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Diffraction in time in terms of Wigner distributions and tomographic probabilities
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Long ago in quantum mechanics a discussion appeared about the problem of opening a completely absorb-
ing shutter on which a stream of particles of definite velocity was impinged. The solution of the problem was
obtained in a form entirely analogous to the optical one of diffraction by a straight edge. The argument of the
Fresnel integrals was time dependent, and thus the first part in the title of this paper. In this paper we
reformulate the problem in Wigner distributions and tomographical probabilities. In the former case the prob-
ability in phase space is very simple but, as it takes positive and negative values, the interpretation is ambigu-
ous, though it gives a classical limit that agrees entirely with our intuition. In the latter case we can start with
our initial conditions in a given reference frame, but obtain our final solution in an arbitrary frame of reference.
@S1050-2947~99!04003-2#
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I. INTRODUCTION

Long ago@1# one of us~M.M.! discussed the problem i
quantum mechanics of opening, at timet50, a completely
absorbing shuttler situated atx50, on which a stream o
particles of definite velocity was impinged. In units in whic
\ and the massm of the particles are unity, the problem
reduces to finding a wave function that satisfies the free o
dimensional time-dependent Schro¨dinger equation, i.e.,

i
]c~x,t !

]t
52

1

2

]2c~x,t !

]x2
, ~1.1!
ro
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with the initial condition

c~x,0!5exp~ ikx!u~2x!, ~1.2!

whereu(x) is the step function given by

u~x!5H 1 if x.0

0 if x,0.
~1.3!

The solution of this problem was given in Ref.@1#, and later
Nussensveig@2# called it M (x,k,t); it can be expressed a
@1–3#
M ~x,k,t !5
1

2
expF i S kx2

1

2
k2t D Gerfc~e2 ip/4w!5e2 ip/4 expF i S kx2

1

2
k2t D G 1

A2
H F1

2
2C~w!G1 i F1

2
2S~w!G J , ~1.4!
r-
x
e

of
where

w5
x2kt

A2t
, ~1.5!

and the error integral is

erfc~z!5
2

Ap
E

z

`

e2y2
dy, ~1.6!

while the Fresnel integrals are defined by

*Permanent address: Lebedev Institute of Physics, Leninsky P
pect 53, 117924 Moscow, Russia.
C~w!5A2

p E
0

w

cosy2dy, S~w!5A2

p E
0

w

siny2dy.

~1.7!

Although we have assumedk to be real, as in the units we
use it is the velocity or momentum of the impinging pa
ticles, all the above expressions remain valid for complek
so long as Imk,0. In that case we have the alternativ
representation@2,3#

M ~x,k,t !5
i

2p E
2`

`
expF i S kx2

1

2
k2t D G

k2k
dk, ~1.8!

which follows from the fact that both sides are solutions
Eq. ~1.1! satisfying the initial condition~1.2!. The Green
function for the one-dimensional free-particle Schro¨dinger
equation has the form
s-
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U~x2x8,t !5
exp@ i ~x2x8!2/2t#

A2p i t
, ~1.9!

as it satisfies Eq.~1.1! for any t.0; however, whent50 it
becomes thed functiond(x82x). As the initial condition is
Eq. ~1.2!, it is clear@1,2# that the functionM (x,k,t) can also
be written as

M ~x,k,t !5E
2`

0

U~x2x8,t !exp~ ikx8!dx8. ~1.10!

The expressionuM (x,k,t)u2 gives the probability density o
finding the particle at pointx at time t, when initially it was
on the left side of the shutter, i.e., withx,0, and had a
momentumk. From Eq.~1.4!, we see that

uM ~x,k,t !u25
1

2H F1

2
2C~w!G2

1F1

2
2S~w!G2J , ~1.11!

which is identical to the expression@4# for the intensity of
light in Fresnel diffraction by a straight edge. However, t
variable w has a very different meaning from the optic
problem, as it is now a function of time given by Eq.~1.5!.
Thus the original paper@1# was given the name ‘‘diffraction
in time.’’

All we have said above has been very well known fo
long time, and has many applications, among which we w
to mention those related to the time-energy uncertainty r
tions @5# and decay problems@6#. The reason we return to
this subject is that now we wish to see its behavior wh
formulated in terms of Wigner distribution functions@7#, and
also in relation with the tomographic probability develop
recently by one of us~V.M.! and his co-workers@8#.

