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Modified Thomas-Fermi-Dirac approach for the evaluation of atomic ground-state properties

I. Porras and A. Moya
Departamento de Fı´sica Moderna, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain

~Received 20 July 1998; revised manuscript received 6 October 1998!

Atomic ground-state properties are evaluated by means of a modified semiclassical approach with a
quantum-mechanical treatment of the near-nuclear region. The results for the energy and lowest-order radial
expectation values are close to Hartree-Fock results, improving the Thomas-Fermi-Dirac-Weizsa¨cker esti-
mates.@S1050-2947~99!01603-0#

PACS number~s!: 31.15.Gy, 31.15.Bs, 31.90.1s
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I. INTRODUCTION

The great impact of the Thomas-Fermi~TF! and Thomas-
Fermi-Dirac~TFD! methods for the study of fermionic sys
tems is well known, providing simple schemes for adequ
estimations of average properties@1#. For atoms, the discrep
ancies between TF~D! and Hartree-Fock~HF! results are
mainly attributed to the description of the electron and
ergy density near the nucleus, where the electron cloud
fers most from a local Fermi gas.

A great effort has been made to correct this deficien
@2–7#, a very popular example being the gradient expans
of the energy functional@4–7#. Although providing adequate
features for the electron density and great improvemen
the energy values, there are several problems in its app
tion: First, the gradient expansion cannot be extended
yond fourth order~the so-called Hodges term@8#! because
the sixth-order term diverges for atoms; second, if we w
to retain as much as possible the simplicity of the origi
theory, the complication of the integro-differential equati
that appears in this scheme usually restricts this metho
the inclusion of the second-order term~the Thomas-Fermi-
Dirac-Weizsa¨cker approach@4–6#! and for a good compari
son to HF energies, the prefactor of the Weizsa¨cker term
obtained from theoretical grounds (1/9) has to be repla
by 1/5 @4#. In addition to this, the values of the density clo
to the nuclei are much less accurate than those of the en
even when including the fourth-order correction@7#.

A simpler alternative approach for correcting the dens
was proposed by Ashby and Holzman@2#, replacing the TF
density at short distances by a hydrogenic one~considering
the 1s orbital for an effective nuclear charge!, which
matches the former at a point where the kinetic-energy d
sity also matches.

In this work we propose an improvement of this proc
dure, based on the inclusion of electron exchange and a
ferent treatment of the short-range density from the ex
small-r limit of the s orbitals, according to a three-term e
pansion of the one-electron potential. Also, the bound
conditions differ from this reference. The description of o
method now follows~atomic units are used throughout th
paper!.

II. THEORY

We will adopt, from an inner radiusr 0 up to an atomic
radius r l , the electron and energy densities obtained fr
PRA 591050-2947/99/59~3!/1859~6!/$15.00
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the standard TFD procedure@1#, which is based on the rela
tions

rTFD~r !5
23/2

3p F 1

A2p
1A 1

2p2
2V~r !1eF G 3

~1!

for the density in terms of the potential, defined by

V~r !52
Z

r
1E rTFD~r 8!

urW2r 8W u
dr8W , ~2!

and for the energy density

eTFD5CkrTFD
5/3 2

Z

r
rTFD1

1

2
rTFD

3E rTFD~r 8!

urW2r 8W u
dr8W2CerTFD

4/3

5CkrTFD
5/3 2

1

2

Z

r
rTFD1

1

2
V~r ! rTFD2CerTFD

4/3 ,

~3!

where

Ck5
3

10
~3p2!2/3, ~4!

Ce52
3

4S 3

p D 1/3

. ~5!

