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Long ago[1] one of us(M.M.) discussed the problem in
guantum mechanics of opening, at time 0, a completely
absorbing shuttler situated at=0, on which a stream of
particles of definite velocity was impinged. In units in which
f and the massn of the particles are unity, the problem
reduces to finding a wave function that satisfies the free one- O(x)= _
dimensional time-dependent Sctiger equation, i.e., 0 if x<O0.
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Long ago in quantum mechanics a discussion appeared about the problem of opening a completely absorb-
ing shutter on which a stream of particles of definite velocity was impinged. The solution of the problem was
obtained in a form entirely analogous to the optical one of diffraction by a straight edge. The argument of the
Fresnel integrals was time dependent, and thus the first part in the title of this paper. In this paper we
reformulate the problem in Wigner distributions and tomographical probabilities. In the former case the prob-
ability in phase space is very simple but, as it takes positive and negative values, the interpretation is ambigu-
ous, though it gives a classical limit that agrees entirely with our intuition. In the latter case we can start with
our initial conditions in a given reference frame, but obtain our final solution in an arbitrary frame of reference.
[S1050-294{@9)04003-2

PACS numbd(s): 03.65.Nk, 03.75-b, 42.50.Ar

I. INTRODUCTION with the initial condition
P(x,0)=exp(ikx) ( —x), (1.2
where 6(x) is the step function given by

1 if x>0
1.3

The solution of this problem was given in RgtL], and later
2

L IPY =_ E IP(xb) Nussensveid?2] called it M(x,k,t); it can be expressed as
i , (1.1

ot 2 x? [1-3]

where

and the error integral is

+i

erfae” ") =g~ 17 ex;{ [ ( kx— %kzt) }%{ [% —C(w)

1 1 1
M(x,k,t)=§ex+(kx—§k2t> E—S(W)H, (1.9

2 (w 2 (w
Cw)=/— fo cosy’dy, S(w)= - fo siny2dy.

x—kt 1.7
w= , (1.5
J2t Although we have assuméddto be real, as in the units we

use it is the velocity or momentum of the impinging par-
ticles, all the above expressions remain valid for compex
so long as Imk<<0. In that case we have the alternative
representatiof2,3]

erfo(z):\/i_ f e Yy, (1.6)
T Jz

M(x,k,t)= >

de, (1.8

el

while the Fresnel integrals are defined by

which follows from the fact that both sides are solutions of
Eq. (1.1 satisfying the initial condition(1.2). The Green

*Permanent address: Lebedev Institute of Physics, Leninsky Progunction for the one-dimensional free-particle Salinger
pect 53, 117924 Moscow, Russia. equation has the form
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exli (x—x')%/2t] b(_)th together._Wigne[r?] found that this Iimitgtion interfe_regl
U(x—x',t)= - , (1.9  with the application of quantum mechanics to statistical
v2mrit physics, where the description is usually given in phase

space. Thus he introduced his concept of Wigner distribu-
tions, which allow one to discuss some features of quantum
mechanics in phase space.
Our objective will be to formulate the diffraction in time
problem, discussed in Sec. |, in terms of Wigner distribution
0 functions. In this way we can visualize the phenomena in
M(x,k,t)= f U(x—x",t)explikx")dx". (1.10 phase space and more easily determine its classical limit, and
o compare it with our intuitive understanding of the behavior
of a beam of particles of definite momentum impinging on a
shutter when the latter is opened.
In units in which# and the massn of the particle are
unity, and where the configuration space wave function is
denoted byy(x), and the momentum by, the Wigner dis-

as it satisfies Eq(1.2) for anyt>0; however, whert=0 it
becomes the function §(x’ —x). As the initial condition is
Eq.(1.2), itis clear[1,2] that the functiorM (x,k,t) can also
be written as

The expressiofiM (x,k,t)|? gives the probability density of
finding the particle at point at timet, when initially it was
on the left side of the shutter, i.e., with<O, and had a
momentumk. From Eq.(1.4), we see that

1(l1 2 11 2 tribution function is defined a7]
IM(x,k,t>|2=—[ S—C(w)| +|5-S(w) j (1.1
2012 2
1)\ (=~ )
which is identical to the expressidd] for the intensity of W(X'p)E(;> fﬁwz/f*(ery)(/f(x—y)exp(Zpy)dy,
light in Fresnel diffraction by a straight edge. However, the 2.1)

variable w has a very different meaning from the optical
problem, as it is now a function of time given by B4.5).
Thus the original papdrl] was given the name “diffraction
in time.”