II. DIFFRACTION IN TIME IN WIGNER DISTRIBUTION
SPACE

Normally quantum mechanics is discussed in configu
tion space or, in some cases, in momentum space, but n
al
te
h
a-

n

-
in

both together. Wigner@7# found that this limitation interfered
with the application of quantum mechanics to statisti
physics, where the description is usually given in pha
space. Thus he introduced his concept of Wigner distri
tions, which allow one to discuss some features of quan
mechanics in phase space.

Our objective will be to formulate the diffraction in tim
problem, discussed in Sec. I, in terms of Wigner distributi
functions. In this way we can visualize the phenomena
phase space and more easily determine its classical limit,
compare it with our intuitive understanding of the behav
of a beam of particles of definite momentum impinging on
shutter when the latter is opened.

In units in which \ and the massm of the particle are
unity, and where the configuration space wave function
denoted byc(x), and the momentum byp, the Wigner dis-
tribution function is defined as@7#

W~x,p![S 1

p D E
2`

`

c* ~x1y!c~x2y!exp~2ipy!dy,

~2.1!

which has the obvious property that

E
2`

`

W~x,p!dp5uc~x!u2, ~2.2!

where the right-hand side is the probability density at
point x, while an integration with respect tox gives us the
usual probability density@7# at the momentum valuep.

If we now wish to discuss the diffraction in time proble
in terms of Wigner distributions, we have to replacec(x) in
Eq. ~2.1! by M (x,k,t) of Eq. ~1.4!.

While for our analysisk is real, we shall assume for th
moment thatk is complex with a small negative imaginar
part. In this way we can use the expression~1.8! for
M (x,k,t) and substituting it into Eq.~2.1! we obtain
W~x,p;k,t !5
1

4p3 E2`

` E
2`

` E
2`

`
expH 2 i Fk~x1y!2

1

2
k2t G J expH i Fk8~x2y!2

1

2
k82t G J

~k2k* !~k82k!
ei2pydk dk8dy, ~2.3!
l-
ysi-
nd,
n

is
ith

it
nt
where we now added the momentumk and time t to the
Wigner function on the left-hand side, as these variables
appear inM (x,k,t). We also indicate the complex conjuga
of k by k* .

The evaluation of the triple integral~2.3! is done in Ap-
pendix A, and it leads to the simple result

W~x,p;k,t !5
1

p~k2p!
sin$2~pt2x!~k2p!%u~pt2x!,

~2.4!

whereu is the step function defined in Eq.~1.3!. Because of
so
the presence of the sine function in Eq.~2.4! we see that the
Wigner distribution for the diffraction-in-time problem osci
lates between positive and negative values, where the ph
cal significance of the latter is not clear. On the other ha
the presence ofu indicates that the probability density i
phase space vanishes whenx.pt. As in our units\5m
51, the momentump is the same as the velocity, and th
result is intuitively expected as the particles in the beam w
momentump could not yet have reached the pointx.

What is particularly interesting to us is the classical lim
of W(x,p;k,t), which is achieved when the Planck consta
\→0. We then have to abandon units in which\ andm were
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taken, as 1 and instead use standard cgs ones. The mod
tions in the form of Eq.~2.3! are trivial, and the resulting
distribution function now has the form

W~x,p;k,t !5
sin@g~k2p!#

p~k2p!
u S pt

m
2xD , ~2.5!

where

g[
2

\ S pt

m
2xD . ~2.6!

If we take the limit\→0, theng→1` as the step function
takes the value 1 only if (pt/m)2x.0. We can then use on
of the definitions of thed function @9#,

d~k2p!5 lim
g→`

sin@g~k2p!#

p@k2p#
, ~2.7!

to write the classical limit of the distribution function as

Wcl~x,p;k,t !5d~k2p!u S kt

m
2xD , ~2.8!

where we used the presence of thed(k2p) in Eq. ~2.8! to
replacep by k in the step function.
where
ca-We now see that the classical limit is what we expe
since the only value possible for the momentum of the p
ticle is p5k, and since this value is taken only whenx
,(kt/m), as forx.(kt/m), the particles would not yet hav
arrived at the pointx. Thus the classical limit of the Wigne
distribution function for the diffraction-in-time problem con
firms our intuition.

