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Large-order dimensional perturbation thedBPT) has been used to study the ground and a number of
excited states of two-electron atoms for the chse0. Here we present an application of recent work gener-
alizing DPT to any higher angular-momentum state. In this work we begin the investigatiBf states,
presenting results for the energies of some of the lowest-lying states and discuss the analytic structure of these
energies as functions of 2/ We also obtain energies of correspondD§ states with almost no additional
effort by making use of interdimensional degeneracies withRfistates[S1050-294{8)06512-3

PACS numbd(s): 31.50+w, 31.15.Md

I. INTRODUCTION formalism to higher angular momentum states for multielec-

tron atoms. This work completes and generalizes earlier
Dimensional perturbation theopPT) offers an interest- Work by Schwart£24] and other§25] who worked solely in
ing alternative to conventional large-scale diagonalization ofhree dimensions. Referend@d] and[21] describe in detail
guantum Hamiltonians. Built on a perturbation formalism the derivation of a f|r_1|te expansion fo_r tifendlme_nsmn_al
that uses the dimension of space as the perturbation paraf)-€/€ctron wave function usin@-dimensional rotational in-

eter, DPT treats the kinetic energy as a perturbation droppin ariance implemented through the group-theoretic method of

all derivative terms at zeroth order while including all effec- reducible tensors. The resulting wave-function expansion
. ) . ng . leaves the expansion coefficients dependent only on a finite
tive potential terms at least approximately at this order. Thi

umber of internal coordinates. In R¢22] the application
offers a different vantage point from which to analyze the ¢22] bp

derlving d X f ohvsical i . | icul of the Hamiltonian to this wave-function expansion for the
underlying dynamics of physical interactions. In particular, 5iomic two-electron system results in a tractable set of dif-

unlike Hartree-Fock based calculations, correlation effeCtgg ontia| equations that allow continuation in the dimension
are included at the lowest orddD (~) due to the inclusion D, i.e., allow a perturbation theory that usess its param-

of zeroth-order contributions from all terms in the effective oo, These differential equations also clearly reveal the com-

leotentldal that gqverg .the gle(:r;cron—eleptron |n|tera|ct|?E. Th%lete set of exact interdimensional degeneracies for the two-
irst-order equation brings in harmonice., molecularlike  gjoctron system generalizing the work of Herrick and

motion, which is described naturally by the first-order per'StiIIinger[26 27, Herschbach and co-workef28—30, and
turbation equation, which is a harmonic oscillator equation g 4sonet al. [3”1]’ who identified some particular interdi-

"hensional degeneracies. In Rgt3] these differential equa-

numbers and a set of basis functions that reflect the correletll-Ons are solved in the large-dimension limit and a zeroth-

tion effects included through f'FSt order. These b_a5|s func'order solution is obtained about which a perturbation series
tions can thus respond automatically to a change in an exte

X i an ext€kan be developed. This enables the methods of DPT to be
nal parametefas in the case of an atom in a magnetic field

. | h h I h Iextended to all higher angular momentum states of two-
or to an internal parameter such as the nuclear charge. Ifye yron systemgFor a different treatment of higher angular
atomic and molecular physics, DPT has been applied to

| b ¢ oh ' cludi H ic 7 fhomentum DPT as applied to molecules see Rf].)
arge number of phenomena including the atomic Zeeman g present paper is an application of this extensive for-

[1|’2]t and S(;arl{3—5]t.eﬁ$clt§,, tr;e Tydro?erl atom '3 parallel alism. For our initial system we have chosen to study a
electrlc ant magnetic e q 5, ]I WIO'GSEC ron (ajm Vrcanly_ two-electron system, specifically the s2pP° and
electron atoms, ions, and moleculg®8], van der Waals 45 33po giates of the helium atom. These are the lowest

coefficients [9], atomic clusters[10,11], quasistationary 0 ;

) . . states ofP° symmetry in an atom that presents probably the
statt(is[_zlﬁ,1Z,b(|jen§;t)1&_5ur:ﬁtlonal thtiotr_)fl&%étl]r,] potterg_ual | most studied three-body problem in atomic physics. We be-
scattéring probiemgo, 10], theé computation ot the rotationa gin in the next section by summarizing the results and pro-

spectra of _mo!ecule[;l6], and virial coefﬂuent{l?]. . cedures outlined in Ref§22,23. Having obtained a suitable
The derivation of tractable perturbation equations requireg_ u" ooy approximation, we then outline the procedure

an expansion of the wave funct_lon |n_wh_|ch the_ rOt‘?‘t'onalfor solving the perturbation equations to any order. Finally,
degrees of freedom, which multiply with increasibg are we present the results for thesdpP° and 1s2p 3PP

|solatgd within known baS|s_funct|ons SO .that perturbatlonstates of the helium atom and their interdimensionally degen-
equations purely in terms of internal coordinates may be de-

