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Time-of-arrival states
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Although one can show formally that a time-of-arrival operator cannot exist, one can modify the low-
momentum behavior of the operator slightly so that it is self-adjoint. We show that such a modification results
in the difficulty that the eigenstates are drastically altered. In an eigenstate of the modified time-of-arrival
operator, the particle, at the predicted time of arrival, is found far away from the point of arrival with
probability 1/2.[S1050-294{99)03403-4

PACS numbd(s): 03.65—w

[. INTRODUCTION the possibility of localizing these states at the location of
arrival at the time-of-arrival. Our results for the “unmodi-

In quantum mechanics, observables like position and mofied” part of the time-of-arrival state seem to agree with
mentum are represented by operators at a fixed tirew-  those of Muga, Leavens, and Palao, who have studied these
ever, there is no operator associated with the time it takes fostates independently7]. Our central result is contained in
a particle to arrive to a fixed location. One can construct suctgec. IV where we show that in an eigenstate of the modified
a time-of-arrival operatof1], but its physical meaning is time-of-arrival operator, the particle, at the predicted time of
ambiguoug2—4]. In classical mechanics, one can answer thearrival, is found far away from the point of arrival with prob-
question as to what time a particle reaches the location ability 1/2. We also calculate the average energy of the
=0, but in quantum mechanics, this question does not appeatates, in order to relate them to our propdsl that one
to have an unambiguous answer[8) we proved, formally, cannot measure the time of arrival to an accuracy better than
that in general a time-of-arrival operator cannot exist. This isl/E, whereE, is the average kinetic energy of the particle.
because one can prove that the existence of a time-of-arrival/e end with concluding remarks in Sec. V.
operator implies the existence of a time operator. As Pauli
[5] .showed, one cannot have a time operator if the Hamil- Il. TIME-OF-ARRIVAL OPERATOR
tonian of the system is bounded from above or below.

There has, however, been renewed interest in the time of From the correspondence principal, the time-of-arrival
arrival, following the suggestion by Grot, Rovelli, and Tate operator to the poink=0 can be written formally in thé
that one can modify the time-of-arrival operator in suchrepresentation as
away as to make it self-adjoif]. The idea is that by modi-
fying the operator in a very small neighborhood around 1 d1 ~(1d d1
=0, one can formally construct a modified time-of-arrival T(k)=—im T dk |m( TR

. . Kk \/E k dk dkk
operator which behaves in much the same way as the un-
modified time-of-arrival operator. . . .

In this paper, we examine the behavior of the modified\évrgirﬁ i\fg;i\llz\e/ﬂ);or k<0. A set of eigenstates for this op-
time-of-arrival eigenstates, and show that the modification,
no matter how small, radically effects the behavior of the
states. We find that the particles in these eigenstates do not ;. (K)=a(k)
arrive with a probability of 1/2 at the predicted time of ar- A 27m
rival.

In Sec. Il we show why the time-of-arrival operator is not wherea= 6(k) +i 8(—k). However, the operator is not self-
self-adjoint, and explore the possible modifications that camdjoint and these eigenstates are not orthogonal:
be made in order to make it self-adjoint. We then explore
some of the properties of the modified time-of-arrival states. (tt >:LJ'°°dk2 QlikZ2m)(tath)

In Sec. lll we examine normalizable states which are coher- ARAT T 2mm o
ent superpositions of time of arrival eigenstates, and discuss

), @

\/E glit Ak2/2m)’ )

=8(tp—ty) — ————. 3
(A=t~ = 3
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functions[8]. If in Eq. (2) we chooset, complex, having tion to the Fourier transform cr_I;fA(k) from k> € (i.e., the

positivilirr;agin'ary part, then the eigenstatfe his & squaré-nmodified” part of the eigenstajethen one finds that at
'n:?gr:ahae ugr(;“cl’g"e'! 'tG'ns ;true eigenstate of the Operator yhe time of arrival the states are not delta functiogs), but
whi S compiex eigenvalues. are proportional tx~ %2 they have support over atl How-

Trying to makeT self-adjoint by defining boundary con- ever, although the state has long tails out to infinity, the

ditions atk=0 leads to the requirement on square integrable . - z
wave functionsu(k) andv(K) guch that q 9 quantity fdx’|x’ ~¥32~x"2 goes to zero as— . Further-

more, the modulus squared of the eigenstates diverges when
(u,Tv)—(T*u,v) integrated around the point of arrival=0. As a result, one
S — might expect that the normalized state will be localized at the
v(kuk) U(k)u(k)] point of arrival at the time of arrival. In Sec. Ill we show that
IN IN

