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Modified Thomas-Fermi-Dirac approach for the evaluation of atomic ground-state properties
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Atomic ground-state properties are evaluated by means of a modified semiclassical approach with a
guantum-mechanical treatment of the near-nuclear region. The results for the energy and lowest-order radial
expectation values are close to Hartree-Fock results, improving the Thomas-Fermi-Diracekésizssti-
mates[S1050-2947©@9)01603-7

PACS numbeps): 31.15.Gy, 31.15.Bs, 31.96s

I. INTRODUCTION the standard TFD proceduf#], which is based on the rela-

tions
L +/ ! V(r)+
—_— —=V(r)+e
\/577 272 F

for the density in terms of the potential, defined by

The great impact of the Thomas-Fer(iiF) and Thomas-

Fermi-Dirac(TFD) methods for the study of fermionic sys- 23/2

tems is well known, providing simple schemes for adequate prep(r)= 37

estimations of average propertigd. For atoms, the discrep- m

ancies between TB) and Hartree-FockHF) results are

mainly attributed to the description of the electron and en

ergy density near the nucleus, where the electron cloud dif- ,

fers most from a local Fermi gas. V(r)=— E+f pTeFD(_r) ) dr’, P)
A great effort has been made to correct this deficiency r [r—r’|

[2—7], a very popular example being the gradient expansion

of the energy functiong4—7]. Although providing adequate and for the energy density

features for the electron density and great improvement on

the energy values, there are several problems in its applica- ere=Cupd3 — E +l

tion: First, the gradient expansion cannot be extended be- 0~ ~KPTFD™ | PTFD™ 3 PTFD

yond fourth order(the so-called Hodges terf@]) because

the sixth-order term diverges for atoms; second, if we wish XJ’ prep(r’) 4P — o3

to retain as much as possible the simplicity of the original Ir—r| ePTFD

theory, the complication of the integro-differential equation

that appears in this scheme usually restricts this method to g3 L1Z 1 w3

the inclusion of the second-order terithe Thomas-Fermi- =Cwprro— 5 7 PTR0 T 5 V(1) preD~ CepTrD

Dirac-Weizsaker approach4-6]) and for a good compari-

son to HF energies, the prefactor of the Wetksa term 3

obtained from theoretical grounds (1/9) has to be replace

by 1/5[4]. In addition to this, the values of the density close

to the nuclei are much less accurate than those of the energy 3

even when including the fourth-order correctiof. Ck:E(SWZ)ZISv (4)
A simpler alternative approach for correcting the density

was proposed by Ashby and HolzmE2l, replacing the TF 3( 3)1/3

3

@

here

density at short distances by a hydrogenic ¢censidering C.=—-—

the 1s orbital for an effective nuclear chargewhich 77

matches the former at a point where the kinetic-energy denA
sity also matches.

In this work we propose an improvement of this proce-
dure, based on the inclusion of electron exchange and a dif- 1 7
ferent tr_ea_tment of the_short—range_ density from the exact V(r)—ep— —=- —&(X), (6)
small+ limit of the s orbitals, according to a three-term ex- 2w r
pansion of the one-electron potential. Also, the boundary ) ) ]
conditions differ from this reference. The description of ourWherex is related to the radial coordinate by
method now follows(atomic units are used throughout the

Il the quantities can be expressed in terms of the screening
function ¢(x), defined by

papey. r=bx, )
Il. THEORY with
213
We will adopt, from an inner radius, up to an atomic _ E( 3_77) 7-13_(0 885347 113 ®)
radiusr,, the electron and energy densities obtained from 2\ 4 ' '
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The values ofp(x) are obtained from the resolution of the Substituting these expressions in the Sdimger equation
TFD differential equation

_%V2+V(r)]¢n:6n¢n (17
d2¢ b 1/213 for V(r) given above and comparing the different terms,in
T = ,3+(— , (9)  we find the relations
dx? X
b,=-2, (18
where
ﬂ:%# (10) Cn:%(22_5n+vo)a (19
2 (6m2)?*
with the condition dn= 15[ —Z°+4Z(en+ Vo) +3V4]= %(23—4ch+vlzéo)
$(0)=1, (11

Then the electron density is given by
which provides the proper smalldimit for V(r), and the
condition at a limitingx, ,

1—-2Zr+(2c,+2Z?)r?

