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Multichannel Schwinger’s principle for rearrangement collisions: Positronium formation
in positron-hydrogen collisions
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Post and prior forms of the multichannel Schwinger’s principle for rearrangement collisions are presented
using discrete basis sets. An application is made to positronium formation in positron-hydrogen collisions at
low energies in the range 6.8—30.0 eV. A total number of eight terms of a type of correlated basis functions
involving inverse powers of half-odd integers is required to predict accurate results in conformity with the
available variational and nonvariational values in the literature. Our findings indicate that destructive interfer-
ence between partial-wave contributions to the scattering amplitude is responsible for the appearance of critical
angles in positronium formation. Surface plots of the differential cross section display immensely rich struc-
ture. The total positronium formation cross sections agree nicely with the observed data aftZiidirhys.
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I. INTRODUCTION Sternlicht[12], Humberston13(a)], and Brown and Hum-
. . . , . berston13(b)]. Recently Gierj14] reported a Harris-Nesbet
.lt 1S nearly two decades since Sghwmgers V.a“at'onalvariational calculation in close agreement with those calcu-
principle was proposed to be used with renewed interest ifyjons At these energies, reasonably accurate values of the
study electron-atom and. eleqtron-molecple coII|S|ons' bYK matrix have also been reported by a preliminary calcula-
McKoy and co-workers with discrete basis set expansiongion of the Schwinger principld6]. For intermediate and
[1-5]. Applications of the method in momentum space havenigher energies of positron impact, particular mention may
been made for positron-atom collisions using correlated basise made of calculations using the impulse approximation
sets[6,7]. Definitive results for three-body nuclear reactions[15), the distorted-wave approximatiofi$6,17, Fock-Tani
have also been reported in the literat{ig field-theoretic equationgl8], the R-matrix method 19], the
In this paper, we present a formulation of Schwinger'scoupled 33-state methd@0] and the 28-state close-coupling
variational principle in the discrete basis set expansion foppproximation metho@21].

rearrangement collisior{®,10] such as Remarkable experiments were recently reported for total
Ps formation and total reaction cross sections in R&X8]
1+(2,39—(1,2+3. (1) and[23]. The observed data are in accord with theoretical

predictions in the overall shape and nature of the cross sec-

One of the virtues of this method is that, as for direct colli-tion, but differ significantly in one way or the other in de-
sions, it is not required to know the asymptotic behavior oftajls. However progress has been noteworthy and quite en-
the scattering wave function; this is taken care of by thecouraging in that broad areas of disagreement are gradually
Green’s function involved in the variational principle. Fur- peing narrowed down and their causes being analyzed with
thermore, the present method in momentum space is readilyurpose and devotion as the nature of the problem so de-
applicable to higher partial waves in a straightforward man-mands.
ner, unlike formulations in configuration space, in which an  One of the interesting features of our calculation is that
evaluation of the so-called second-order termsonly eight terms of a new correlated basis function involving
(D] V(G Vi|®;) or (®¢|V;G;"V;|D;) becomes enormously inverse powers of half-odd integers are required to predict
difficult. As we shall see, in our formulation, the evaluation accurate amplitudes and cross sections for partial waves
of these matrix elements is conveniently transformed into a=0-15, at positron energies in the range 6.8—-30.0 eV.
principal value integral in one dimension in theplane; we  These results are in accord with Kohn-Hulthand Harris-
have a well-tested prescription for its numerical calculation.Nesbet variational calculations available in the literature

We make an application of the above formalism to posi{13,14]. Critical angles are predicted in Ps formation, and are
tronium (P9 formation in positron-hydrogen collisions, displayed through surface plots of the differential cross sec-
which is a rather complicated rearrangement collision protions.
cess in a perfect three-body scattering systefnt (e~ ,p) The plan of the paper is as follows. In Sec. Il we present
—(e*,e7)+p. Since the pioneering work of Massey and the formulation of Schwinger’s principle for rearrangement
Mohr in 1954[11], this process has been studied by a varietycollisions using discrete basis sets. Section Il describes the
of methods with various degrees of sophisticafi6fi2—21.  application of the “prior” form of the amplitudes to Ps for-
Among these, accurate Kohn-Hultheariational results for mation in positron-hydrogen collisions. The forms of two-
a few partial wavesl. =0, 1, and 2, at incident energies in body amplitudes required for a determination of the station-
the Oregap,(6.8—10.2 eV have been reported by Stein and ary Schwinger amplitude with the use of correlated basis
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functions are given in this section, and their methods ofThe post and prior forms of the Born series for transition
evaluation suggested. Results of our calculation are prefom the bound statein the initial channek to the statd in
sented in Sec. IV. Finally, concluding remarks are made irthe final channeB may now be defined, on the energy shell,

Sec. V. Atomic units are used in the present work. as
Il. THEORY T(f?rior)(ﬁlzf vaEi):<(I)f|Vf|\Pi+>
Let us consider a three-body scattering system in which =(P¢|Vi(0rV)) +ViG Vi +ViG V|G{"V,
particle 1 with massn, is incident on a bound system of +oe|D)) 8a)
1/

particles 2 and 3 with masses, andms, respectively, in the
initial channel. In the final rearrangement channel, particles 1|_

(posh off C ) — =V | .
and 2 form a bound pair, while particle 3 remains a spectator. fi (B aki) = (V¢ |Vi[ i)

Let V, denote the interaction between particles 2 an¥ 3, =(D¢|Vi(0rVy) + VGV, + V(G VGV,
the interaction between particles 1 and 3, afndthe inter-
action between particles 1 and 2. The total interaction in the + D), (8b)

scattering isv=V;+V,+ V3, while the residual interactions . .
in the incident and the final channels avg=V,+V; and  wherefk; and#k; denote, respectively, the momenta of the
Vi=V,+V,, respectively. center-of-mass motion in the incident and final channels. As
If H denotes the full Hamiltonian of the scattering system,is well known, retaining the first two terms of the above
it can be expressed in terms of the channel Hamiltonians aseries would yield the first and second Born terms of the
transition matrix as

H=Hi+Vi=Hf+Vf, (2)

T{PO (K, aki) = (D[ V(| D), (93
such that . L
T{PTO0(BKy , ki) = (D] V;| D7), (9b)
Hi®=E®;, H;®=E;Ds. 3
TIPS (BKe ki) =(D(|V(G{ Vi | D)), (108