All we have said above has been very well known for a * B 5
long time, and has many applications, among which we wish leW(x,p)dp— [ OAI%,
to mention those related to the time-energy uncertainty rela-
tions [5] and decay problemgs]. The reason we return to ) S B )
this subject is that now we wish to see its behavior wherfVhere the right-hand side is the probability density at the
formulated in terms of Wigner distribution functiofigl, and ~ POInt x, while an integration with respect togives us the

also in relation with the tomographic probability developedUsual probability density7] at the momentum valug.
recently by one of u¢V.M.) and his co-worker§s]. If we now wish to discuss the diffraction in time problem

in terms of Wigner distributions, we have to replakgx) in
I. DIFFRACTION IN TIME IN WIGNER DISTRIBUTION Eq. (2.1) by M(x.k,t) of Eq. (1.4).
SPACE While for our analysik is real, we shall assume for the
moment thatk is complex with a small negative imaginary
Normally guantum mechanics is discussed in configurapart. In this way we can use the expressidh8) for
tion space or, in some cases, in momentum space, but not M (x,k,t) and substituting it into Eg(2.1) we obtain

) 1 ) 1
1 (e (e e exp{—l K(X+y)_§K2t ]exp{| K’(X_y)_EKlzt]
W(x,p;k,t =—f J f e'?Mdrdx'dy, (2.3
(x,p;k,t) ppcl N B (K ) (=) kde'dy, (2.3

which has the obvious property that

(2.2

where we now added the momentuimand timet to the  the presence of the sine function in EJ.4) we see that the
Wigner function on the left-hand side, as these variables alswigner distribution for the diffraction-in-time problem oscil-
appear ilM(x,k,t). We also indicate the complex conjugate lates between positive and negative values, where the physi-

of k by k*. _ o _ _ cal significance of the latter is not clear. On the other hand,
The evaluation of the triple integra.3) is done in Ap-  the presence of) indicates that the probability density in
pendix A, and it leads to the simple result phase space vanishes wherpt. As in our unitszi=m

=1, the momentunp is the same as the velocity, and this
result is intuitively expected as the particles in the beam with
momentump could not yet have reached the poiat
(2.9 What is particularly interesting to us is the classical limit
of W(x,p;k,t), which is achieved when the Planck constant
where# is the step function defined in E¢L.3). Because of 7% —0. We then have to abandon units in whiglandm were

1
W(x,p;k,t)= W(k—_p)sin{Z(pt—x)(k— p)}o(pt—x),
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taken, as 1 and instead use standard cgs ones. The modifica-We now see that the classical limit is what we expect,
tions in the form of Eq.(2.3) are trivial, and the resulting since the only value possible for the momentum of the par-

distribution function now has the form ticle is p=k, and since this value is taken only when
: <(kt/m), as forx>(kt/m), the particles would not yet have
W(x,p:K,t)= sing(k—p)] (p_t_x)' (2.5 arrived at the poink. Thus the classical limit of the Wigner
m(K—p) m distribution function for the diffraction-in-time problem con-
firms our intuition.
where
2 [ pt
g= ﬁ(E_X) (2.6) Ill. DIFFRACTION IN TIME IN TERMS OF THE