PI:; |‘//n|2:§n: aﬁ

¢(X|)_,3_2
x; 16’

(12

+ (23—1Och+V1)r3+O(r4)}, (21)

w| =

for null pressure of the electron cloud at the atomic radius _ . _
ri=bx;, the cutoff density. The fraction of electrons lying Where the sum runs over all occupied orbitdte ocupation
betweenr, andr,, which are described by this TFD proce- number is implicitly included in the coefficients,) and we

dure, is given by have kept the parametey, instead ofe,+V, for simplicity.
If we define the total parameters
N2=Z[X$" (X)) =Xod' (Xo) = (X)) + d(X0)], (13 A= a2, (22
n

wherex,=rq/b.
The Fermi energyr is fixed by the constraint that the
potential at the atomic radius be equal to(Z—N)/r|,

whereN is the total number of electrons, which implies that > aZc,
c=— , 23
et N, 1 (14) E”:aﬁ
27 N 327°

it is straightforward to write
These complete the expressions required for the TFD de-
scription of the density in the rangg=<r=<r,. For the near- o5 1o
nuclear regiom <r,, we base our description of the internal ~ PI(F)=A[1-2Zr+(2C+Z%)r°+3(2°-102C+V,)],
pi(r) ande (r) upon the expansion of the potential for small (24)

values off, which, if we determine the values éf and C, allows us to

take into account implicitly the contribution of ail orbitals

V(r)=— E+Vo+vlr+0(r2), (150  to the electron density. This is a consequence of the linear
r dependence dfy,|? on the parametera? andc,,.
and the corresponding one for the one-elecsatate wave The above expression fpf and its first derivative will be
functions ( stands for the principal quantum numjper matched to the TFD values atr,. This allows us to obtain
the values ofA and C, providedr, andV, are known, by
yo(r)=a[1+br+c,r2+dr3+0(r4]. (16)  means of the expressions

o 14 2Z(Ro—rq) — 2Z?Rof o+ (22— Z3Ro— V1Ro)r5+(Z3+Vy)rd/3
ARgrg—2(1+5ZRy)r5+102r3/3

: (25
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first estimate oV, andV;. Then we recall thep(x) and
¢'(x) values and for anx we impose the continuity o
A and p’ at r=bx. The parameterg\ and C for any x are
L 22, 1,52 3 determined through Eq$25) and (26) with the V; value
1=22Z1o+(2C+ 2o+ 5(2°~ 102C+Vy)rg 26 obtained from the previous fit. We then evaluate the energy
density with Eq.(29) and compare to the TFD valu¢gg.

The matching point, will be determined by imposing con- (3)]. For thex where both coincide, we identify the corre-

tinuity of the energy density, i.e., by matching the TFD ex-spondingr as a newr, and start again the above procedure
pression with the inner one, which is given by from the fitting of V(r). This is done until the same value of

ro is reached from one iteration to the next. Then the number
of electrons is calculated. The fraction of inner electrons (
<ry) is given by

whereRo=prep(ro)/ pren(ro), and

preo(ro)

El(r):; 5n|¢n|2

2
n

~S a

n

(Z24+Vo—3c,)| 1—2Zr+(2¢c,+ Z?)r?

o
N1=47rf r2p,(rydr
0

4
§7TA3I'

(27)

1 3 3
+3(Z°-10Z¢, +Vy)rd|.