3o A_ 0

rived for the unknown expansion coefficients. F®wave erate lcoounterpartf thepz% D™ [n(K.T)y=2(0,1);] and
states this is fairly simpl€3,18,19; thus, to date, DPT stud- 2p3d°D° [n(K, T)y=2(0.1)3] states, respectively.
ies have focused for the most part & states and their
interdimensionally degenerate *Pcounterparts(see Sec.
I1C).

During the past three years we have published a series of The two-electron Hamiltonian iD dimensions for arbi-
four paperd20-23, which detail the extension of the DPT trary angular momentum is derived in R§22] by special-

Il. TWO-ELECTRON HAMILTONIAN
AND LARGE-D LIMIT
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izing the wave function expansion of Ref20,21] to a two-
electron system. Referen¢23] then discusses the lardge

limit of the Hamiltonian. Here we present a summary of the

results of Refs[22,23 and discuss the application of the
equations to the calculation of the’P° states that are the
focus of this paper.

A. The Schradinger equation

SINGLY AND DOUBLY EXCITED STATES OF THED-. ..

The generalized Schwartz expansion of two-electron atyng

oms in D dimensions was developed in R¢R22] and is
given by

\I’L'W("1:"2):[hL,w(rl,rz)]TFL'W("larz,rlz)y 1

where L is the angular momentum and is the parity.
[hL'W(rl,rz)]T is the transpose of the column vector
hy (rqy,rp) of basis functions anBY™(rq,r,,ry,) is the col-

umn vector of expansion coefficients. The scalar quantities

r, andr, are the electron-nucleus distances, whilgis the
interelectron separation.

If we introduce the wave-function expansion of K@)
into the Schrdinger equation

1 1

Z Z
AL

220 2wt
rp ra2 T

=EVL(ry,r,), 2
we obtain a system of coupled differential equations

H{ FoT=ELF-, (€)
where the matrix differential operatét| . is

H A(r1,r2,r10)

(92
ar1drq,

2 92 or2,

2rqryp

2

2
1 0

2 L .2
Iighra—r

2r,r o r

(D=1+L+yy)l+Ly @
2rq arq

(D=1+L+yy)l+Ly 0
2r, ar,

(D—1+L+y)l +S, 4
2r, ar gy’

(4)

with x=L— 7, and y,={3[ 7+ (—1)-"1]}2, which yields
v,=0 for states withm=(—1)" and y,=1 for states with
m=(—1)"1 [32]. I, is an[(x+1)X (x+1)]-dimensional
unit matrix andL, andS, are[ (x+ 1) X (x+ 1)]-dimensional
matrices given by

183
0 0 0
0 x—-2 0 0
0 x—4 0 0
L= 5
0 0 -(x=2) O
0 0 0 —-X
0 1 0 O
X 2 0O O
S= (6)
0 X
0 O 1 0

B. The Pauli principle

The system we are modeling consists of two identical
fermions. Therefore, the complete wave function must be
totally antisymmetric under the interchange of the two elec-
trons. For a singlet state the spatial wave function must be
symmetric, while for the triplet state it must be antisymmet-
ric. It has been shown that this antisymmetry is ensured
when the column vectoF- ™ satisfies the constrairsee
Ref.[22))

FRm(ry,ra,r)=(=DST72NF"(ro,r 1,110, (7)
where S is the total spin and the
[(x+1)X(x+ 1)]-dimensional matrixN, is

0
1
Ny = (8)
0 0 0
1 0 0

C. Interdimensional degeneracies

Equations(3) and(7) show the complete spectrum of ex-
act interdimensional degeneracies between #he(—1)"
and m=(—1)""! states. The differential equations are in-
variant under the replacement

L+ yy;m=(—1)";(25+1)=3,1Ds

L+ y,+2;7=(—1) %1 (2S+1)=1,3D-2. (9

For instance, the*!P° states calculated dd=5 give the
L3O states aD=3.

