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Multichannel Schwinger’s principle for rearrangement collisions: Positronium formation
in positron-hydrogen collisions

Sabyasachi Kar and Puspajit Mandal
Department of Mathematics, Visva-Bharati University, Santiniketan 731 235, West Bengal, India

~Received 7 July 1998; revised manuscript received 17 September 1998!

Post and prior forms of the multichannel Schwinger’s principle for rearrangement collisions are presented
using discrete basis sets. An application is made to positronium formation in positron-hydrogen collisions at
low energies in the range 6.8–30.0 eV. A total number of eight terms of a type of correlated basis functions
involving inverse powers of half-odd integers is required to predict accurate results in conformity with the
available variational and nonvariational values in the literature. Our findings indicate that destructive interfer-
ence between partial-wave contributions to the scattering amplitude is responsible for the appearance of critical
angles in positronium formation. Surface plots of the differential cross section display immensely rich struc-
ture. The total positronium formation cross sections agree nicely with the observed data of Zhouet al. @Phys.
Rev. A 55, 361 ~1997!# in the entire energy range.@S1050-2947~99!01802-8#

PACS number~s!: 03.65.Nk, 11.80.2m, 34.70.1e, 36.10.Dr
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I. INTRODUCTION

It is nearly two decades since Schwinger’s variatio
principle was proposed to be used with renewed interes
study electron-atom and electron-molecule collisions
McKoy and co-workers with discrete basis set expansi
@1–5#. Applications of the method in momentum space ha
been made for positron-atom collisions using correlated b
sets@6,7#. Definitive results for three-body nuclear reactio
have also been reported in the literature@8#.

In this paper, we present a formulation of Schwinge
variational principle in the discrete basis set expansion
rearrangement collisions@9,10# such as

11~2,3!→~1,2!13. ~1!

One of the virtues of this method is that, as for direct co
sions, it is not required to know the asymptotic behavior
the scattering wave function; this is taken care of by
Green’s function involved in the variational principle. Fu
thermore, the present method in momentum space is rea
applicable to higher partial waves in a straightforward m
ner, unlike formulations in configuration space, in which
evaluation of the so-called second-order ter
^F f uVfGf

1Vi uF i& or ^F f uVfGi
1Vi uF i& becomes enormousl

difficult. As we shall see, in our formulation, the evaluatio
of these matrix elements is conveniently transformed int
principal value integral in one dimension in thek plane; we
have a well-tested prescription for its numerical calculati

We make an application of the above formalism to po
tronium ~Ps! formation in positron-hydrogen collisions
which is a rather complicated rearrangement collision p
cess in a perfect three-body scattering system:e11(e2,p)
→(e1,e2)1p. Since the pioneering work of Massey an
Mohr in 1954@11#, this process has been studied by a vari
of methods with various degrees of sophistication@6,12–21#.
Among these, accurate Kohn-Hultheˇn variational results for
a few partial waves,L50, 1, and 2, at incident energies
the Orégap,~6.8–10.2 eV! have been reported by Stein an
PRA 591050-2947/99/59~3!/1913~13!/$15.00
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Sternlicht @12#, Humberston@13~a!#, and Brown and Hum-
berston@13~b!#. Recently Gien@14# reported a Harris-Nesbe
variational calculation in close agreement with those cal
lations. At these energies, reasonably accurate values o
K matrix have also been reported by a preliminary calcu
tion of the Schwinger principle@6#. For intermediate and
higher energies of positron impact, particular mention m
be made of calculations using the impulse approximat
@15#, the distorted-wave approximations@16,17#, Fock-Tani
field-theoretic equations@18#, theR-matrix method@19#, the
coupled 33-state method@20# and the 28-state close-couplin
approximation method@21#.

Remarkable experiments were recently reported for to
Ps formation and total reaction cross sections in Refs.@22#
and @23#. The observed data are in accord with theoreti
predictions in the overall shape and nature of the cross
tion, but differ significantly in one way or the other in de
tails. However progress has been noteworthy and quite
couraging in that broad areas of disagreement are gradu
being narrowed down and their causes being analyzed
purpose and devotion as the nature of the problem so
mands.

One of the interesting features of our calculation is th
only eight terms of a new correlated basis function involvi
inverse powers of half-odd integers are required to pre
accurate amplitudes and cross sections for partial waveL
50 – 15, at positron energies in the range 6.8–30.0
These results are in accord with Kohn-Hultheˇn and Harris-
Nesbet variational calculations available in the literatu
@13,14#. Critical angles are predicted in Ps formation, and
displayed through surface plots of the differential cross s
tions.

The plan of the paper is as follows. In Sec. II we pres
the formulation of Schwinger’s principle for rearrangeme
collisions using discrete basis sets. Section III describes
application of the ‘‘prior’’ form of the amplitudes to Ps for
mation in positron-hydrogen collisions. The forms of tw
body amplitudes required for a determination of the stati
ary Schwinger amplitude with the use of correlated ba
1913 ©1999 The American Physical Society
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1914 PRA 59SABYASACHI KAR AND PUSPAJIT MANDAL
functions are given in this section, and their methods
evaluation suggested. Results of our calculation are
sented in Sec. IV. Finally, concluding remarks are made
Sec. V. Atomic units are used in the present work.

II. THEORY

Let us consider a three-body scattering system in wh
particle 1 with massm1 is incident on a bound system o
particles 2 and 3 with massesm2 andm3 , respectively, in the
initial channel. In the final rearrangement channel, particle
and 2 form a bound pair, while particle 3 remains a specta
Let V1 denote the interaction between particles 2 and 3,V2
the interaction between particles 1 and 3, andV3 the inter-
action between particles 1 and 2. The total interaction in
scattering isV5V11V21V3 , while the residual interaction
in the incident and the final channels areVi5V21V3 and
Vf5V11V2 , respectively.

If H denotes the full Hamiltonian of the scattering syste
it can be expressed in terms of the channel Hamiltonian

H5Hi1Vi5H f1Vf , ~2!

such that

HiF i5EiF i , H fF f5EfF f . ~3!

Energy conservation requires that, on the energy shellEi
5Ef5E, the total energy of the system. The Green’s ope
tors are defined as

Gi
65

1

E2Hi6 i e
, Gf

65
1

E2H f6 i e
, G65

1

E2H6 i e
.

~4!

Using the operator relations (1/A)2(1/B)5(1/A)(B
2A)3(1/B)5(1/B)(B2A)(1/A), the integral equations fo
the total Green’s operatorsG6 may be obtained as

G65Gi
61Gi

6ViG
65Gi

11G6ViGi
6 , ~5a!

G65Gf
61Gf

6VfG
65Gf

11G6VfGf
6 . ~5b!

It can be easily verified that the full scattering wave fun
tions C i

1 andC f
2 for the incident and final channels satis

the Lippmann-Schwinger integral equations:

C i
65V i

6F i5F i1Gi
6ViC i

6

5F i1Gi
6ViF i1Gi

6ViGi
6ViF i1¯ , ~6a!