Energy conservation requires that, on the energy skgll,
=E;=E, the total energy of the system. The Green’s opera- T|(|pri0r)(ﬂl2f -alzi):<q)f|VfGi+Vi|q)i>- (10b)
tors are defined as

If the bound states in the plane wawes and®; are known
Gt 1 Gio 1 N 1 exactly, the post and prior forms of the first Born matrix

P TE—H i€’ FE—Hi*ie’ E—-H=ie’ elementEqgs.(9a) and(9b)] would give identical results. If,
(4) however, the bound states are supposed to be inexactly

known, as for composite particles, there would arise what is
Using the operator relations @)—(1/B)=(1/A)(B known as the “post-prior” discrepancy between the two ma-
—A) X (1/B)=(1/B)(B—A)(1/A), the integral equations for trix elements. For the second-order Born terms of E#)8g)

the total Green’s operatoG@™ may be obtained as and(10b), the contributions made by the two forms are not
generally equal, so long ;" andG; as well asv; andV;
G =G, +G;V,G" =G +G*V,G[", (5a)  are different. A large number of applications has been made
with the prior form of the second Born approximation to
G =G/ +G[V;G*=G; +G*V,G; . (sb)  rearrangement collisions in atomic and molecular collisions,

but the post form has rarely been utilized and its usefulness
is relatively unknown so far.

The importance of the second-order terms in the study of
rearrangement collisions has nevertheless been acknowl-
edged for a long time. In order to describe the charge transfer
in ion-atom collisions, such agg+(e,Z,) —(e,Zg) +Za,
Thomag 24] proposed that the reaction takes place as a two-

=D +G VD +GV,G"V,®; +- - , (6a  Step process. In the first step, the incomin_g ion on its trajec-
tory of motion knocks the electron toward its parent nucleus.

e + - The electron is elastically scattered, in the second step, by
V=07 Q=0+ G Vs the nucleus along the direction of the projectile. While the
=D+ G V; P+ GV GV +---. (6b)  center of mass of theelectron, projectilgbound pair moves
away from it, the atomic nucleus remains a mere spectator.
This classical model has been successfully applied to analyze
charge-transfer collisions, and has been gainfully employed
in the understanding and analysis of the quantum-mechanical
prescriptiong 25,26
. . It is, however, clear that the use of the Born series for the
Qf =1+GVs. (7). study of rearrangement collisions is not quite adequate for

It can be easily verified that the full scattering wave func-
tionsWw;" and¥ for the incident and final channels satisfy
the Lippmann-Schwinger integral equations:

where the Mder operators are defined as

Q7 =1+G™V;, (78
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various reasons. For low energies of projectile impact, it is A. Single-channel formulation of rearrangement collisions
desired that the distortion of the atom_ic a_nq molecular charge \we now make a single-channel expansion of the wave
cloyd due to the §Iowly moving prOJecule_s charge be. de'functions\lffr andW¥; in discrete basis sets:

scribed properly with a consideration of distorted atomic or
molecular orbitals rather than using plane waves for them as

in the Born approximation. The question of convergence of U =2 apm, Y =2 byw,, (13
the Born series has been investigated by several authors. m :

Dettman and Leibfried27] showgd that, at high energies, \vhere the linear expansion coefficientsn=(a$;) ,aﬂ]))
the first two terms of the Born series of tlienatrix element —(a® ,a®y andb, = (b ,b{")=(bM b)), are to be de-

for nonrelativistic rearrangement collisions occurring in 3 ormined for choices of the channel wave functionsand
three-body system give the correct energy dependencg ctionsand
[25,26] v,, and we analyze the post form of the Schwinger transition

One of the higher-order methods that naturally reduces ggratrix element. It is now useful to define the three-body

the second Born approximation under certain restrictions igmplltude
the Schwinger variational principle. Following Joachain I ..
[9,10], we obtain a convenient expression of the scattering [Adi(BK,aki)]= (= ue2m)[Tri(BKe ak)],  (14)
amplitude for rearrangement collisions using discrete basig,o two-body amplitudes

sets. The transition operator for the purpose is defined as

mi=V:Q;", and, on using the following property of the AP BR; ki) = (— wil2m){(D |V um) = (AL Al2))

Mdller operators:V{[Q{ —1]=[Q; —1]"V;, one obtains fm (15)
the expressior’rﬂ=(Q{)Tvi+vf—vi . Itis now possible to _

defltne a pair of variational principles for the transition op- Aﬁﬁ')(ﬁkf ,aki)=(—Mf/ZW)(Un|Vf+Vfo+Vd|CDi>
erator7y; :

=AM AR Vy=Vi—V;,  (16)

[Ru1=(Q1) ViG{ Vit Vi —(Q) V= ViGy V] and the double scattering amplitude

X(Q -1), (11a L .
Dl Bk, aki) = (— wi/27) (v, Vi — ViGy Vi|um)

[Ry]=V:G Vi +(Q7) WV, + V=V, — (07 — 1)1 =(DY),D4, (17)

X[V;—V;G;"V;1Q;". (11  with the three-body reduced mass in the final chanugl

= (my+m,)mg/(m;+ my+ms). The post form of the varia-

Indeed, it can be shown thBR,]=7; =[R,] and that these tional amplitude thus takes the form
expressions are stationary for independent variations of the

Mdller operators about their correct values[R;]=0 [Ari(BKs, ki) ]post

=J0[R,]. When the matrix elements of these stationary ex-

pressiongR,] and[R,] are taken between free statbsand => Atmamt > bXAL— >, > b*Dmam.
&, one obtains the post and prior forms of the stationary m n mon

transition matrix elements respectively [£10] (18)

[T (8K, k)] The linear variational parametess” and b{® are deter-
PR T post mined by exploiting the stationary property [0&y; ] post:
=(D¢| Ve[ W )+ (W [Vi+ VG (V= Vy)| D)

Jd Jd
— (W |V — VG V| W), 12 AP [Afi]post:O: PG [Afi]postx
fIVe™ Vi Vi T day aby,
[Tfi(ﬁlzf ,a’lzi)]prior mln:l,z’ N p,q:]-,z. (19)
= (@ |V (Vi= V)GV W)+ (W | V| ) On differentiating with respect ta{’, one obtains
—(V{|Vi— VGV | ¥, (12b

0=Aim— > b*Dpm, M=12,...N
n

These are the desired expressions of the stationary, . i

Schwinger variational transition matrix elements for rear-Which yields

rangement collisions from the initial bound staie channel

a to the final bound staté in channel8 which are next > [bi'DI) —pDl) 1= AL

obtained in convenient forms for evaluation using discrete n

basis sets. It is relevant to note here that these transition (20
matrix elements reduce to those for the direct collisions if R0 2 wHREOT AF2) _

VieV, andGl oG ; [b"DW +pIDI=A2  m=12 .. . N.
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Defining multiplication of complex quantities in terms of

array (matrix) multiplication, such as

a —b
b a

-y
X

a_
bl=

(x+iy)(a+ib)= y ; , (21)

the above set of linear equations may be written in matrix b(@ =

notation as

(bﬁ”bﬂ”)(

10 10

Win —Dikn . .

