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Time-of-arrival states
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Although one can show formally that a time-of-arrival operator cannot exist, one can modify the low-
momentum behavior of the operator slightly so that it is self-adjoint. We show that such a modification results
in the difficulty that the eigenstates are drastically altered. In an eigenstate of the modified time-of-arrival
operator, the particle, at the predicted time of arrival, is found far away from the point of arrival with
probability 1/2.@S1050-2947~99!03403-4#

PACS number~s!: 03.65.2w
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I. INTRODUCTION

In quantum mechanics, observables like position and m
mentum are represented by operators at a fixed timet. How-
ever, there is no operator associated with the time it takes
a particle to arrive to a fixed location. One can construct s
a time-of-arrival operator@1#, but its physical meaning is
ambiguous@2–4#. In classical mechanics, one can answer
question as to what time a particle reaches the locatiox
50, but in quantum mechanics, this question does not ap
to have an unambiguous answer. In@3# we proved, formally,
that in general a time-of-arrival operator cannot exist. This
because one can prove that the existence of a time-of-ar
operator implies the existence of a time operator. As P
@5# showed, one cannot have a time operator if the Ham
tonian of the system is bounded from above or below.

There has, however, been renewed interest in the tim
arrival, following the suggestion by Grot, Rovelli, and Ta
that one can modify the time-of-arrival operator in su
away as to make it self-adjoint@6#. The idea is that by modi-
fying the operator in a very small neighborhood aroundk
50, one can formally construct a modified time-of-arriv
operator which behaves in much the same way as the
modified time-of-arrival operator.

In this paper, we examine the behavior of the modifi
time-of-arrival eigenstates, and show that the modificati
no matter how small, radically effects the behavior of t
states. We find that the particles in these eigenstates do
arrive with a probability of 1/2 at the predicted time of a
rival.

In Sec. II we show why the time-of-arrival operator is n
self-adjoint, and explore the possible modifications that
be made in order to make it self-adjoint. We then explo
some of the properties of the modified time-of-arrival stat
In Sec. III we examine normalizable states which are coh
ent superpositions of time of arrival eigenstates, and disc
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the possibility of localizing these states at the location
arrival at the time-of-arrival. Our results for the ‘‘unmod
fied’’ part of the time-of-arrival state seem to agree w
those of Muga, Leavens, and Palao, who have studied th
states independently@7#. Our central result is contained i
Sec. IV where we show that in an eigenstate of the modifi
time-of-arrival operator, the particle, at the predicted time
arrival, is found far away from the point of arrival with prob
ability 1/2. We also calculate the average energy of
states, in order to relate them to our proposal@3# that one
cannot measure the time of arrival to an accuracy better t
1/Ēk whereĒk is the average kinetic energy of the particl
We end with concluding remarks in Sec. V.

II. TIME-OF-ARRIVAL OPERATOR

From the correspondence principal, the time-of-arriv
operator to the pointx50 can be written formally in thek
representation as

T~k!52 im
1

Ak

d

dk

1

Ak
52 imS 1

k

d

dk
1

d

dk

1

k
D , ~1!

whereAk5 iAuku for k,0. A set of eigenstates for this op
erator is given by

gtA
~k!5a~k!

1

A2pm
Ake~ i t Ak2/2m!, ~2!

wherea5u(k)1 iu(2k). However, the operator is not sel
adjoint and these eigenstates are not orthogonal:

^tA8 utA&5
1

2pmE
0

`

dk2 e~ ik2/2m!~ tA2tA8 !

5d~ tA2tA8 !2
i

p~ tA2tA8 !
. ~3!

It is important to recall that a symmetric operator which
not self-adjoint always has complex eigenvalues and eig
1804 ©1999 The American Physical Society
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PRA 59 1805TIME-OF-ARRIVAL STATES
functions @8#. If in Eq. ~2! we choosetA complex, having
positive imaginary part, then the eigenstate is a squ
integrable function~i.e., it is a true eigenstate of the operato!
which has complex eigenvalues.

Trying to makeT self-adjoint by defining boundary con
ditions atk50 leads to the requirement on square integra
wave functionsu(k) andv(k) such that

^u,Tv&2^T* u,v&

5 imF lim
k→02

v~k!u~k!

uku
1 lim

k→01

v~k!u~k!

uku G50;

~4!

i.e., the boundary conditions must be chosen so
v(k)u(k)̄ /k is continuous throughk50. This continuity con-
dition cannot forceu(k) to have the same boundary cond
tions asv(k) for any choice of boundary condition onv(k).
That is, the domains of definition ofT andT* differ andT
cannot be self-adjoint. The proper eigenstates ofT andT* ,
as well as appropriate boundary conditions will be discus
in a forthcoming paper. The inability to define a self-adjo
operatorT is directly related to the fact that one cannot co
struct an operator which is conjugate to the Hamiltonian ifH
is bounded from above or below@3#.