D. The large-dimension limit

The goal in this section is to transform the Salinger
equation to obtain an exact solution in tBe—-« limit. To
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this end we begin by regularizing the largelimit with the
transformationsr;—r;/Z and E—~Z%E and we definex
=1/Z.

Next we transform from the variable§ ,r,,rqi5} to
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Furthermore, the tern¥, containing all of the electron
correlation, has no overall factor & and hence has a con-
tribution at zeroth order. In other words, electron correlation
effects are included at the lowest order of DPT unlike other

{r1,r,,6}, where# is the angle subtended by the two elec- perturbation methods that include electron correlation only at
trons at the nucleus. This transformation eliminates the dehigher orders.

rivative cross terms in the Hamiltonias, .
Finally, we rewrite Eq(3) as

Hi 211,10, 0)®5(ry,ry,0)=E®“"(r1,r,,0), (10

with
HL#(r1,2,0)=3"H] 3712 (1D
(I)L,ﬂ':jI/ZFL,ﬂ', (12)
= r[l(L+72)lx+Lx]r[2(L+ yz)lx*Lx]Sin(Lerz) 6,
J=r{P7YrP-Dsinb-2)g, (13

The values of,, and 6,, are given by

Cry=COSO,= — 2\[(1+AD) V24 )] 17)
and
1 — N2\
=— -2 =
rm=g(1+cm) 2 N=2e, (18)

while the eigenvalue spectrum &f collapses onto a single
value ¢, given by

(1+cm® 1
CT(1-cw)  arls 19

€0~ 2.2
m=m

where J is the Jacobian. The matrix differential operatoryhere s =sing,, and we will also use the notatiofy,

H, . becomes

1 1
Hy o(ry,r,0)=T+ §U+VIX+—W, (14

6

where5=1/(D+L+ 7y5).

Every term in Eq.(14) is a function of{rq,r,,6}. The
terms T, U, and VI contain the matrice$ and/orL and
hence are diagonal matrix operators. The t&khis a tridi-

=tand,,. Again note that the results of the lar@edimit
[Egs.(17)—(19)] hold for anyvalue of the total orbital angu-
lar momentum.

E. Langmuir vibrations

The next step in developing a perturbation expansion of
the Schrdinger equation is to allow for small oscillations,
called Langmuir vibrations, about the Lewis structure posi-
tions. To investigate these oscillations and obtain a zeroth-

agonal matrix operator with zero diagonal. Furthermore, ally,jor solution to the wave function we introduce the dimen-

the terms excepV are 6 dependent. The termsandW are
kinetic terms(i.e., contain derivativgs while V is the Cou-
lomb potential term antll is an additional “potential” term
with factors of 1r?.

Finally, to investigate the large-dimension limit we scale

the coordinates and energy as

~ , = E
I’i=5 ri, Ezg (15)
and introduce these into E¢LO) to obtain
[818T(r1,r5,0)+W(Ty,rp,0)}+U(r,,r,,0)
+V(r1.r,, 0,0 "=EdL 7, (16)

Notice that as5—0 (D— =) the derivative terms disappear

sionally scaled displacement coordinates, x,, andy
through the transformations

?1=rm+ 51/2X1, ‘Fzzrm‘f‘ 51/2X2,

2
6= 0.+ 51/2;/——y. (20)

m

The displacement coordinates are substituted into
8T(r.15,6), SW(ry,r,,6), U(ry,15,6), V(r;,r,,6), and
®%7(r,.r,,6), which are then expanded in powers &2
while E is expressed as a power seriesdinThese expan-
sions are then substituted into E46) and by equating co-
effLicients of %2 we obtain a set of equations far and
ORI

IThe coefficients of° give the largeD energye, as de-

and so the electrons are stationary at the minimum of theived above, but we get no information abab. The coef-

effective potential given byUg(r;.r,,60)+V(ry,r,,6)1,,
where Uy(r;.r,,6), a multiple of the unit matrix, is the
—0 limit of U(r,,r,,6). At the minimum of this potential

the values ofr,,r,, and # becomer,;=r,,, r,=r,,, and
0=0,,. This “frozen” structure is called thé ewis struc-

ficient of 52 in the Hamiltonian is zero since this coefficient

is a first derivative with respect t6¥? evaluated at5=0,
which is at the minimum of the potential. Thus th&2 terms
give us no information aboub;. Finally, the coefficient of
5, i.e., second order i#Y? gives us a coupled differential
equation fore; and®. Specifically,

ture. Notice that this Lewis structure is independent of angu-

lar momentum since the larde-potential contains only the
matrix | and not the matricek or S whose elements change

as angular momentum is changed.