= 1 2

0) B )=(A$N> ALY (22
NXN = NXN

where the vector coefficients are given by

DF\IF)T:(b(lF)b(Zr)...bE\‘r)), bﬂ)T:(b(li)b(zi)"'bw)a
b(f) b(l)

Dy DY - DR
o= | PH PE PR pas o4
DY) DY - DUk
DY) DY - DY,
D(APXN: Dgl) DgZ) Dg& E—D(le)N’
DY DU - DUk
(24b)
DF\IZ;)N D§\11>%)N vD 22) DN:L;)N 1D2N><2N
D DNZN
(ot o >

and the nonhomogeneous column vectors are given as

fl f2
A%]_) A( )
A(fle) A(f2)
A= T | ART= . (29
f1 f2
A%N) A(fN)

so that the solution for the coefficierti; is obtained as

b= (A}

ALY ATYDS D (27)

which on expansion reads as

R . - R 1
D ol BKs k) = Annl By k)~ 355 5 J i
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1
by 2 DRYon:  9=1.2. (28)
Thus the coefficients are given by
N 2
-1
E: pgl AUPDI " g=12: n=1,2,...N,
(29)

-1
where DP9

Donxan-
Similarly, (9/9b{®) [Asilpes=0 vields

are the elements of the inverse matrix

0=A,—> Dymdm, N=1,2,...N. (30)
m

which gives rise to

2 2
,1 . 71 .
af'= 3 DRV, af'=3 3 DEe AL,
g=1 n=1q=1
(31

p=12, m=12,...N.

On substitution of these values af andb'® in the expres-
sion for [Ayi]p0st: ONeE finally obtains the Schwinger varia-
tional amplitude for rearrangement collisions from the bound
statei in channela to the state in channelB as

[Adi( Bk 7‘1Ei)]post

N N -1 . i o
= > AUP(Bk;,ak)DPD “AGD( Bk, ark;).

m,n p,q

(32

In order to evaluate this amplitude, one requires a knowledge
of the “input” two-body amplitudesA{’? andAl4) and the
elements of the double-scattering matixy oy . These are
given in terms of the channel basis functiansandv,,. The
scattering amplitude is then a function of the scattering
angles associated with the vecﬁr, while the incident di-
rection ofIZi is generally associated with tlzeaxis. Evalua-
tion of the double-scattering terms, however, involve three-
dimensional integrals of the intermediate off-shell energies
of the final-state Green'’s function:

+ . //>< rr|

In fact the double-scattering amplitude takes the form

o A PR onl R k) 27 3

E-El+ie My
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in which we have used definitions gglprior)(ﬁlzf ’aEi): _(Mf/ZW)Tflprior)(Blzf 'aEi)_ (44)

TR N—(— This essential feature of reducing the Schwinger amplitude
Anm( BKs ki) = (= pal2) (wn] ViU, @9 to the second-order Born approximati®BA) is of impor-
tance to the study of rearrangement collisions, as has been
An,(BKs ,?"Z"):(—,U«f/277)(vn|Vf|<D';>, (36)  emphasized earlier and has been highlighted as an attractive
characteristic of this variational princip[€,10].

Aym( 7k"aaki):(_My/ZW)<(D’;|Vi|Um>: (37) C. Multichannel formulation of rearrangement collisions

where the plane-wave statds], belong to the final-channel , 'é is fShOW” how thet forlpglation.tcha?h be ”ti"éed I_or af
- - : e " study of rearrangement collisions with the consideration o
HamiltonianH; with off-shell energie€’, (E#E’).

The double-scattering amplitude can be conveniently reMultichannel expansions of the full wave functiolt” and

duced to a form involving only a single-dimensional \Iff_ instead of single-ghannel expansioqs. While dping this,
principal-value integral after performing the angular integra-it iS to be borne in mind that the Schwinger amplitude for

tions, if the partial-wave analysis is allowed to be performed€arrangement collisions would reduce to the direct colli-
by splitting the pole term 1E—E”+ie€) into a &function  Sions, ifVi=V;andGy =G;" for the incident as well as final

part and a principal-value part as follows: channels. Indeed, we make use of the expansions
1 N 2
- — i " \I}+: a(a)u(a), 45
E_E,,;ilé +|775(E E'y)+P E_E/; (38) | mE=1 azl m m ( )

An analysis is thus given above for the evaluation of the post N2

- . . \I;*ZE 2 p(b)y, () (46)
form of the Schwinger variational amplitude for rearrange- F= e &y On Un '
ment collisions using discrete basis sets. One can proceed
similarly for the study of the prior amplitudes;(8Ks, k)] where ag?):(ag?r) ’asﬁi)) and bgb):(bgbr) ’b%bi)), a,b=1
involving the Green’s operatd;” . In this case the interme- and 2, are the linear variational constants, aoff(v M)
diate plane-wave states belong to the incident channgjenote wave functions for the incident channel, while
HamiltonianH; . (u®,v{?) denote those for the final channel.

