order to
estimate the convergence at large values ofR. Figure 3 pre-
sents the relative deviation from the exact computation of
dispersion form of the potential as a function ofR ~solid
line!, and the relative deviation of the asymptotic express
as a function ofR ~dashed line!, for two interacting potas-
sium atoms. It is clear that forR,200 a.u. the LvdW dis-
persion form of the potential is a good approximation. F
values ofR larger than 200 a.u. the contribution of the reta
dation effects becomes essential. Also, we note that foR
g

es

s.
l
on

e

n

r
-

.105 a.u. the asymptotic expression@Eq. ~1.1!#, becomes a
good approximation.

The numerical results of the CP interaction potential
presented in Table IV for homonuclear cases, and in Tab
V and VI for heteronuclear cases. The numerical values
the R0 radius are included at the top of each table. Also,
Table VII we present the numerical values of theK7 , K9 ,
andK11 long-range coefficients for all possible combinatio
of two alkali-metal atoms.

The CP long-range interaction potential between two d
ferent alkali-metal atoms has not yet been presented in
erature. For the homonuclear cases, an alternative nume
estimate was presented in Ref.@31#. There, the numerica
computations were based on the Au and Feinberg@20# ap-
proximation results, which considers~in our notation! only
the contributions fromf 0000, f 1100, f 2200

F , and f 1111 terms.
Moreover, the Au and Feinberg expressions@20# ~see also
Ref. @31#! for the f 1100, f 2200

F , and f 1111 terms are given by
f 11005
2

45apR9E0

`

duR 11
1 S i

u

aRDR 22
2 S i

u

aRDe22u~45190u184u2148u3119u416u512u6!, ~6.4!

TABLE IV. The Casimir-Polder long-range potential as a function ofR, in a.u., for homonuclear alkali-
metal dimers. The values of theR0 radius are indicated in the second line. The numbers in square brackets
indicate powers of ten.

R
Li-Li
28

Na-Na
29

K-K
34

Rb-Rb
35

Cs-Cs
36

1.0@1# 22.95702@203# 23.69685@203# 21.31511@202# 21.75884@202# 23.11436@202#

1.5@1# 21.67132@204# 21.92064@204# 25.85357@204# 27.36021@204# 21.19452@203#

2.0@1# 22.56633@205# 22.84505@205# 28.06745@205# 29.81119@205# 21.51306@204#

3.0@1# 22.04370@206# 22.20840@206# 25.94144@206# 27.03762@206# 21.04044@205#

5.0@1# 29.10442@208# 29.71683@208# 22.54939@207# 22.98005@207# 24.31146@207#

7.0@1# 21.19432@208# 21.27046@208# 23.31194@208# 23.85796@208# 25.54994@208#

1.0@2# 21.39562@209# 21.48197@209# 23.85109@209# 24.47793@209# 26.42306@209#

1.5@2# 21.21992@210# 21.29404@210# 23.35831@210# 23.90133@210# 25.58795@210#

2.0@2# 22.16581@211# 22.29619@211# 25.95905@211# 26.92057@211# 29.90873@211#

3.0@2# 21.89322@212# 22.00558@212# 25.21076@212# 26.05073@212# 28.66371@212#

5.0@2# 28.74376@214# 29.24649@214# 22.41195@213# 22.80121@213# 24.01488@213#

7.0@2# 21.14663@214# 21.20996@214# 23.17236@214# 23.68554@214# 25.28999@214#

1.0@3# 21.31875@215# 21.38638@215# 23.66693@215# 24.26269@215# 26.13425@215#

1.5@3# 21.10761@216# 21.15634@216# 23.10738@216# 23.61637@216# 25.22957@216#

2.0@3# 21.87712@217# 21.94565@217# 25.31309@217# 26.19082@217# 28.99834@217#

3.0@3# 21.48579@218# 21.51908@218# 24.27508@218# 24.99305@218# 27.33055@218#

5.0@3# 25.64430@220# 25.64488@220# 21.66714@219# 21.95494@219# 22.92016@219#

7.0@3# 26.21091@221# 26.11660@221# 21.86887@220# 22.19810@220# 23.32690@220#

1.0@4# 25.72222@222# 25.55290@222# 21.75354@221# 22.06885@221# 23.17480@221#

1.5@4# 23.62764@223# 23.47563@223# 21.13011@222# 21.33723@222# 22.07961@222#

2.0@4# 25.00891@224# 24.76950@224# 21.57336@223# 21.86457@223# 22.92036@223#

3.0@4# 23.01180@225# 22.85257@225# 29.53041@225# 21.13102@224# 21.78326@224#

5.0@4# 28.55854@227# 28.08053@227# 22.72040@226# 23.23127@226# 25.11619@226#

7.0@4# 28.15401@228# 27.69142@228# 22.59531@227# 23.08352@227# 24.88859@227#

1.0@5# 26.73076@229# 26.34568@229# 22.14389@228# 22.54756@228# 24.04178@228#
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f 2200
F 5