C f
65V f

6F f5F f1Gf
6VfC f

6

5F f1Gf
6VfF f1Gf

6VfGf
6VfF f1¯ . ~6b!

where the Mo” ller operators are defined as

V i
6511G6Vi , ~7a!

V f
6511G6Vf . ~7b!
f
e-
n

h

1
r.

e

,
as

-

-

The post and prior forms of the Born series for transiti
from the bound statei in the initial channela to the statef in
the final channelb may now be defined, on the energy she
as

Tf i
~prior!~bkW f ,akW i !5^F f uVf uC i

1&

5^F f uVf~orVi !1VfGi
1Vi1VfGi

1ViGi
1Vi

1¯uF i&, ~8a!

Tf i
~post!~bkW f ,akW i !5^C f

2uVi uF i&

5^F f uVi~orVf !1VfGf
1Vi1VfGf

1VfGf
1Vi

1¯uF i&, ~8b!

where\kW i and\kW f denote, respectively, the momenta of t
center-of-mass motion in the incident and final channels.
is well known, retaining the first two terms of the abov
series would yield the first and second Born terms of
transition matrix as

TI
~post!~bkW f ,akW i !5^F f uVf uF i&, ~9a!

TI
~prior!~bkW f ,akW i !5^F f uVi uF i&, ~9b!

TII
~post!~bkW f ,akW i !5^F f uVfGf

1Vi uF i&, ~10a!

TII
~prior!~bkW f ,akW i !5^F f uVfGi

1Vi uF i&. ~10b!

If the bound states in the plane wavesF i andF f are known
exactly, the post and prior forms of the first Born matr
element@Eqs.~9a! and~9b!# would give identical results. If,
however, the bound states are supposed to be inexa
known, as for composite particles, there would arise wha
known as the ‘‘post-prior’’ discrepancy between the two m
trix elements. For the second-order Born terms of Eqs.~10a!
and ~10b!, the contributions made by the two forms are n
generally equal, so long asGi

1 andGf
2 as well asVi andVf

are different. A large number of applications has been m
with the prior form of the second Born approximation
rearrangement collisions in atomic and molecular collisio
but the post form has rarely been utilized and its usefuln
is relatively unknown so far.

The importance of the second-order terms in the study
rearrangement collisions has nevertheless been ackn
edged for a long time. In order to describe the charge tran
in ion-atom collisions, such asZB1(e,ZA)→(e,ZB)1ZA ,
Thomas@24# proposed that the reaction takes place as a t
step process. In the first step, the incoming ion on its tra
tory of motion knocks the electron toward its parent nucle
The electron is elastically scattered, in the second step
the nucleus along the direction of the projectile. While t
center of mass of the~electron, projectile! bound pair moves
away from it, the atomic nucleus remains a mere specta
This classical model has been successfully applied to ana
charge-transfer collisions, and has been gainfully emplo
in the understanding and analysis of the quantum-mechan
prescriptions@25,26#.

It is, however, clear that the use of the Born series for
study of rearrangement collisions is not quite adequate
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PRA 59 1915MULTICHANNEL SCHWINGER’S PRINCIPLE FOR . . .
various reasons. For low energies of projectile impact, i
desired that the distortion of the atomic and molecular cha
cloud due to the slowly moving projectile’s charge be d
scribed properly with a consideration of distorted atomic
molecular orbitals rather than using plane waves for them
in the Born approximation. The question of convergence
the Born series has been investigated by several auth
Dettman and Leibfried@27# showed that, at high energie
the first two terms of the Born series of theT-matrix element
for nonrelativistic rearrangement collisions occurring in
three-body system give the correct energy depende
@25,26#.

One of the higher-order methods that naturally reduce
the second Born approximation under certain restriction
the Schwinger variational principle. Following Joacha
@9,10#, we obtain a convenient expression of the scatter
amplitude for rearrangement collisions using discrete b
sets. The transition operator for the purpose is defined
t f i5VfV i

1 , and, on using the following property of th
Mo” ller operators:Vf@V f

121#5@V f
221#†Vi , one obtains

the expressiont f i5(V f
2)†Vi1Vf2Vi . It is now possible to

define a pair of variational principles for the transition o
eratort f i :

@R1#5~V f
2!†VfGf

1Vi1VfV i
12~V f

2!†@Vf2VfGf
1Vf #

3~V i
121!, ~11a!

@R2#5VfGi
1ViV i

11~V f
2!†Vi1Vf2Vi2~V f

221!†

3@Vi2ViGi
1Vi #V i

1 . ~11b!

Indeed, it can be shown that@R1#5t i j 5@R2# and that these
expressions are stationary for independent variations of
Mo” ller operators about their correct values:d@R1#50
5d@R2#. When the matrix elements of these stationary
pressions@R1# and@R2# are taken between free statesF i and
F f , one obtains the post and prior forms of the station
transition matrix elements respectively as@9,10#

@Tf i~bkW f ,akW i !#post

5^F f uVf uC i
1&1^C f

2uVf1VfGf
1~Vi2Vf !uF i&

2^C f
2uVf2VfGf

1Vf uC i
1&, ~12a!

@Tf i~bkW f ,akW i !#prior

5^F f uVi1~Vf2Vi !Gi
1Vi uC i

1&1^C f
2uVi uF i&

2^C f
2uVi2ViGi

1Vi uC i
1&. ~12b!

These are the desired expressions of the station
Schwinger variational transition matrix elements for re
rangement collisions from the initial bound statei in channel
a to the final bound statef in channelb which are next
obtained in convenient forms for evaluation using discr
basis sets. It is relevant to note here that these trans
matrix elements reduce to those for the direct collisions
Vf5Vi andGf

15Gi
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A. Single-channel formulation of rearrangement collisions

We now make a single-channel expansion of the wa
functionsC i

1 andC f
2 in discrete basis sets:

C i
15(

m
amum , C f

25(
n

bnvn , ~13!

where the linear expansion coefficientsam5(am
(r ) ,am

( i ))
[(am

(1) ,am
(2)) andbn5(bn

(r ) ,bn
( i ))[(bn

(1) ,bn
(2)), are to be de-

termined for choices of the channel wave functionsum and
vn , and we analyze the post form of the Schwinger transit
matrix element. It is now useful to define the three-bo
amplitude

@Af i~bkW f ,akW i !#5~2m f /2p!@Tf i~bkW f ,akW i !#, ~14!

the two-body amplitudes

Af m
~ f p!~bkW f ,akW i !5~2m f /2p!^F f uVf uum&5~Af m

~ f 1! ,Af m
~ f 2!!,

~15!

Ani
~qi !~bkW f ,akW i !5~2m f /2p!^vnuVf1VfGf

1VduF i&

5~Ani
~1i ! ,Ani

~2i !!, Vd5Vi2Vf , ~16!

and the double scattering amplitude

Dnm~bkW f ,akW i !5~2m f /2p!^vnuVf2VfGf
1Vf uum&

5~Dnm
~r ! ,Dnm

~ i ! !, ~17!

with the three-body reduced mass in the final channelm f
5(m11m2)m3 /(m11m21m3). The post form of the varia-
tional amplitude thus takes the form

@Af i~bkW f ,akW i !#post

5(
m

Af mam1(
n

bn* Ani2(
m

(
n

bn* Dnmam .

