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Capacity of quantum Gaussian channels
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The aim of this paper is to give explicit calculation of the classical capacity of quantum Gaussian channels,
in particular, involving squeezed states. The calculation is based on a general formula for the entropy of a
quantum Gaussian state, which is of independent interest, and on the recently proved coding theorem for
quantum communication channels.@S1050-2947~99!00802-1#

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

The question of fundamental physical limitations on t
quality and rate of information transmission is at the core
quantum theory of communication, which has led to p
found and exciting new insights into both physics and inf
mation transmission science. This theory provides a gen
framework for study of communication processes, in wh
classical information is conveyed by quantum states. On
the recent achievements of the quantum information the
is the direct coding theorem for transmission of classical
formation through quantum communication channels@1–3#,
which provides an explicit formula for the capacity of th
channel as supremum of the quantum entropy bound w
respect to input probability distributions. This result was
cently extended to channels with constrained inputs@4#
among which the channels with additive quantum Gauss
noise and the constrained power of the signal are the m
important. The aim of the present paper is a further study
this case, in particular, explicit calculation of the classi
capacity of the memoryless squeezed state channel~Sec.
IV B !. This allows us to quantitatively evaluate the propert
of squeezed states from an information-theoretic point
view.

The core of our calculations, apart from the above m
tioned coding theorem, is the formula for the von Neuma
entropy of the general quantum Gaussian state~Sec. IV A!,
which may have independent interest. The natural clas
quantum Gaussian states which includes, in particular, co
ent and squeezed states, as well as their thermal mixtur
discussed in Sec. III B. This is preceded by a description
the more familiar gauge-invariant Gaussian states~those hav-
ing complex GaussianP representation in terms of cohere
states!, which we include in Sec. III A for completeness.

II. CLASSICAL SIGNAL PLUS QUANTUM NOISE

Let us describe the process of classical information tra
mission through a quantum memoryless channel with a c
tinuous signal parameter in the model of optical commu
PRA 591050-2947/99/59~3!/1820~9!/$15.00
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cations. Consider a quantum system, such as a cavity
with finite numbers of modes@5#, described by annihilation
operatorsa1 , . . . ,as satisfying canonical commutation rela
tion ~CCR!

@aj ,ak
†#5d j ,kI , @aj ,ak#50. ~1!

Let H be the Hilbert space of irreducible representation
CCR ~1!, and letr(0) be a density operator inH describing
the state of the cavity field. Consider the family of dens
operators

r~m!5D~m!r~0!D~m!†, mPCs, ~2!

whereCs is ans-dimensional complex vector space, and

D~m!5exp(
j 51

s

~m jaj
†2m jaj ! for m5~m j ! ~3!

is the unitarydisplacement operatorin H.
In an optical communication systemr(0) describes back-

ground noise, comprising quantum noise, andm is the clas-
sical signal. Thus the mappingm→r(m) is a classical-
quantum ~CQ! channel in the sense of@4#. We treat the
product memoryless channel in the Hilbert spaceH ^ n5
H^ •••^H (n copies!, then the signal will be represente
by the sequence of vectorsm(t); t51, . . . ,n, and the chan-
nel mapping ism(•)→r„m(1)…^ •••^ r„m(n)…. We impose
the power constraint on the signal:

(
t51

n S (
j 51

s

\v j um j~ t !u2D<nE, ~4!

wherev j are the frequencies of the modes.
Of course, the memoryless channel is an idealization

should be considered as the first necessary step towar
more realistic model of the ‘‘waveform’’ channel, which ex
plicitly takes into account internal dynamics of the field~cf.
@4#!. According to Theorem 3 of@4#, the capacity of such a
channel is equal to
1820 ©1999 The American Physical Society
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PRA 59 1821CAPACITY OF QUANTUM GAUSSIAN CHANNELS
C5 sup
PPP1

S H~rP!2E H„r~m!…P~dm! D , ~5!

where H52Trr ln r is the von Neumann entropy,rP
5*r(m)P(dm), andP1 is a convex subset of probabilit
distributionsP(dm) on Cs, satisfying the inequality

E (
j 51

s

\v j um j u2P~dm!<E. ~6!

