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The aim of this paper is to give explicit calculation of the classical capacity of quantum Gaussian channels,
in particular, involving squeezed states. The calculation is based on a general formula for the entropy of a
quantum Gaussian state, which is of independent interest, and on the recently proved coding theorem for
guantum communication channe]§1050-294{@9)00802-1
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[. INTRODUCTION cations. Consider a quantum system, such as a cavity field
with finite numbers of modekb], described by annihilation
The question of fundamental physical limitations on theoperatorsay, . . . ,a5 satisfying canonical commutation rela-

quality and rate of information transmission is at the core oftion (CCR)

guantum theory of communication, which has led to pro-

found and exciting new insights into both physics and infor- [aj.af]=6;l, [aj,a]=0. 1)

mation transmission science. This theory provides a general ) ) ) )

framework for study of communication processes, in whichL€t 7 be the Hilbert space of irreducible representation of

classical information is conveyed by quantum states. One d¥CR (1), and letp(0) be a density operator i describing

the recent achievements of the quantum information theorjhe state of the cavity field. Consider the family of density

is the direct coding theorem for transmission of classical inOPerators

formation through quantum communication chanréls3], +
i i ici - (m)=D(u)p(0)D(w) ",

which provides an explicit formula for the capacity of the pPL Kp M

channel as supremum of the quantum entropy bound with

< . .
respect to input probability distributions. This result was re_whereC is ans-dimensional complex vector space, and

meCs, (2

cently extended to channels with constrained inpjuté s
among which the channels with additive quantum Gaussian D(w)=exp>, (mal—pa) for p=(u) 3
noise and the constrained power of the signal are the most = ok .

important. The aim of the present paper is a further study of

this case, in particular, explicit calculation of the classicalis the unitarydisplacement operatan .

capacity of the memoryless squeezed state chafBet. In an optical communication systeaf0) describes back-

IV B). This allows us to quantitatively evaluate the propertiesground noise, comprising quantum noise, andg the clas-

of squeezed states from an information-theoretic point ofical signal. Thus the mapping—p(u) is a classical-

view. guantum(CQ) channel in the sense d#]. We treat the
The core of our calculations, apart from the above menproduct memoryless channel in the Hilbert spage’"=

tioned coding theorem, is the formula for the von NeumanriH® - - - ® H (n copies, then the signal will be represented

entropy of the general quantum Gaussian st8&c. IVA), by the sequence of vectoig(t); t=1,... n, and the chan-

which may have independent interest. The natural class dfel mapping isu(-)—p(u(1))® - - - ® p(u(n)). We impose

guantum Gaussian states which includes, in particular, cohethe power constraint on the signal:

ent and squeezed states, as well as their thermal mixtures is

discussed in Sec. llIB. This is preceded by a description of . > )

the more familiar gauge-invariant Gaussian stétesse hav- ;1 ,Zl ﬁ“’j|“j(t)| <nE, (4)

ing complex GaussiaR representation in terms of coherent

state$, which we include in Sec. Il A for completeness. wherew; are the frequencies of the modes.

Of course, the memoryless channel is an idealization and
should be considered as the first necessary step towards a
more realistic model of the “waveform” channel, which ex-

Let us describe the process of classical information transplicitly takes into account internal dynamics of the fiétd.
mission through a quantum memoryless channel with a corf4]). According to Theorem 3 df4], the capacity of such a
tinuous signal parameter in the model of optical communi-channel is equal to

II. CLASSICAL SIGNAL PLUS QUANTUM NOISE
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Thus if p(0) is Gaussian, then in Eq7) we can restrict
H(pp)—J H(p())P(du) |, (5)  ourselves to Gaussia®, and by(ii) pp will be a Gaussian
density operator. Therefore to calculate Ef). we need to
know the entropy of a general Gaussian density operator.

