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Singly and doubly excited states of theD-dimensional helium atom

J. C. Carzoli, M. Dunn, and D. K. Watson
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019-0225

~Received 17 July 1998!

Large-order dimensional perturbation theory~DPT! has been used to study the ground and a number of
excited states of two-electron atoms for the caseL50. Here we present an application of recent work gener-
alizing DPT to any higher angular-momentum state. In this work we begin the investigation ofPo states,
presenting results for the energies of some of the lowest-lying states and discuss the analytic structure of these
energies as functions of 1/D. We also obtain energies of correspondingDo states with almost no additional
effort by making use of interdimensional degeneracies with thePo states.@S1050-2947~98!06512-3#

PACS number~s!: 31.50.1w, 31.15.Md
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I. INTRODUCTION

Dimensional perturbation theory~DPT! offers an interest-
ing alternative to conventional large-scale diagonalization
quantum Hamiltonians. Built on a perturbation formalis
that uses the dimension of space as the perturbation pa
eter, DPT treats the kinetic energy as a perturbation dropp
all derivative terms at zeroth order while including all effe
tive potential terms at least approximately at this order. T
offers a different vantage point from which to analyze t
underlying dynamics of physical interactions. In particul
unlike Hartree-Fock based calculations, correlation effe
are included at the lowest order (D→`) due to the inclusion
of zeroth-order contributions from all terms in the effecti
potential that govern the electron-electron interaction. T
first-order equation brings in harmonic~i.e., molecularlike!
motion, which is described naturally by the first-order p
turbation equation, which is a harmonic oscillator equati
This equation also provides a set of approximate quan
numbers and a set of basis functions that reflect the corr
tion effects included through first order. These basis fu
tions can thus respond automatically to a change in an ex
nal parameter~as in the case of an atom in a magnetic fie!
or to an internal parameter such as the nuclear charge
atomic and molecular physics, DPT has been applied t
large number of phenomena including the atomic Zeem
@1,2# and Stark@3–5# effects, the hydrogen atom in parall
electric and magnetic fields@6,7#, two-electron and many
electron atoms, ions, and molecules@3,8#, van der Waals
coefficients @9#, atomic clusters@10,11#, quasistationary
states@4,6,12#, density functional theory@13,14#, potential
scattering problems@5,15#, the computation of the rotationa
spectra of molecules@16#, and virial coefficients@17#.

The derivation of tractable perturbation equations requ
an expansion of the wave function in which the rotation
degrees of freedom, which multiply with increasingD, are
isolated within known basis functions so that perturbat
equations purely in terms of internal coordinates may be
rived for the unknown expansion coefficients. ForS-wave
states this is fairly simple@3,18,19#; thus, to date, DPT stud
ies have focused for the most part onSe states and their
interdimensionally degenerate Pe counterparts~see Sec.
II C!.

During the past three years we have published a serie
four papers@20–23#, which detail the extension of the DP
PRA 591050-2947/99/59~1!/182~6!/$15.00
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formalism to higher angular momentum states for multiel
tron atoms. This work completes and generalizes ear
work by Schwartz@24# and others@25# who worked solely in
three dimensions. References@20# and@21# describe in detail
the derivation of a finite expansion for theD-dimensional
N-electron wave function usingD-dimensional rotational in-
variance implemented through the group-theoretic metho
irreducible tensors. The resulting wave-function expans
leaves the expansion coefficients dependent only on a fi
number of internal coordinates. In Ref.@22# the application
of the Hamiltonian to this wave-function expansion for t
atomic two-electron system results in a tractable set of
ferential equations that allow continuation in the dimens
D, i.e., allow a perturbation theory that usesD as its param-
eter. These differential equations also clearly reveal the c
plete set of exact interdimensional degeneracies for the t
electron system generalizing the work of Herrick a
Stillinger @26,27#, Herschbach and co-workers@28–30#, and
Goodsonet al. @31#, who identified some particular interdi
mensional degeneracies. In Ref.@23# these differential equa
tions are solved in the large-dimension limit and a zero
order solution is obtained about which a perturbation se
can be developed. This enables the methods of DPT to
extended to all higher angular momentum states of tw
electron systems.~For a different treatment of higher angula
momentum DPT as applied to molecules see Ref.@16#.!