In the case~2! the operatorsr(m) andr(0) are unitarily
equivalent and we have important simplificationH„r(m)…
[H„r(0)…, resulting in

C5 sup
PPP1

H~rP!2H„r~0!…. ~7!

Of special interest is the case of Gaussian noise. The d
nition and properties of the general quantum Gaussian d
sity operator were given in@6,7# in terms of symplectic
spaces, and will be repeated in the next section in somew
different vector notations. Let us show here that in the c
of Gaussianr(0), we canrestrict optimization in Eq.~7! to
Gaussian probability distributionP. For this we need only
the two following properties~see the Appendix!.

~i! Among all density operatorsr in H with fixed first and
second moments

Tr raj , Tr raj
†ak , Tr rajak ~8!

the Gaussian density operator is one which has maximal
tropy. This fundamental property explains, in particular, t
importance of the Gaussian states from the viewpoint of
Jaynes ‘‘maximum ignorance’’ principle.

~ii ! The mixture rP of the Gaussian density operato
r(m) with Gaussian probability distributionP(dm) is a
Gaussian density operator.

Now for any PPP1 let P̃ be the Gaussian probabilit
distribution with the same first and second moments

E m j P~dm!, E m jmkP~dm!, E m jmkP~dm!, ~9!

then ~1! P̃PP1 because Eq.~6! involves only second mo
ments;~2! by ~ii ! r P̃ is Gaussian; and~3! rP andr P̃ have the
same second moments. Indeed, for any polynomialF(m,m̄)
of second order

Tr rPF~a,a†!5E Tr r~m!F~a,a†!P~dm!

5E Tr r~0!D~m!†F~a,a†!D~m!P~dm!

5Tr r~0!E F„a2m,~a2m!†
…P~dm!

5Tr r~0!E F„a2m,~a2m!†
…P̃~dm!

5Tr r P̃F~a,a†!. ~10!
fi-
n-

at
e

n-
e
e

Thus if r(0) is Gaussian, then in Eq.~7! we can restrict
ourselves to GaussianP, and by~ii ! rP will be a Gaussian
density operator. Therefore to calculate Eq.~7! we need to
know the entropy of a general Gaussian density operato

III. GAUSSIAN DENSITY OPERATORS

As mentioned in the preceding section, the case of Ga
ian quantum noise is most important. In this section we re
the general definition and properties of quantum Gauss
density operators to be applied later in the calculation of
channel capacity.

A. Gauge-invariant case

We first consider the density operator which has Gla
er’s P representation

r~0!5p2sudetNu21E exp~2z†N21z!uz& ^zud2sz ~11!

~see@5#, Chap. V, Sec. 5. II!. HerezPCs, uz& are the coher-
ent vectors inH, auz&5zuz&, andN is a positive Hermitian
matrix such that

N5Tr ara† ~12!

~we use here vector notations, wherea5@a1 , . . . ,as#
T is a

column vector anda†5@a1
† , . . . ,as

†# is a row vector!. Such
density operators, respecting the complex structure ass
ated with the coherent states, will be calledgauge-invariant,
because they are invariant with respect to the gauge tran
mation of the first kind:a→eiwa. There exists a unitary
operatorU in Cs such that

UNU* 5FN1 0

�

0 Ns

G[diag~Nj !. ~13!