~18!

The linear variational parametersam
(p) and bn

(q) are deter-
mined by exploiting the stationary property of@Af i #post:

]

]am
~p! @Af i #post505

]

]bn
~q! @Af i #post,

m,n51,2, . . . ,N, p,q51,2. ~19!

On differentiating with respect toam
(p) , one obtains

05Af m2(
n

bn* Dnm , m51,2, . . . ,N

which yields

(
n

@bn
~r !Dnm

~r !2bn
~ i !Dnm

~ i ! #5Af m
~ f 1! ,

~20!

(
n

@bn
~r !Dnm

~ i ! 1bn
~ i !Dnm

~r ! #5Af m
~ f 2! , m51,2, . . . ,N.
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Defining multiplication of complex quantities in terms o
array ~matrix! multiplication, such as

~x1 iy !~a1 ib !5S x
y

2y
x D S a

bD5S a
b

2b
a D S x

yD , ~21!

the above set of linear equations may be written in ma
notation as

~bI N
~r !†bI N

~ i !†!S DI N3N
~r !

DI N3N
~ i !

2DI N3N
~ i !

DI N3N
~r ! D 5~AI f N

~ f 1! AI f N
~ f 2!! ~22!

where the vector coefficients are given by

bI N
~r !†5~b1

~r !b2
~r !
¯bN

~r !!, bI N
~ i !†5~b1

~ i !b2
~ i !
¯bN

~ i !!,

bI N5S bI N
~r !

bI N
~ i ! D[S bI N

~1!

bI N
~2!D , ~23!

the submatrices are obtained as

DI N3N
~r ! 5S D11

~r !

D21
~r !

¯

DN1
~r !

D12
~r !

D22
~r !

¯

DN2
~r !

¯

¯

¯

¯

D1N
~r !

D2N
~r !

¯

DNN
~r !

D [DI N3N
~11! , ~24a!

DI N3N
~ i ! 5S D11

~ i !

D21
~ i !

¯

DN1
~ i !

D12
~ i !

D22
~ i !

¯

DN2
~ i !

¯

¯

¯

¯

D1N
~ i !

D2N
~ i !

¯

DNN
~ i !

D [2DI N3N
~12! ,

~24b!

DI N3N
~21! 52DI N3N

~12! ,DI N3N
~22! 5DI N3N

~11! ,DI 2N32N

5S DI N3N
~11!

DI N3N
~21!

DI N3N
~12!

DI N3N
~22! D , ~25!

and the nonhomogeneous column vectors are given as

AI f N
~ f 1!5S Af 1

~ f 1!

Af 2
~ f 1!

]

Af N
~ f 1!

D , Af N
~ f 2!5S Af 1

~ f 2!

Af 2
~ f 2!

]

Af N
~ f 2!

D , ~26!

so that the solution for the coefficientsbI N
† is obtained as

bI N
† 5~AI f N

~ f 1! AI f N
~ f 2!!DI 2N32N

~21! , ~27!

which on expansion reads as
x

bI N
~q!5 (

p51

2

AI f N
~ f p!DI 2N32N

~pq!21
, q51,2. ~28!

Thus the coefficients are given by

bn
~q!5 (

m51

N

(
p51

2

Af m
~ f p!Dmn

~ f p!21
, q51,2; n51,2, . . . ,N,

~29!

where Dmn
(pq)21

are the elements of the inverse matr
DI 2N32N

21 .
Similarly, (]/]bn

(q)) @Af i #post50 yields

05Ani2(
m

Dnmam , n51,2, . . . ,N. ~30!

which gives rise to

aI N
~p!5 (

q51

2

DI 2N32N
~pq!21

AI Ni
~qi ! , am

~p!5 (
n51

N

(
q51

2

Dmn
~pq!21

Ani
~qi ! ,

~31!

p51,2, m51,2, . . . ,N.

On substitution of these values ofam
(p) andbn

(q) in the expres-
sion for @Af i #post, one finally obtains the Schwinger varia
tional amplitude for rearrangement collisions from the bou
statei in channela to the statef in channelb as

@Af i~bkW f ,akW i !#post

5(
m,n

(
p,q

Af m
~ f p!~bkW f ,akW i !Dmn

~pq!21
Ani

~qi !~bkW f ,akW i !.

~32!

In order to evaluate this amplitude, one requires a knowle
of the ‘‘input’’ two-body amplitudesAf m

( f p) andAni
(qi) and the

elements of the double-scattering matrixDI 2N32N . These are
given in terms of the channel basis functionsum andvn . The
scattering amplitude is then a function of the scatter
angles associated with the vectorkW f , while the incident di-
rection ofkW i is generally associated with thez axis. Evalua-
tion of the double-scattering terms, however, involve thr
dimensional integrals of the intermediate off-shell energ
of the final-state Green’s function:

Gf
15

1

~2p!3 (
g
E dkW s

uFg9&^Fg9 u
E2Eg91 i e

. ~33!

In fact the double-scattering amplitude takes the form
Dnm~bkW f ,akW i !5Anm~bkW f ,akW i !2
1

~2p!3 (
g
E dkW9

Ang~bkW f ,gkW9!Agm~gkW9,akW i !

E2Eg91 i e S 2
2p

mg
D , ~34!
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in which we have used definitions

Anm~bkW f ,akW i !5~2m f /2p!^vnuVf uum&, ~35!

Ang~bkW f ,gkW9!5~2m f /2p!^vnuVf uFg9&, ~36!

Agm~gkW9,akW i !5~2mg/2p!^Fg9 uVi uum&, ~37!

where the plane-wave statesFg9 belong to the final-channe
HamiltonianH f with off-shell energiesEg9 (EÞEg9).

The double-scattering amplitude can be conveniently
duced to a form involving only a single-dimension
principal-value integral after performing the angular integ
tions, if the partial-wave analysis is allowed to be perform
by splitting the pole term 1/(E2Eg91 i e) into a d-function
part and a principal-value part as follows:

1

E2Eg96 i e
57 ipd~E2Eg9 !1P

1

E2Eg9
. ~38!

An analysis is thus given above for the evaluation of the p
form of the Schwinger variational amplitude for rearrang
ment collisions using discrete basis sets. One can proc
similarly for the study of the prior amplitude@Af i(bkW f ,akW i)#
involving the Green’s operatorGi

1 . In this case the interme
diate plane-wave states belong to the incident chan
HamiltonianHi .