—'m kILT ' this is indeed so. However, the full eigenstate is made up
both of this “unmodified” piece and a modified piece. The
4) modified part of the eigenstate is not well localized at the
ime of arrival. The contribution to the Fourier transform of

e stategt*A(k) from 0<k<e is given by

k—0T

i.e., the boundary conditions must be chosen so that
v(K)u(k)/k is continuous througk= 0. This continuity con-
dition cannot forceu(k) to have the same boundary condi- 2
tions asv (k) for any choice of boundary condition ar{k). 90, = € JE%eikxeXF{ it k_e(iezt,_\/m) In (k/€)

That is, the domains of definition af andT* differ and T € ' 2amlo Jk A2m '
cannot be self-adjoint. The proper eigenstate3 @nd T*, (8)

as well as appropriate boundary conditions will be discussed

in a forthcoming paper. The inability to define a self-adjoint BecauseT is no longer the generator of energy transla-
operatorT is directly related to the fact that one cannot con-tions for [k|<e, ng(k) is not time-translation invariant. For
struct an operator which is conjugate to the Hamiltonia if thet,=0 state,(8) can be integrated to give

is bounded from above or beloi8].

One might try to modifyT in order to make it self-adjoint €

[6]. Consider the operator e§+(x)tA:\/ﬁqD(Vi €X), 9
. d -
Te(k)=—Imyf(k)gvidk), (5 where® is the probability integral. For large, g*(x);,

oes as and the quantityfdx’|.g;" (x')|>~ Inx di-
wheref (k) is some smooth function which differs fromkl/ g W quantity dx |EgtA(X ) xd

only neark=0. Sinceu(k) andv(k) could diverge at the Verges asx—o. For smallx, EEJ:A(X) is proportional to
origin at a rate approaching \I{ and still remain square e '. Its modulus squared vanishes when integrated around
integrable, iff (k) goes to zero at least as fastlaghenT,.  a small neighborhood af=0. .g*(x), ., then, is not

. . . . . € A! L
will be self-adjoint and defined over all square-mtegrablelocalized around the point of arrival, at the time of arrival.

functions. However, as we show in Sec. IV, these eigenstategy,s \vi also be verified in Sec. Il where we examine nor-

do not behave as one would expect a time-of-arrival eigen- ~ . .
state to behave. malizable states. AIthoungg*(x)tA is not localized around

It can be verified thaﬂ'e has a degenerate set of eigen_ the pOint of arrival at the time of arrival, one mlght hOpe that

states|t,,+) for k>0 and|t,,—) for k<0, given by this part of the state does not contribute significantly in time-
. of-arrival measurements when—0. However, we will see
gt_A(k)=<k|tA,i> that for coherent superpositions of these eigenstates, half the
norm is made up of the modified piece of the eigenstate.
1 1 _ k )
= 0=k o= == ) eXp( ta/m] (K k ) lll. NORMALIZED TIME-OF-ARRIVAL STATES
(6) Since the time-of-arrival states are not normalizable, we

. i will examine the properties of stat¢s,) which are narrow
which are orthonormal as expected. Grot, Rovelli, and Tatgperpositions of the modified time-of-arrival eigenstates.

[6] choose to work with the states given by These states are normalizable, although they are no longer
K orthogonal to each othér.
— |k<e. We can now consider coherent superpositions of these
€ eigenstates,
=4 ¢ @ 9
o M>e 7= [ dtdta, 2y g

If e—0, one might expect, to be a good approximation to

the time-of-arrival operator when acting on states that do not

have support arounkl=0 [6]. These coherent states form a positive operator valued measure
As we showed if 3], when these states are examined in(POVM). The measurement of time-of-arrival using POVMs has

the x representation and if one only considers the contribubeen discussed if1].
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where N is a normalization constant and is given by b3
=(2/wA%)Y4 The spreadit, in arrival times is of orden. 0.5H
We now examine what the statgx,t)*=(x|r;) looks E
like at the point of arrival as a function of time. In what 0.4 |
follows, we will work with the state centered aroume-0 P
for simplicity. This will not affect any of our conclusions. 0311
7+ (x,t) is given by VLo
2
. 2
T+(x,t)=Nf (xle("pz“zm)hA,+>e(“A’A2)th
€ 2,,2 L2 .
:Nf e(7tA/A )e(flk /2m)telkxgt+A(k)thdk -4 a4
0
FIG. 1. |o7" (x,7)|? vs X, with A=m (solid line) and A =m/10
* (—t21A2) (—iK2/2m)t qikx  + (dashed ling As A gets smaller, the probability function gets more
+NLe A2 e e gtA(k)thdk

and more peaked around the origin.
=7 (X0 +om" (X1). (1)) probability of being found at the point of arrival at a time
other than the time of arrival can be made arbitrarily small.