By considering the canonical transformationa→ã5Ua,
z̃5Uz, u z̃&˜ 5uz&, we see that the density operator~11! is
decomposed into the tensor product

r~0!5 ^

j 51

s

r j~0!, ~14!

where

r j~0!5p21Nj
21E expS 2

u z̃ j u2

Nj
D u z̃ j&

˜ ˜ ^z̃ j ud2z̃ j , ~15!

and H„r(0)…5( j 51
s H„r j (0)…. The spectral decompositio

of r j (0) is well known~see, e.g.,@7#!

r j~0!5
1

Nj11 (
m50

` S Nj

Nj11D m

um&˜ ˜ ^mu, ~16!

whereum&˜ ; m50,1, . . . are theorthonormal vectors, such
that ã j

†ã j um&˜5mum&˜. From Eq. ~16! H„r j (0)…5g(Nj ),
where
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g~x!5~x11!ln~x11!2x ln x, x.0 ~17!

is a monotonously increasing concave function. Theref
we obtain the well-known formula

H„r~0!…5(
j 51

s

g~Nj !5Spg„diag~Nj !…5Spg~N!, ~18!

where Sp denotes trace of matrices as distinct from trac
operators Tr.

B. The general case

The density operator~11! is not the most general whic
naturally can be called quantum Gaussian. A practical
ample, not covered by Eq.~11!, is the squeezed state, whic
has noP representation with positive probability density. T
explain the general definition, let us change from complex
real setting by introducing canonical pairs

qj5A \

2v j
~aj1aj

†!, pj5 iA\v j

2
~aj

†2aj !, ~19!

such that

aj5
1

A2\v
~v jqj1 ip j !, ~20!

satisfying the Heisenberg CCR

@qj ,pk#5 id jk\I , @qj ,qk#50, @pj ,pk#50. ~21!

Let us introduce the column vector

R5@q1 , . . . ,qs ;p1 , . . . ,ps#
T. ~22!

We also introduce the real column 2s vector z
5@x1 , . . . ,xs ;y1 , . . . ,ys#

T, and the unitary operators inH,

V~z!5expi (
j 51

s

~xjqj1yj pj !5exp~ iRTz!. ~23!

The operatorsV(z) satisfy the Weyl-Segal CCR

V~z!V~z8!5expS i

2
D~z,z8! DV~z1z8!, ~24!

where

D~z,z8!5\(
j 51

s

~xj8yj2xjyj8! ~25!

is the canonical symplectic form. The Weyl-Segal CCR
the rigorous counterpart of the Heisenberg CCR, involv
only bounded operators. Let us mention that ifzk

5(1/A2\vk) (vkxk1 iyk), then

D~z!5exp
i

\(
j 51

s

~yjqj2xj pj !5V~2D21z!, ~26!
e

of

x-

o

s
g

where

~27!

is the (2s)3(2s)-skew-symmetriccommutation matrixof
components of the vectorR. Most of the results below are
valid for the case where the commutation matrix is an ar
trary nondegenerated skew-symmetric matrix, not neces
ily of the canonical form~27!.

Definition. The density operatorr is called Gaussian, if
its quantum characteristic function has the form

Tr rV~z!5exp~ imTz2 1
2 zTaz!, ~28!

where m is a column (2s) vector anda is a real symmetric
(2s)3(2s) matrix.

One can show that

m5Tr rR, a2
i

2
D5Tr RrRT ~29!

~cf. @6,7#!. The mean mcan be an arbitrary vector; the ne
essary and sufficient condition on thecorrelation matrixa is
the generalized Robertson uncertainty relation

a2
i

2
D>0. ~30!

This condition is equivalent to its transposea1 ( i /2) D>0,
and to the following matrix generalization of the Heisenbe
uncertainty relation:

D21aD211
1

4
a21>0, ~31!

which is obtained by combining Eq.~30! and its transpose
The stater is pure if and only if the equality holds in thi
equation, or

~D21a!252
1

4
I . ~32!

This is equivalent to det(2D21a)51, and, for the canonica
form ~27! of the commutation matrix, to the condition

det~2a!5\2s ~33!

~see the Appendix!.
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In addition to the two properties listed in Sec. II, we no
the following two properties.

~iii ! The Gaussian density operator with the correlat
matrix a is pure if and only if Eq.~33! holds.

Since Eq.~30! is also a necessary condition for the corr
lation matrix of the arbitrary density operator, we have t
following.