B. Relation to the second Born approximation

The reduction of the Schwinger variational amplitude
the second Born amplitude and its relation to the Pade´ ap-
proximation and other variational methods is an old sub
of substantial importance and interest, and has drawn a
tion of the experts in the field@26–28#. In his derivation of
the Schwinger principle for rearrangement collision
Joachain@9,10# also gave the limiting forms of the ampl
tudes in post and prior forms under certain restrictions. I
the finite discrete basis set form,n51,2, . . . ,N, we keep
only one term forN51 such thatum5AF i , vn5BF f of
plane-wave states as in the Born approximations, and v
the amplitude@Af i(bkW f ,akW i)# with respect to the paramete
A andB, we obtain, on neglection of higher-order terms, t
following approximate expressions:

gSBA
~post!~bkW f ,akW i !5gI

~post!~bkW f ,akW i !1gII
~post!~bkW f ,akW i !,

~39!

gSBA
~prior!~bkW f ,akW i !5gI

~prior!~bkW f ,akW i !1gII
~prior!~bkW f ,akW i !,

~40!

where

gI
~post!~bkW f ,akW i !52~m f /2p!TI

~post!~bkW f ,akW i !, ~41!

gII
~post!~bkW f ,akW i !52~m f /2p!TII

~post!~bkW f ,akW i !, ~42!

gI
~prior!~bkW f ,akW i !52~m f /2p!TI

~prior!~bkW f ,akW i !, ~43!
-

-
d

st
-
ed

el

t
n-

,

n

ry

gII
~prior!~bkW f ,akW i !52~m f /2p!TII

~prior!~bkW f ,akW i !. ~44!

This essential feature of reducing the Schwinger amplitu
to the second-order Born approximation~SBA! is of impor-
tance to the study of rearrangement collisions, as has b
emphasized earlier and has been highlighted as an attra
characteristic of this variational principle@9,10#.

C. Multichannel formulation of rearrangement collisions

It is shown how the formulation can be utilized for
study of rearrangement collisions with the consideration
multichannel expansions of the full wave functionsC i

1 and
C f

2 instead of single-channel expansions. While doing th
it is to be borne in mind that the Schwinger amplitude f
rearrangement collisions would reduce to the direct co
sions, ifVf5Vi andGf

15Gi
1 for the incident as well as fina

channels. Indeed, we make use of the expansions

C i
15 (

m51

N

(
a51

2

am
~a!um

~a! , ~45!

C f
25 (

n51

N

(
b51

2

bn
~b!vn

~b! , ~46!

where am
(a)5(am

(ar) ,am
(ai)) and bn

(b)5(bn
(br) ,bn

(bi)), a,b51
and 2, are the linear variational constants, and (um

(1) ,vn
(1))

denote wave functions for the incident channel, wh
(um

(2) ,vn
(2)) denote those for the final channel.

Defining the two-body amplitudes

Af m
~ f a!~bkW f ,akW i !52~m f /2p!^F f uVf uum

~a!&, ~47!

Ani
~bi !~bkW f ,akW i !52~m f /2p!^vn

~b!uVf1VfGf
1VduF i&

~Vd5Vi2Vf ! ~48!

and the double-scattering amplitude

Dnm
~ba!~bkW f ,akW i !52~m f /2p!^vn

~b!uVf2VfGf
1Vf uum

~a!&,
~49!

we obtain the post form of the Schwinger amplitudes as

@Af i~bkW f ,akW i !#post5(
m

(
a

Af m
~ f a!~bkW f ,akW i !am

~a!

1(
n

(
b

bn
~b!* Ani

~bi !~bkW f ,akW i !

2(
m,n

(
a,b

bn
~b!* Dnm

~ba!~bkW f ,akW i !am
~a!

~50!

with

Dnm
~ba!5~Pnm

~ba! ,Qnm
~ba!!, Apq

~sr!5~Rpq
~sr! ,Spq

~sr!!. ~51!

On optimization of@Af i #post with respect to variational pa
rametersam

(a) andbn
(b) , m,n51,2, . . . ,N, a,b51,2, so that
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]

]am
~a! @Af i #post505

]

]bn
~b! @Af i #post, ~52!

one obtains

~bI N
~br ! ,bI N

~bi !!5~RI f N
~ f a! ,2SI f N

~ f a!!DI 4N34N
~ab!21

, ~53!

whereDI 4N34N
(ab)21

denotes the inverse matrix corresponding
DI 4N34N

(ab) consisting of block matricesPI N3N
(ab) , QI N3N

(ab) , so that
ar

na
ith

a
e
e

e
ed
b

m

DI 4N34N
~ab! 5S PI 2N32N

~ab!

QI 2N32N
~ab!

2QI 2N32N
~ab!

PI 2N32N
~ab! D , ~54!

PI 2N32N
~ab! 5S PI N3N

~11!

PI N3N
~21!

PI N3N
~12!

PI N3N
~22! D , QI 2N32N

~ab! 5S QI N3N
~11!

QI N3N
~21!

QI N3N
~12!

QI N3N
~22! D ,

and
~RI f N
~ f a! ,2SI f N

~ f a!!5~Rf 1
~ f 1! ,Rf 2

~ f 1! ,...,Rf N
~ f 1! ,Rf 1

~ f 2! ,Rf 2
~ f 2! ,...,Rf N

~ f 2! ,2Sf 1
~ f 1! ,2Sf 2

~ f 1! ,...,2Sf N
~ f 1! ,2Sf 1

~ f 2! ,2Sf 2
~ f 2! ,...,2Sf N

~ f 2!!
~55!
ese

rix

nt
to
ate

ob-

han-

ion
,

nd
Similarly, the coefficientsam
(a) are given by

S aI N
~ar !

aI N
~ai ! D 5DI 4N34N

~ab!21 S RI Ni
~bi !

SI Ni
~bi ! D . ~56!

Finally thus the multichannel Schwinger amplitude for re
rangement collisions is obtained as

S @Af i
~R!~bkW f ,akW i !#post

@Af i
~ I !~bkW f ,akW i !#post

D
5(

m,n
(
a,b

~RI f N
~ f a! ,2SI f N

~ f a!!DI 4N34N
~ab!21 S RI Ni

~bi !

SI Ni
~bi ! D .

~57!

In this form, it is convenient to evaluate accurate variatio
amplitudes if the input two-body amplitudes are defined w
a proper choice of the basis functionsum

(a) and vn
(b) , a,b

51,2, which must contain, as a matter of fact, nonline
variational parameters and sufficiently flexible corr
lation terms. Since this formulation has been defin
for two channels, the amplitudes@Aii (akW i8 ,akW i)#post,

@Af i(bkW f ,akW i)#post, and@Af f(bkW f8 ,bkW f)#post would describe,
respectively, elastic scattering in the direct channela, rear-
rangement collisions from the statei in channela to the state
f in channelb, and, finally, elastic scattering in the rearrang
ment channelb. The two-body amplitudes are to be defin
accordingly as required for the nature of scattering to
considered in a calculation.

A similar analysis may as well be done for the prior for
of the Schwinger amplitude@Af i(bkW f ,akW i)#prior . It is, how-
-

l

r
-
d

-

e

ever, not known how the results would be predicted by th
two forms of the Schwinger amplitude.