One might try to modifyT in order to make it self-adjoin
@6#. Consider the operator

Te~k!52 imAf e~k!
d

dk
Af e~k!, ~5!

wheref e(k) is some smooth function which differs from 1/k
only neark50. Sinceu(k) and v(k) could diverge at the
origin at a rate approaching 1/Ak and still remain square
integrable, iff e(k) goes to zero at least as fast ask, thenTe
will be self-adjoint and defined over all square-integra
functions. However, as we show in Sec. IV, these eigenst
do not behave as one would expect a time-of-arrival eig
state to behave.

It can be verified thatTe has a degenerate set of eige
statesutA ,1& for k.0 andutA ,2& for k,0, given by

gtA
6~k!5^kutA ,6&

5u~6k!
1

A2pm

1

Af e~k!
expS i t A/mE

6e

k 1

f e~k8!
dk8D ,

~6!

which are orthonormal as expected. Grot, Rovelli, and T
@6# choose to work with the states given by

f e~k!55
k

e2
, uku,e.

1

k
, uku.e.

~7!

If e→0, one might expectTe to be a good approximation t
the time-of-arrival operator when acting on states that do
have support aroundk50 @6#.

As we showed in@3#, when these states are examined
the x representation and if one only considers the contri
e-
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tion to the Fourier transform ofgtA
1(k) from k.e ~i.e., the

‘‘unmodified’’ part of the eigenstate!, then one finds that a
the time of arrival the states are not delta functionsd(x), but
are proportional tox23/2; they have support over allx. How-
ever, although the state has long tails out to infinity, t
quantity*dx8ux823/2u2;x22 goes to zero asx→`. Further-
more, the modulus squared of the eigenstates diverges w
integrated around the point of arrival,x50. As a result, one
might expect that the normalized state will be localized at
point of arrival at the time of arrival. In Sec. III we show th
this is indeed so. However, the full eigenstate is made
both of this ‘‘unmodified’’ piece and a modified piece. Th
modified part of the eigenstate is not well localized at t
time of arrival. The contribution to the Fourier transform
the stategtA

1(k) from 0,k,e is given by

eg̃
1~x! tA

5
e

A2pm
E

0

e dk

Ak
eikxexpS 2 i t A

k2

2m
e~ i e2tA/m! ln ~k/e!D .

~8!

BecauseTe is no longer the generator of energy trans
tions for uku,e, gtA

1(k) is not time-translation invariant. Fo

the tA50 state,~8! can be integrated to give

eg̃
1~x! tA

5
e

A2xim
F~Ai ex!, ~9!

where F is the probability integral. For largex, eg̃
1(x) tA

goes as 1/Ax and the quantity*dx8ueg̃tA
1(x8)u2; ln x di-

verges asx→`. For small x, eg̃tA
1(x) is proportional to

e2 i ex. Its modulus squared vanishes when integrated aro
a small neighborhood ofx50. eg̃

1(x) tA
, then, is not

localized around the point of arrival, at the time of arriva
This will also be verified in Sec. III where we examine no
malizable states. Althougheg̃

1(x) tA
is not localized around

the point of arrival at the time of arrival, one might hope th
this part of the state does not contribute significantly in tim
of-arrival measurements whene→0. However, we will see
that for coherent superpositions of these eigenstates, hal
norm is made up of the modified piece of the eigenstate

III. NORMALIZED TIME-OF-ARRIVAL STATES

Since the time-of-arrival states are not normalizable,
will examine the properties of statesutD& which are narrow
superpositions of the modified time-of-arrival eigenstat
These states are normalizable, although they are no lo
orthogonal to each other.1

We can now consider coherent superpositions of th
eigenstates,

utD
6&5NE dtAutA ,6&e2~ tA2t!2/D2

, ~10!

1These coherent states form a positive operator valued mea
~POVM!. The measurement of time-of-arrival using POVMs h
been discussed in@11#.
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1806 PRA 59J. OPPENHEIM, B. REZNIK, AND W. G. UNRUH
where N is a normalization constant and is given byN
5(2/pD2)1/4. The spreaddtA in arrival times is of orderD.

We now examine what the statet(x,t)15^xutD
1& looks

like at the point of arrival as a function of time. In wha
follows, we will work with the state centered aroundt50
for simplicity. This will not affect any of our conclusions
t1(x,t) is given by

t1~x,t !5NE ^xue~2 ip2t/2m!utA ,1&e~2tA
2 /D2!dtA

5NE
0

e

e~2tA
2 /D2!e~2 ik2/2m!teikxgtA

1~k!dtA dk

1NE
e

`

e~2tA
2 /D2!e~2 ik2/2m!teikxgtA

1~k!dtA dk

[et
1~x,t !10t1~x,t !. ~11!