~iv! For any density operatorr there is Gaussian densit
operatorr̃ with the same meanm and correlation matrixa.

It is convenient to writem anda in the block form

.

By using Eq.~26!, it can be shown~@7#, Sec. V. 5! that

r~m!5D~m!r~0!D~m!†, m j5
1

A2\v j

@v jmj
q1mj

p#, ~34!

wherer(m) is the Gaussian density operator with meanm
and fixed correlation matrixa. This allows us to restrict to
the casem50 in calculation of the entropy.

Let us show that the gauge-invariant state~11! is Gauss-
ian in the sense of our definition. The characteristic funct
is

Tr r~0!V~z!5p2sudetNu21

3E exp~2z†N21z!^zuV~z!uz&d2sz. ~35!

By using Eq.~26! and matrix elements of the displaceme
operator†@5#, Eq. ~3.22! p. 131‡, we calculate the Gaussia
integral in the right-hand side as exp(2 1

2z
Taz), with

, ~36!

where

~37!

and ReN, Im N are the real and the imaginary parts of t
matrix N, respectively. In particular, for one mode we obta
n

-
e

n

t

a5\Fv21~N1 1
2 ! 0

0 v~N1 1
2 !

G , ~38!

which corresponds to the characteristic function

expF2
\

2S N1
1

2D ~v21x21vy2!G . ~39!

IV. THE ENTROPY AND THE CAPACITY

In this section we give a general formula for the vo
Neumann entropy of the arbitrary Gaussian density opera
and apply it to calculate the capacities for several conc
Gaussian channels.

A. The entropy of the general Gaussian state

The following result can be found in@7#, Proposition 2.1:
For arbitrary real symmetric matrixa there exists linear

transformation S:R→SR5R̃, such that SDST5D and

~40!

The transformations satisfyingSDST5D preserve CCR
and are called~linear! canonicaltransformations.

Let a be the correlation matrix of Gaussian density ope
tor r with m50. It follows that

Tr r exp~ iR̃Tz!5expS 2
1

2
zTãzD

5expS 2
1

2(
j 51

s

a j~xj
21yj

2!D . ~41!

The necessary and sufficient condition~30! is equivalent to
a j> \/2 , j 51, . . . ,s. Therefore

a j5\S Nj1
1

2D , ~42!

whereNj>0. From Eq.~41!

r5 ^

j 51

s

r~ j !, ~43!

wherer ( j ) is the density operator for one degree of freedo
corresponding to the characteristic function~39! with N
5Nj , v51. From Sec. III A,
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H~r!5(
j 51

s

H~r~ j !!5(
j 51

s

g~Nj !. ~44!

Consider the functionG which is defined by the following
relation ford> 1

2 :

G~d2!5gS d2
1

2D
5S d1

1

2D lnS d1
1

2D2S d2
1

2D lnS d2
1

2D
5

1

2
lnd21

1

2
lnS 12

1

4d2D 1dln
11 1/2d

12 1/2d

5
1

2
lnd21 lnF12 (

k51

`
1

2k~2k11!S 1

4d2D kG , ~45!

and is a monotonously increasing concave function ofd2.
Then

H~r!5(
j 51

s

GXS a j

\ D 2C5 1

2
SpG„2~D21ã…2!. ~46!

Going back to the initial basis, we obtain

D21ã5~SDST!21SãST5~ST!21~D21a!ST. ~47!

HenceG„2(D21ã)2
…5(ST)21G„2(D21a)2

…ST and

H~r!5
1

2
SpG„2~D21a!2

…, ~48!

which is the final expression for the entropy of the gene
Gaussian state. Note that it is valid for arbitrary ske
symmetric commutation matrixD, not necessarily of the sim
plest canonical form~27!. In order to aid understanding, w
will show an example of how to use the formula.