All the quantities can be expressed in terms of the screen
function f(x), defined by

V~r !2eF2
1

2p2
52

Z

r
f~x!, ~6!

wherex is related to the radial coordinate by

r 5bx, ~7!

with

b5
1

2S 3p

4 D 2/3

Z21/350.885 341Z21/3. ~8!
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1860 PRA 59I. PORRAS AND A. MOYA
The values off(x) are obtained from the resolution of th
TFD differential equation

d2f

dx2
5xFb1S f

x D 1/2G3

, ~9!

where

b5
3

2

1

~6pZ!2/3
, ~10!

with the condition

f~0!51, ~11!

which provides the proper small-r limit for V(r ), and the
condition at a limitingxl ,

f~xl !

xl
5

b2

16
, ~12!

for null pressure of the electron cloud at the atomic rad
r l5bxl , the cutoff density. The fraction of electrons lyin
betweenr 0 and r l , which are described by this TFD proce
dure, is given by

N25Z@xlf8~xl !2x0f8~x0!2f~xl !1f~x0!#, ~13!

wherex05r 0 /b.
The Fermi energyeF is fixed by the constraint that th

potential at the atomic radius be equal to2(Z2N)/r l ,
whereN is the total number of electrons, which implies th

eF1
1

2p2
52

Z2N

r l
1

1

32p2
. ~14!

These complete the expressions required for the TFD
scription of the density in the ranger 0<r<r l . For the near-
nuclear regionr<r 0 , we base our description of the intern
r I(r ) ande I(r ) upon the expansion of the potential for sm
values ofr,

V~r !52
Z

r
1V01V1r 1O~r 2!, ~15!

and the corresponding one for the one-electrons-state wave
functions (n stands for the principal quantum number!

cn~r !5an@11bnr 1cnr 21dnr 31O~r 4!#. ~16!
s

t

e-

Substituting these expressions in the Schro¨dinger equation

@2 1
2 ¹21V~r !#cn5encn ~17!

for V(r ) given above and comparing the different terms inr,
we find the relations

bn52Z, ~18!

cn5 1
3 ~Z22en1V0!, ~19!

dn5 1
18 @2Z314Z~en1V0!13V1#5 1

6 ~Z324Zcn1V1!.
~20!

Then the electron density is given by

r I5(
n

ucnu25(
n

an
2F122Zr1~2cn1Z2!r 2

1
1

3
~Z3210Zcn1V1!r 31O~r 4!G , ~21!

where the sum runs over all occupied orbitals~the ocupation
number is implicitly included in the coefficientsan) and we
have kept the parametercn instead ofen1V0 for simplicity.
If we define the total parameters

A5(
n

an
2 , ~22!

C5

(
n

an
2cn

(
n

an
2

, ~23!

it is straightforward to write

r I~r !5A@122Zr1~2C1Z2!r 21 1
3 ~Z2210ZC1V1!#,

~24!

which, if we determine the values ofA andC, allows us to
take into account implicitly the contribution of alln orbitals
to the electron density. This is a consequence of the lin
dependence ofucnu2 on the parametersan

2 andcn .
The above expression forr I and its first derivative will be

matched to the TFD values atr 5r 0 . This allows us to obtain
the values ofA and C, providedr 0 and V1 are known, by
means of the expressions
C5
112Z~R02r 0!22Z2R0r 01~Z22Z3R02V1R0!r 0

21~Z31V1!r 0
3/3

4R0r 022~115ZR0!r 0
2110Zr0

3/3
, ~25!
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whereR05rTFD(r 0)/rTFD8 (r 0), and

A5
rTFD~r 0!

122Zr01~2C1Z2!r 0
21 1

3 ~Z2210ZC1V1!r 0
3

.

~26!

The matching pointr 0 will be determined by imposing con
tinuity of the energy density, i.e., by matching the TFD e
pression with the inner one, which is given by

e I~r !5(
n

enucnu2

5(
n

an
2~Z21V023cn!F122Zr1~2cn1Z2!r 2

1
1

3
~Z3210Zcn1V1!r 3G . ~27!

We have to express the sum in terms of the total par
etersA and C. Due to the presence ofcn

2 in the r 2 and r 3

terms, we make the following approximation for those term

(
n

an
2cn

2'

S (
n

an
2cnD 2

(
n

an
2

, ~28!

which is justified when the sum is mainly dominated by
single term~the 1s orbital!. We can estimate the error of th
approximation by considering the two most contributing h
drogenic orbitals (1s and 2s), for which a25a1 /A8 and
c253c1/4. The left-hand side of Eq.~28! would be equal to
1.070a1

2c1
2 , while the right-hand one would be 1.063a1

2c1
2 ,

an error less than 1%. Moreover, this approximation has
be done just in the third and fourth terms of the energy d
sity for small distances. Therefore, with this approximati
we obtain

e I~r !5A~Z21V023C!@122Zr1~2C1Z2!r 2

1 1
3 ~Z3210ZC1V1!r 3#. ~29!