Defining the two-body amplitudes
B. Relation to the second Born approximation

The reduction of the Schwinger variational amplitude to AR (BKs  ak) = — (pgl2m)(De| ViluR), (47
the second Born amplitude and its relation to the Pajple _
proximation and other variational methods is an old subject ~ A®)(Bk;,aki) = — (ui/2m)(v'P|Vi+ V(G Vy| D)
of substantial importance and interest, and has drawn atten-
tion of the experts in the fiel26—28. In his derivation of (Vg=V,—Vy) (48
the Schwinger principle for rearrangement collisions,
Joachain[9,10] also gave the limiting forms of the ampli- and the double-scattering amplitude
tudes in post and prior forms under certain restrictions. If in ..
the finite discrete basis set fon,n=1,2,... N, we keep DO (BK , ki) = — (we/2m) (0P| V= ViG] Vi [uD),
only one term forN=1 such thatu,=A®;, v,=B®; of (49
plane-wave states as in the Born approximations, and vary ) ) _
the amplitude{Afi(BIZf ,aIZi)] with respect to the parameters we obtain the post form of the Schwinger amplitudes as
A andB, we obtain, on neglection of higher-order terms, the

following approximate expressions: [Asi( Bk ,aIZi)]pOSF% Ea A (K, ak;)al?
(Posh pie ey — q(POSh ofc i (Post( pfe. k.
Osea (BKr,aki)=0;" (BKs,aki) +0i7 (BKs, aki), e
(39 +2 2 b AR (BK; ki)
(prior) " .\ _ ~(prior) " " (prior) " "
Osa (BKi,aki)=g;" " (BKs,aki)+gi " (BKs, ak;), N L
(40 -2 2 b DL (8K aki)ary
where (50)

9P (BKs ki) = = (ul2m TP (pKy ki), (4D with

N N N R (ba) _ (ba) (ba) (sr)— (sr) Sr)
OiP! (BKr ki) = — (il2m) TP Bk k), (42) i = (o’ Qu): A= (Reg” ). (6
On optimization of[ A¢;],0s; With respect to variational pa-

91" (Bky ki) = — (uil2m) TPV (Bks ki), (43)  rametersa® andb®  m,n=12,... N, a,b=1,2, so that
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J Plkon  —Qbkan
(9&1(,:) [Afi]post:O: (9b§1b) [Afi]posty (52) D N><4N (Q(aXZN E)(2?\lb>)<2N )1 (54)
one obtains
(50) po1) _ (Rifa) _sifa) (b1 Piin PN (ab)  _ oy Q2
(b by ) = (R )Danxan: (53 Phon= (E’@N p@) 2Nsz—<Q§\‘2i>N (N23)N>’

WhereD(NX4N denotes the inverse matrix corresponding to
DM ,\ consisting of block matriceB&2, QP , so that and

(R —gifahy = (RIID RIUD  RUD R R RU2 gD —gfb | —gib g2 g2 gif2)
(55)
|
Similarly, the coefficienta(® are given by ever, not known how the results would be predicted by these
two forms of the Schwinger amplitude.
a(ar) R (bi)
AN 1 [ BNi
(ai) D4N><4N( S§\,b' ) (56)
ay Ill. APPLICATION TO POSITRON-HYDROGEN
. . . . LLISION
Finally thus the multichannel Schwinger amplitude for rear- COLLISIONS
rangement collisions is obtained as We use the prior form of the Schwinger transition matrix
[Eg. (12b] for Ps formation in the state in channepB in
[AR(BK , ek )]post) positron scattering from atomic hydrogen in stata chan-
[AW(BK aaki)]post nel a. If 7, andr, denote the position vectors of the incident

. positron and atomic electron, respectively, with respect to
(fa) R the massive proton at rest at the center of the coordinate
:mE’n ;) (Rin"»— S )D4N><4N s /- system, thervi=1/r1—1/_r12, Vi=1/r1— 1k, (a.u). In the
Schralinger representation, the plane-wave states are ob-
(57 tained as

In this form, it is convenient to evaluate accurate variational R

amplitudes if the input two-body amplitudes are defined with Di(Fy,Fp) = (1, 7| Pi) = explik- 1) ¢i(F2), (588

a proper choice of the basis function&) and v, a,b

=12, which must contain, as a maitter of faqt, nonlinear D (F1,810) = (F12,81] D) =explik¢- §1p) 7¢(F1o),

variational parameters and sufficiently flexible corre- (58b)

lation terms. Since this formulation has been defined

for two channels, the amplitude$A;(ak{,aki)]lps  where the relative coordinatg,,=;—, and the center-of-

[Ari(BKs, ki) Tpos @nd[Ae(BK{ ,8Ky) JpostWould describe, mass coordinatéy,=1/2(F1+13); ¢i(T2) and 74(r'y,) de-

respectively, elastic scattering in the direct chanmetear-  note the bound states in the incident and rearrangement chan-

rangement collisions from the stdten channela to the state  nels respectively, withik; and 7k; the momenta of the

fin channelB, and, finally, elastic scattering in the rearrange-incident positron and the moving Ps. Energy conservation

ment channepB. The two-body amplitudes are to be definedrequires thatE;=E;=E, the total energy of the system,

accordingly as required for the nature of scattering to beyhere Ei=ﬁ2ki2/2,ui+€i and Ef:ﬁ2kf2/2,ui+ef, (i &)

considered in a calculation. and (u;,us) denoting, respectively, the eigenenergies and
A similar analysis may as well be done for the prior form three-body reduced masses (incident, fina) channels. In

of the Schwinger amplitudpAs; (8K; ,aEi)]p,ior. It is, how- this representation, the Green’s function is obtained as

<r1,f2|‘1’"><q>"| 1.2
E”+ ie

G (it~ g S [ oR 59

in which the intermediate plane-wave stat@é,} belong to the incident channel Hamiltonigh . We now expand the full
wave functions¥;” andW¥; in discrete basis sets of single channel functions:

:E AmUm, \I’f_ZE bhvy . (60)
m=1 n=1
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wherea,=(all), a(')) (@ ,a®?) and b,=(b"”,b{")= (b} ,b{?)) are linear variational constants. It is now required to
define the “prior” form of the three-body amplitude from Ed.2b),

[Asi(BKr , aki) Torior= (= e/ 2m)[ Ti( BKs , ki) Tprior (61)
the two-body amplitudes
Apm( BKs k) = (— wil2m) (D¢ Vi + Vi G Vilum) (Vi =Vi—V)), (62)
Ani( BKs ki) = (= pil2m) (0| Vi| ®3), (63)
Anm( B ki) = (= i/27m) (v | Vi | Upo), (64)

and the double-scattering amplitude

- - - - 1 21 *n An'y(:BIZf !YE’,)Aym( ’yk)”valzi)
Do BKr k) =An BK1 k) = 555 20 (— — f dk EEtie (69
whereAny(BIZf ,vK") andAym(yIZ”,aIZi) are defined for the intermediate plane-wave st#iié@.
Let the partial-wave expansion be defined by
L 4 L .
[An(BKe ki) Torar= == 2 LA (Bt k) TororYim( ko) Yiin(ki), (66)
£K; 1.