III. DIFFRACTION IN TIME IN TERMS OF THE
TOMOGRAPHIC PROBABILITIES

In ordinary quantum mechanics the essential concep
the wave function, which in configuration space is deno
by c(x). From this concept one derives the probability de
sity uc(x)u2 of finding the particle at pointx, and also,
through appropriate transforms ofc(x), the probabilities for
given values of any other observables.

Recently a change of emphasis was proposed, in wh
the central concept is the probability itself, but it is defined
a tomographic way@8,10#. This allows us to analyzethrough
a single conceptthe probability either in configuration o
momentum space or variables that are linear combination
both. The tomographic probability density@11# was given in
terms of the Wigner distribution through the transform
the
l

W ~X,m,n![
1

2pE2`

` E
2`

` E
2`

`

W~x,p!e2 iz~X2xm2pn!dz dx dp, ~3.1!

whereX is the position considered in an ensemble of reference frames@11#, which are rotated and scaled with respect to
initial ones through the parametersm andn. As an example we have that, whenm51 andn50, X corresponds to the norma
position coordinate, but, whenm50 andn51, X is related to the momentum observable.

In Eq. ~3.1! W(x,p) is the Wigner function defined in Eq.~2.1! and, substituting it into Eq.~3.1! the tomographic
probability densityW (X,m,n) is given in terms of the configuration wave functionc(x) by

W ~X,m,n!5
1

2p2E2`

` E
2`

` E
2`

` E
2`

`

c~x2y!c* ~x1y!ei2pye2 iz~X2xm2pn!dz dx dp dy. ~3.2!

The integration with respect top gives us the expression

E
2`

`

dpeip~2y1zn!5pdS y1
zn

2 D , ~3.3!

and, substituting this into Eq.~3.2!, and carrying out the integration with respect toy, we obtain

W ~X,m,n!5
1

2pE2`

` E
2`

`

cS x1
zn

2 Dc* S x2
zn

2 De2 iz~X2mx!dz dx. ~3.4!

Now introducing the variables

u5x1
zn

2
, r 5x2

zn

2
, ~3.5!

we see that the volume elementdz dx in Eq. ~3.4! becomesdr du/unu, so in terms ofu and r, W (X,m,n) becomes@10#

W ~X,m,n!5
1

2punu E2`

` E
2`

`

c~u!c* ~r !expH 2 i
u2r

n FX2mS r 1u

2 D G J dr du5
1

2punu
uI ~X,m,n!u2, ~3.6!
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I ~X,m,n!5E
2`

`

c~u!expF i S m

2n
u22u

X

n D Gdu. ~3.7!

Thus, contrary to the Wigner distribution function, the t
mographic probability density is always positive definite.

We now turn to the problem of diffraction in time, whic
means replacingu by x in Eq. ~3.7! and thenc(x) by
M (x,k,t) given in terms of its expression~1.10! containing
the Green function of the free-particle motion. The expr
sion I (x,m,n) then takes the form

I ~X,m,n!5E
2`

` E
2`

0 exp@ i ~x2x8!2/2t#

A2p~ i t !

3eikx8e2 iX~x/n!eimx2/2ndxdx8. ~3.8!

This integral is evaluated in a straightforward but laborio
way in Appendix B, where its value is given. As we are on
interested in its absolute value squared multiplied
(2punu)21 which, from Eq.~3.6! gives us the tomographica
probability density, we see that it becomes

W ~X,m,n!5
1

2umu H F1

2
1C~r!G2

1F1

2
1S~r!G2J , ~3.9!

where

r5
k~mt1n!2X

A2m~mt1n!
, ~3.10!

andC andS are the Fresnel integrals defined in Eq.~1.7!.
We now proceed to discuss the meaning of the tom

graphical probability density given in Eq.~3.9!. We men-
tioned above thatm andn represent a rotation and a scalin
of an ensemble of reference frames in phase space with
spect to the original one. Thus we can express them as

m5et cosu, n5e2t sinu, ~3.11!

with t and u in the intervals2`<t<` and 0<u<2p.
These expressions ofm andn imply that our coordinate and
momenta, which we designate by capitalX andP, are given
in terms of the original ones, which we denote by lower ca
lettersx andp, through the relation@12#

S X

PD 5S et cosu e2t sinu

2et sinu e2t cosu D S x

pD , ~3.12!

which is a linear canonical transformation, as the deter
nant of the matrix is 1.W (X,m,n) of Eq. ~3.9!, with r given
by ~3.10!, then gives the probability density for th
diffraction-in-time problem in the configuration coordinateX
defined in Eq.~3.12!.