The present paper is an application of this extensive
malism. For our initial system we have chosen to study
two-electron system, specifically the 1s2p 1Po and
1s2p 3Po states of the helium atom. These are the low
states ofPo symmetry in an atom that presents probably t
most studied three-body problem in atomic physics. We
gin in the next section by summarizing the results and p
cedures outlined in Refs.@22,23#. Having obtained a suitable
zeroth-order approximation, we then outline the proced
for solving the perturbation equations to any order. Fina
we present the results for the 1s2p 1Po and 1s2p 3Po

states of the helium atom and their interdimensionally deg
erate counterparts the 2p3d 3Do @n(K,T)N

A52(0,1)3
0# and

2p3d 1Do @n(K,T)N
A52(0,1)3

0# states, respectively.

II. TWO-ELECTRON HAMILTONIAN
AND LARGE- D LIMIT

The two-electron Hamiltonian inD dimensions for arbi-
trary angular momentum is derived in Ref.@22# by special-
182 ©1999 The American Physical Society
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PRA 59 183SINGLY AND DOUBLY EXCITED STATES OF THED- . . .
izing the wave function expansion of Refs.@20,21# to a two-
electron system. Reference@23# then discusses the largeD
limit of the Hamiltonian. Here we present a summary of t
results of Refs.@22,23# and discuss the application of th
equations to the calculation of the1,3Po states that are the
focus of this paper.

A. The Schrödinger equation

The generalized Schwartz expansion of two-electron
oms in D dimensions was developed in Ref.@22# and is
given by

CL,p~r1 ,r2!5@hL,p~r1 ,r2!#TFL,p~r 1 ,r 2 ,r 12!, ~1!

where L is the angular momentum andp is the parity.
@hL,p(r1 ,r2)#T is the transpose of the column vect
hL,p(r1 ,r2) of basis functions andFL,p(r 1 ,r 2 ,r 12) is the col-
umn vector of expansion coefficients. The scalar quanti
r 1 andr 2 are the electron-nucleus distances, whiler 12 is the
interelectron separation.

If we introduce the wave-function expansion of Eq.~1!
into the Schro¨dinger equation

S 2
1

2
¹1

22
1

2
¹2

22
Z

r 1
2

Z

r 2
1

1

r 12
DCL,p~r1 ,r2!

5ECL,p~r1 ,r2!, ~2!

we obtain a system of coupled differential equations

HL,p8 FL,p5EL,pFL,p, ~3!

where the matrix differential operatorHL,p8 is

HL,p8 ~r 1 ,r 2 ,r 12!

5S 2
1

2

]2

]r 1
2

2
1

2

]2

]r 2
2

2
]2

]r 12
2

2
r 12

2 1r 1
22r 2

2

2r 1r 12

]2

]r 1]r 12

2
r 12

2 1r 2
22r 1

2

2r 2r 12

]2

]r 2]r 12
2

Z

r 1
2

Z

r 2
2

1

r 12
D I x

2
~D211L1g2!I x1Lx

2r 1

]

]r 1

2
~D211L1g2!I x1Lx

2r 2

]

]r 2

2
~D211L1g2!I x1Sx

2r 12

]

]r 12
, ~4!

with x5L2g2 and g25$ 1
2 @p1(21)L11#%2, which yields

g250 for states withp5(21)L and g251 for states with
p5(21)L11 @32#. I x is an @(x11)3(x11)#-dimensional
unit matrix andLx andSx are@(x11)3(x11)#-dimensional
matrices given by
t-

s

Lx5S x 0 0 ••• 0 0

0 x22 0 ••• 0 0

0 0 x24 ••• 0 0

A A A � A A

0 0 0 ••• 2~x22! 0

0 0 0 ••• 0 2x

D ~5!

and

Sx5S 0 1 0 ••• 0 0

x 0 2 ••• 0 0

A � � � A A

A A � � � A

0 0 ••• 2 0 x

0 0 ••• 0 1 0

D . ~6!