and similarly for the two-body input amplitudes. On muItipIication‘bﬁ/o(Rf) and integration ovek;, one obtains with the
help of orthogonal properties of the spherical harmonics:

N - o " 4 "
f Yto<kf>[Aﬁ<ﬁkf,ako]dkf:Jk—lk[Aﬁwkf,aki)ww(ki). (67)
R

If we choose the direction of incidence along the axis, k=(k;,0,0), it would give k;,k;=cosé, Y o(ks)
=\(2L+1)/4wP (cos6), dk;=sin 6;d6; d¢, and thus on integration ovel; , we finally obtain the partial-wave scattering
amplitude as

[A (ﬁkf a'k)]pnor \/lef [Af|(:8kf ak; )]pl’lOI’ L(cos 6¢)d(cos ;). (68)

In order to perform the partial-wave analysis of the amplitudes involving the pole teE’rH’(/iie), we split it into a
S&function part and a principle-value part:

(E-E}*ie)=Fimd(E- E”)+PE £ (69)
Similarly, these are obtained as
Al (BKe  aki) = GIR(BKe ,aki) +1 2 HEE (K, ak,)F((ak,,, aki)
Y
N k”d K o MEWL( L M Al
ﬁzi gz Hiy (Bk k) Pk aki) = (Alfy A, (70

DL ( Bk, ak)=Ak /3kf,ak)—|§‘, AL Bk, ak,) AL (ak,, ak;)

© k'dk"
ﬁ2 2 f k2 k//Z A (ka vak’,)A('yLr1?1(akI,1ak ) (Dnrr?‘]vD(l) (71)
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TABLE I. The present partial-wave contributions to the ground-state positronium formation cross section
(wag) in e -hydrogen collisions in the energy range 6.8—30.0 eV. The notatjony] stands forx
x107Y. Toy includes all significant partial-wave contributions.

E (eV)
L 6.855 76 7.65 8.704 9.826 10.2 11.0 12.0
0 0.0041 0.0043 0.0049 0.0058 0.0062 0.0069 0.0075
0.004F 0.0044 0.004% 0.0058
0.404—-2° 0.426-2]° 0.48q-2° 0.554—2]°
1 0.0270 0.3639 0.483 0.5614 0.6032 0.6568 0.6777
0.027 0.36% 0.48% 0.56F
0.267-1° 0.366 0.48% 0.564
2 0.00062 0.3350 0.8119 1.0569 1.1021 1.2421 1.2816
0.00062 0.33% 0.812% 1.057
0.684-3° 0.32P 0.860 1.158
3 0.5037-5] 0.353¢—1] 0.2717 0.5553 0.6089 0.6240 0.6416
0.44-5° 0.357-1 0.27F 0.59%
4 0.387%-6] 0.1092-1] 0.1113 0.2917 0.3320 0.3485 0.3602
5 0.1559—8] 0.1182—2] 0.2537—1] 0.1115 0.1503 0.1711 0.1878
6 0.5294—4] 0.2543-2] 0.0181 0.0268 0.0399 0.62481]
7 0.2505—5] 0.2285-3] 0.265[—2] 0.4325-2] 0.7583—2] 0.155(0—1]
8 0.837%—7] 0.1676—4] 0.3502-3] 0.6461—3] 0.1335-2] 0.4080—2]
9 0.3892—8] 0.1636-5] 0.4580—4] 0.9080—4] 0.2204—3] 0.7960—3]
10 0.1165-6] 0.466Q0—5] 0.1183—4] 0.343¢—4] 0.1472-3]
11 0.9106—8] 0.541§-6] 0.157§—5] 0.2056—4] 0.2663—4]
12 0.4579-9] 0.6115-7] 0.1615—6] 0.6248—6] 0.3503-5]
13 0.1918-7] 0.8183-7] 0.5837—6]
14 0.2248-8] 0.1010-7] 0.9471—7]
15 0.1362-8] 0.1509—7]
ol 00317 0.7507 1.7110 2.6037 2.8346 3.0985 3.2394
o 0.0314-1° 0.73¢ 1.663 2.492
E (eV)
L 13.6 15.0 185 20.0 26.0 30.0
0 0.0084 0.0089 0.0053 0.0045 0.0[42] 0.0677-2]
1 0.6528 0.6268 0.4188 0.3151 0.1252 0.0986
2 1.3065 1.1501 0.8436 0.7715 0.5733 0.3263
3 0.6624 0.6826 0.7291 0.7172 0.5207 0.4376
4 0.3848 0.4089 0.4444 0.4204 0.2843 0.2610
5 0.2088 0.2229 0.2559 0.2262 0.1734 0.1543
6 0.1204 0.1327 0.1126 0.1072 0.8602]  0.6565—1]
7 0.4154—1]  0.6319—1] 0.5667—1] 0.503¢—1] 0.3972—1]  0.3344-1]
8 0.1043-1]  0.1821-1]  0.2003-1]  0.2257-1] 0.1717-1]  0.1573-1]
9 0.2467-2]  0.4840—2] 0.5618—2] 0.5941-2] 0.4297-2] 0.273%-2]
10 0.5550—3]  0.1237-2] 0.1574-2] 0.178§-2]  0.1582-2]  0.1102-2]
11 0.1209-3]  0.3057—-3] 0.4172-3] 0.439§-3] 0.3571-3] 0.2276-3]
12 0.268{—4]  0.3067—4]  0.4079—-4]  0.4389—4] 0.5811-4]  0.402§-4]
13 0.3210-5]  0.403T-5]  0.1111-4] 0.1273-4]  0.1972-4]  0.117¢-4]
14 0.3241-6]  0.6231-6]  0.2941-5]  0.3569-5]  0.6539—-5]  0.394§-5]
15 0.6106—7] 0.1364—6] 0.7663—6] 0.9871-6]  0.2147-5]  0.145§-5]
oy 3.3992 3.3207 2.8941 2.6433 1.8266 1.3974