As argued in the previous section, the second term should
like a time-of-arrival state. The first term is due to the mo
fication of T and has nothing to do with the time of arriva
We will first show that the second term can indeed be loc
ized at the point of arrival,x50, at the time of arrival,t
5tA . We will do this by expanding it aroundx50 in a
Taylor series. After taking the limite→0, its nth derivative
at x50 is given by

dn

dxn0t1~x,t !ux50

5
N

A2pm
E E

e

`

e~2tA
2 /D2!u~k!Ak~ ik !n

3e~ ik2/2m!~ tA2t !dtA dk

5
ND

A2m
i nE

0

`

e~2k4D2/16m2!e~2 ik2t/2m!k1/21ndk

5
23/813n/4i n

p1/4
GS 3

4
1

n

2D S m

D D 1/41n/2

3e~2t2/2D2!D23/42n/2S i tA2

D D , ~12!

where Dp(z) are the parabolic-cylinder functions. For an
finite t, we can chooseD small enough so that the argume
of Dp(z) is large and can be expanded. We can now w
0t1(0,t) as a Taylor expansion aroundx50,

0t1~x,t !.ADS m

t3D 1/4

(
n50

`

anSAm

t
xD n

, ~13!

wherean is a numerical constant given by

an5 i 23/41n/22~n21!/2p21/4GS 3

4
1

n

2D . ~14!

We can now see that for any finitet the amplitude for finding
the particle aroundx50 goes to zero asD goes to zero. The
ct
-

l-

e

probability of being found at the point of arrival at a tim
other than the time of arrival can be made arbitrarily sm
On the other hand, at the time of arrivalt50, we will now
show that the state0t1(x,t) can be as localized as on
wishes aroundx50.

From Eq.~12!, we expand0t1(x,0) as a Taylor series,

0t1~x,0!5S m

D D 1/4

(
n50

`

bnSAm

D
xD n

, ~15!

where

bn5 i n2n23/4p21/4GS 3

8
1

n

4D . ~16!

We see then that0t1(x,0) is a function of (Am/D)x @with a
constant of (m/D)1/4 out front#. As a result, the probability of
finding the particle in a neighborhoodd of x is given by

E
2d

d U0t1SAm

D
x,0D U2

dx5AD

mE
2dAm/D

dm/D

u0t1~u,0!u2du.

~17!

Sinceu0t1(u,0)u2 is proportional tom/D and is square inte-
grable, we see that for anyd one need only makeD small
enough in order to localize the entire particle in the region
integration. 0t1(x,t) is localized in a neighborhoodd
around the point of arrival at the time of arrival asD→0.
The state is localized in a regiond of orderAD/m. This is
what one would expect from physical grounds, since
have

dx;dtA
^k&
m

;AD

m
. ~18!

(^k& is calculated in the following section and is proportion
to Am/D.) The probability distribution of0t1(x,t) at t5t
is shown in Fig. 1. This behavior of the unmodified piece
the time-of-arrival state,0t1(x,t), as a function of time ap-
pears to agree with the results of Muga and Leavens, w
have studied these coherent states independently@7#.

The modified part of the time-of-arrival state,et
1(x,0),

is not found near the origin att5tA50. We find

FIG. 1. u0t1(x,t)u2 vs x, with D5m ~solid line! andD5m/10
~dashed line!. As D gets smaller, the probability function gets mo
and more peaked around the origin.
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et
1~x,0!5N

e

A2pm
E

2`

` E
0

e

expS 2
tA
2

D2D 1

Ak

3expS i e2tA

m
ln

k

e Deikxdk dtA

5N
e3/2

A2pm
E

2`

`

expS 2
tA
2

D2D gS i e2tA

m
1

1

2
,2 i exD

3~2 i ex!21/22~ i e2ta /m!dtA . ~19!

If i ex is not large, we can use the fact that, forD ande very
small, i e2tA /m!1/2 so that we have

et
1~x,0!.~2p!1/4Ae3D

2m

F~A2 i ex!

A2 i ex
. ~20!

Note the similarity between this state~the form above is not
valid for largex) and that of the modified part of the eige
state~9!. We are interested in the case wheree2D/m goes to
zero, in which caseet

1(x,0) vanishes near the origin. Fo
largeex, it goes asA(e2D/xm). From Eq.~19! we can also
see that, ifex.e(m/e2D), then the last factor in the integran
oscillates rapidly and the integral falls rapidly for largerx.
Thus, as we make (e2D/m) smaller, the value of the modu
lus squared decrease aroundx50, but the tails, which extend
out to em/e2D/e, get longer. *xuet1(x,0)u2 goes as
(e2D/m)ln x up to ex;em/e2D.