Example.In the case of a general Gaussian density ope
tor with one degree of freedom we have

a5Faqq aqp

aqp appG
with aqqapp2(aqp)2>\2/4 @the last inequality is equivalen
to Eq. ~30!#. Then

2~D21a!25
aqqapp2~aqp!2

\2 F1 0

0 1G , ~49!

and

H~r!5GS aqqapp2~aqp!2

\2 D . ~50!

Geometrically, the argument ofG is equal to the square
area of the deviation ellipsoid

p\zTa21z51, z5@x,y#T,
l
-

a-

for two-dimensional Gaussian distribution with the corre
tion matrix a.

Note that in accordance with Eq.~32! the Gaussian state
is pure if and only if aqqapp2(aqp)25\2/4 . This com-
prises both coherent (aqq5\/2v , app5\v/2 , aqp50)
and squeezed states in the real rather than complex pa
etrization. Let us show the relation between the real nota
and the usual physical parametrization of squeezed sta
Consider the squeezed state given by the vectorS(z)u0&,
wherez5geiu and S(z)5exp$@z*a22z(a†)2#/2%. Then a is
represented by the squeezing parametersg,u as follows:

aqq5
\

2v
$cosh 2g2sinh 2g cosu%,

app5
\v

2
$cosh 2g1sinh 2g cosu%, ~51!

aqp5
\

2
sinh 2g sinu.

B. Calculating the capacity

The capacity involves the maximization with respect
probability distribution of the signals. In this subsection w
will show several examples of the maximization by using t
formula given in the above subsection. Letr(0) be a Gauss-
ian density operator withm50 and the correlation matrixa.
Let P be a Gaussian probability distribution with correlatio
matrix b. Without loss of generality we may assume it h
zero mean. The inequality~6! then takes the form~in terms
of real variables!

1

2(
j 51

s

~v j
2b j j

qq1b j j
pp!<E, ~52!

or

Sp«b<E, ~53!

where

. ~54!

The mixturerP will again be a Gaussian density operat
with zero mean and the correlation matrix (a1b) ~see the
Appendix!. Thus the capacity of the general Gaussian ch
nel is equal to
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C5 max
bPB1

1

2
SpG„2@D21~a1b!#2

…2
1

2
SpG„2~D21a!2

…

~55!

whereB1 is the convex set of real positive matricesb, sat-
isfying Eq. ~53!.

There are a few cases where the maximization in Eq.~55!
can be made explicitly

~A! The case wherer(0) is the gauge-invariant densit
operator with diagonal matrixN 5diag(Nj ): see@4#, where
it is shown that the capacity is equal to the capacity of
corresponding quasiclassical ‘‘photonic channel.’’ Name
it is shown that

C5max(
j

g~Nj1mj !2(
j

g~Nj !, ~56!

where the maximum is taken over all ‘‘mean photon nu
bers’’ mj>0, satisfying( j\v jmj<E. @In terms of the ma-
trix b the quantitiesmj5(1/2\v j ) (v j

2b j j
qq1b j j

pp)]. The
problem~56! has the solution

mj5„Nj~l!2Nj…1 , ~57!

whereNj (l)5(expl\vj21)21,(x)1 denotesx if x>0, and 0
otherwise, andl is chosen in such a way that( j\v jmj5E
@8,4#. This is a modification of the classical ‘‘water-filling
solution’’ @9# with the quantum ‘‘water level’’ given by the
one-dimensional Planck distributionNj (l). In this case the
matrix N commutes with« and D, making the calculation
possible.

In particular, for one mode

C5g~N1Ns!2g~N!, ~58!

where N5Tr r(0)a†a, Ns5E/\v. Thus the quantity,
which was conjectured long ago as the upper bound for
capacity of the Gaussian channel@10#, is in fact the capacity.

~B! The case of generalr(0) in one mode, in particular
the case of a squeezed state.

~B1! First we shall calculate the capacity~55! for the
given correlation matrixa corresponding tor(0). When we
use the Eq.~50!, Eq. ~55! can be rewritten as follows:

C5 max
bPB1

GS ~aqq1bqq!~app1bpp!2~aqp1bqp!2

\2 D
2GS ~aqq!~app!2~aqp!2

\2 D , ~59!

whereB1 is a set of real positive 232 matricesb satisfying
the condition~53!, i.e.,

1

2
~v2bqq1bpp!<E, ~60!

bqqbpp>~bqp!2. ~61!