C= sup
PeP;

where H=—Trplnp is the von Neumann entropypp
=[p(n)P(dw), and P; is a convex subset of probability
distributionsP(dw) on C3, satisfying the inequality lll. GAUSSIAN DENSITY OPERATORS
As mentioned in the preceding section, the case of Gauss-
ian quantum noise is most important. In this section we recall
the general definition and properties of quantum Gaussian
density operators to be applied later in the calculation of the
In the casg?2) the operatorp(w) andp(0) are unitarily — channel capacity.
equivalent and we have important simplificatibt{p(u«))
=H(p(0)), resulting in A. Gauge-invariant case

f le hoj|wi|*P(du)<E. (6)

We first consider the density operator which has Glaub-

C= supH(pp) =H(p(0)). ™ er's P representation

PePy

Of special interest is the case of Gaussian noise. The def}')-(o):WfS|detN|flf exp(— {TNTL0)[ ) (£]d?S¢ (11)
nition and properties of the general quantum Gaussian den-

sity operator were given in6,7] in terms of symplectic (see(5], Chap. V, Sec. 5.)I HereZ  C%,|¢) are the coher-

spaces, and will be repeated in the next section in somew : = dNi itive Hermit
different vector notations. Let us show here that in the casﬁ]n;txicstﬁg 'trg;'ta|§>_§|§>’ andN Is a positive Hermitian

of Gaussiarp(0), we canrestrict optimization in Eq(7) to
Gaussian probability distributioR. For this we need only _ +
the two following propertiegsee the Appendjx N=Trapa (12

(i) Among all density operatoys in H with fixed first and (we use here vector notations, where[ay, . .. aJ]" is a
second moments ) column vector and’=[al, ... al] is a row vectoy. Such
Trpay, Trpajag, Trpa;a (8)  density operators, respecting the complex structure associ-

ated with the coherent states, will be callgalige-invariant

the Gaussian density operator is one which has maximal eflecayse they are invariant with respect to the gauge transfor-
Fropy. This fundamental property explains, in _partlcylar, themation of the first kind:a—e*a. There exists a unitary
importance of the Gaussian states from the viewpoint of th%peratoru in CS such that

Jaynes “maximum ignorance” principle.

(i) The mixture pp of the Gaussian density operators N, 0
p(wr) with Gaussian probability distributioP(du) is a . . )
Gaussian density operator. UNU™ = - =diagN;). (13
0 Ng

Now for any PeP; let P be the Gaussian probability
distribution with the same first and second moments By considering the canonical transformatien—a=Ua,
7=U¢, [0) =|¢), we see that the density operatdr) is
J i P(dp), fﬁjﬂkp(dﬂ), f pimP(du), (9) decomposed into the tensor product

S
then (1) Pe P, because Eq(6) involves only second mo- p(0)=_<§>lp,-(0), (14)
ments;(2) by (ii) pp is Gaussian; an@) pp andpp havet_he =
same second moments. Indeed, for any polynomial, «) where
of second order

- IZ-IZ) S
. — 1Nt _ 13 ) 1427
TrppF<a,aT)=fTrpm)F(a,aT)P(dm pi Q=N fexp( N; G Gles;, a9

and H(p(O))=E]-S:lH(pJ-(O)). The spectral decomposition
=f Trp(0)D(p)'F(a,a")D(u)P(du) of p;(0) is well known(see, e.g.[7])
=Tr <0)f Fa—u,(a—u)HP(dp) I — 2 N )m|m>”<m| (16)
p polaT K PRPT N+ 1420 \Nj+1 ’
:Trp(o)j Fa—u,(a—w)HP(dw) where|m) ; m=0,1, ... are therthonormal vectors, such

that a;a;/m) =m|/m)". From Eq. (16) H(p;(0))=9(N;),
=TrppF(a,a’). (100  where
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g(x)=(x+1)In(x+1)—xInx, x>0 a7

is a monotonously increasing concave function. Therefore [ |

we obtain the well-known formula

H(p(0>)=]_§1 g(N;)=Spg(diag N;))=Spg(N), (18)

where Sp denotes trace of matrices as distinct from trace of

operators Tr.

B. The general case

The density operatofll) is not the most general which

naturally can be called quantum Gaussian. A practical ex-

ample, not covered by Eqll), is the squeezed state, which
has noP representation with positive probability density. To
explain the general definition, let us change from complex t
real setting by introducing canonical pairs

h 1 - hoy
;= \/Z—wj(aﬁaj), Pi=iV—(a—a) 19

such that
1
aj:m(quj'ﬂpj), (20
satisfying the Heisenberg CCR
[a;,p]=idhl, [qj,q]=0, [pj,p]=0. (21
Let us introduce the column vector
R=[0y1,...0s;P1,---Ps]'. (22)
We also introduce the real column s2 vector z
=[Xq, ... Xs:Y1s - - - Ys]', and the unitary operators i,