III. PROCEDURE

The specific procedure for the application of the pres
method is quite self-consistent: For a given value ofxl we
solve numerically the TFD differential equation inward fro
the initial conditionf(xl)5xlb

2/16, giving different values
of f8(xl) until f(0)51 is reached at the end of the integr
tion. Then all the values off(x) andf8(x) are stored. The
values of the potentialV(r ) are obtained fromf(x) for r
50 up to a value guessed forr 5r 0 and fitted by the right-
hand side of Eq.~15! @actually, rV(r ) is fitted in order to
avoid singularity problems atr 50]. This provides us with a
-

-

:

-

to
-

t

first estimate ofV0 and V1 . Then we recall thef(x) and
f8(x) values and for anyx we impose the continuity ofr
and r8 at r 5bx. The parametersA and C for any x are
determined through Eqs.~25! and ~26! with the V1 value
obtained from the previous fit. We then evaluate the ene
density with Eq.~29! and compare to the TFD values@Eq.
~3!#. For thex where both coincide, we identify the corre
spondingr as a newr 0 and start again the above procedu
from the fitting ofV(r ). This is done until the same value o
r 0 is reached from one iteration to the next. Then the num
of electrons is calculated. The fraction of inner electronsr
<r 0) is given by

N154pE
0

r 0
r 2r I~r !dr

5
4

3
pA3r 0

3F12
3

2
Zr01

3

5
~2C1Z2!r 0

2

1
1

6
~Z3210ZC1V1!r 0

3G , ~30!

which has to be summed to the fraction of statistical on
N2 , given by Eq.~13!. Then the whole procedure is repeat
for different initial guesses ofxl until N5N11N2 is equal to
the number of electrons of the atom under consideration

The self-consistent procedure for the determination ofr 0
for any xl is extremely fast~less than five iterations in an
case!. It does not depend upon the initial guess ofr 0 and
allows us to complete the calculations in a very short tim

We want to point out that with the present scheme
include the first terms of the exact wave function for t
potential given by Eq.~15!, without taking into account any
property outside the sphere of radiusr, in contrast to previ-
ous work@2#, where the integrability of the wave function a
r→` is implicitly taken into account.

IV. RESULTS

The present procedure provides then the values of
electron density

r~r !5H r I~r ! if r ,r 0

rTFD if r>r 0
~31!

and the total energy, which is calculated by

TABLE I. Energies of single charged positive ions~in keV!
evaluated by the method of the present work~PW! compared to
previous work and Hartree-Fock values~HF! @9#.

Z 2E (TF) 2E (HF) 2E ~Ref. @2#! 2E (PW)

11 5.62 4.40 3.59 4.27
37 95.4 80.0 72.3 79.0
55 240.6 205.6 189.5 204.6
79 560.3 486.0 454.7 484.3
87 701.9 611.4 573.6 611.3
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TABLE II. Energies of some neutral atoms evaluated in the present work~PW! compared to Thomas
Fermi-Dirac-Weizsa¨cker values@10# using prefactorsl51/9 @TFDW~1/9!# andl51/5 @TFDW~1/5!# in the
gradient correction. Also, Hartree-Fock values~HF! from Ref. @11# are displayed for comparison.

Z 2E (TF) 2E @TFDW(1/9)# 2E @TFDW(1/5)# 2E (PW) 2E (HF)

10 165.619 139.886 128.755 125.893 128.547
20 834.667 720.871 674.851 666.688 676.758
30 2149.78 1881.99 1776.55 1762.61 1777.85
40 4206.46 3717.24 3527.58 3492.34 3538.97
50 7080.11 6301.06 6002.23 5963.79 6022.92
60 10 834.2 9696.28 9263.21 9295.73 9283.70
70 15 524.1 13 957.8 13 365.3 13 406.3 13 391.5
80 21 194.2 19 134.6 18 357.5 18 406.5 18 409.0
90 27 904.6 25 271.4 24 284.4 24 134.6 24 359.6
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E54pF E
0

r 0
r 2e I~r !dr1E

r 0

r l
r 2eTFD~r !drG . ~32!