III. APPLICATION TO POSITRON-HYDROGEN
COLLISIONS

We use the prior form of the Schwinger transition mat
@Eq. ~12b!# for Ps formation in thef state in channelb in
positron scattering from atomic hydrogen in statei in chan-
nel a. If rW1 andrW2 denote the position vectors of the incide
positron and atomic electron, respectively, with respect
the massive proton at rest at the center of the coordin
system, thenVi51/r 121/r 12, Vf51/r 121/r 2 ~a.u.!. In the
Schrödinger representation, the plane-wave states are
tained as

F i~rW1 ,rW2!5^rW1 ,rW2uF i&5exp~ ikW i•rW1!f i~rW2!, ~58a!

F f~rW12,sW12!5^rW12,sW12uF f&5exp~ ikW f•sW12!h f~rW12!,
~58b!

where the relative coordinate,rW125rW12rW2 and the center-of-
mass coordinatesW1251/2(rW11rW2); f i(rW2) and h f(rW12) de-
note the bound states in the incident and rearrangement c
nels respectively, with\kW i and \kW f the momenta of the
incident positron and the moving Ps. Energy conservat
requires thatEi5Ef5E, the total energy of the system
where Ei5\2ki

2/2m i1e i and Ef5\2kf
2/2m i1e f , (e i ,e f)

and (m i ,m f) denoting, respectively, the eigenenergies a
three-body reduced masses in~incident, final! channels. In
this representation, the Green’s function is obtained as
Gi
1~rW1 ,rW2 ;rW18,rW28!5

1

~2p!3 (
g
E dkW9

^rW1 ,rW2uFg9&^Fg9 urW18,rW28&

E2Eg91 i e
. ~59!

in which the intermediate plane-wave statesuFg9& belong to the incident channel HamiltonianHi . We now expand the full
wave functionsC i

1 andC f
2 in discrete basis sets of single channel functions:

C i
15 (

m51

N

amum , C f
25 (

n51

N

bnvn . ~60!
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where am5(am
(r ) ,am

( i ))[(am
(1) ,am

(2)) and bn5(bn
(r ) ,bn

( i ))[(bn
(1) ,bn

(2)) are linear variational constants. It is now required
define the ‘‘prior’’ form of the three-body amplitude from Eq.~12b!,

@Af i~bkW f ,akW i !#prior5~2m f /2p!@Tf i~bkW f ,akW i !#prior , ~61!

the two-body amplitudes

Af m~bkW f ,akW i !5~2m f /2p!^F f uVi1Vd
1Gi

1Vi uum& ~Vd
15Vf2Vi ! , ~62!

Ani~bkW f ,akW i !5~2m f /2p!^vnuVi uF i&, ~63!

Anm~bkW f ,akW i !5~2m f /2p!^vnuVi uum&, ~64!

and the double-scattering amplitude

Dnm~bkW f ,akW i !5Anm~bkW f ,akW i !2
1

~2p!3 (
g

S 2
2p

mg
D E dkW9

Ang~bkW f ,gkW9!Agm~gkW9,akW i !

E2Eg91 i e
~65!

whereAng(bkW f ,gkW9) andAgm(gkW9,akW i) are defined for the intermediate plane-wave statesuFg9&.
Let the partial-wave expansion be defined by

@Af i~bkW f ,akW i !#prior5
4p

Akfki
(
l ,m

@Af i
~L !~bkf ,aki !#priorYlm~ k̂f !Ylm* ~ k̂i !, ~66!

and similarly for the two-body input amplitudes. On multiplication byYL0* ( k̂f) and integration overk̂f , one obtains with the
help of orthogonal properties of the spherical harmonics:

E YL0* ~ k̂f !@Af i~bkW f ,akW i !#dk̂f5
4p

Akfki

@Af i~bkf ,aki !#YL0~ k̂i !. ~67!

If we choose the direction of incidence along thez axis, kW i5(ki ,0,0), it would give k̂i ,k̂f5cosuf , YL0( k̂f)
5A(2L11)/4pPL(cosuf), dk̂f5sinuf duf dff , and thus on integration overf f , we finally obtain the partial-wave scatterin
amplitude as

@Af i
~L !~bkf ,aki !#prior5Akikf /2E

21

11

@Af i~bkW f ,akW i !#priorPL~cosu f !d~cosu f !. ~68!

In order to perform the partial-wave analysis of the amplitudes involving the pole term 1/(E2Eg96 i e), we split it into a
d-function part and a principle-value part:

1/~E2Eg96 i e!57 ipd~E2Eg9 !1P
1

E2Eg9
. ~69!

Similarly, these are obtained as

Af m
~L !~bkf ,aki !5Gf m

~L !~bkf ,aki !1 i(
g

H f g
~L !~bkf ,akg!Fgm

~L !~akg ,aki !

2
2

p\2 (
g

PE
0

` k9dk9

kg
22k92 H f g

~L !~bkf ,ak9!Fgm
~L !~ak9,aki !5~Af m

~r ! ,Af m
~ i ! !, ~70!

Dnm
~L !~bkf ,aki !5Anm

~L !~bkf ,aki !2 i(
g

Ang
~L !~bkf ,akg!Agm

~L !~akg ,aki !

1
2

p\2 (
g

PE
0

` k9dk9

kg
22k92 Ang

~L !~bkf ,ak9!Agm
~L !~ak9,aki !5~Dnm

~r ! ,Dnm
~ i ! !, ~71!
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TABLE I. The present partial-wave contributions to the ground-state positronium formation cross s
(pa0

2) in e1-hydrogen collisions in the energy range 6.8–30.0 eV. The notationx@2y# stands forx
3102y. †s t includes all significant partial-wave contributions.