4

11025apR11E0

`

duR 11
1 S i

u

aRDR 31
1 S i

u

aRDe22u

3~63011260u11215u21750u31333u41114u5132u618u712u8!, ~6.5!

f 11115
1

225apR11E0

`

du FR 22
2 S i

u

aRD G2

e22u

3~63011260u11215u21750u31333u41114u5132u618u712u8!, ~6.6!

TABLE V. The Casimir-Polder long-range potential as a function ofR, in a.u., for heteronuclear alkali-
metal dimers Li-Na, Li-K, Li-Rb, Li-Cs, and Na-K. The values of theR0 radius are indicated in the second
line. The numbers in square brackets indicate powers of ten.

R
Li-Na

29
Li-K
31

Li-Rb
32

Li-Cs
32

Na-K
32

1.0@1# 23.30529@203# 26.29110@203# 27.31521@203# 29.82177@203# 26.97766@203#

1.5@1# 21.78921@204# 23.12378@204# 23.50220@204# 24.44753@204# 23.33323@204#

2.0@1# 22.69806@205# 24.53742@205# 24.99858@205# 26.17220@205# 24.75449@205#

3.0@1# 22.12123@206# 23.47401@206# 23.77693@206# 24.56425@206# 23.59181@206#

5.0@1# 29.39127@208# 21.51881@207# 21.64047@207# 21.96120@207# 21.56012@207#

7.0@1# 21.22991@208# 21.98267@208# 22.13779@208# 22.54848@208# 22.03310@208#

1.0@2# 21.43594@209# 22.31111@209# 22.48968@209# 22.96366@209# 22.36773@209#

1.5@2# 21.25451@210# 22.01778@210# 22.17269@210# 22.58449@210# 22.06611@210#

2.0@2# 22.22664@211# 23.58141@211# 23.85581@211# 24.58587@211# 23.66628@211#

3.0@2# 21.94563@212# 23.13132@212# 23.37105@212# 24.00966@212# 23.20438@212#

5.0@2# 28.97817@214# 21.44798@213# 21.55901@213# 21.85556@213# 21.48065@213#

7.0@2# 21.17615@214# 21.90192@214# 22.04814@214# 22.43996@214# 21.94306@214#

1.0@3# 21.35025@215# 22.19334@215# 22.36280@215# 22.81930@215# 22.23722@215#

1.5@3# 21.13026@216# 21.85096@216# 21.99528@216# 22.38778@216# 21.88237@216#

2.0@3# 21.90886@217# 23.15170@217# 23.39975@217# 24.08088@217# 23.19524@217#

3.0@3# 21.50096@218# 22.51635@218# 22.71796@218# 23.28165@218# 22.53595@218#

5.0@3# 25.64137@220# 29.69114@220# 21.04906@219# 21.27919@219# 29.67179@220#

7.0@3# 26.16139@221# 21.07672@220# 21.16745@220# 21.43408@220# 21.06715@220#

1.0@4# 25.63591@222# 21.00139@221# 21.08756@221# 21.34611@221# 29.85811@222#

1.5@4# 23.55058@223# 26.40204@223# 26.96370@223# 28.68110@223# 26.26492@223#

2.0@4# 24.88760@224# 28.87689@224# 29.66332@224# 21.20916@223# 28.66121@224#

3.0@4# 22.93108@225# 25.35750@225# 25.83633@225# 27.32808@225# 25.21381@225#

5.0@4# 28.31609@227# 21.52586@226# 21.66297@226# 22.09251@226# 21.48263@226#

7.0@4# 27.91933@228# 21.45472@227# 21.58565@227# 21.99653@227# 21.41285@227#

1.0@5# 26.53538@229# 21.20125@228# 21.30946@228# 21.64937@228# 21.16638@228#
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and are different from those provided by the QED form
ism, given in Eqs.~3.8!, ~3.15!, and ~3.18! respectively. In
the limit of small values ofR they obey the same relation
from Eqs.~6.2! and~6.3!. In the limit R→` the Au-Feinberg
approximation obviously is failing to provide the correct e
pressions for theK9 and K11 long-range coefficients. The
analytical differences between the Au-Feinberg approxim
tion and the QED results for the CP potential were a
pointed out in Refs.@21,26#. However, as we indicate in
Table II, the termsf 0000, f 1100, f 2200