3 3 3 2\,2
0 1—§Zro—l— §(2C+Z )ro

1
We have to express the sum in terms of the total param- + g(zs— 10ZC+Vy)rg (30
etersA and C. Due to the presence af in ther? andr®

terms, we make the following approximation for those terms

which has to be summed to the fraction of statistical ones
N,, given by Eq.(13). Then the whole procedure is repeated
for different initial guesses of; until N=N;+ N, is equal to
the number of electrons of the atom under consideration.
The self-consistent procedure for the determinationof
for any x; is extremely fas{less than five iterations in any
casg. It does not depend upon the initial guessrgfand
allows us to complete the calculations in a very short time.
We want to point out that with the present scheme we
which is justified when the sum is mainly dominated by ainclude the first terms of the exact wave function for the
single term(the 1s orbital). We can estimate the error of this potential given by Eq(15), without taking into account any
approximation by considering the two most contributing hy-property outside the sphere of radiysin contrast to previ-
drogenic orbitals (& and 2), for which a,=a;/\/8 and  0us work[2], where the integrability of the wave function at
c,=3c,/4. The left-hand side of Eq28) would be equal to ' —> is implicitly taken into account.
1.07@2c?, while the right-hand one would be 1.06%2,
an error less than 1%. Moreover, this approximation has to
be done just in the third and fourth terms of the energy den-
sity for small distances. Therefore, with this approximation
we obtain

2

3 e,

n

> a

n

> aici~ (28)
n

IV. RESULTS

The present procedure provides then the values of the
electron density

pi(r) ifr<rg

€(r)=A(Z?+V,—3C)[1—2Zr+(2C+Z?)r?

+3(Z3-10zC+V))r3. (29

Ill. PROCEDURE

The specific procedure for the application of the presen
method is quite self-consistent: For a given valuexpfve
solve numerically the TFD differential equation inward from

()= (31)

P preo  f r=rg

and the total energy, which is calculated by

TABLE I. Energies of single charged positive iofis keV)
Fvaluated by the method of the present wo\) compared to
previous work and Hartree-Fock valugsF) [9].

the initial conditione(x,) =x,8%/16, giving different values "B -EMHR  CERel[2) -EPW
of ¢'(x)) until $(0)=1 is reached at the end of the integra- 11 5.62 4.40 3.59 4.27
tion. Then all the values of(x) and ¢’ (x) are stored. The 37 95.4 80.0 72.3 79.0
values of the potential/(r) are obtained fromp(x) for r 55 240.6 205.6 189.5 204.6
=0 up to a value guessed for=r, and fitted by the right- 79 560.3 486.0 454.7 484.3
hand side of Eq(15) [actually, rV(r) is fitted in order to g7 701.9 611.4 573.6 611.3

avoid singularity problems at=0]. This provides us with a
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TABLE II. Energies of some neutral atoms evaluated in the present WM compared to Thomas-
Fermi-Dirac-Weizseker valueq10] using prefactors.=1/9 [TFDW(1/9)] and\ =1/5[TFDW(1/5)] in the
gradient correction. Also, Hartree-Fock valugs-) from Ref.[11] are displayed for comparison.

z —E (TF) —E [TFDW(1/9)] —E [TFDW(1/5)] —E (PW) —E (HF)

10 165.619 139.886 128.755 125.893 128.547
20 834.667 720.871 674.851 666.688 676.758
30 2149.78 1881.99 1776.55 1762.61 1777.85
40 4206.46 3717.24 3527.58 3492.34 3538.97
50 7080.11 6301.06 6002.23 5963.79 6022.92
60 10834.2 9696.28 9263.21 9295.73 9283.70
70 15524.1 13957.8 13365.3 13406.3 133915
80 21194.2 19134.6 18357.5 18406.5 18409.0
90 27904.6 25271.4 24284.4 241346 24359.6