TOMOGRAPHIC PROBABILITIES
If we take the limith—0, theng— + as the step function

takes the value 1 only ifgt/m) —x>0. We can then use one In ordinary quantum mechanics the essential concept is

of the definitions of thes function[9], the wave functiop, which in configu_ration space is_t_jenoted
by #(x). From this concept one derives the probability den-
~ sing(k—p)] sity |#(x)|? of finding the particle at poink, and also,
8(k=p)= lim 7.,[k—_p] 2.7 through appropriate transforms ¢{x), the probabilities for
o given values of any other observables.
to write the classical limit of the distribution function as Recently a change of emphasis was proposed, in which

the central concept is the probability itself, but it is defined in
kt a tomographic way8,10]. This allows us to analyziéhrough
WC,(x,p;k,t)zﬁ(k—p)a(m—x>, (2.8 3 single concepthe probability either in configuration or
momentum space or variables that are linear combinations of
where we used the presence of #g—p) in Eq. (2.8 to  both. The tomographic probability densfty1] was given in
replacep by k in the step function. terms of the Wigner distribution through the transform

1 © © © .
W(x,ﬂ,y)sﬂf_ f_ ) W(x,p)e  ZX—xe=PY)dz dx dp (3.1

whereX is the position considered in an ensemble of reference frafridswhich are rotated and scaled with respect to the
initial ones through the parameteisandv. As an example we have that, whan=1 andv=0, X corresponds to the normal
position coordinate, but, when=0 andv=1, X is related to the momentum observable.

In Eq. (3.1) W(x,p) is the Wigner function defined in Eq2.1) and, substituting it into Eq(3.1) the tomographic
probability densityV (X, u,v) is given in terms of the configuration wave functigiix) by

1 ) ) o ) ) )
W(X,u,v)=ﬁf f f f P(X—y)* (x+y)e'?PYe 12X =Pz dx dp dy 3.2
rs —»J)—-—nJ)—-—xJ—-x

The integration with respect to gives us the expression

o ‘ Zv
f dpdP @+ = 15 y+ =/, (3.3
and, substituting this into Ed3.2), and carrying out the integration with respectytove obtain
WX u)zif fm ol x+ 22} | x— 2| emiztx-mngz gy 3.9
EathE N Y) N 2 2 '
Now introducing the variables
- Zv o 3
u=xXx ?, r=X ?1 ( 5)

we see that the volume elemedt dxin Eqg. (3.4) becomesir du/|v|, so in terms ofu andr, W (X, u,v) becomeg10]

r+u
2

— 1 * ” * _u—r[ d d — 1 2
W =5 | [ s e -t X rdu= TP (39

where
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wherew was defined in Eq.1.5). As the Fresnel integrals are
du. (3.7  odd functions of the argument, we have from E13 that

(X, p,v)= walﬁ(U)EX[{i(%uz—Ué)

Thus, contrary to the Wigner distribution function, the to- C(p)=—C(w), S(p)=-—S(w), (3.19
mographic probability density is always positive definite.
We now turn to the problem of diffraction in time, which
means replacingy by x in Eq. (3.7 and then#(x) by
M(x,k,t) given in terms of its expressiofl.10 containing
the Green function of the free-particle motion. The expres-

and thus the particular tomographic densiy(x,1,0) be-
comes

sionZ (x,u,v) then takes the form W(x,1,00=3{[3-Cw)]>+[3—-S(W)]?%}, (3.19
. v w2
I(x”u,,,)zj JO exii(x=x) /2] which is identical to expressiofi.11), as we should expect.
—oJ - v2m(it) Thus we see that the analysis of diffraction-in-time phe-

! o X () i 2120 nomena, in terms of the tomographic probabilities, allows us
xe' e e dxdx.  (3.8) o study the problem in a wide ensemble of reference frames
in phase space, as indicated in E¢3.8—(3.11). This en-
This integral is evaluated in a straightforward but Iaboriousserl;ble of Eourse includes the origﬁal)pr(]ase])spacp)(in

way in Appendix B, where its value is given. As we are only, nich the result is given by Eq3.15 which agrees exactly
interested in its absolute value squared multiplied by

ith the initial lysis of th bl .
(27| v|) 1 which, from Eq.(3.6) gives us the tomographical W @ initial analysis of the problei]
probability density, we see that it becomes
IV. CONCLUSION