F , f 2200
P , andf 1111pro-

vide an incomplete result for theK9 andK11 long-range co-
efficients. It is interesting to note that despite the major a
lytical differences between Au-Feinberg approximation a
the complete QED expression of the CP long-range poten
-

-
o

-
d
l,

given by the sum of all the terms from Table I, the numeric
differences between these two results are very small.
relative error given by the Au-Feinberg approximation
smaller than 1025. Thus, for many applications the numer
cal results from@31# are reliable. Recently Yan, Dalgarno
and Babb@32# computed the long-range interaction potent
between two Li atoms using only the contributions of t
f 0000 and f 1100 terms. Their numerical evaluation consists
a highly accurate computation of the atomic dynamic dip
and quadrupole polarizabilities, by employing Hyleraas-ty
base functions for the three electron problem. It is claim
that the results of Ref.@32# are the bestab initio estimations
of the f 0000 and f 1100 terms for Li-Li long-range potential.
However, by neglecting the contributions of thef 2200

F and
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TABLE VI. The Casimir-Polder long-range potential as a function ofR, in a.u., for heteronuclear alkali
metal dimers Na-Rb, Na-Cs, K-Rb, K-Cs, and Rb-Cs. The values of theR0 radius are indicated in the secon
line. The numbers in the square brackets indicate powers of ten.

R
Na-Rb

32
Na-Cs

33
K-Rb

34
K-Cs
35

Rb-Cs
36

1.0@1# 28.09731@203# 21.08210@202# 21.52187@202# 22.03015@202# 22.34204@202#

1.5@1# 23.73477@204# 24.72995@204# 26.56390@204# 28.35214@204# 29.36752@204#

2.0@1# 25.23513@205# 26.44742@205# 28.89587@205# 21.10252@204# 21.21674@204#

3.0@1# 23.90273@206# 24.70312@206# 26.46578@206# 27.84528@206# 28.54479@206#

5.0@1# 21.68402@207# 22.00744@207# 22.75612@207# 23.30839@207# 23.57943@207#

7.0@1# 22.19075@208# 22.60402@208# 23.57429@208# 24.27837@208# 24.62078@208#

1.0@2# 22.54903@209# 23.02546@209# 24.15241@209# 24.96316@209# 25.35554@209#

1.5@2# 22.22330@210# 22.63698@210# 23.61940@210# 24.32299@210# 24.66259@210#

2.0@2# 23.94464@211# 24.67787@211# 26.42139@211# 27.66828@211# 28.26945@211#

3.0@2# 23.44750@212# 24.08874@212# 25.61467@212# 26.70518@212# 27.23032@212#

5.0@2# 21.59319@213# 21.89087@213# 22.59913@213# 23.10562@213# 23.34907@213#

7.0@2# 22.09117@214# 22.48435@214# 23.41911@214# 24.08856@214# 24.40970@214#

1.0@3# 22.40867@215# 22.86646@215# 23.95336@215# 24.73393@215# 25.10716@215#

1.5@3# 22.02806@216# 22.42115@216# 23.35204@216# 24.02427@216# 24.34381@216#

2.0@3# 23.44505@217# 24.12624@217# 25.73489@217# 26.90363@217# 27.45592@217#

3.0@3# 22.73805@218# 23.30007@218# 24.61995@218# 25.59092@218# 26.04474@218#

5.0@3# 21.04671@219# 21.27487@219# 21.80527@219# 22.20453@219# 22.38792@219#

7.0@3# 21.15689@220# 21.42006@220# 22.02677@220# 22.49206@220# 22.70317@220#

1.0@4# 21.07056@221# 21.32453@221# 21.90466@221# 22.35870@221# 22.56228@221#

1.5@4# 26.81432@223# 28.49354@223# 21.22931@222# 21.53282@222# 21.66745@222#

2.0@4# 29.42840@224# 21.17968@223# 21.71278@223# 22.14340@223# 22.33339@223#

3.0@4# 25.67977@225# 27.13137@225# 21.03822@224# 21.30363@224# 21.42016@224#

5.0@4# 21.61586@226# 22.03322@226# 22.96485@226# 23.73068@226# 24.06592@226#

7.0@4# 21.54002@227# 21.93906@227# 22.82890@227# 23.56193@227# 23.88253@227#

1.0@5# 21.27145@228# 21.60149@228# 22.33702@228# 22.94366@238# 23.20884@228#
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f 1111 terms an error of 1% is assumed in the final express
of the potential~as suggested by Table III!, at least for small
values ofR. The relative error between our computation
the CP potential for Li-Li, and that based on the results

TABLE VII. The values of theK7 , K9 , and K11 long-range
coefficients for alkali-metal dimers, in a.u. The numbers in
square bracket indicate powers of ten.