B. The Pauli principle

The system we are modeling consists of two identi
fermions. Therefore, the complete wave function must
totally antisymmetric under the interchange of the two el
trons. For a singlet state the spatial wave function must
symmetric, while for the triplet state it must be antisymm
ric. It has been shown that this antisymmetry is ensu
when the column vectorFL,p satisfies the constraint~see
Ref. @22#!

FL,p~r 1 ,r 2 ,r 12!5~21!S1g2NxF
L,p~r 2 ,r 1 ,r 12!, ~7!

where S is the total spin and the
@(x11)3(x11)#-dimensional matrixNx is

Nx5S 0 0 ••• 0 1

0 0 ••• 1 0

A A � A A

0 1 ••• 0 0

1 0 ••• 0 0

D . ~8!

C. Interdimensional degeneracies

Equations~3! and~7! show the complete spectrum of ex
act interdimensional degeneracies between thep5(21)L

and p5(21)L11 states. The differential equations are i
variant under the replacement

L1g2 ;p5~21!L;~2S11!53,1;D⇔

L1g212;p5~21!L11;~2S11!51,3;D22. ~9!

For instance, the3,1Po states calculated atD55 give the
1,3Do states atD53.

D. The large-dimension limit

The goal in this section is to transform the Schro¨dinger
equation to obtain an exact solution in theD→` limit. To
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this end we begin by regularizing the large-Z limit with the
transformationsr i→r i /Z and E→Z2E and we definel
51/Z.

Next we transform from the variables$r 1 ,r 2 ,r 12% to
$r 1 ,r 2 ,u%, whereu is the angle subtended by the two ele
trons at the nucleus. This transformation eliminates the
rivative cross terms in the HamiltonianHL,p8 .

Finally, we rewrite Eq.~3! as

HL,p~r 1 ,r 2 ,u!FL,p~r 1 ,r 2 ,u!5EFL,p~r 1 ,r 2 ,u!, ~10!

with

HL,p~r 1 ,r 2 ,u!5 J̃1/2HL,p8 J̃21/2, ~11!

FL,p5 J̃1/2FL,p, ~12!

J̃5r 1
[ ~L1g2!Ix1Lx]r 2

[ ~L1g2!Ix2Lx]sin~L1g2!uJ,

J5r 1
~D21!r 2

~D21!sin~D22!u, ~13!

where J is the Jacobian. The matrix differential operat
HL,p becomes

HL,p~r 1 ,r 2 ,u!5T1
1

d2
U1VI x1

1

d
W, ~14!

whered51/(D1L1g2).
Every term in Eq.~14! is a function of$r 1 ,r 2 ,u%. The

terms T, U, and VI contain the matricesI and/or L and
hence are diagonal matrix operators. The termW is a tridi-
agonal matrix operator with zero diagonal. Furthermore,
the terms exceptV ared dependent. The termsT andW are
kinetic terms~i.e., contain derivatives!, while V is the Cou-
lomb potential term andU is an additional ‘‘potential’’ term
with factors of 1/r i

2 .
Finally, to investigate the large-dimension limit we sca

the coordinates and energy as

r̃ i5d2r i , Ẽ5
E

d2
~15!

and introduce these into Eq.~10! to obtain

@d$dT~ r̃ 1 , r̃ 2 ,u!1W~ r̃ 1 , r̃ 2 ,u!%1U~ r̃ 1 , r̃ 2 ,u!

1V~ r̃ 1 , r̃ 2 ,u!I x#F
L,p5ẼFL,p. ~16!