potential at short distancesThen a second run follows,
. (32 where the density and energy are evaluated keeping the pa-
rameters of the potential fixed from the previous step and
Also we will evaluate some radial expectation values imposing now the proper normalization.
This leads to the energy values displayed in Table II,
where comparisons to the TF and Thomas-Fermi-Dirac-
N " oio Weizszker (TFDW) estimates with coefficients 1/9
(r)y=am fo e op(r)dr 33 [TEDW(1/9)] [10] and 1/5[TFDW(1/5)] [10] and HF[11]
calculations are included. We observe how the present work
in order to compare the quality of the density obtained withprovides accurate estimations of the energy if we take into
respect to HF values. account the simplicity of the method and its statistical nature.
The numerical results for the energy of some positive ions As an illustration of the values of the
are shown in Table | and are compared to the results gbarameters involved, the self-consistent procedure
Ashby and Holzmarj2] as well as HF valuef9]. The im- for krypton (Z=36) gives x;=16.79,r,=0.0139,
provement is quite noticeable and it is attributed not only to¢(xp) =0.93155380944, ¢'(xe)=—1.175703489, V,
the inclusion of exchange but also to the different treatment=201.4381143,V,;=—1793.867 075, A=33358.58, C
of the inner electron and energy densities, which provides & 869.1039, and = — 13 381.47, which provides an energy
larger correction. As an illustration of this, notice that theof —2719.37 a.u. to be compared to the HF result of
sole introduction of exchange in the original procedure of—2752. a.u. In Table Ill the most important parameters for
Ref. [2], e.g., forZ=87, modifies the energy result from some atoms are presented.
—574 to—586 keV. With respect to the electron density, illustrated in Figs. 1
In the case of neutral atoms, the two constra[nt§0)  [r2p(r)] and 2[p(r)] for the case of kryptonZ= 36), this
=1 for a proper smalf- behavior of the potential andl procedure corrects the main deficiency of the TFD method
=Z for a proper normalizationcannot be held simulta- and gives values very close to the HF density at short dis-
neously as precisely as we wish due to numerical precisiotances from the nuclei. At larger distances, our density val-
problems|[values of’(x;) extremely small This problem ues join the curve of the TFD method in the region where a
is avoided by performing a two-step procedure. With a firstfair average of the different shell contributions is given.
run, we determine the parameters in the potential, letting th@&hese facts are also reflected in the radial expectation values
first constraint accurately hold but relaxing slightly the nor-and the density at the nucleus, which are displayed in Table
malization one(a few percent, which does not affect the IV. The values ofp(0),(r ~2), and(r 1) are very close to

"o N
E=4m J rze,(r)dr+f r2erpp(r)dr
0 r

0

TABLE lll. Parameters of the present modelu) for different neutral atoms.

Zz o Vg Vq A B C X r

10 5.03—-2] 35.86 —133.1 6.53R] 74.17 —3.500 2] 9.787 4.02
20 2.51-2] 91.18 —543.3 5.5183] 280.3 —2.4943] 13.17 4.30
30 1.67—2] 157.6 —1242 1.9074] 617.3 —8.0543] 15.58 4.44
40 1.25-2] 232.2 —2221 4.60¢4] 1055 —1.7844] 17.53 4.53
50 1.00-2] 313.6 — 3486 9.0744] 1659 —3.5054] 19.18 4.60
60 8.30—3] 400.6 —5016 1.5685] 2522 —6.5734] 20.63 4.66
70 7.11-3] 493.0 —6842 2.5005] 3408 —1.0305] 21.93 4.72
80 6.22 - 3] 590.0 —8944 3.7585] 4416 —1.5175] 23.12 4.75

90 555-3]  691.3 —11332  543p5] 5158  —1.8995] 2421  4.78
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FIG. 1. Radial electron density of krypton of the present work
(solid line compared to HF valuegl6] (dashed ling and TFD
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values(dotted ling. The solid line has a continuous derivative at line) and TFD valuegdotted ling.
any point, although it may not seem so in the graph.

the HF ones, which reflects the appropriate smdiehavior
[note in addition that the cusp relatigpri(0)=—2Zp(0) is
exactly incorporateand improves greatly the values ob-
tained from a gradient expansion calculation including ever
fourth-order termde.qg., for krypton, the TFDW1/9) value
of p(0) is 3.121% 10°, while the TFDW1/5) value is
1.2662<10° and the TFDW-Hodges term gives 68199
[7]]. With the present method we obtain 33 358, which com

pares fairly to the HF result of 32228 a.u.