BecauseG(d2) is a monotonously increasing function ofd2,
the capacity is given by
e
,

-

e

C5G~dmax
2 !2GS aqqapp2~aqp!2

\2 D , ~62!

where

dmax
2 5

1

\2
max
bPB1

@~aqq1bqq!~app1bpp!2~aqp1bqp!2#,

~63!

which can be calculated in the following way.
We can replace Eq.~60! by the equation

1

2
~v2bqq1bpp!5E ~64!

without loss of generality. When we use Eqs.~61! and~64!,
the variable region ofbqq andbpp can be determined by th
following inequality, which represents an elliptic region:

bqqS bqq2
2E

v2 D 1S bqp

v D 2

<0. ~65!

Thusbqq andbqp can be represented with the parameterr
andf as follows:

bqq5r cosf1
E

v2
, bqp5rv sinf, ~66!

0<r<
E

v2
, 0<f,2p. ~67!

Substituting Eq.~66! into Eq. ~63!, we have

dmax
2 5

1

v2\2S E1
1

2
~v2aqq1app! D 2

2
1

\2
min

~r ,f!PB̃1

H F rv cosf1
1

2S vaqq2
app

v D G2

1~rv sinf1aqp!2J , ~68!

whereB̃1 is the set of parameters (r ,f) satisfying Eq.~67!.
Now let D be the disk with the radiusE/v and the center 0.
Then the second term of Eq.~68! is equal to the distance
between the point„2 1

2 (vaqq2 app/v),2aqp
… and the disk

D, and hence it vanishes if and only if

F1

2S vaqq2
app

v D G2

1~aqp!2<S E

v D 2

. ~69!

If Eq. ~69! holds, then the capacity is given by

C5GX 1

\2v2S E1
1

2
~v2aqq1app! D 2C

2GS aqqapp2~aqp!2

\2 D , ~70!



.

d

g

g
e
n

ra
ur
te
z

.

ty

In

q.

It is
the

tor
re

han-
-

1826 PRA 59A. S. HOLEVO, M. SOHMA, AND O. HIROTA
or

C5g~N1Ns!2H„r~0!…, ~71!

where Ns5E/\v, N5Tr r(0)a†a5 (v2app1aqq)/2\v
2 1

2 , andH„r(0)… is given by Eq.~50!.
In particular, ifr(0) is pure, that is a squeezed state@i.e.,

aqqapp2(aqp)25\2/4], with parameters satisfying Eq
~69!, the capacity becomes

GX 1

\2v2S E1
1

2
~v2aqq1app! D 2C, ~72!

or

C5g~N1Ns!. ~73!

On the other hand, if Eq.~69! does not hold, the secon
term of Eq.~68! becomes

1

\2HAF1

2S vaqq2
app

v D G2

1~aqp!22
E

vJ 2

. ~74!

Then the capacity is given by

C5GX 1

\2v2H S E1
1

2
~v2aqq1app! D 2

2FAS 1

2
~v2aqq2app! D 2

1v2~aqp!22EG2J C
2GS aqqapp2~aqp!2

\2 D . ~75!

In particular, if r(0) is squeezed state, by substitutin
(aqp)25aqqapp2 \2/4 in Eq. ~75!, we have

C5GX 1

\2v2S E~v2aqq1app!

1EA~v2aqq1app!22\2v21
\2v2

4 D C
5GS Ns~2N1112AN21N!1

1

4D . ~76!