[TZ(X]_ X2 !y) + UZ(X]_ X2 !y) +V2(Xl X2 !y)IX

FW, D5 (X1, %0,Y) = €,D5 (X1, X0,Y),  (21)
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whereT, and U, multiply the unit matrixl, and W, multi-
plies the nondiagonal matri$, and is independent of the
displacement coordinates. So the te¥ serves to couple
the x+1 differential equations in Eq21).

Equation(21) is invariant under the substitution < Xx,,
so if we transform to symmetry coordinates

1
Q1:E(X1_X2), X= E

(X11X2) (22)

SINGLY AND DOUBLY EXCITED STATES OF THED-. ..
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Gg'"(1,02,03) = UPg "(d1,02,03), (29
w3=(u+w)—(w—u)?+4v?, (30)

and
w3=(u+w)+(w—u)?+4v2 (31

Equation(28) consists of a set of uncoupled and separable
simple harmonic differential equations for tke-1 compo-
nents [Gg'"(dy,02,03)]i of the vector Gg'(qy,ds2,ds)-

the variableg, separates from the other variables and we argyence the zeroth-order wave function is a product of three

left with x andy still coupled. Thes-order Hamiltonian be-
comes

1 #  # P ) , 1,
—E(a—qi—l—ﬁ—l—a—yz) +TUx“t+ouXy+wy +§“’1Q1
3 S«
C2r22 | 2r2sty 23

whereu, v, andw are functions of ,,, 6,,, and\ and

2

3
Mm

3 A(1+cy)
8r S, 2[2(1-c,)]%?

0= (29

We can then separate and y by transforming to normal
coordinates using the transformation

d, —siny cosy) (X

= , : (25)
ds cosy siny/\y

wherey is given by
2v \?
(w=—u)| 1+ \/1+
B w—u 26)
tany= > . (

x is approximately 90°, so from Eq&0), (22), and(25) we
see thatg, corresponds to the antisymmetric stretch mode
while g, andqs correspond approximately to the symmetric
stretch and bending vibration modes, respectively.

The differential equations are still coupled through the
matrix S, part of theW, term. We can brinds, into diag-
onal form with an equivalence transformation that takgs
into L, with

Le=USU (27)
(see Ref[23)).
Finally, for the 5-order Schrdinger equation we have

1 N
- m Db 02q%+ 02qR+ w2qR— |
2| oa a3 ag3 TP TR 22l
LX GL,7T_ GL,7T 28
3 o —€Gg, (28)
rmsmtm

simple harmonic-oscillator wave functions, the frequencies
of which are independent of angular momenturAlso,
[G§™(91,92,95)]; is independent of. The scaled energly

to first order, however, does dependioand is given by

~ 1
E=———=+6| ——5tw ng+=|+wy| ng+ =
4rZsz 2r2g2 AT 2] TR T2
1
+(1)3 n9+§ +(1)4 n4+§ y (32)
where
w4:_ 2 ) n4:fl (33)
' mSmtm
with i ranging from 1 tox+ 1. Or we can write
1<i<L+1 for the w=(—1)" states,
(34)

1<i<L for the m=(—1)"! states.

Also n,, ng, andn, are the number of quanta in the anti-
symmetric stretch, symmetric stretch, and bending vibration
modes, respectively. Finally, in order to satisfy the Pauli
principle, the total spirs must satisfy

S=1 when ng+ y,+i—1 isodd,

S=0 whenn,+vy,+i—1 iseven. (35

lll. THE FULL SCHRO DINGER EQUATION
AND ITS SOLUTION

Up to this point we have found the zeroth-order wave
function and the zeroth- and first-order energies. We have
also defined three quantum numbers in the ldpgémit,
which we can choose according to which state we would like
to calculate in three dimensions. For example, we would like
to find the energies and wave functions for trs2f 1P° and
1s2p 3P° states. We know that these are the lowest-lying
states withP° symmetry, so we choose the smallest possible
values for{n,,ng,n,}, which would be{0,0,0;. Also we
know that forP°® we havelL =1 andw= —1; thusy,=0 and
x=1. Thus the wave functiosg'™ will be a column vector
with two elements so thatwill take the values =1 andi
=2 [see EQq.(34)]. Finally, from Eq.(35), we have thai
=2 for the 1s2p 3P° state and =1 for the 1s2p 'P° state.
G§'™ then becomes a column vector with all elements equal
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to zero except theth, Wh'Ch becomes a product Of three TABLE I. Energies of thel'SPO and 1’3D0 states calculated from
harmonic-oscillator functions with quantum numbers the 27th-order Padsummation along with energies calculated else-