S

V(z)=expij§l(quj-i—yjpj):eX[XiRTz). (23)
The operatord/(z) satisfy the Weyl-Segal CCR
i
V(z)V(z’)=ex;<§A(z,z’) V(z+2'), (29
where
S
A(z,z'>=ﬁj§1 (X ¥;=%Y;) (25

is the canonical symplectic form. The Weyl-Segal CCR is

the rigorous counterpart of the Heisenberg CCR, involvin
only bounded operators. Let us mention that {f

:(1/\ Zﬁwk) (wkxk+iyk), then

DI =expy 3, (4 —xp) =V(~A"'2), (20
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where

(27)

ds the (X)X (2s)-skew-symmetriccommutation matrixof

components of the vectd®. Most of the results below are
valid for the case where the commutation matrix is an arbi-
trary nondegenerated skew-symmetric matrix, not necessar-
ily of the canonical form(27).

Definition. The density operatqs is called Gaussian, if
its quantum characteristic function has the form

TrpV(z)=expim'z— 3 zTaz), (29

where m is a column (2s) vector amdis a real symmetric
(2s) X (2s) matrix.

One can show that

i
m=TrpR, a-— EA:TerRT (29

(cf. [6,7]). The mean mcan be an arbitrary vector; the nec-
essary and sufficient condition on therrelation matrixa is
the generalized Robertson uncertainty relation

i
a—EAZO. (30)

This condition is equivalent to its transpoae- (i/2) A=0,
and to the following matrix generalization of the Heisenberg
uncertainty relation:

1
A oA =7 1=

4 O,

(31)

which is obtained by combining E¢430) and its transpose.
The statep is pure if and only if the equality holds in this
equation, or

- 1
(A 1a)2=—ZI. (32

gThis is equivalent to det(® 'a)=1, and, for the canonical

form (27) of the commutation matrix, to the condition
de(2a)=#% (33

(see the Appendijx
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In addition to the two properties listed in Sec. Il, we note

the following two properties.

(i) The Gaussian density operator with the correlation

matrix « is pure if and only if Eq.(33) holds.

CAPACITY OF QUANTUM GAUSSIAN CHANNELS

Since Eq.(30) is also a necessary condition for the corre-\yhich corresponds to the characteristic function
lation matrix of the arbitrary density operator, we have the

following.

(iv) For any density operatqs there is Gaussian density

operatorp with the same meam and correlation matrixv.
It is convenient to writem and « in the block form

— q 9. 0P T
m=[mi,...,m%&m}, ... ,ml
% | @9?
=
o™ |aP?

By using Eq.(26), it can be showr{[7], Sec. V. 5 that

1

Zﬁa)J

p(M)=D(u)p(0)D(w)",

where p(m) is the Gaussian density operator with meaan
and fixed correlation matrixe. This allows us to restrict to
the casen=0 in calculation of the entropy.

Let us show that the gauge-invariant stété) is Gauss-

ian in the sense of our definition. The characteristic function

IS
Trp(0)V(z)=7"S|detN| *

X f exp(—{'NT2(¢V(2)]{)d*¢. (35

By using Eqg.(26) and matrix elements of the displacement

1823
o YN+ 3) 0
a=h , (38
0 o(N+ 3)
h 1
ex;{—z N+§ ((1)71X2+(1)y2) . (39

IV. THE ENTROPY AND THE CAPACITY

In this section we give a general formula for the von
Neumann entropy of the arbitrary Gaussian density operator,
and apply it to calculate the capacities for several concrete
Gaussian channels.

A. The entropy of the general Gaussian state

The following result can be found if¥], Proposition 2.1:
For arbitrary real symmetric matrixa there exists linear

transformation SR—SR=R, such that AS"=A and

[ b
(o3} 0 0
0 a, 0
&= SaST = (40
0 (24} 0
0 0 a,

The transformations satisfyin§AS'=A preserve CCR
and are calledlinean canonicaltransformations.
Let a be the correlation matrix of Gaussian density opera-

operator[[5], Eq. (3.22 p. 131, we calculate the Gaussian tor p with m=0. It follows that

integral in the right-hand side as exp{z'az), with

ReN + 1/2! ~ImN

a=hQ 0, (36)
ImN  |ReN +1/2
where
Jort 0 0
0 N 0
Q= - (37)
0 N 0
0 0 V@

,~ 1
TrpexpiRTz)=exp — EzTaz

1 S
=exp<——2 a(x*+y?) |, (41
25 5T

The necessary and sufficient conditi@0) is equivalent to
aj=hl2, j=1,...s. Therefore