Now let us consider the capacityC as the function of the
noise correlation matrixa. Then it is easy to see thatC has a
minimum when aqq5\/2v , app5\v/2 , aqp50 @i.e.,
r(0) is coherent state#. In other words, using squeezin
states under constrained input energy does increase th
pacity. The situation where the capacity is given by differe
expressions depending on whether or not the noise pa
eters fulfill a certain inequality may be interpreted as a f
ther noncommutative generalization of the ‘‘quantum wa
filling.’’ The graph of the capacity as the function of squee
ing parameterg for u50 and forNs51 is presented in Fig
1.
ca-
t
m-
-
r
-

~B2!: In ~B1! we calculated the capacity under theinput
power constraint~60!. Here we shall calculate the capaci
under theoutput ~signal plus noise! power constraint:

1
2 @v2~aqq1bqq!1bpp1app#<\v~Nt1

1
2 !, ~77!

whereNt is the total mean photon number in the output.
this case we can obtain the capacity in the same way as~B1!,
by replacing the energy boundE with

v\~Nt1
1
2 !2 1

2 ~v2aqq1app!, ~78!

provideda is such that this quantity is positive. Then, E
~69! is replaced by

F1

2S vaqq2
app

v D G2

1~aqp!2

<H 1

vFv\S Nt1
1

2D2
1

2
~v2aqq1app!G J 2

. ~79!

Thus, if Eq.~79! holds, the capacity is given by

C5GXS Nt1
1

2D 2C2GS ~aqq!~app!2~aqp!2

\2 D .

In particular, if r(0) is pure@i.e., aqqapp2(aqp)25\2/4]
and satisfies Eq.~79!, we have

C5G„~Nt1
1
2 !2

…5g~Nt!, ~80!

which is equal to the Yuen-Ozawa bound~von Neumann
entropy of the thermal state!. In accordance with@11#, in this
case use of squeezed states cannot improve capacity.
interesting that this does not become worse, provided
condition ~79! holds.

Next we shall represent the condition~79! by a squeezing
parameter. Letr(0) be a squeezed state with the vec
S(z)u0&, where z5geiu. Let us consider the case whe
u50. Then from Eq.~51! we have

FIG. 1. Dependence of the capacity of the squeezed state c
nel with constrained signal power,Ns51, on the squeezing param
eterg.
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aqq5
\

2v
e22g, app5

\v

2
e2g, aqp50. ~81!

Substituting Eq.~81! into Eq. ~79!, we get the following
condition:

lnA 1

2Nt11
<g< lnA2Nt11. ~82!

Thus we obtain the same capacity as for number or cohe
states by using squeezed states with the squeezing para
z5g satisfying Eq.~82!. Figure 2 illustrates capacityC as a
function of squeezing parameter in the case ofNt51.

Furthermore, we shall consider whether there is a valu
the squeezing parameter which makes the capacity equ
the Yuen-Ozawa bound or not, when the coherent amplit
of the squeezing state is restricted to a real number, i.e.

bpp50, bqp50. ~83!

Now we can suppose that the equality of Eq.~77! holds
without loss of generality. Then by substituting Eq.~83! into
Eq. ~77!, we have

1
2 @v2~aqq1bqq!1aqq#5\v~Nt1

1
2 !. ~84!

So for the givena, the correlation matrixb has the entries

b0
pp50, b0

qp50,

b0
qq5

2\

v S Nt1
1

2D2
1

v2
~v2aqq1app!, ~85!

providedb0
qq.0. Therefore Eq.~59! can be rewritten simply

as follows:

FIG. 2. Dependence of the capacity of the complex amplitu
squeezed state channel with constrained output power,Nt51, on
the squeezing parameterg.
nt
eter

of
to
e

C5GS ~aqq1b0
qq!~app1b0

pp!2~aqp1b0
qp!2

\2 D
2GS ~aqq!~app!2~aqp!2

\2 D . ~86!

Substituting Eqs.~81! and ~85! into Eq. ~86!, we have

C5G„2@ 1
2 e2g2~Nt1

1
2 !#21~Nt1

1
2 !2

…. ~87!

Thus we find that the capacityC takes the maximum value
when the squeezing parameterg is equal to

g05 lnA2Nt11. ~88!