As argued in the previous section, the second term should agjy, the other hand, at the time of arriviat 0, we will now
like a time-of-arrival state. The first term is due to the modi-ghow that the state, 7" (x,t) can be as localized as one
fication of T and has nothing to do with the time of arrival. \yishes around=0.

We will first show that the second term can indeed be local-
ized at the point of arrivalx=0, at the time of arrivalt
=t,. We will do this by expanding it around=0 in a

From Eq.(12), we expand,r*(x,0) as a Taylor series,
Taylor series. After taking the limié—0, its nth derivative

m 1/4 = m n
oT+(X10):<K Y bn( \/;x .19
atx=0 is given by n=0
n where
——7 (X, 1) ]
@ . b= in2n- Y- vap| 34 1 (16)
N . " 8 4)°
- e WA g(k) V(ik)"
\/ZWmJ Je We see then thagr"(x,0) is a function of ¢m/A)x [with a
><e(ikz/zm)(tA—t)dTAdk

constant of (n/A)Y* out fronf]. As a result, the probability of
finding the particle in a neighborhoa#iof x is given by

P) \/ﬁ 2 A [omiA
+ —x,O) dx= \ﬁf *(u,0)|?du.
j—(sOT ( A m —mm‘&loT (.0
(17)

Since|o7(u,0)|? is proportional ton/A and is square inte-
grable, we see that for an§y one need only makd small
enough in order to localize the entire patrticle in the region of

(12) integration. 7" (x,t) is localized in a neighborhood

around the point of arrival at the time of arrival as—0.
where D,(z) are the parabolic-cylinder functions. For any The state is localized in a regioh of order yA/m. This is

finite t, we can choos@& small enough so that the argument what one would expect from physical grounds, since we

_ NA infwe(—k“AZ/lﬁmz)e(—ikzt/2m)k1/2+ndk
v2m Jo

23BHINAN 3\ [ m| Va2
—— — 4+ — J—
el

12oA2 it\2
G )D3/4n/2( )

A

of Dy(2) is large and can be expanded. We can now writehave
o7 (0}) as a Taylor expansion aroumnd=0,

) V4 = N dx~th@~ \/§ (18
07+(x,t)z\/K(t—3> ZO an( \/?X) , (13 m m

((k) is calculated in the following section and is proportional
wherea,, is a humerical constant given by

to Vm/A.) The probability distribution ofy7* (x,t) att=r7
is shown in Fig. 1. This behavior of the unmodified piece of
(14) the time-of-arrival stateg7*(x,t), as a function of time ap-

pears to agree with the results of Muga and Leavens, who
have studied these coherent states independgfitly
We can now see that for any finitéhe amplitude for finding

The modified part of the time-of-arrival statgr™ (x,0),
the particle arounadt=0 goes to zero a& goes to zero. The is not found near the origin at=t,=0. We find

3
_ i —3/4+n/2 -1)/12__—1/4
a,=I +n2p(n=1)12 T Z+§




PRA 59 TIME-OF-ARRIVAL STATES 1807
€ 2
| KKimlzak=ne [ e R0, (ot 7ok

N2 J e~ (¥3%g; (Kdt, 2k
=N2+N3, (21)
whereN? is the norm of the modified part of the time-of-

arrival state andN3 is the norm of the unmodified part. The
second term can be integrated to give

.....

15
2 A2 . N2 oo ta+1p2
FIG. 2. (Lk)|. 7" (x,7)|* vs ex, with Ae?=m/10 (solid line) N2= f f exg — A_A
and Ae*=m/100 (dashed ling As A or € gets smaller, the prob- 0" 2mm A2