If we want to return to our original configuration spac
we see from Eq.~3.12! that there we must taket5u50,
which impliesX5x,m51, andn50.

In that caser of Eq. ~3.10! becomes

r5
kt2x

A2t
52w, ~3.13!
-

s

y

-

re-

e

i-

,

wherew was defined in Eq.~1.5!. As the Fresnel integrals ar
odd functions of the argument, we have from Eq.~3.13! that

C~r!52C~w!, S~r!52S~w!, ~3.14!

and thus the particular tomographic densityW (x,1,0) be-
comes

W ~x,1,0!5 1
2 $@ 1

2 2C~w!#21@ 1
2 2S~w!#2%, ~3.15!

which is identical to expression~1.11!, as we should expect
Thus we see that the analysis of diffraction-in-time ph

nomena, in terms of the tomographic probabilities, allows
to study the problem in a wide ensemble of reference fram
in phase space, as indicated in Eqs.~3.8!–~3.11!. This en-
semble of course includes the original phase space (x,p) in
which the result is given by Eq.~3.15! which agrees exactly
with the initial analysis of the problem@1#.

IV. CONCLUSION

In the present paper the problem of diffraction in time w
visualized from three different viewpoints. The first was t
original one@1#, in which both the initial conditions and th
solution of the problem were analyzed in the same frame
reference. Solution~1.4! was given in terms of the Fresne
integrals, and using the Cornu spiral we showed that
usual diffraction pattern appeared as a function of time.

In the second approach we translated our solution to
Wigner distribution space. The final expression for the pro
ability density in phase space turned out to be very sim
but, unfortunately, it could take both positive and negat
values, which made its interpretation ambiguous.

Fortunately it was possible to consider its classical lim
by taking \→0, and the resulting expression~2.8! agreed
entirely with our intuitive view, i.e., the probability in phas
space was only different from zero whenp5k and x
,(pt/m), where all the observables are in cgs units. T
shows that diffraction in time is a purely quantum pheno
ena, as it disappears in the classical limit.

The third approach implied formulating our solution
terms of tomographic probabilities. The latter were intr
duced recently@8,10,11# to allow us to express the solution
in any reference frame that is rotated and scaled with res
to original one. In effect, it implies carrying out a canonic
transformation on the original solution of the diffraction-in
time problem. The tomographic probability solution~3.9! is
again expressed in terms of Fresnel integrals but of an a
ment quite different from the one appearing in Eqs.~1.4! and
~1.5!. If the canonical transformation is the unit 1, i.e.,X
5x and P5p, then the tomographic probability reduces
the solution~1.4!, providing us with a check of the analys
developed in Sec. III.

We finally wish to indicate that the diffraction-in-tim
phenomena derived theoretically by Moshinsky@1# was, in a
somewhat changed form, measured experimentally
Szriftigiser, Gue´ry-Odelin, Arndt, and Dalibard@13#. Possi-
bly a similar fate, in the distant future, awaits the reformu
tion of the phenomena presented in this paper.
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APPENDIX A: DETERMINATION OF THE WIGNER FUNCTION W„x,p;k,t…

We start with the expression~2.3! for W(x,p;k,t), and rewrite it as

W~x,p;k,t !5
1

4p3E2`

` E
2`

` H E
2`

`

expF2iy S p2
k1k8

2 D GdyJ H expF2 i S kx2
1

2
k2t D G

~k2k* !

expF i S k8x2
1

2
k82t D G

~k82k!
J dk dk8.

~A1!

The first integral obviously gives thed function 2pd(2p2k2k8), and so, introducing it in Eq.~A1! and integrating with
respect tok8, we obtain

W~x,p;k,t !52
1

2p2
exp@2ip~x2pt!#E

2`

` exp@22ik~x2pt!#

~k2k* !~k1k22p!
dk. ~A2!
ry

e
te

-

on

o-
.