Notice that asd→0 (D→`) the derivative terms disappea
and so the electrons are stationary at the minimum of
effective potential given byU0( r̃ 1 , r̃ 2 ,u)1V( r̃ 1 , r̃ 2 ,u)I x ,
whereU0( r̃ 1 , r̃ 2 ,u), a multiple of the unit matrix, is thed
→0 limit of U( r̃ 1 , r̃ 2 ,u). At the minimum of this potential
the values ofr̃ 1 , r̃ 2 , and u becomer̃ 15r m , r̃ 25r m , and
u5um . This ‘‘frozen’’ structure is called theLewis struc-
ture. Notice that this Lewis structure is independent of ang
lar momentum since the large-D potential contains only the
matrix I and not the matricesL or S whose elements chang
as angular momentum is changed.
e-

ll

e

-

Furthermore, the termV, containing all of the electron
correlation, has no overall factor ofd and hence has a con
tribution at zeroth order. In other words, electron correlat
effects are included at the lowest order of DPT unlike oth
perturbation methods that include electron correlation only
higher orders.

The values ofr m andum are given by

cm5cosum522l̄@~11l̄2!1/21l̄ # ~17!

and

r m5
1

4
~11cm!22, l̄5

A2l

16
, ~18!

while the eigenvalue spectrum ofẼ collapses onto a single
valuee0 given by

e0524
~11cm!3

~12cm!
52

1

4r m
2 sm

2
, ~19!

where sm5sinum and we will also use the notationtm
5tanum . Again note that the results of the large-D limit
@Eqs.~17!–~19!# hold for anyvalue of the total orbital angu
lar momentum.

E. Langmuir vibrations

The next step in developing a perturbation expansion
the Schro¨dinger equation is to allow for small oscillations
called Langmuir vibrations, about the Lewis structure po
tions. To investigate these oscillations and obtain a zero
order solution to the wave function we introduce the dime
sionally scaled displacement coordinatesx1 , x2 , and y
through the transformations

r̃ 15r m1d1/2x1 , r̃ 25r m1d1/2x2 ,

u5um1d1/2
A2

r m
y. ~20!

The displacement coordinates are substituted i
d2T( r̃ 1 , r̃ 2 ,u), dW( r̃ 1 , r̃ 2 ,u), U( r̃ 1 , r̃ 2 ,u), V( r̃ 1 , r̃ 2 ,u), and
FL,p( r̃ 1 , r̃ 2 ,u), which are then expanded in powers ofd1/2,
while Ẽ is expressed as a power series ind. These expan-
sions are then substituted into Eq.~16! and by equating co-
efficients of d1/2 we obtain a set of equations fore i and
F i

L,p .
The coefficients ofd0 give the large-D energye0 as de-

rived above, but we get no information aboutF0 . The coef-
ficient of d1/2 in the Hamiltonian is zero since this coefficie
is a first derivative with respect tod1/2 evaluated atd50,
which is at the minimum of the potential. Thus thed1/2 terms
give us no information aboutF1 . Finally, the coefficient of
d, i.e., second order ind1/2, gives us a coupled differentia
equation fore1 andF0 . Specifically,

@T2~x1 ,x2 ,y!1U2~x1 ,x2 ,y!1V2~x1 ,x2 ,y!I x

1W2#F0
L,p~x1 ,x2 ,y!5e1F0

L,p~x1 ,x2 ,y!, ~21!
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whereT2 andU2 multiply the unit matrixI x andW2 multi-
plies the nondiagonal matrixSx and is independent of th
displacement coordinates. So the termW2 serves to couple
the x11 differential equations in Eq.~21!.