8Humberston(1982, 1984, and Brown and Humberstaii985.
5Gien (1997.
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6
1 Present work - Presepl reaction §e|astic + positronium formation)
__ 33-state (Kemoghan et al 1996 1) [ | Expeflment(regctlon. Zhou et al, 1997)
] - % Mandal etal 1979 81 —— Elastic scattering (Kar and Mandal, 1987)
. o ) .
5 1 . o -~ Straton 1987 Elastic scattering{Kernoghan &t al, 1996)
, % \ A Experiment (Zhou et al 1997)
R L] B Experiment (Sperber et al 1992 ‘)
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FIG. 1. Total cross sectionSTeS) for ground-state positronium

formation in positron-hydrogen collisions in the energy range 6.8— FIG. 2. Total cross sectionsrég) for elastic scattering and net
52.0 eV. reaction in positron-hydrogen collisions in the incident energy

range 0.136-110 eV.
where G{), H{Y), F{) are the partial-wave ampli- . o
tudes  corresponding  to  —(ug/27)(®¢|Vi|uyy,  Which in matrix notation is
(— wil2m) (| Vg |®@}), and (- pifl2m)(D|Vi|uy,), respec-
tively. Thus the partial-wave form of the Schwinger ampli- 2
tude becomes b®=> AllPppa, -1 (76)

N
AL (B, aki) Tprior= m; AL(BK: , aki)an

71 R ;
where DP9~ are the elements of the inverse matrix
DD, L. Similarly, the other equation yields

N
+mE:1 b A ( Bk, ak;)

=2 2 by Diin( Bk aki)am, @1
(72

N 2
. - _ (P — BNCD) - -
The linear variational parametess, andb, are determined ~ m = Z 2 DY AN, p=12 m=12...N.
by exploiting the stationary property A, (77)

o [AL] . =0= 7 [ALT] The linear variational constants are then substituted into the
&a(p) fi Jlprior &b(q) fi Jdprior» . (L) K §
m n expression fof A;’], to obtain, finally
p,.q=1,2, mn=12,...N. (73
) o ) [A (L)(kavak )]prlor
On differentiation with respect ta{”(p=1 and 3, one ob-

i -1
tains :2 z A(flr‘g(fw(ﬁkf,aki)D%%(pq)
m,n p,q
L) - .
—; bsD), m=12,...N. (74 X ADE( Bk, | ak), (79)
Suppressing the superscript for the partial wayene real- which has the same structure as in E8R), and is now a
izes that function of the scattering energies for each partial wave
- the pa[tilal-wave input amplitudea(5)(™ - AL@) = gng
b@—S S A(PprEa-1 AL®PD " are supplied for a given choice of the basis
NSy T functions u, and v,, the Schwinger amplitude

79 [AEPF{BIIT ,ak%]plrior can be very conveniently evaluated, as
qg=12 n=12,...N, 75 we shall see below.
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FIG. 3. Surface plot of the differential cross secti@g/&r) for
ground-state positronium formation in positron-hydrogen collisions ‘
as a function of incident momentu(®.71-0.80 a.).and scattering Scattering angle(deg)

angle(0°~180). FIG. 5. Surface plot of the differential cross secti@3/6r) for

o . . ground-state positronium formation in positron-hydrogen collisions
One of the highlights of our present calculations is the;s 5 function of incident momentuf.84—1.48 a.0.and scattering
choice of the basis set of the channel functiopsandv,,. angle(0°—1809.

We choose correlated functions with inverse powers of half-
odd integers as follows:

0 30 60 90 120 150 180

wherea,,,=p and a,,,—1=0, anda, b, andp are nonlinear
variational parameters to be optimized wittpy=1, for m
Um(F1,Fo)=(—1)™ Y& (F1,F)®(F1,F5), (793 =1 and 2; withmy=2, for m=3 and 4; withmy=3, for
m=5 and 6; withmy=4, for m=7 and 8; and so on.
o o R With this choice of the basis set, the input two-body am-
on(F1,72) =(=1)" *€(F1,F)P(F12,81), (79D piitudes are conveniently obtained as a function of the inci-
dent energy for each partial wate The evaluation of the
where the same correlation functigp(r;,r,) is chosen for  single-dimensional principal-value integral 0J6rs) can be
both the incident ¢ +H) direct and the final Ps+H™)  performed quite accurately by splitting the range into inter-

rearrangement channels: vals [0,2,] and [2k,,=). Then we use Gauss-Legendre
guadrature of an “even” number of points for the first inter-
(1, Fp) =€~ “m1/(atbry,)Mo~ 12 (80) val [0,2kﬂ, 'such that the prlnclipfl!;varlrue mtgkgral |s"def|ned
characteristically as ligLo+(f,” “dK"...+ [, "7 ;dK"...),
Y

since the distribution of quadrature points are evenly distrib-

. N uted around the midpoirk”=k,,. The evaluation of the in-
e +H— Ps+H tegral for the other intervdl2k, ,») can be performed in a
straightforward manner by using any standard technique. We
have, however, used the Gauss-Legendre method with 20
quadrature points for a smooth convergence of the results. In
this work, we have included only the ground state of hydro-
gen with y=100 in the summation over intermediate states
v. The effects of the dominant interactions for low-energy
collisions are taken care of by the correlated basis functions,
which are quite flexible.

Differential cross section (aazfsr)

%% [ e IV. RESULTS AND DISCUSSION
2 . o :
1/5 e’ The procedure for nonlinear optimization of the varia-
P tional parameters, b, andp is as follows. We seib=1.0 on
™ S : 0.9 the basis of the fact that the normalization of the wave func-

tion is not required in defining the Schwinger variational
expression for the transition matrix. Next, for a given choice
FIG. 4. Surface plot of the differential cross sectiag/er) for ~ Of the variational paramete, the variational parametgris
ground-state positronium formation in positron-hydrogen collisionsvaried within a finite range, say0.0, 2.9, to search for a
as a function of incident momentu(@.85-1.22 a.).and scattering ~ Stationary range of values of the scattering amplitude
angle(0°-1809. [A%'i')]prior. This process is continued until a suitable combi-

Scattering angle (deg)
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TABLE II. Differential cross sectiomla/dQ(aésr’l) for positronium formation in atomic hydrogen at
incident energy range 6.8—30.0 eV for the scattering angles 0°, 45°, 60°, and 120° along with the critical
angleeg, the ratioR=4m(do/dQ),-o /o, and the reaction cross section. The notatiorx[ —y] stands for

XX 107V,
ds/dQ)
Angle
E (eV) 0° 45° 60° 120° 62 R o,

6.85576  0.2200-1]  0.6561—2]  0.1683—2] 0.1149-1] 7340  8.761 1.2878
7.65 0.261p+1]  0.1361 0.006f1—2] 0.9825-1] 60.20 43.786 1.9724
8.704 0.999p+1]  0.4500-1]  0.6150—1] 0.9343—-1] 50.02 73.386 2.9802
9.826 2.037p+1]  0.0579-2]  1.4407-1] 0.9144—1] 44.80 98.322 3.8126