ability function drops near the origin, and grows longer tails which

are exponentially far away. ) k>—e , ,
xXexp i W(tA—tA) dtpdtadk

€ © e t/zx 1 272 T4A2
7 (x,00=N f fexp(—— — CNA T (o —kK'AT) 1
J2mmJ == Jo A?) Jk “"m dkkex em? | 2 (22
iEZtA ikx . . H
xexp — In; e"“dk dty where without loss of generality we are looking at the state
centered around=0 att=0.
32 e p( ti) ie2t, 1 The unmodified piece can contain only half the norm. The
=N exp — — (—+ —,—iex) rest is found in the modified piece:
V2mmJ - A? Nm 2
X(—iex) 12 (<faimt, (19 ne- [“ax] at a0, ex —A
6_27Tm 0 A A?ex AZ
If iex is not large, we can use the fact that, forand e very K th—ta
small,ie’t,/m<1/2 so that we have Xexy{iezln; — )
272 472142 2
A O(\—iex N°A“ (e —€'A%In“kie| e 1
eT+(X,0)2(27T)1/4\/——( _ )_ (20) == J dkexp ————— =5 (23)
2m  /— i ex 0 2m

o . . The reason for this is that, essentially, the modificatidn 1/
Note the similarity between this statéhe form above is not _.f (k) involves expanding the region<0k< e into the en-

valid for largex) and that of the modified part of the eigen- (e negativek axis. That is, we see from E¢B) that in order
state(9). We are interested in the case whefé/m goes 10 19 make the eigenstates orthogonal, one needs the integration
zero, in which case.r"(x,0) vanishes near the origin. For variable to go from—o to % and this involves making the
large ex, it goes asy(e?A/xm). From Eq.(19) we can also  modification

see that, ifex>e(M<*®) then the last factor in the integrand

oscillates rapidly and the integral falls rapidly for larger kK dk'

Thus, as we makeefA/m) smaller, the value of the modu- K—ozt=| —— (24)

lus squared decrease aroutyd 0, but the tails, which extend et (k')

out to e™</e, get longer. [¥.7"(x,0)2 goes as
(2A/m)Inx up to ex~e™es,

As (eA/m)—0, the particle is always found in the far o 1 -
away tail. The stater" (x,0) is not found near the point of <t,&,t|tA,t>=f dzime'(tA’tA)Zf’m= S(ta—ty).
arrival at the time of arrival. Its probability distribution &t - 7 25
=t,=0 is shown in Fig. 2.

The orthogonality condition then becomes

No matter how small we make half the norm comes from
V. CONTRIBUTION TO THE NORM DUE TO the contributionz®<0 which is the modified part of the
MODIFICATION OF T eigenstate. As a result, if one makes a measurement of the
time of arrival, then one finds that half the time the particle is
We now show that the modified part pfy) contains at not found at the point of arrival at the predicted time of
least half the norm, no matter how smallis made. The arrival. Modified time-of-arrival states do not always arrive
norm of the statér, ) can be written as on time.
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From Eq.(23), one can also see thatfif(k) goes to zero E,ét,, whereét, is the accuracy of the clock, we find that
faster thark, thenN, will diverge asA or e go to zero. If  the stategr, ) will not always trigger a clock whose accu-

f.(k)=k*°, then we find racy is Sta=A.
1 neacta?) — 5€2A\2 V. CONCLUSION
N =¢ 1-o ———=||. (29 , o , _
2 m We have seen that if one modifies the time-of-arrival op-

) . . erator so as to make it self-adjoint, then its eigenstates no
As € or A go to zeroN, diverges, and if we renormalize the |5nger behave as one expects time of arrival states to behave.
state, the entire norm will be made up of the modified part ofyaif the time, a particle which is in a time-of-arrival state
the eigenstate. will not arrive at the predicted time-of-arrival. The modifi-
It is also of interest to calculate the average value of theation also results in the fact that the states are no longer
kinetic energy for these states, sincel & we found that if  time-translation invariant.
one measures the time of arrival with a clock, then the accu- For wave functions which do not have supportkat0,

racy of the clock cannot be greater tha&Q/ In calculating ~Measurements can be carried out in such a way that the
the average energy, the modified piece will not matter Sinc@0d|f|cat|0n will not effect the results of the measurement

k? goes to zero ak=0 faster than yk diverges. We find [3]. Nonetheless, after the measurement, the particle will not
arrive on time with a probability of 1/2. One cannot Useto

. . k2 . . prepare a system in a state which arrives at a certain time.
<7A|Hk|7A>=f dkﬁ<7’A|k><k|7A> Previously, we have argued that time-of-arrival measure-
ments should be thought of as continuous measurement pro-

N2 o , cesses, and that there is an inherent inaccuracy in time-of-
=—2f k3! (ta~ta)k/2m arrival measurements, given iy,>1/E, [3,8]. This current
m(2m)“Jo paper supports the claim that the time of arrival is not a well

defined observable in quantum mechanit3].

Xef(ti+t’A2)/A2thdt/Adk: . (27)
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