E (eV)
L 6.855 76 7.65 8.704 9.826 10.2 11.0 12.0

0 0.0041 0.0043 0.0049 0.0058 0.0062 0.0069 0.0075

0.0041a 0.0044a 0.0049a 0.0058a

0.404@22#b 0.426@22#b 0.480@22#b 0.550@22#b

1 0.0270 0.3639 0.483 0.5614 0.6032 0.6568 0.6777

0.027a 0.365a 0.482a 0.561a

0.267@21#b 0.366b 0.483b 0.564b

2 0.00062 0.3350 0.8119 1.0569 1.1021 1.2421 1.2816

0.00062a 0.335a 0.812a 1.057a

0.682@23#b 0.321b 0.860b 1.158b

3 0.5037@25# 0.3536@21# 0.2717 0.5553 0.6089 0.6240 0.6416

0.445@25#b 0.357@21#b 0.271b 0.595b

4 0.3875@26# 0.1092@21# 0.1113 0.2917 0.3320 0.3485 0.3602

5 0.1559@28# 0.1182@22# 0.2537@21# 0.1115 0.1503 0.1711 0.1878

6 0.5294@24# 0.2543@22# 0.0181 0.0268 0.0399 0.6248@21#

7 0.2505@25# 0.2285@23# 0.2651@22# 0.4325@22# 0.7583@22# 0.1550@21#

8 0.8375@27# 0.1676@24# 0.3502@23# 0.6461@23# 0.1335@22# 0.4080@22#

9 0.3892@28# 0.1636@25# 0.4580@24# 0.9080@24# 0.2204@23# 0.7960@23#

10 0.1165@26# 0.4660@25# 0.1183@24# 0.3436@24# 0.1472@23#

11 0.9106@28# 0.5418@26# 0.1578@25# 0.2056@24# 0.2663@24#

12 0.4579@29# 0.6115@27# 0.1615@26# 0.6248@26# 0.3503@25#

13 0.1918@27# 0.8183@27# 0.5837@26#

14 0.2248@28# 0.1010@27# 0.9471@27#

15 0.1362@28# 0.1509@27#

s t
† 0.0317 0.7507 1.7110 2.6037 2.8346 3.0985 3.2394

s t
†b 0.0314@21#b 0.730b 1.663b 2.492b

E (eV)
L 13.6 15.0 18.5 20.0 26.0 30.0

0 0.0084 0.0089 0.0053 0.0045 0.0142@21# 0.0677@22#

1 0.6528 0.6268 0.4188 0.3151 0.1252 0.0986

2 1.3065 1.1501 0.8436 0.7715 0.5733 0.3263

3 0.6624 0.6826 0.7291 0.7172 0.5207 0.4376

4 0.3848 0.4089 0.4444 0.4204 0.2843 0.2610

5 0.2088 0.2229 0.2559 0.2262 0.1734 0.1543

6 0.1204 0.1327 0.1126 0.1072 0.8502@21# 0.6565@21#

7 0.4154@21# 0.6319@21# 0.5667@21# 0.5036@21# 0.3972@21# 0.3344@21#

8 0.1043@21# 0.1821@21# 0.2005@21# 0.2257@21# 0.1717@21# 0.1573@21#

9 0.2467@22# 0.4840@22# 0.5618@22# 0.5941@22# 0.4297@22# 0.2735@22#

10 0.5550@23# 0.1237@22# 0.1574@22# 0.1788@22# 0.1582@22# 0.1102@22#

11 0.1209@23# 0.3057@23# 0.4172@23# 0.4398@23# 0.3571@23# 0.2276@23#

12 0.2681@24# 0.3067@24# 0.4079@24# 0.4389@24# 0.5811@24# 0.4028@24#

13 0.3210@25# 0.4037@25# 0.1111@24# 0.1273@24# 0.1972@24# 0.1176@24#

14 0.3241@26# 0.6231@26# 0.2941@25# 0.3569@25# 0.6539@25# 0.3948@25#

15 0.6106@27# 0.1364@26# 0.7662@26# 0.9871@26# 0.2147@25# 0.1458@25#

s t 3.3992 3.3207 2.8941 2.6433 1.8266 1.3974

aHumberston~1982, 1984!, and Brown and Humberston~1985!.
bGien ~1997!.
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where Gf m
(L) , H f g

(L) , Fgm
(L) are the partial-wave ampli

tudes corresponding to (2m f /2p)^F f uVi uum&,
(2m f /2p)^F f uVd

1uFg9&, and (2m i /2p)^Fg9 uVi uum&, respec-
tively. Thus the partial-wave form of the Schwinger amp
tude becomes

@Af i
~L !~bkf ,aki !#prior5 (

m51

N

Af m
~L !~bkf ,aki !am

1 (
m51

N

bn* Ani
~L !~bkf ,aki !

2(
m

(
n

bn* Dnm
~L !~bkf ,aki !am.

~72!

The linear variational parametersam andbn are determined
by exploiting the stationary property of@Af i

(L)#prior :

]

]am
~p! @Af i

~L !#prior505
]

]bn
~q! @Af i

~L !#prior ,

p,q51,2, m,n51,2, . . . ,N. ~73!

On differentiation with respect toam
(p)(p51 and 2!, one ob-

tains

05Af m
~L !2(

n
bn* Dnm

~L ! , m51,2, . . . ,N. ~74!

Suppressing the superscript for the partial waveL, one real-
izes that

bn
~q!5 (

m51

N

(
p51

2

Af m
~ f p!Dmn

~pq!21,

q51,2 n51,2, . . . ,N, ~75!

FIG. 1. Total cross sections (pa0
2) for ground-state positronium

formation in positron-hydrogen collisions in the energy range 6
52.0 eV.
which in matrix notation is

bI N
~q!5 (

p51

2

AI f N
~ f p!DI 2N32N

~pq! 21, ~76!

where Dnm
(pq)21

are the elements of the inverse matr
D2N32N

(pq) 21. Similarly, the other equation yields

aI N
~p!5 (

q51

2

DI 2N32N
~pq! 21AI Ni

~pi ! ,

am
~p!5 (

n51

N

(
q51

2

DI mn
~pq!21

AI ni
~qi ! , p,51,2 m51,2, . . . ,N.

~77!

The linear variational constants are then substituted into
expression for@Af i

(L)#, to obtain, finally

@Af i
~L !~bkf ,aki !#prior

5(
m,n

(
p,q

Af m
~L !~ f p!~bkf ,aki !Dmn

~L !~pq!21

3Ani
~L !~qi !~bkf ,aki !, ~78!

which has the same structure as in Eq.~32!, and is now a
function of the scattering energies for each partial waveL. If
the partial-wave input amplitudesAf m

(L)( f p) , Ani
(L)(qi) , and

Anm
(L)(pq)21

are supplied for a given choice of the bas
functions um and vn , the Schwinger amplitude
@Af i

(L)(bkf ,aki)#prior can be very conveniently evaluated,
we shall see below.

– FIG. 2. Total cross sections (pa0
2) for elastic scattering and ne

reaction in positron-hydrogen collisions in the incident ener
range 0.136–110 eV.
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One of the highlights of our present calculations is t
choice of the basis set of the channel functionsum andvn .
We choose correlated functions with inverse powers of h
odd integers as follows:

um~rW1 ,rW2!5~21!m21jm~rW1 ,rW2!F i~rW1 ,rW2!, ~79a!

vn~rW1 ,rW2!5~21!n21jn~rW1 ,rW2!F f~rW12,sW12!, ~79b!

where the same correlation functionjm(rW1 ,rW2) is chosen for
both the incident (e11H) direct and the final (Ps1H1)
rearrangement channels:

jm~rW1 ,rW2!5e2amr 1/~a1br12!
m021/2, ~80!

FIG. 3. Surface plot of the differential cross section (a0
2/sr) for

ground-state positronium formation in positron-hydrogen collisio
as a function of incident momentum~0.71–0.80 a.u.! and scattering
angle~0°–180°!.

FIG. 4. Surface plot of the differential cross section (a0
2/sr) for

ground-state positronium formation in positron-hydrogen collisio
as a function of incident momentum~0.85–1.22 a.u.! and scattering
angle~0°–180°!.
f-

wherea2m5p anda2m2150, anda, b, andp are nonlinear
variational parameters to be optimized withm051, for m
51 and 2; withm052, for m53 and 4; withm053, for
m55 and 6; withm054, for m57 and 8; and so on.