1
Nj+ E ,
whereN;=0. From Eq.(41)

S
p= pV, (43

wherep) is the density operator for one degree of freedom,

and ReN, ImN are the real and the imaginary parts of thecorresponding to the characteristic functi¢d9) with N
matrix N, respectively. In particular, for one mode we obtain =N;, o=1. From Sec. lll A,
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H(p)=2, H(p")=2, d(N). (44)

Consider the functiorG which is defined by the following
relation ford=1:

1
G(d2)=g(d—§>

—d+1l
= En

- {o e

d+ =
1 1+ 1/2d
1-—|+din

2
T e
=z na5in 1-1/2d

2

o

1->

1 k
k_lzk(2k+1)(ﬁ) (45

—1|d2 I
—En +1In

and is a monotonously increasing concave functiord®of
Then

> 3 1 ~
H(p)= 3, G((%) )= SSG(—(A1ap).  (49)
=1

Going back to the initial basis, we obtain

A Ya=(SAST)"1SaST=(S") YA ta)ST. (47
HenceG(— (A~ 'a)?)=(S") "1G(— (A ta)®)S' and
1
H(p)= ESpG(—(Afla)z), (48
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for two-dimensional Gaussian distribution with the correla-
tion matrix c.

Note that in accordance with E¢32) the Gaussian state
is pure if and only if a9%PP— (a%P)2=%2%/4. This com-
prises both coherental9=%/2w, aPP=%w/2, a%=0)
and squeezed states in the real rather than complex param-
etrization. Let us show the relation between the real notation
and the usual physical parametrization of squeezed states.
Consider the squeezed state given by the ve8(d)|0),
where /= ye'? and S(¢) =exp{[*a®—¢(@")?)/2}. Thena is
represented by the squeezing paramejersas follows:

h
aqqZZ{COSh 2y—sinh 2y cosé},

how
app=7{COSh 2y+sinh 2y cosé}, (51

h
aqugsinh 2ysiné.

B. Calculating the capacity

The capacity involves the maximization with respect to
probability distribution of the signals. In this subsection we
will show several examples of the maximization by using the
formula given in the above subsection. lgD) be a Gauss-
ian density operator witm=0 and the correlation matrix.

Let P be a Gaussian probability distribution with correlation
matrix B. Without loss of generality we may assume it has
zero mean. The inequalit{s) then takes the fornfin terms

of real variables

which is the final expression for the entropy of the general

Gaussian state. Note that it is valid for arbitrary skew-
symmetric commutation matriX, not necessarily of the sim-
plest canonical forng27). In order to aid understanding, we

will show an example of how to use the formula.

ExampleIn the case of a general Gaussian density operaQ

tor with one degree of freedom we have

@99 oap

o=

a®  oPP

with a99aPP— (a9P)2=1#2/4 [the last inequality is equivalent

to Eq.(30)]. Then

aq,PP_ (4,9P2[1 0
_(A—la)zzaah#[o 1}, (49)
and
@9 PP— (q9P)2
H(p)=G iz (50

1 S
32, (o B+ BIN)<E, (52
r
SpeB=<E, (53
where
2 0|0
w?
em |27 0 (54)
0 Lo
0o %]

Geometrically, the argument db is equal to the squared The mixturepp will again be a Gaussian density operator

area of the deviation ellipsoid

mhz'a tz=1, z=[xy]",

with zero mean and the correlation matrix{ 8) (see the
Appendi®. Thus the capacity of the general Gaussian chan-
nel is equal to
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1 1 a4, PP_ ( ,9P)2
= — —TA L 2y_ —(A-1.)2 . 2 aa (aP)
c ﬁn;aBTZSpG( [A™(atB) ]I~ 5SPC(= (A" a)9) C—G(dma))—G(T), (62
(55
where
whereB; is the convex set of real positive matric8s sat-
isfying Eg. (53). 2 ! a94 3a9y( oPP+ gPP ap4 gap)2
There are a few cases where the maximization in(E§). dmax:ﬁmax[(a + B9 (aPP+ BPP) — (7P + BP)7],
can be made explicitly BeBy 63
(A) The case whereg(0) is the gauge-invariant density
operator with diagonal matril =diag(N;): see[4], where \hich can be calculated in the following way.
it is shown that the capacity is equal to the capacity of the \ve can replace Eq60) by the equation
corresponding quasiclassical “photonic channel.” Namely,
it is shown that 1,
E(w B9+ PP =E (64)