K7 K9 K11

Li-Li 6.74591@6# 4.15815@8# 3.72305@10#

Li-Na 6.54847@6# 4.69326@8# 4.51786@10#

Li-K 1.20439@7# 1.07543@9# 1.19370@11#

Li-Rb 1.31298@7# 1.30945@9# 1.52114@11#

Li-Cs 1.65439@7# 1.94722@9# 2.40547@11#

Na-Na 6.35680@6# 5.19349@8# 5.37434@10#

Na-K 1.16914@7# 1.16122@9# 1.37645@11#

Na-Rb 1.27455@7# 1.39896@9# 1.73721@11#

Na-Cs 1.60597@7# 2.05131@9# 2.71393@11#

K-K 2.15028@7# 2.51463@9# 3.36065@11#

K-Rb 2.34415@7# 2.98606@9# 4.17377@11#

K-Cs 2.95369@7# 4.29328@9# 6.38710@11#

Rb-Rb 2.55551@7# 3.52206@9# 5.15484@11#

Rb-Cs 3.22001@7# 5.01650@9# 7.83057@11#

Cs-Cs 4.05729@7# 7.05000@9# 1.17785@12#
n

f
f

Ref. @32#, ranges from 3% for small values ofR, to 0.1% for
large values ofR. The main difference between these tw
computations is the numerical value of theC6 dispersion
coefficient generated in our case by a model potential
malism@34# and in Ref.@32# by anab initio computation of
the three electron problem. Kharchenko, Babb, and Dalga
@33# presented an accurate estimation of thef 0000 electric
dipole term for two interacting Na atoms. The authors
Ref. @33# estimated the dynamic dipole polarizability of N
by an extended analysis of the available experimental dat
the discrete oscillator strengths and photoionization cr
sections. The final numerical results presented in Ref.@33#
are probably the best empirical estimates for thef 0000 term.
We emphasize that thef 0000 term may approximate the CP
potential only at very large values ofR (>104 a.u.). The
relative error between our computation of the CP potentia
Na-Na and that based on the results of Ref.@33# is approxi-
matively 4%.

The R0 radius ~the minimum value ofR for which the
interaction between atoms is still well approximated by t
CP form of the potential alone! was computed such that^V&,
given by Eqs.~5.7! and~5.8!, is approximatively four orders
of magnitude smaller than the CP potential. In general,
numerical values ofR0 , presented in Tables IV, V, and V
are 50% larger than the LeRoy radius@39#,

RLR52@^r 2&A
1/21^r 2&B

1/2#. ~6.7!
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Thus theR>R0 condition is more restrictive than theR
>RLR condition, but it has a more rigorous mathematic
support. However,R0 should not be understood as a thres
old value but rather as a point below which one have
consider the exchange energy contributions to the interac
potential.

VII. CONCLUSIONS

We have presented a complete analysis of the CP ef
including the e-e, e-m, m-m, d-e, and d-m multipole inter
tions between two alkali-metal atoms. Based on the P
multipole form of the interaction Hamiltonian, general e
pressions for all two-photon processes were established.
plicit analytical forms were derived for all diagrams involve
in the expression ofK7 , K9 , and K11 long-range coeffi-
cients. Based on a quantitative analysis we have studied
importance of various two-photon processes which cont
ute to the final expression of the CP long-range potential.
found that the main contribution to the long-range coe
cientsK is given by the e-e multipole processes. For sm
. A

ys

. R
l
-
o
n

ct,
-

x-

he
-
e
-
ll

values ofR, we found that the CP potential is well describe
by the electric dipole-dipole, dipole-quadrupole, quadrupo
quadrupole, and dipole-octupole interactions which w
previously mentioned in the literature. Based on a numer
comparison we found that the Au-Feinberg approximat
@20# gives reliable results. We were also able to estimate
the dispersion form of the potential interaction is a go
approximation forR up to several hundred a.u. Analyzing th
contribution of the contact interaction term between t
atomic charge distributions to the first-order correction to
energy, we were able to establish the range of validity of
CP long-range form of the interaction potential. Numeric
evaluations of the CP potential were given for all alka
metal dimers.
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