We have also compared our results with other modifie
TF models of the literature, e.g., those of Parr and Ghos;lpe
[12,13 as cited by Parr and Yand.], those of Csavinsky
[14], and those of Wang and Pdi5]. With respect to the
first of these approaches, which utilize additional conditions
for the finiteness of the electron density at the nucleus an
does not include exchange, our method improves slightly th
energy value of small- atoms (for Ne, —125.89 versus
—124.16, to be compared to the HF value-0128.55 a.u.
[16]) and both give similar results for largeatoms(for Rn,
—22018.1 versus-22019.7). The improvement is more
noticeable for the density at the nucleus; the above

mentioned Parr-Ghosh method provides a value for krypton
of 20178 a.u[13] (there are other variants of this method
that provide better values, the best one being 29990.4, but
this choice gives less accurate energies
With respect to the approaches of Csavingky] and
Wang and Parf15], both including exchange, we can com- sistent approach for correcting the short distance treatment of

V. CONCLUSION

atoms with the present modified TFD meth@V) compared to Hartree-Fock valuésF) [16].

0.08

TABLE IV. Results for the electron density at the nucleus and some radial expectation values for neutral

z p(0)pw p(O)ur 2w O O Dew O D Mew (NDae

10 653.47 620.15 414.59 414.90 30.05 31.11 9.96 7.89
20 5513.45 5319.92 1815.1 1834.4 79.37 80.16 17.44 21.25
30 19071.92 18 448.59 4272.6 4312.0 139.59 142.06 23.94 22.00
40 46 092.11 44 466.83 7830.5 7901.0 208.10 210.79 29.87 32.68
50 90 745.07 87 899.02 12 473 12612 283.25 286.51 35.38 36.47
60 1.5645] 1.5335] 18 200 18 463 364.31 366.87 40.58 45.40
70 2.5005] 2.4495] 25071 25435 450.42 455.83 45,53 45.35
80 3.7585] 3.6745] 33095 33576 541.30 548.13 50.27 48.00
90 5.4325] 5.2565] 42472 42 895 636.91 642.23 54.84 61.12

0.1

FIG. 2. Electron density of krypton evaluated with the method
of the present work(solid line compared to HF valuegdashed

pare the value reported for the energy of Na, the first giving
values of —182.12 (without the Weizseker ternm) and
—171.56(with the Weizsaker term and the second giving a
est value of-164.5. The present approach provides a value
of —158.04, to be compared to the HF value -6fL.61.8.
Finally, the corrections for strongly bound electrons of Eng-
lert and Schwingef3] predict an energy value faf=N
"=80 of —18340 a.u., to be compared to the present estima-
(}ion of —18406.5 and the HF value of 18 409.0.

As the present approach compares rather well with HF
sults, we remember the remaining gap todkectnonrel-
ativistic result, i.e., the correlation energy. A configuration
interaction[17] for the case of neohl7] provides an esti-
Hwated energy of —128.9370, the HF value being
—128.55 a.u. and the present work estimatioh25.89(we
Rave taken a light atom as an example because the percent-
age of correlation energy with respect to the total value de-
creases withZ). Therefore, most of the remaining gap be-
tween the modified TFD value and the exact one appears to
be the limitations of the TFD procedure rather than the ef-
fects of correlation.

In summary, we find that by means of a simple but con-
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the Thomas-Fermi-Dirac method, fair comparisons toistic effects, which depends crucially on the near-nuclear re-
Hartree-Fock results can be found not only for the energyion.
values but also for the density near the nucleus, where the TF ACKNOWLEDGMENTS
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