Also we will evaluate some radial expectation values

^r k&54pE
0

r l
r k12r~r !dr ~33!

in order to compare the quality of the density obtained w
respect to HF values.

The numerical results for the energy of some positive io
are shown in Table I and are compared to the results
Ashby and Holzman@2# as well as HF values@9#. The im-
provement is quite noticeable and it is attributed not only
the inclusion of exchange but also to the different treatm
of the inner electron and energy densities, which provide
larger correction. As an illustration of this, notice that t
sole introduction of exchange in the original procedure
Ref. @2#, e.g., for Z587, modifies the energy result from
2574 to2586 keV.

In the case of neutral atoms, the two constraints@f(0)
51 for a proper small-r behavior of the potential andN
5Z for a proper normalization# cannot be held simulta
neously as precisely as we wish due to numerical precis
problems@values off8(xl) extremely small#. This problem
is avoided by performing a two-step procedure. With a fi
run, we determine the parameters in the potential, letting
first constraint accurately hold but relaxing slightly the no
malization one~a few percent, which does not affect th
s
of

o
nt
a

f

n

t
e

-

potential at short distances!. Then a second run follows
where the density and energy are evaluated keeping the
rameters of the potential fixed from the previous step a
imposing now the proper normalization.

This leads to the energy values displayed in Table
where comparisons to the TF and Thomas-Fermi-Dir
Weizsäcker ~TFDW! estimates with coefficients 1/9
@TFDW~1/9!# @10# and 1/5@TFDW~1/5!# @10# and HF @11#
calculations are included. We observe how the present w
provides accurate estimations of the energy if we take i
account the simplicity of the method and its statistical natu

As an illustration of the values of the
parameters involved, the self-consistent proced
for krypton (Z536) gives xl516.79,r 050.0139,
f(x0)50.931 553 809 44, f8(x0)521.175 703 489, V0
5201.438 114 3, V1521 793.867 075, A533 358.58, C
5869.1039, andD5213 381.47, which provides an energ
of 22719.37 a.u. to be compared to the HF result
22752. a.u. In Table III the most important parameters
some atoms are presented.

With respect to the electron density, illustrated in Figs
@r 2r(r )# and 2@r(r )# for the case of krypton (Z536), this
procedure corrects the main deficiency of the TFD meth
and gives values very close to the HF density at short
tances from the nuclei. At larger distances, our density v
ues join the curve of the TFD method in the region wher
fair average of the different shell contributions is give
These facts are also reflected in the radial expectation va
and the density at the nucleus, which are displayed in Ta
IV. The values ofr(0),^r 22&, and ^r 21& are very close to
TABLE III. Parameters of the present model~a.u.! for different neutral atoms.

Z r0 V0 V1 A B C xl r l

10 5.03@22# 35.86 2133.1 6.535@2# 74.17 23.500@2# 9.787 4.02
20 2.51@22# 91.18 2543.3 5.513@3# 280.3 22.494@3# 13.17 4.30
30 1.67@22# 157.6 21242 1.907@4# 617.3 28.054@3# 15.58 4.44
40 1.25@22# 232.2 22221 4.609@4# 1055 21.784@4# 17.53 4.53
50 1.00@22# 313.6 23486 9.074@4# 1659 23.505@4# 19.18 4.60
60 8.30@23# 400.6 25016 1.565@5# 2522 26.573@4# 20.63 4.66
70 7.11@23# 493.0 26842 2.501@5# 3408 21.030@5# 21.93 4.72
80 6.22@23# 590.0 28944 3.753@5# 4416 21.517@5# 23.12 4.75
90 5.55@23# 691.3 211332 5.432@5# 5158 21.899@5# 24.21 4.78
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the HF ones, which reflects the appropriate small-r behavior
@note in addition that the cusp relationr8(0)522Zr(0) is
exactly incorporated# and improves greatly the values o
tained from a gradient expansion calculation including ev
fourth-order terms@e.g., for krypton, the TFDW~1/9! value
of r(0) is 3.12173105, while the TFDW~1/5! value is
1.26623105 and the TFDW1Hodges term gives 68 19
@7##. With the present method we obtain 33 358, which co
pares fairly to the HF result of 32 228 a.u.