C=max; g(N; +mj)_; 9(Ny), (56 ithout loss of generality. When we use E¢81) and(64),

the variable region 0899 and 8PP can be determined by the
where the maximum is taken over all “mean photon num-following inequality, which represents an elliptic region:
bers” m;=0, satisfyingZ ;% w;m;<E. [In terms of the ma-

trix B the quantitiesm;=(1/2%w;) (0?B%+BEP)]. The 2E| (B2
problem(56) has the solution B qu_; + > =0 (65
m;=(N; (M) = Nj)+, (57) Thus %9 and 89 can be represented with the parameters

follows:
WhereNj()\)=(exp)\hwj—1)*l,(x)+ denotex if x=0, and 0 and ¢ as follows

otherwise, and\ is chosen in such a way thatsw;m;=E E
[8,4]. This is a modification of the classical “water-filling BY9=rcos¢p+—, BIP=rwsing, (66)
solution” [9] with the quantum “water level” given by the )
one-dimensional Planck distributid;(\). In this case the
matrix N commutes withe and A, making the calculation
possible.

In particular, for one mode

osrs<

0<¢<2m. (67)

_1
(1)2

Substituting Eq(66) into Eq. (63), we have

C=g(N+Ns)—g(N), (58)
2

where N=Trp(0)a'a, Ng=E/Aw. Thus the quantity, dZmaX:i E+ }(w2aqq+app))
which was conjectured long ago as the upper bound for the w’h? 2
capacity of the Gaussian chanfiz0], is in fact the capacity. )

(B) The case of general(0) in one mode, in particular, _ i min ( f 0 COS+ E wad— “_pp)
the case of a squeezed state. #2 ~ 2 ®

(B1) First we shall calculate the capacit$5) for the (1918
given correlation matrixx corresponding t@(0). When we
use the Eq(50), Eq. (55) can be rewritten as follows: +(rosing+ aqp)z], (68)

C maxG (“qq+ﬂqq)(“pp+ﬁpp)_(aqp+ﬁqp)2) whereB; is the set of parameters ) satisfying Eq.(67).

BeB, %2 Now let D be the disk with the radiuB/« and the center 0.

Then the second term of E@68) is equal to the distance
(a%%(aPP)—(alP)? between the point— 3 (wa%%— aPP/w), — aP) and the disk
42 ’ (59 D, and hence it vanishes if and only if

2
whereB; is a set of real positive 2 matricesg satisfying
the condition(53), i.e.,

+aqp2$52. 69
(atP)2=| - 69

1( aPP

wall— —
w

1 If Eq. (69) holds, then the capacity is given by
E(wzﬁqu BPP)<E, (60) (
G

1 2
C= E+ E(wzaqq+app))

f2 w2

BAIBPP=(BIP)2. (61)

BecauseG(d?) is a monotonously increasing function af,

aqqapp_(aqp)z
N -G ———|, (70)
the capacity is given by

h2
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or 63
6
C=g(N+Ng)—H(p(0)), (71) 55

where Ng=E/fhw, N=Trp(0)a’a= (w?aPP+a%%/2h o 5

— 1, andH(p(0)) is given by Eq.(50). 45

In particular, ifp(0) is pure, that is a squeezed stfte., z 4
a%aPP—(a9)2=£2/4], with parameters satisfying Eq. & 55
(69), the capacity becomes © 3
1 1 2 25
(w2994 PP

G PESY E+ 2(w a9+ o )) , (72 2
15

or 1 ) : : )

-4 2 0 2 4
squeezing parameter
C=g(N+N,). (73
FIG. 1. Dependence of the capacity of the squeezed state chan-
On the other hand, if Eq69) does not hold, the second nel with constrained signal powels=1, on the squeezing param-

term of Eq.(68) becomes etery.