1 ([1 2 11 2
W(X,pu,v)= m{ > 1C)| +|35 +S(P)} ] (3.9 In the present paper the problem of diffraction in time was
- visualized from three different viewpoints. The first was the
where original one[1], in which both the initial conditions and the
solution of the problem were analyzed in the same frame of
K(ut+v)—X reference. Solutiorfl1.4) was given in terms of the Fresnel
=, (3.10 integrals, and using the Cornu spiral we showed that the
V2u(put+v) usual diffraction pattern appeared as a function of time.
, ! ) In the second approach we translated our solution to the
andC andSare the Fresnel integrals defined in Ef.7). Wigner distribution space. The final expression for the prob-

We now proceed to discuss the meaning of the oMoy density in phase space turned out to be very simple
graphical probability density given in E¢3.9. We men- 1+ ‘\nfortunately, it could take both positive and negative
tioned above that and v represent a rotation and a scaling values, which made its interpretation ambiguous.
of an ensemble of reference frames in phase space with ré- rornately it was possible to consider its classical limit
spect to the original one. Thus we can express them as by taking #—0, and the resulting expressid@.8) agreed
entirely with our intuitive view, i.e., the probability in phase
space was only different from zero whgn=k and x
<(pt/m), where all the observables are in cgs units. This
shows that diffraction in time is a purely quantum phenom-

u=e7cosh, v=e "sind, (3.11)

with 7 and 6 in the intervals—o<7<% and 0<6<2w.
These expressions gf and v imply that our coordinate and lat | : -1y
momenta, which we designate by capiandP, are given €N& as it disappears in the classical limit.

in terms of the original ones, which we denote by lower case 1he third approach implied formulating our solution in
lettersx and p, through the relatiofi12] terms of tomographic probabilities. The latter were intro-

duced recently8,10,11] to allow us to express the solutions

X e’cosfd e "sind X in any reference frame that is rotated and scaled with respect
(P) =( )( ) (3.12  to original one. In effect, it implies carrying out a canonical
P transformation on the original solution of the diffraction-in-

which is a linear canonical transformation, as the determi—tlme problem. The tomographic probability soluti@®9) is

. . . again expressed in terms of Fresnel integrals but of an argu-
nant of the matrix is W (X, u,v) of Eq.(3.9), with p given oo g
by (3.10, then gives (thg Ig))robab?lit(y ()jensityp ?or the ment quite different from the one appearing in Eds4) and

. A, : . . . (1.5). If the canonical transformation is the unit 1, i.&,
gg{ﬁggﬂ?} |£qt|(r:r;e12p)>roblem in the configuration coordinate =x and P=p, then the tomographic probability reduces to

If we want to return to our original configuration space,the solution(1.4), providing us with a check of the analysis

developed in Sec. Il
we see from Eq(3.12 that there we must take= 6=0, ) i - . S
which impliesX=x, u=1, andv=0. We finally wish to indicate that the diffraction-in-time

phenomena derived theoretically by Moshingkywas, in a
In that casep of Eq. (3.10 becomes somewhat changed form, measured experimentally by
Szriftigiser, Guey-Odelin, Arndt, and Dalibard13]. Possi-
p= =—w, (3.13  bly asimilar fate, in the distant future, awaits the reformula-
J2t tion of the phenomena presented in this paper.

—e’sind e "cosé
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APPENDIX A: DETERMINATION OF THE WIGNER FUNCTION  W(x,p;k,t)
We start with the expressio2.3) for W(x,p;k,t), and rewrite it as

1 (o (o et K’ ex;{ (KX_%KZt ex;{i(K’X—%K’zt”
W(KD*JF@IJ}JJ fwexp{Zly(p— —de} drdk’.