Equation~21! is invariant under the substitutionx1↔x2 ,
so if we transform to symmetry coordinates

q15
1

A2
~x12x2!, x5

1

A2
~x11x2! ~22!

the variableq1 separates from the other variables and we
left with x andy still coupled. Thed-order Hamiltonian be-
comes

F2
1

2S ]2

]q1
2

1
]2

]x2
1

]2

]y2D 1ux21vxy1wy21
1

2
v1

2q1
2

2
3

2r m
2 sm

2 G I x2
Sx

2r m
2 smtm

, ~23!

whereu, v, andw are functions ofr m , um , andl and

v1
25

2

r m
3 F 3

8r msm
2

212
l~11cm!

2@2~12cm!#3/2G . ~24!

We can then separatex and y by transforming to norma
coordinates using the transformation

S q2

q3
D 5S 2sinx cosx

cosx sinx
D S x

yD , ~25!

wherex is given by

tanx5

~w2u!F11A11S 2v
w2uD 2G

2v
. ~26!

x is approximately 90°, so from Eqs.~20!, ~22!, and~25! we
see thatq1 corresponds to the antisymmetric stretch mo
while q2 andq3 correspond approximately to the symmet
stretch and bending vibration modes, respectively.

The differential equations are still coupled through t
matrix Sx , part of theW2 term. We can bringSx into diag-
onal form with an equivalence transformation that takesSx
into Lx with

Lx5UxSxUx
21 ~27!

~see Ref.@23#!.
Finally, for thed-order Schro¨dinger equation we have

1

2S F2
]2

]q1
2

2
]2

]q2
2

2
]2

]q3
2

1v1
2q1

21v2
2q2

21v3
2q3

22
3

r m
2 sm

2 G I x

2
Lx

r m
2 smtm

D G0
L,p5e1G0

L,p , ~28!

where
e

,

G0
L,p~q1 ,q2 ,q3!5UxF0

L,p~q1 ,q2 ,q3!, ~29!

v2
25~u1w!2A~w2u!214v2, ~30!

and

v3
25~u1w!1A~w2u!214v2. ~31!

Equation~28! consists of a set of uncoupled and separa
simple harmonic differential equations for thex11 compo-
nents @G0

L,p(q1 ,q2 ,q3)# i of the vector G0
L,p(q1 ,q2 ,q3).

Hence the zeroth-order wave function is a product of th
simple harmonic-oscillator wave functions, the frequenc
of which are independent of angular momentum. Also,

@G0
L,p(q1 ,q2 ,q3)# i is independent ofi. The scaled energyẼ

to first order, however, does depend oni and is given by

Ẽ52
1

4r m
2 sm

2
1d F2

3

2r m
2 sm

2
1v1S na1

1

2D1v2S ns1
1

2D
1v3S nu1

1

2D1v4S n41
1

2D G , ~32!

where

v452
1

r m
2 smtm

, n45
L112g222i

2
, ~33!

with i ranging from 1 tox11. Or we can write

1< i<L11 for the p5~21!L states,
~34!

1< i<L for the p5~21!L11 states.

Also na , ns , andnu are the number of quanta in the an
symmetric stretch, symmetric stretch, and bending vibrat
modes, respectively. Finally, in order to satisfy the Pa
principle, the total spinS must satisfy

S51 when na1g21 i 21 is odd,

S50 when na1g21 i 21 is even. ~35!

III. THE FULL SCHRO¨ DINGER EQUATION
AND ITS SOLUTION

Up to this point we have found the zeroth-order wa
function and the zeroth- and first-order energies. We h
also defined three quantum numbers in the large-D limit,
which we can choose according to which state we would l
to calculate in three dimensions. For example, we would l
to find the energies and wave functions for the 1s2p 1Po and
1s2p 3Po states. We know that these are the lowest-lyi
states withPo symmetry, so we choose the smallest possi
values for $na ,ns ,nu%, which would be$0,0,0%. Also we
know that forPo we haveL51 andp521; thusg250 and
x51. Thus the wave functionG0

L,p will be a column vector
with two elements so thati will take the valuesi 51 and i
52 @see Eq.~34!#. Finally, from Eq. ~35!, we have thati
52 for the 1s2p 3Po state andi 51 for the 1s2p 1Po state.
G0

L,p then becomes a column vector with all elements eq
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to zero except thei th, which becomes a product of thre
harmonic-oscillator functions with quantum numbersna ,
ns , andnu .