1 1 PP 12 E)? (B2): In (B1) we calculated the capacity under timput
—2{ \/ §<waqq— —|| +(a%P)?— —] . (74)  power constrainf{60). Here we shall calculate the capacity
h @ @ under theoutput(signal plus noisepower constraint:
Then the capacity is given by L[ w?(a%9+ Y% + BPP+ oPPI<hw(N,+ 3), (77)
c—G 1 Et E 24991 4PP) 2 whereN; is the total mean photon number in the output. In
2,2 gl aira this case we can obtain the capacity in the same w&B Bs
by replacing the energy bourtel with
1 2 2
“[\/(z(wzaq“‘“p” +“ﬂ(“q“2"5}]) wh(Ni+ 3)— 3 (0?a%%+aPP), (78)
a%9gPP— (4P)2 provided « is such that this quantity is positive. Then, Eq.
B T — (750 (69 is replaced by
1 aPP\ 12 )
In particular, if p(0) is squeezed state, by substituting 5( wa’l— o + (a%P)
(a9P)2= a%9PP— £2/4 in Eq.(75), we have
1) 1 2
<! 2= Z(w2af9+ oPP
<[wa)ﬁ Nt-i-2 Z(wa +a )] . (79

1
(‘;:G(ﬁ2 2( E(w?a%94+ aPP)
@ Thus, if Eq.(79) holds, the capacity is given by

12w?
+EV(w?a%9+ aPP)?— 720w+ —) 1\? (99 (aPP)— (a9P)?
4 C=G||N+5| |-G :
2 #2
1
_ NZ- -
_G(NS(ZN+1+2 N +N)+4)' (78 1 particular, if p(0) is pure[i.e., @%%aPP— (a9P)2=7#2/4]

and satisfies Eq.79), we have

Now let us consider the capaciy as the function of the
noise correlation matrix. Then it is easy to see th@thas a C=G((N{+ H)D)=g(Ny), (80)
minimum when a%%=#/2w, aPP=hw/2, a9=0 [i.e.,
p(0) is coherent stale In other words, using squeezing which is equal to the Yuen-Ozawa boutidon Neumann
states under constrained input energy does increase the antropy of the thermal staten accordance with11], in this
pacity. The situation where the capacity is given by differentcase use of squeezed states cannot improve capacity. It is
expressions depending on whether or not the noise paranmteresting that this does not become worse, provided the
eters fulfill a certain inequality may be interpreted as a fur-condition(79) holds.
ther noncommutative generalization of the “quantum water Next we shall represent the conditi¢rd) by a squeezing
filling.” The graph of the capacity as the function of squeez-parameter. Letp(0) be a squeezed state with the vector
ing parametery for =0 and forNg=1 is presented in Fig. S(¢)|0), where {=ye'’. Let us consider the case where
1. #=0. Then from Eq(51) we have
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14 T T 2
18 | .
12 + 1
16 1
r 1 14 1
> o8l | > 12y 1
3 8 1k |
& &
S 06 r 1 S 08 L |
04+ . 06 r 7
04 [ :
02 r 4
02 r 4
0 0

-1 -08 -06 04 02 0 02 04 06 08 1 06 -04 -02 0 0.2 04 06 0.8 1
squeezing parameter squeezing parameter

FIG. 2. Dependence of the capacity of the complex amplitude FIG. 3. Dependence of the capacity of the real amplitude
squeezed state channel with constrained output poMer,1, on squeezed state channel with constrained output poMer,1, on

the squeezing parameter the squeezing parameter
o %994 A% ( oPP+ BPPY _ ( 49P4 RAPY2
aiie ez EP2 wig @ c:e(( BE PP+ BEP) — (a P+ B3P) )
2w 2 ﬁ2
2
Substituting Eq.(81) into Eq. (79), we get the following G (a9)(aPP)— () (86)
condition: 72 .
Substituting Egs(81) and (85) into Eqg. (86), we have
In ! < y=<Iny2N;+1 (82
Von+1 7= et

C=G(-[3e~ (Nt HIP+(N+ ). (87)

Thus we obtain the same capacity as for number or coherertus we find that the capacity takes the maximum value,

states by using squeezed states with the squeezing parameféien the squeezing parametets equal to

{= vy satisfying Eq.(82). Figure 2 illustrates capacii@ as a

function of squeezing parameter in the caséNpf 1. Yo=INV2Ni+1.
Furthermore, we shall consider whether there is a value O\fl\/henp(O) is the squeezed state with the paraméaey and

the squeezing parameter which makes the capacity equal IRe receiver is homodyne, we have

the Yuen-Ozawa bound or not, when the coherent amplitude '

of the squeezing state is restricted to a real number, i.e., | ma=IN(1+2N,), (89)