Whenr(0) is the squeezed state with the parameter~88! and
the receiver is homodyne, we have

I max5 ln~112Nt!, ~89!

which is the maximum value for any squeezing parame
So I max is greater than that in the case of a coherent s
channel. But it is less than the Yuen-Ozawa bound. We h
seen that the capacityC becomes equal to the Yuen-Ozaw
bound if and only if Eq.~88! holds. Thus use of squeeze
states can improve the maximum mutual information un
the output power constraint, but cannot improve the capac
Figure 3 illustrates the capacityC as a function of squeezing
parameter in the case ofNt51.

Note that the value of the squeezing parameterg0 is equal
to that for the maximum signal-to-noise ratio: 4Nt(Nt11)
@12#.

V. CONCLUSION

In this paper we considered a memoryless communica
channel representing classical signal plus background q
tum Gaussian noise. We described a broad class of quan
Gaussian states, which comprises both coherent
squeezed states, as well as their Gaussian mixtures, and
an expression for von Neumann’s entropy of a gene

e FIG. 3. Dependence of the capacity of the real amplitu
squeezed state channel with constrained output power,Nt51, on
the squeezing parameterg.
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Gaussian state. Basing on this formula and on the rece
obtained formula for the classical capacity of a quant
channel, we calculated the capacity of the squeezed s
channel, showing quantitatively the information-theoretic a
vantage over the channel using coherent states, under
strained input signal power. The capacity is achieved b
Gaussian input distribution satisfying a certain conditi
which can be interpreted as a quantum counterpart of
classical ‘‘water-filling condition.’’

On the contrary, using squeezed states under constra
output power cannot increase the capacity, in accorda
with the result of@11#, although somewhat surprisingly,
does not make it worse, provided the squeezing is not
large.

Note added in proof.The formula~50! for the entropy of
a Gaussian state with one degree of freedom agrees with
obtained in G. S. Agarwal, Phys. Rev. A3, 828 ~1971!. The
authors are grateful to Professor G. S. Agarwal for bring
this reference to their attention.
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APPENDIX

Proof of the property~i!. Let r be a density operator with
finite second moments. According to the property~iv! there
is a Gaussian density operatorr̃ with the same first and
second moments. We then have

H~ r̃ !2H~r!5Tr r~ ln r2 ln r̃ !1Tr~r2 r̃ !ln r̃. ~A1!

The first term on the right is relative entropy, which
known to be nonnegative. The second term is zero, bec
r̃ andr have the same first and second moments, and lnr̃ is
an

ry

m

tly

te
-
on-
a

e

ed
ce

o

ne

g

n-
is

se

a polynomial of the second order ina,a†. This follows from
the fact that after certain linear canonical transformation
a,a†, the density operatorr̃ can be represented as the tens
product of elementary operators~16!, which can be put in the
form

r j~0!5
1

Nj11S Nj

Nj11D aj
†aj

, ~A2!

making obvious that lnrj(0) is a second order polynomial i
a,a†. ThusH( r̃)2H(r)>0.

Proof of the property~ii !. Let P be a Gaussian probability
distribution with zero mean and covariance matrixb for the
variablesm1

q , . . . ,ms
q ,m1

p , . . . ,ms
p. The quantum character

istic function of the density operatorrP is

Tr rPV~z!5E exp~ imTz2 1
2 zTaz!P~dm!

5wP~z!exp~2 1
2 zTaz!, ~A3!

where wP(z)5exp(2 1
2z

Tbz) is the classical characteristi
function of the probability distributionP. This proves~ii !.

Proof of the property~iii !. The state with the density op
erator r is pure if and only if Trr251. However, by the
quantum Parceval identity~see@7#!, for Gaussianr

Tr r25~2p!2sE uTr rV~z!u2d2sz

5~2p\!2sE •••E exp~2zTaz!dx1 •••dxsdy1 •••dys

5Adet~2a!

\2s
. ~A4!

Thus Trr251 if and only if Eq.~33! holds.
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