We now note, as indicated in the text before Eq.~2.3! that
we start by assuming thatk has as a small negative imagina
part, so that

k→k2 i e, k*→k1 i e, 2k12p→2k12p1 i e. ~A3!

Thus both singularities in the integral in Eq.~A2! are in the
upper half of thek plane.

We can close the contour in Eq.~A2! by a large circle in
the upper half of the complexk plane if x2pt,0, thus
obtaining the residues of the integrals at the pointsk1 i e and
2k12p1 i e. On the other hand, ifx2pt.0, we have to
close the contour by a large circle in the lower half plan
and, as the function is analytic inside the contour, the in
gral vanishes. Then, passing to the limit whene→0, as re-
quired for our problem wherek is real, we obtain, after car
rying some of the multiplications, that
,
-

W~x,p;k,t !5
u~pt2x!

2p i ~k2p!
$exp@2i ~k2p!~x2pt!#

2exp@22i ~k2p!~x2pt!#%. ~A4!

whereu is the step function~1.3!. As the curly bracket di-
vided by 2i is a sine function, we then obtain expressi
~2.4!.

APPENDIX B: DETERMINATION OF THE
TOMOGRAPHIC PROBABILITY W „X,µ,n…

The tomographic probability is proportional to the abs
lute square ofI (X,m,n) where the latter is given by Eq
~3.8!, and we rewrite it in the form
I ~X,m,n!5E
2`

0 H exp@ ikx81 i ~x82/2t !#

A2p i t
E

2`

`

exp@ i ~ax22bx!#dxJ dx8, ~B1!

where

a[
m

2n
1

1

2t
, b[

X

n
1

x8

t
, ~B2!

We can rewrite the expressions in the last round bracket in Eq.~B1! as

ax22bx5S Aax2
b

2Aa
D 2

2S b2

4aD . ~B3!

As b2/4a depends onx8 but not onx, we first evaluate the integral

E
2`

`

expF i S Aax2
b

2Aa
D 2Gdx5Ap

a
eip/4 ~B4!

to obtain
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I ~X,m,n!5
eip/4

Ai S mt

n
11D E2`

0

exp@ ikx81 i ~x82/2t !#expF2 i S x8

t
1

X

n
D 2

2S m

n
1

1

t
D Gdx8

5

eip/4 expF2 iX2

2n2 S m

n
1

1

t
D 21G

Ai S mt

n
11D E

2`

0

exp@ i ~ax821bx8!#dx8, ~B5!

where

a5
~m/n!

2S mt

n
11D , b5

kS mt

n
11D2

X

n

S mt

n
11D , ~B6!

Using again relation~B3!, we obtain

ax821bx85S Aax81
b

2Aa
D 2

2
b2

4a
, ~B7!

and, asb2/4a is independent ofx8, we need to consider first the integral

E
2`

0

ei [Aax81~b/2Aa!] 2
dx85E

2`

b/2Aa
eiy2 dy

Aa
5E

2`

0

eiy2 dy

Aa
1

1

Aa
E

0

b/2Aa
~cosy21 i siny2!dy

5
Ap

2Aa

~11 i !

A2
1

1

Aa

Ap

A2
FCS b

2Aa
D 1 iSS b

2Aa
D G ~B8!

whereC andS are the Fresnel integrals of Eq.~1.7!, anda andb are given by Eq.~B6!.
Using Eq.~B7! to introduce Eq.~B8! in Eq. ~B5!, we obtain

I ~X,m,n!5
Apeip/4

A2i S mt

n
11Da

exp~2 ib2/4a!expH 2 i ~X2/2n2!S m

n
1

1

t
D 21J H F1

2
1CS b

2Aa
D G1 i F1

2
1SS b

2Aa
D G J .

~B9!

Finally replacinga andb by their values@Eq. ~B6!#, we obtain

I ~X,m,n!5
Apeip/4

Ai ~m/n!
expF2 i ~X2/2n2!S m

n
1

1

t D
21Gexp~2 ir2!H F1

2
1C~r!G1 i F1

2
1S~r!G J , ~B10!

where

r5
k~mt1n!2X

A2m~mt1n!
. ~B11!

When taking the absolute square value ofI (X,m,n), mainly the curly bracket remains, and thus we obtain Eq.~3.9!, whose
properties are discussed in the main text.
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