(88)

BPP=0, pIP=0. (83) which i; the maximum valug for any squeezing parameter.
So | hay IS greater than that in the case of a coherent state
channel. But it is less than the Yuen-Ozawa bound. We have

Now we can suppose that the equality of B@7) holds  geen that the capacity becomes equal to the Yuen-Ozawa
without loss of generality. Then by substituting B83) into  pound if and only if Eq.(89) holds. Thus use of squeezed

Eq. (77), we have states can improve the maximum mutual information under
the output power constraint, but cannot improve the capacity.
M w?(a%+ 9% + 99 =f (N, + ). (84)  Figure 3 illustrates the capaciyas a function of squeezing

parameter in the case df=1.
) , . , Note that the value of the squeezing parametgis equal
So for the givena, the correlation matrix3 has the entries to that for the maximum signal-to-noise ratioNgN;+ 1)
[12].
piP=0. B0,
V. CONCLUSION

aa h 1 2 qa pp In this paper we considered a memoryless communication
Bo'=— | Nt 5|~ (0 ™+ al?), (89 channel representing classical signal plus background quan-
w . . .
tum Gaussian noise. We described a broad class of quantum
Gaussian states, which comprises both coherent and
providedB3?>0. Therefore Eq(59) can be rewritten simply squeezed states, as well as their Gaussian mixtures, and gave
as follows: an expression for von Neumann’'s entropy of a general
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Gaussian state. Basing on this formula and on the recentlg polynomial of the second order @a’. This follows from
obtained formula for the classical capacity of a quantumthe fact that after certain linear canonical transformation of

channel, we calculated the capacity of the squeezed stafeat the density operatqs can be represented as the tensor

channel, showing quantitatively the information-theoretic adproduct of elementary operata6), which can be put in the
vantage over the channel using coherent states, under cofym

strained input signal power. The capacity is achieved by a

Gaussian input distribution satisfying a certain condition 1

which can be interpreted as a quantum counterpart of the pj(0)= N1

classical “water-filling condition.” ]
On the contrary, using Squeezed states. under constram%iaking obvious that Ip;(0) is a second order polynomial in

output power cannot increase the capacity, in accordance y

t =y
with the result of[11], although somewhat surprisingly, it a,a. ThusH(p) H(p)%o' . .
does not make it worse, provided the squeezing is not tog. 0O Of the propertyii). Let P be a Gaussian probability
large. distribution with zero mean and covariance maigifor the

Note added in proofThe formula(50) for the entropy of ~ Variablesmy, ... mJ,mf, ... ,mg. The quantum character-
a Gaussian state with one degree of freedom agrees with of@HC function of the density operatg# is
obtained in G. S. Agarwal, Phys. Rev.3A828(1971). The

authors are grateful to Professor G. S. Agarwal for bringing TrppV(z)=f exp(imTz— % ZTaz)P(dm)
this reference to their attention.

fa.
NJ aa]
N,+1

: (A2)
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A.S.H. acknowledges the hospitality of the Research Cenwhere ¢p(2)=exp(~32'52) is the classical characteristic

ter of Tamagawa University, where a substantial part of thigunction of the probability distributiofP. This proves(ii).
paper was prepared. Proof of the propertyiii). The state with the density op-

erator p is pure if and only if Tp?=1. However, by the
APPENDIX guantum Parceval identitisee[7]), for Gaussiarp

Proof of the propertyi). Let p be a density operator with
finite second moments. According to the propéity) there

is a Gaussian density operatprwith the same first and

Trp2=(277)73f |Tr pV(2)|2d?5z

second moments. We then have :(zwﬁ)_sf J exp(—z az)dx; - -dxdy; - - - dys
H(p)—H(p)=Trp(Inp—Inp)+Tr(p—p)Inp. (Al
(p)=H(p)=Trp(Inp—=Inp)+Tr(p—p)inp. (A1) . [det2a)
The first term on the right is relative entropy, which is - 528 (A4)

known to be nonnegative. The second term is zero, because
p andp have the same first and second moments, apd$n  Thus Trp?=1 if and only if Eq.(33) holds.
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