(k—=K*) («"=k)

(A1)

The first integral obviously gives th&function 27 5(2p— «— «'), and so, introducing it in EA1) and integrating with
respect tox’, we obtain

1 ® 2 t
W(X,p; kt)——z—exp{2|p(x pt)]f (exfik*)(l:(:k sz]) K. (A2)

We now note, as indicated in the text before Ej3) that 6(pt—x)
we start by assuming thithas as a small negative imaginary W(x,p;k,t)= m{ X 2i (K= p)(X—pt)]
part, so that

—exg —2i(k—p)(x—pt)]}. A4
k—k—ie, Kk*—ktie, —k+2p——k+2p+ie. (A3) exil =21 (k=p)(x=pvl) (A9

Thus both singularities in the integral in Bh2) are inthe \ynare g s the step functior(1.3). As the curly bracket di-

upper half of thex plane. ided by 4 is a sine function, we then obtain expression
We can close the contour in EGA2) by a large circle in \(/é 4 yal I unetion, w n exp !

the upper half of the complex plane if x—pt<0, thus
obtaining the residues of the integrals at the pdinats e and

—k+2p+ie. On the other haqd, i)‘(_— pt>0, we have to APPENDIX B: DETERMINATION OF THE
close the contour by.a large _C|r.cle. in the lower half plgne, TOMOGRAPHIC PROBABILITY W (X,u1,¥)
and, as the function is analytic inside the contour, the inte-
gral vanishes. Then, passing to the limit wher 0, as re- The tomographic probability is proportional to the abso-
guired for our problem wherk is real, we obtain, after car- lute square ofZ (X,u,v) where the latter is given by Eq.
rying some of the multiplications, that (3.8), and we rewrite it in the form
|
I(Xo,9) fO exdikx'+i(x'2/2t)] (= i bx)]d ®1)
V)= ex i(ax?—bx)]dx
I(" e \/2_
where
nwo 1 X x
= I =— 4+ —
P PRNPTE v (B2)

We can rewrite the expressions in the last round bracket infEb. as

b2

13/ (B3)

ax2—bx=< Jax— ZL\/E) 2—

As b?/4a depends orx’ but not onx, we first evaluate the integral

2
fﬁm ex;{i( ﬁx—%) dx= \/gei w4 (B4)

to obtain
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2

[x" X
o4 Tty
(X, p,v)= f expikx’ +i(x'?/2t)]ex 1 dx’
72
\/i —+1 2| —+—
v t
_ —ix2 1\t
eI7T/4eXF{ ﬁ_f__ ‘|
202\ vt 0
= J exfdi(ax'?+ Bx")]dx’, (B5)
pt -
i|—+1
14
where
t X
K +1]-2
(ulv) v v
a= o, B (B6)
2 41 |
14 14
Using again relatior{B3), we obtain
2
B B
ax'?+px' =| Jax'+—=| ——, B7
B (f . @) 1 (B7)
and, asB?/4« is independent ok’, we need to consider first the integral
o ., - Bi2zJa . »d d Bl2a o
f gilex +("3’2“‘”“)]2dx’=f NG y y? y (cosy?+i siny?)dy
— 0 o0 0
—\/;(1+i)+1\/;0 P +iS A (B8)
2Va 2 Va2 |\ 2V« 2\a
whereC and S are the Fresnel integrals of E(..7), and« and B are given by Eq(B6).
Using Eq.(B7) to introduce Eq(B8) in Eq. (B5), we obtain
\/;eiw/4 m -1 1 ﬁ 1 B
T(X,p,v)= —————exp(—i B2l4a)exp| —i(X22v%)| —+— —+C| ——=]| |+i|=+S| —=
[t vt 2 2\a 2\/;
2l —+1 |«
14
(B9)
Finally replacinga and 8 by their valuedEq. (B6)], we obtain
ei‘rr/4 m -1 1 1
T(X,p,v)= exg —i(X?2v?)| =+ —| |exp(—ip? 5+C(p) | +i|5+S “ B10
(u)mr{< S+3] |exe=ip?) (p) (p) (810)
where
k(ut+v)—X
_ (ut+v) . (B11)
V2u(pt+v)

When taking the absolute square valueZd@iX, «,v), mainly the curly bracket remains, and thus we obtain B@), whose
properties are discussed in the main text.
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