After transforming the full Schro¨dinger equation to sym
metry coordinates and then to normal coordinates and fin
applying the transformation of Eqs.~27! and ~29! to the en-
tire Hamiltonian and wave function, respectively, we obta
a set of coupled differential equations that can be sol
recursively at each order ofd1/2. The method of choice is the
matrix method, developed by Dunnet al., which has been
discussed in detail for the one degree of freedom case@33#.
Derivations for the three degree of freedom case resul
very similar equations and will be discussed in a future
per. The application of the matrix method gives us the
ergy series and the wave function series. The next step is
summation of these series.

IV. SUMMATION OF THE ENERGY SERIES

The energy series obtained are divergent, so we ca
simply sum them in the usual way. Instead we use lin
Padéapproximants to sum the energy series. Pade´ approxi-
mants are ratios of polynomials in the expansion param
d. The ‘‘diagonal sequence’’ consists of the Pade´ approxi-
mants whose numerator and denominator are polynomial
to ordern in d, denoted@n/n#. Similarly, off-diagonal se-
quences are labeled@n/n11#, @n11/n#, etc. Due to the
presence of the polynomial in the denominator the Pade´ ap-
proximants can model poles of the energy function. Also,
arranging poles and zeros in a particular way in the comp
plane, Pade´ approximants can even model more complica
singularities such as square-root branch points and esse
singularities@34#.

We accelerate the convergence of the Pade´ approximants
by analyzing the singularity structure of the energy series
modeled by the approximants. It was found that the P´
approximants were placing asecond-order poleat d
5 1

2 (D51). If we multiply the energy series by the facto
(d21/2)2 and sum the resulting series atd5 1

2 we determine
that the residue of the second order pole atd5 1

2 is equal to
2 1

2 . Finally, we subtract from the original energy series t
term2 1

2 @1/(d21/2)2#, essentially subtracting off the pole a
d5 1

2 (D51). This new series sums much better, agree
with other results to four decimal places~five significant fig-
ures! for both Po states under consideration.

We improve these results by looking at the singular
s
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structure of the Pade´ approximants after having subtracte
off the pole atd5 1

2 (D51). For both states the Pade´s place
a first-order poleat d52 1

2 (D523). Previous work by
Doren and Herschbach@30# has shown that we should expe
a second-order pole atD523, but rather we find a first-
order pole. In a similar manner we determine the resid
~from the @n11/n# Padé! of this pole and subtract it. The
numbers we obtain give us one additional decimal place
agreement. The results for the 1s2p 1,3Po states and their
interdimensionally degenerate counterparts, the 2p3d 3,1Do

states, respectively, are shown in Table I.

V. CONCLUSION

Once the formalism is developed for calculating the en
gies and wave functions of the1,3Po states of helium it is
fairly straightforward to calculate other states. Future wo
will include a further analysis of the states discussed in t
paper including summation of the wave-function series. W
will also be able to obtain the energy and wave-functi
series of states withany value of L limited only by the
amount of computer RAM. In addition, we can easily calc
late series for a heliumlike atom such as Li1 simply by
changing the nuclear charge.
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TABLE I. Energies of the1,3Po and 1,3Do states calculated from
the 27th-order Pade´ summation along with energies calculated els
where.

State KT quantum numbers Energy~au!

1s2p 3Po 22.133 162 4
22.133 164 19a

1s2p 1Po 22.123 843 0
22.123 843 08a

2p3d 1Do
n(K,T)N

A5 2(0,1)3
0 20.563 800 39

20.563 800 40b

2p3d 3Do
n(K,T)N

A5 2(0,1)3
0 20.559 328 260

20.559 328 25b

aSee Ref.@35#.
bSee Ref.@36#.
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