10.2 2.3565+1]  0.2867—1]  1.4414-1] 0.9660—1] 44.01 104.469 4.0344
11.0 2.690p+1]  0.1766—2]  0.1291 0.1084 44.25 109.096 4.2623
12.0 3.034p+1]  0.0924—2]  0.1198 0.1139 44.60 117.704 4.3626
13.6 3.764p+1]  0.1896—2]  0.822§-1] 0.9185—1] 44.00 139.157 4.4154
15.0 4.0725+1]  0.3232-2]  0.8271-1] 0.8981—1] 43.26 154.114 4.1612
18.5 3.8548+1]  0.4244-1]  0.1367 0.471f-1] 39.20 167.378 3.4389
20.0 3.583p+1]  0.5215-1]  0.1613 0.2740-1] 3855 170.366 3.1789
26.0 2.567p+1]  0.6550—1]  0.1366 0.4560-2] 36.85 176.642 2.3357
30.0 2.0258+1]  0.8416—1]  0.1102 0.326f-2] 35.20 182.129 1.8279

nation of the values o andp is discovered up to a satis- observed data of Zhoet al. [23], the earlier measurements
factory level of accuracy. It is worthwhile to note that a overestimating the latter. The recent observations of Zhou
remarkable stability in the calculations was achieved withet al.[23] agree with the recent coupled 33-state calculation
only N=8 terms in the basis expansion for the energy rang®f Kernogharet al. [20] and the 28-state close-coupling ap-

considered in the present WO(’ﬁ8—300 e\)" for all values p.roximation. calc_ulation of MItrO}{Zl] (not included in the
of the partial wavel =0-15. figure). As is evident, the agreement between our present

Schwinger variational calculation and the 33-state calcula-
_ tion of Kernogharet al. [20] is remarkably close at low en-
A. Total cross sections ergies below 10.2 eV, and quite reasonable beyond this en-
The values of theS, P, D, and higher partial-wave cross €'dY. The distorted-wave results of Refl6] are not
sections for ground-state Ps formation in hydrogen aréXpected to be valid at low-energies. They overestimate the
shown in Table I, along with available variational results for prefje”thfef]“':f and thet r?bsert‘.’edtc[gfﬂ below 5? eV, be-
incident positron energies in the range 6.8—30.0 eV. As jg/ond which, however, the estimated cross sec (a3 are

apparent, the present Schwinger variational results are in ad? reasonable agreement with the experin{@3j.

. . . The present Schwinger variational results and the mea-
Eloédl\zll]wﬂ]rﬁ\e/?e"aiglehlf)(\jxt];\;eHru“:evi\?igi Hr:;r'sgNoefsggrc\é?;ltjiE‘:’lssurements of Zhoet al.[23] are further compared in Fig. 2
Pl ; . ang .~ _~in which we have drawn curves of the total elastic and the
available in the literature using a variety of approximation

. . o X . total reaction(elastic plus Ps formatigncross sections as
methods, a comprehensive review of which is available in

the literaturg 6,7,11-23,29 It is of interest to note that the given by the Schwinger variational methd] along with

recent results of the 33-state coupled-state calculation C}P € elastic results of Kernogha al. [20]. The comparison

Kernoghanet al. [20] and the 28-state close coupling ap- reveals interesting findings. While the elastic cross section
10gh: T L ; ; ping ap predicted by all the theoretical methods are in complete ac-
proximation of Mitroy [21] are in satisfactory agreement

with our studies. cord among themselvdd,20,21, the measured values are

. . .quite smaller than these predictions below 6.8 eV. The
The total ground-state Ps formation cross sections are dit : . e

N . g L chwinger reaction cross section is the sum of the total elas-
played in Fig. 1 along with other theoretical predictions

tic [7] and the present ground-state Ps formation cross sec-
[Sleé%t?elfgt gln?ztzqeT%beserzé\(/;?]tdrﬁteaasoljrezr?wztagf[;ﬁ]euagld tions. The values are in very good agreement with the ob-
P Creels L . " served data of Zhowet al. [23] in the incident positron
[23] agrees nicely with our predictions over the entire eNergy, 1oy ranae 6.8—10.2 eV the' G in which onlv elastic
range(6.8—30.0 eV considered in our calculation. The gen- gy range o. ) ' ' y

eral shape of the cross section is similar in both cases—ﬁcattermg and Ps formation are energetically allowed. Be-

rises from the threshold steadily to show a peak value on(_j 1_0.2_eV, the inelastic channels are all open including

around 15.0 eV and then falls off with the increase of posi- e ionization fro_m 13.6 eV. Naturally the observed dat_a are
: ; of greater magnitude than the present results at energies be-

tron energy. Our values of the total Ps formation cross S€Cond 10.2 eV

tion are interestingly smaller than those predicted by the’ ’ '

Fock-Tani calculation in the energy range below 30 eV. The

observed data of Sperbest al. [22] are available from

around 15.0 eV for the total formation cross section into all One other interesting aspect of the present calculation is

states of Ps. These data are reasonably consistent with thiee prediction of critical angles in Ps formation as displayed

B. Differential cross sections
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TABLE llIl. Differential cross sectiorda/dQ(aS/sr) for positronium formation in hydrogen at incident
positron energies 6.855 76, 8.704, 10.2, 13.6, 20.0, 26.0, and 30.0 eV. The netattorstands fora
X 10°°.