With this choice of the basis set, the input two-body a
plitudes are conveniently obtained as a function of the in
dent energy for each partial waveL. The evaluation of the
single-dimensional principal-value integral over@0,̀ ! can be
performed quite accurately by splitting the range into int
vals @0,2kg# and @2kg ,`). Then we use Gauss-Legend
quadrature of an ‘‘even’’ number of points for the first inte
val @0,2kg#, such that the principal-value integral is define
characteristically as limd→01(*0

kg2ddk9...1*kg1d
2kg dk9...),

since the distribution of quadrature points are evenly dist
uted around the midpointk95kg . The evaluation of the in-
tegral for the other interval@2kg ,`) can be performed in a
straightforward manner by using any standard technique.
have, however, used the Gauss-Legendre method with
quadrature points for a smooth convergence of the results
this work, we have included only the ground state of hyd
gen withg5100 in the summation over intermediate sta
g. The effects of the dominant interactions for low-ener
collisions are taken care of by the correlated basis functio
which are quite flexible.

IV. RESULTS AND DISCUSSION

The procedure for nonlinear optimization of the vari
tional parametersa, b, andp is as follows. We setb51.0 on
the basis of the fact that the normalization of the wave fu
tion is not required in defining the Schwinger variation
expression for the transition matrix. Next, for a given cho
of the variational parametera, the variational parameterp is
varied within a finite range, say,@0.0, 2.5#, to search for a
stationary range of values of the scattering amplitu
@Af i

(L)#prior . This process is continued until a suitable com

s

s

FIG. 5. Surface plot of the differential cross section (a0
2/sr) for

ground-state positronium formation in positron-hydrogen collisio
as a function of incident momentum~0.84–1.48 a.u.! and scattering
angle~0°–180°!.
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TABLE II. Differential cross sectionds/dV(a0
2sr21) for positronium formation in atomic hydrogen a

incident energy range 6.8–30.0 eV for the scattering angles 0°, 45°, 60°, and 120° along with the
angleuc

0, the ratioR54p(ds/dV)u50 /s, and the reaction cross sectionst . The notationx@2y# stands for
x3102y.

Angle
E (eV)

d§/dV

uc
0 R st0° 45° 60° 120°

6.85576 0.2209@21# 0.6561@22# 0.1683@22# 0.1149@21# 73.40 8.761 1.2878
7.65 0.2616@11# 0.1361 0.0061@22# 0.9825@21# 60.20 43.786 1.9724
8.704 0.9992@11# 0.4500@21# 0.6150@21# 0.9342@21# 50.02 73.386 2.9802
9.826 2.0372@11# 0.0579@22# 1.4407@21# 0.9144@21# 44.80 98.322 3.8126

10.2 2.3565@11# 0.2867@21# 1.4414@21# 0.9660@21# 44.01 104.469 4.0344
11.0 2.6900@11# 0.1766@22# 0.1291 0.1084 44.25 109.096 4.262
12.0 3.0342@11# 0.0924@22# 0.1198 0.1139 44.60 117.704 4.362
13.6 3.7642@11# 0.1896@22# 0.8228@21# 0.9185@21# 44.00 139.157 4.4154
15.0 4.0725@11# 0.3232@22# 0.8271@21# 0.8981@21# 43.26 154.114 4.1612
18.5 3.8548@11# 0.4244@21# 0.1367 0.4711@21# 39.20 167.378 3.4389
20.0 3.5836@11# 0.5215@21# 0.1613 0.2749@21# 38.55 170.366 3.1789
26.0 2.5676@11# 0.6550@21# 0.1366 0.4560@22# 36.85 176.642 2.3357
30.0 2.0253@11# 0.8416@21# 0.1102 0.3261@22# 35.20 182.129 1.8279
-
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nation of the values ofa and p is discovered up to a satis
factory level of accuracy. It is worthwhile to note that
remarkable stability in the calculations was achieved w
only N58 terms in the basis expansion for the energy ra
considered in the present work~6.8–30.0 eV!, for all values
of the partial waveL50 – 15.

A. Total cross sections

The values of theS, P, D, and higher partial-wave cros
sections for ground-state Ps formation in hydrogen
shown in Table I, along with available variational results f
incident positron energies in the range 6.8–30.0 eV. As
apparent, the present Schwinger variational results are in
cord with available Kohn-Hultheˇn and Harris-Nesbet value
@13,14#. There is, however, a wide range of calculatio
available in the literature using a variety of approximati
methods, a comprehensive review of which is available
the literature@6,7,11–23,29#. It is of interest to note that the
recent results of the 33-state coupled-state calculation
Kernoghanet al. @20# and the 28-state close coupling a
proximation of Mitroy @21# are in satisfactory agreemen
with our studies.

The total ground-state Ps formation cross sections are
played in Fig. 1 along with other theoretical predictio
@16,18,20# and the observed data of Zhouet al. @23# and
Sperberet al. @22#. The recent measurement of Zhouet al.
@23# agrees nicely with our predictions over the entire ene
range~6.8–30.0 eV! considered in our calculation. The ge
eral shape of the cross section is similar in both cases
rises from the threshold steadily to show a peak value
around 15.0 eV and then falls off with the increase of po
tron energy. Our values of the total Ps formation cross s
tion are interestingly smaller than those predicted by
Fock-Tani calculation in the energy range below 30 eV. T
observed data of Sperberet al. @22# are available from
around 15.0 eV for the total formation cross section into
states of Ps. These data are reasonably consistent with
h
e
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observed data of Zhouet al. @23#, the earlier measurement
overestimating the latter. The recent observations of Zh
et al. @23# agree with the recent coupled 33-state calculat
of Kernoghanet al. @20# and the 28-state close-coupling a
proximation calculation of Mitroy@21# ~not included in the
figure!. As is evident, the agreement between our pres
Schwinger variational calculation and the 33-state calcu
tion of Kernoghanet al. @20# is remarkably close at low en
ergies below 10.2 eV, and quite reasonable beyond this
ergy. The distorted-wave results of Ref.@16# are not
expected to be valid at low-energies. They overestimate
present results and the observed data@23# below 50 eV, be-
yond which, however, the estimated cross sections@16# are
in reasonable agreement with the experiment@23#.

The present Schwinger variational results and the m
surements of Zhouet al. @23# are further compared in Fig. 2
in which we have drawn curves of the total elastic and
total reaction~elastic plus Ps formation! cross sections as
given by the Schwinger variational method@7# along with
the elastic results of Kernoghanet al. @20#. The comparison
reveals interesting findings. While the elastic cross sec
predicted by all the theoretical methods are in complete
cord among themselves@7,20,21#, the measured values ar
quite smaller than these predictions below 6.8 eV. T
Schwinger reaction cross section is the sum of the total e
tic @7# and the present ground-state Ps formation cross
tions. The values are in very good agreement with the
served data of Zhouet al. @23# in the incident positron
energy range 6.8–10.2 eV, the Ore´ gap, in which only elastic
scattering and Ps formation are energetically allowed.
yond 10.2 eV, the inelastic channels are all open includ
the ionization from 13.6 eV. Naturally the observed data
of greater magnitude than the present results at energies
yond 10.2 eV.