We have also compared our results with other modifi
TF models of the literature, e.g., those of Parr and Gh
@12,13# as cited by Parr and Yang@1#, those of Csavinsky
@14#, and those of Wang and Parr@15#. With respect to the
first of these approaches, which utilize additional conditio
for the finiteness of the electron density at the nucleus
does not include exchange, our method improves slightly
energy value of small-Z atoms ~for Ne, 2125.89 versus
2124.16, to be compared to the HF value of2128.55 a.u.
@16#! and both give similar results for large-Z atoms~for Rn,
222 018.1 versus222 019.7). The improvement is mor
noticeable for the density at the nucleus; the abo
mentioned Parr-Ghosh method provides a value for kryp
of 20 178 a.u.@13# ~there are other variants of this metho
that provide better values, the best one being 29 990.4,
this choice gives less accurate energies!.

With respect to the approaches of Csavinsky@14# and
Wang and Parr@15#, both including exchange, we can com

FIG. 1. Radial electron density of krypton of the present wo
~solid line! compared to HF values@16# ~dashed line! and TFD
values~dotted line!. The solid line has a continuous derivative
any point, although it may not seem so in the graph.
n

-

d
h

s
d
e

-
n

ut

pare the value reported for the energy of Na, the first giv
values of 2182.12 ~without the Weizsa¨cker term! and
2171.56~with the Weizsa¨cker term! and the second giving a
best value of2164.5. The present approach provides a va
of 2158.04, to be compared to the HF value of2161.8.
Finally, the corrections for strongly bound electrons of En
lert and Schwinger@3# predict an energy value forZ5N
580 of 218 340 a.u., to be compared to the present estim
tion of 218 406.5 and the HF value of218 409.0.

As the present approach compares rather well with
results, we remember the remaining gap to theexactnonrel-
ativistic result, i.e., the correlation energy. A configurati
interaction@17# for the case of neon@17# provides an esti-
mated energy of 2128.937 0, the HF value bein
2128.55 a.u. and the present work estimation2125.89~we
have taken a light atom as an example because the per
age of correlation energy with respect to the total value
creases withZ). Therefore, most of the remaining gap b
tween the modified TFD value and the exact one appear
be the limitations of the TFD procedure rather than the
fects of correlation.

V. CONCLUSION

In summary, we find that by means of a simple but co
sistent approach for correcting the short distance treatmen

FIG. 2. Electron density of krypton evaluated with the meth
of the present work~solid line! compared to HF values~dashed
line! and TFD values~dotted line!.
eutral

9
25
.00
.68
47
TABLE IV. Results for the electron density at the nucleus and some radial expectation values for n
atoms with the present modified TFD method~PW! compared to Hartree-Fock values~HF! @16#.

Z r(0)PW r(0)HF ^r 22&PW ^r 22&HF ^r 21&PW ^r 21&HF ^r &PW ^r &HF

10 653.47 620.15 414.59 414.90 30.05 31.11 9.96 7.8
20 5513.45 5319.92 1815.1 1834.4 79.37 80.16 17.44 21.
30 19 071.92 18 448.59 4272.6 4312.0 139.59 142.06 23.94 22
40 46 092.11 44 466.83 7830.5 7901.0 208.10 210.79 29.87 32
50 90 745.07 87 899.02 12 473 12 612 283.25 286.51 35.38 36.
60 1.564@5# 1.533@5# 18 200 18 463 364.31 366.87 40.58 45.40
70 2.500@5# 2.449@5# 25 071 25 435 450.42 455.83 45.53 45.35
80 3.753@5# 3.674@5# 33 095 33 576 541.30 548.13 50.27 48.00
90 5.432@5# 5.256@5# 42 472 42 895 636.91 642.23 54.84 61.12
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the Thomas-Fermi-Dirac method, fair comparisons
Hartree-Fock results can be found not only for the ene
values but also for the density near the nucleus, where the
method and its extensions describe it worst. This succ
appears to be related to the exact asymptotic nature of
expressions utilized and the present results are very pro
ing for further applications such as the inclusion of relat
ted
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istic effects, which depends crucially on the near-nuclear
gion.
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