E (eV)
Angle
(deg 6.85576 8.704 10.2 13.6 20.0 26.0 30.0

0.0 0.2209-1 0.9992+1 2.3565+1 3.7642+1 3.5836+1 2.5676+1 2.0253+1

5.0 0.2186-1 0.9523r1 2.2060+1 3.4310+1 3.213A#41 229581 1.813%+1
10.0 0.2096-1 0.8235+1 1.8072+1 259641 2.31181 1.6326+1 1.2905+1
15.0 0.196+1 0.6443r1 1.2892+1 1.628A41 1.324%1 0.9116+1 0.7130+1
20.0 0.17841 0.4533+1 0.7922+1 0.8422+1 0.595A#1 0.3925+1 0.2969+1
25.0 0.15751 0.283A#1 0.4102+1 0.3545+1 0.2039%+1 0.124%-1 0.8712

30.0 0.1346-1 0.1546+1 0.1706+1 0.1174-1 0.4796 0.2501 0.1375
35.0 0.1109-1  0.7035 0.5042 0.2762 0.4824 0.121+1 0.164F2
40.0 0.8756-2  0.2416 0.67361 0.304~1 056722 0.1853-1 0.3833-1
45.0 0.656+2 0.4506-1 0.2867+~2 0.1896-2 0.5215-1 0.6556-1 0.8416-1
50.0 0.4609-2 0.0082-2 0.580~1 0.2356-1 0.1015 0.1003 0.1051
55.0 0.2965-2 0.2224-1  0.1157 0.51691 0.1384 0.1224 0.1108
60.0 0.1683-2 0.6156-1 1.4414-1 0.8228-1 0.1613 0.1366 0.1102
65.0 0.079+2 0.953%-1 0.1490 0.1180 0.1685 0.1411 0.1021
70.0 0.03822 0.1180 0.1436 0.1582 0.1603 0.1340 0.8519
75.0 0.0216-2 0.1310 0.1379 0.1971 0.1417 0.1194 0.6499
80.0 0.0497#2 0.1377 0.1363 0.2263 0.1196 0.1023 0.4570
90.0 0.2073-2  0.1422 0.1456 0.2345 0.7894  0.6495-1 0.1876-1
100.0 0.46972 0.1385 0.1532 0.1886 0.5188 0.326+~1 0.7304-2
110.0 0.797+2  0.1226 0.1368 0.1329 0.3931 0.1572-1 0.5876-2

120.0 0.11491 0.9342-1 0.9666-1 0.9185-1 0.2749-1 0.4560-2 0.326%-2
140.0 0.17941 0.2903-1 0.2826-1 0.4012-1 0.1345-1 0.025+2 0.0426-2
160.0 0.22191 0.2943-2 0.1622-1 0.507+2 0.164F2 0.0325-2 0.124%1
180.0 0.23621 0.0223-2 0.2056-1 0.0005-2 0.1348-1 0.025F2 0.1177#1

in surface plots of the differential cross section in Figuresthe appearance of these critical angles at which the differen-

3-5 for energies in the range 6.8—30.0 eV. We have studietial cross section is a minimum.

the nature of this differential cross section in some detail, The values of the Ps formation differential cross section

and found that destructive interference between partial-wavgre quite small at energies close to the threshold. Critical

contributions to the scattering amplitude is responsible fOIang|eS do, however, appear at |arge ang|es at these energies_
With the increase of incident positron energy, the magnitude

%07 -0 Present work of the differential cross section increases with the critical
1 x X *—X Born angle shifting toward the forward angle. In order to visualize
G Siraton(1987, aken from grepn) this aspect of the differential cross section, we have included

407 X FVGiten o gapr) results for positron momentum only up to 0.&0u) in Fig.

3. The first structure is related to the incident energy of the
positron close to the threshold, while the appearance of criti-
cal angles is manifest as a deep gorge in the valley of the
cross section along with secondary maxima at large angles,
x wherever these are present.
@ The general nature of the critical angles as a function of
incident energy is as follows. At positron energies near the
threshold at 6.8 eV, the Ps formation differential cross sec-
tion is rather spread out, displaying a shallow minimum at a
large scattering angle. As the energy increases, this angle
shifts in the forward direction, with forward peaking in the
o 10 20 30 40 50 cross  section, given by the quantity R
Energy (eV) =47(do/dQ)y—o/o. The value ofR equals 1.0 for isotro-
pic scattering. In Table I, we show the values of this quan-

FIG. 6. Forward scattering for ground-state positronium forma-tity, along with the critical angles, the differential cross sec-
tion in positron-hydrogen collisions in the energy range 6.8—-50.aion at the forward angle 0° and at fixed angles 45°, 60°, and
ev. 120°, and the total reaction cross section as given by the

30

0) (agsn)

20

de/dQ(e:

ox

10 4
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Schwinger variational method in the energy range 6.8—30.0 V. CONCLUSIONS

eV. The values of the Ps formation differential cross section

are given in Table Il for several positron energies 6.855 76, We have used a formulation of the Schwinger variational

8.704, 10.2, 13.6, 20.0, 26.0, and 30.0 eV. principle for rearrangement collisions in momentum space
In order to show how the present forward differential ysing correlated discrete basis sets for positron-hydrogen

cross section compares with those obtained by other theorejtom collisions in the energy range 6.8—30 eV. The results

ical methods including the Born approximation, we further gptained withN =8 terms in the basis expansion for the low

display @o/d() -, in Fig. 6 as a function of the incident gnergies are in full accord with the available Kohn-Hufthe

positron energy. The present values rise sharply 10 a peak gl iational calculation§13] for the partial waved. =0, 1,
an incident energy of around 15 eV, where the total Ps for-

. ) . nd 2 in the Oresnergy gap 6.8—10.2 eV. The present cal-
mation cross section e}lso reaches maximum and then faII. 0@ulation has been performed at several positron energies in
steadily. At low energies near the threshold, our caIcuIauoq .

. : . . he range 6.8—30.0 eV for all partial waves-0—15.
agrees with those of Stratdd8] and Ficocelli, Varracchio, . .
and Girardeal29], but the peak value obtained by us is _ The pred|pted re_sults for the total Ps formation cross sec-
much higher than those predicted by other calculations. aflon agree n_|cely with the observed data 9f Zretal. [23] i
higher energies, while the other values fall at a much slowePVer the entire energy range, as well as with the recent varia-
rate, the present values fall off sharply. As is evident, the firsfional and nonvariational = calculation$14,20,21. The
Born values are much smaller than all other cross sections &/€sent calculation displays surface plots of the differential
the forward angle. The behavior of the differential cross sec€ross section and, predicts the existence of critical angles.
tion near the forward direction thus seems to be responsiblRich structures are revealed by this display of the surface
for the large values of the total Ps formation cross sectioplots. With this, a comprehensive study seems to have been
around 15 eV. In other words, the small-angle scattering operformed by the present application of the Schwinger varia-
positrons needs to be accounted for properly to understaritbnal principle for rearrangement collisions to positron-
the capture process in positron-hydrogen collisions at theskydrogen scattering at low-energies. Further applications of
energies. the method are in progress.
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