B. Differential cross sections

One other interesting aspect of the present calculatio
the prediction of critical angles in Ps formation as display
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TABLE III. Differential cross sectionds/dV(a0
2/sr) for positronium formation in hydrogen at inciden

positron energies 6.855 76, 8.704, 10.2, 13.6, 20.0, 26.0, and 30.0 eV. The notationa6b stands fora
3106b.

E (eV)
Angle
~deg! 6.85576 8.704 10.2 13.6 20.0 26.0 30.0

0.0 0.220921 0.999211 2.356511 3.764211 3.583611 2.567611 2.025311
5.0 0.218021 0.952311 2.206011 3.431011 3.213711 2.295811 1.813911

10.0 0.209621 0.823511 1.807211 2.596711 2.311811 1.632611 1.290511
15.0 0.196121 0.644311 1.289211 1.628711 1.324111 0.911611 0.713011
20.0 0.178421 0.453311 0.792211 0.842211 0.595711 0.392511 0.296911
25.0 0.157521 0.283711 0.410211 0.354511 0.203911 0.124911 0.8712
30.0 0.134621 0.154611 0.170611 0.117411 0.4796 0.2501 0.1375
35.0 0.110921 0.7035 0.5042 0.2762 0.482421 0.121121 0.164722
40.0 0.875022 0.2416 0.673621 0.304721 0.567222 0.185321 0.383321
45.0 0.656122 0.450021 0.286722 0.189622 0.521521 0.655021 0.841621
50.0 0.460922 0.008222 0.580721 0.235621 0.1015 0.1003 0.1051
55.0 0.296522 0.222421 0.1157 0.516921 0.1384 0.1224 0.1108
60.0 0.168322 0.615021 1.441421 0.822821 0.1613 0.1366 0.1102
65.0 0.079122 0.953921 0.1490 0.1180 0.1685 0.1411 0.1021
70.0 0.038222 0.1180 0.1436 0.1582 0.1603 0.1340 0.851921
75.0 0.021022 0.1310 0.1379 0.1971 0.1417 0.1194 0.649921
80.0 0.049722 0.1377 0.1363 0.2263 0.1196 0.1023 0.457021
90.0 0.207322 0.1422 0.1456 0.2345 0.789621 0.649521 0.187621

100.0 0.469722 0.1385 0.1532 0.1886 0.518821 0.326721 0.730422
110.0 0.797122 0.1226 0.1368 0.1329 0.393121 0.157221 0.587622
120.0 0.114921 0.934221 0.966021 0.918521 0.274921 0.456022 0.326122
140.0 0.179421 0.290321 0.282021 0.401221 0.134521 0.025122 0.042622
160.0 0.221921 0.294322 0.162221 0.507122 0.164122 0.032522 0.124121
180.0 0.236221 0.022322 0.205021 0.000522 0.134821 0.025122 0.117721
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in surface plots of the differential cross section in Figu
3–5 for energies in the range 6.8–30.0 eV. We have stud
the nature of this differential cross section in some det
and found that destructive interference between partial-w
contributions to the scattering amplitude is responsible

FIG. 6. Forward scattering for ground-state positronium form
tion in positron-hydrogen collisions in the energy range 6.8–5
eV.
s
d

l,
ve
r

the appearance of these critical angles at which the diffe
tial cross section is a minimum.

The values of the Ps formation differential cross sect
are quite small at energies close to the threshold. Crit
angles do, however, appear at large angles at these ene
With the increase of incident positron energy, the magnitu
of the differential cross section increases with the criti
angle shifting toward the forward angle. In order to visuali
this aspect of the differential cross section, we have inclu
results for positron momentum only up to 0.80~a.u.! in Fig.
3. The first structure is related to the incident energy of
positron close to the threshold, while the appearance of c
cal angles is manifest as a deep gorge in the valley of
cross section along with secondary maxima at large ang
wherever these are present.

The general nature of the critical angles as a function
incident energy is as follows. At positron energies near
threshold at 6.8 eV, the Ps formation differential cross s
tion is rather spread out, displaying a shallow minimum a
large scattering angle. As the energy increases, this a
shifts in the forward direction, with forward peaking in th
cross section, given by the quantity R
54p(ds/dV)u50 /s. The value ofR equals 1.0 for isotro-
pic scattering. In Table II, we show the values of this qua
tity, along with the critical angles, the differential cross se
tion at the forward angle 0° and at fixed angles 45°, 60°, a
120°, and the total reaction cross section as given by

-
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Schwinger variational method in the energy range 6.8–3
eV. The values of the Ps formation differential cross sect
are given in Table III for several positron energies 6.855
8.704, 10.2, 13.6, 20.0, 26.0, and 30.0 eV.

In order to show how the present forward different
cross section compares with those obtained by other the
ical methods including the Born approximation, we furth
display (ds/dV)u50 in Fig. 6 as a function of the inciden
positron energy. The present values rise sharply to a pea
an incident energy of around 15 eV, where the total Ps
mation cross section also reaches maximum and then fal
steadily. At low energies near the threshold, our calculat
agrees with those of Straton@18# and Ficocelli, Varracchio,
and Girardeau@29#, but the peak value obtained by us
much higher than those predicted by other calculations.
higher energies, while the other values fall at a much slo
rate, the present values fall off sharply. As is evident, the fi
Born values are much smaller than all other cross section
the forward angle. The behavior of the differential cross s
tion near the forward direction thus seems to be respons
for the large values of the total Ps formation cross sec
around 15 eV. In other words, the small-angle scattering
positrons needs to be accounted for properly to unders
the capture process in positron-hydrogen collisions at th
energies.
,
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V. CONCLUSIONS

We have used a formulation of the Schwinger variatio
principle for rearrangement collisions in momentum spa
using correlated discrete basis sets for positron-hydro
atom collisions in the energy range 6.8–30 eV. The res
obtained withN58 terms in the basis expansion for the lo
energies are in full accord with the available Kohn-Hulthˇn
variational calculations@13# for the partial wavesL50, 1,
and 2 in the Ore´ energy gap 6.8–10.2 eV. The present c
culation has been performed at several positron energie
the range 6.8–30.0 eV for all partial wavesL50 – 15.

The predicted results for the total Ps formation cross s
tion agree nicely with the observed data of Zhouet al. @23#
over the entire energy range, as well as with the recent va
tional and nonvariational calculations@14,20,21#. The
present calculation displays surface plots of the differen
cross section and, predicts the existence of critical ang
Rich structures are revealed by this display of the surf
plots. With this, a comprehensive study seems to have b
performed by the present application of the Schwinger va
tional principle for rearrangement collisions to positro
hydrogen scattering at low-energies. Further applications
the method are in progress.
.
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