ns, andn,. where.
After transforming the full Schiinger equation to sym-

metry coordinates and then to normal coordinates and finally '3t KT quantum numbers Energgu)
applying the transformation of Eq&27) and(29) to the en-  152p3p° -2.1331624
tire Hamiltonian and wave function, respectively, we obtain —2.13316419%
a set of coupled differential equations that can be SO|Veq_52plP0 —2.1238430
recursively at each order @#'2. The method of choice is the —2.12384308
matrix method, developed by Duret al, which has been 2p3d 'D° (K, T)A= ,(0,1)° —0.563 800 39
discussed in detail for the one degree of freedom ¢asg M N A —0.563 80048
\I/Deernva_thns for th(_e three degree of_ freedom_case result "}de 3po (K, T)A= 5(0,1)2 —0.559 328 260

y similar equations and will be discussed in a future pa- —0.559328 28
per. The application of the matrix method gives us the en- '
ergy series and the wave function series. The next step is thgee Ref[35].
summation of these series. bSee Ref[36].

V. SUMMATION OF THE ENERGY SERIES structure of the Padapproximants after having subtracted

off the pole ats=% (D=1). For both states the Paiplace
The energy series obtained are divergent, so we cannai first-order poleat 6=—3 (D=—23). Previous work by
simply sum them in the usual way. Instead we use lineaDoren and HerschbadB0] has shown that we should expect
Padeapproximants to sum the energy series. Paglgroxi-  a second-order pole &= —3, but rather we find a first-
mants are ratios of polynomials in the expansion parametasrder pole. In a similar manner we determine the residue
5. The “diagonal sequence” consists of the Paafgproxi-  (from the [n+ 1/n] Pade of this pole and subtract it. The
mants whose numerator and denominator are polynomials upumbers we obtain give us one additional decimal place of
to ordern in &, denoted n/n]. Similarly, off-diagonal se- agreement. The results for thesZlp 13P° states and their
quences are labeleh/n+1], [n+1/n], etc. Due to the interdimensionally degenerate counterparts, tp@®3D°
presence of the polynomial in the denominator the Rgzle  states, respectively, are shown in Table .
proximants can model poles of the energy function. Also, by
arranging poles and zeros in a particular way in the complex V. CONCLUSION
plane, Pad@pproximants can even model more complicated L .
singularities such as square-root branch points and essential Once the forma"s'_“ IS develospeod for calculatln_g th? ener-
singularities[34]. gies and wave functions of th&3P° states of helium it is
We accelerate the convergence of the Paglgroximants fqlrly straightforward to calgulate other states. Future_wor_k
by analyzing the singularity structure of the energy series a ill include a further analysis of the states discussed in this

modeled by the approximants. It was found that the "Pad8aPer including summatio'n of the wave-function series. We
approximants were placing aecond-order poleat & will also be able to obtain the energy and wave-function

—1 (D=1). If we multiblv the enerav series bv the factor S€M€s of states witlany value of L limited only by the
(52— :E/Z)2 a%d sum the I’(ES{IHing serigsy&t:% we getermine amount .Of computer RAM In addition, we cian.gasny calcy-
that the residue of the second order poleSat; is equal to Iar:ens?rzle?hfoa alhepurr:ﬂl:(e atom such as’Lsimply by

— 2. Finally, we subtract from the original energy series the®aNgINg the nuciear charge.

term — [ 1/(6— 1/2)?], essentially subtracting off the pole at

1 - . . ACKNOWLEDGMENT
=3 (D=1). This new series sums much better, agreeing
with other results to four decimal placé#re significant fig- This work was supported by the Office of Naval Re-
ures for both P° states under consideration. search, Grant Nos. N00014-94-1-0998 and N00014-96-1-

We improve these results by looking at the singularity1029.
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