As ~e2D/m)→0, the particle is always found in the fa
away tail. The stateet

1(x,0) is not found near the point o
arrival at the time of arrival. Its probability distribution att
5tA50 is shown in Fig. 2.

IV. CONTRIBUTION TO THE NORM DUE TO
MODIFICATION OF T

We now show that the modified part ofutD
1& contains at

least half the norm, no matter how smalle is made. The
norm of the stateutD

1& can be written as

FIG. 2. (1/e)uet1(x,t)u2 vs ex, with De25m/10 ~solid line!
and De25m/100 ~dashed line!. As D or e gets smaller, the prob
ability function drops near the origin, and grows longer tails wh
are exponentially far away.
E u^kutD
1&u2dk5N2E

0

e

ue2~ tA
2 /D2!gtA

1~k!dtAu2dk

1N2E
e

`

ue2~ tA
2 /D2!gtA

1~k!dtAu2dk

[Ne
21N0

2 , ~21!

whereNe
2 is the norm of the modified part of the time-o

arrival state andN0
2 is the norm of the unmodified part. Th

second term can be integrated to give

N0
25

N2

2pmE E
e

`

expS 2
tA
21tA8

2

D2 D
3expS i

k22e2

2m
~ tA2tA8 ! DdtAdtA8dk

5
N2D2p

m E
0

`

dk̃ k̃expS 2 k̃4D2

8m2 D 5
1

2
, ~22!

where without loss of generality we are looking at the st
centered aroundt50 at t50.

The unmodified piece can contain only half the norm. T
rest is found in the modified piece:

Ne
25

N2

2pmE
0

e

dkE dtAdtA8
e2

k
expS 2tA

22tA8
2

D2 D
3expS i e2 ln

k

e

tA82tA

m D
5

N2D2

2m E
0

e

dk expS 2e4D2 ln2k/e

2m2 D e2

k
5

1

2
. ~23!

The reason for this is that, essentially, the modificationk
→ f e(k) involves expanding the region 0,k,e into the en-
tire negativek axis. That is, we see from Eq.~3! that in order
to make the eigenstates orthogonal, one needs the integr
variable to go from2` to ` and this involves making the
modification

k2→z65E
6e

k dk8

f e~k8!
. ~24!

The orthogonality condition then becomes

^tA8 ,6utA ,6&5E
2`

`

dz6
1

2pm
ei ~ tA2tA8 !z6/m5d~ tA2tA8 !.

~25!

No matter how small we makee, half the norm comes from
the contributionz6,0 which is the modified part of the
eigenstate. As a result, if one makes a measurement o
time of arrival, then one finds that half the time the particle
not found at the point of arrival at the predicted time
arrival. Modified time-of-arrival states do not always arriv
on time.
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From Eq.~23!, one can also see that iff e(k) goes to zero
faster thank, thenNe will diverge asD or e go to zero. If
f e(k)5k11d, then we find

Ne5
1

2
e~d2m2/2e4D2!F12FS 2de2DA2

m D G . ~26!

As e or D go to zero,Ne diverges, and if we renormalize th
state, the entire norm will be made up of the modified par
the eigenstate.

It is also of interest to calculate the average value of
kinetic energy for these states, since in@3# we found that if
one measures the time of arrival with a clock, then the ac
racy of the clock cannot be greater than 1/Ēk . In calculating
the average energy, the modified piece will not matter si
k2 goes to zero atk50 faster than 1/Ak diverges. We find

^tD
1uHkutD

1&5E dk
k2

2m
^tD

1uk&^kutD
1&

5
N2

p~2m!2E0

`

k3ei ~ tA2tA8 !k2/2m

3e2~ tA
2

1tA8
2!/D2

dtA dtA8 dk5
4

DA2p
. ~27!

We see therefore that the kinematic spread in arrival time
these states is proportional to 1/Ēk . Since the probability of
triggering the model clocks discussed in@3# decays as
.G

int

.

ef

int
f

e

u-

e

of

AEkdtA, wheredtA is the accuracy of the clock, we find tha
the statesutD

1& will not always trigger a clock whose accu
racy isdtA5D.

V. CONCLUSION

We have seen that if one modifies the time-of-arrival o
erator so as to make it self-adjoint, then its eigenstates
longer behave as one expects time of arrival states to beh
Half the time, a particle which is in a time-of-arrival sta
will not arrive at the predicted time-of-arrival. The modifi
cation also results in the fact that the states are no lon
time-translation invariant.

For wave functions which do not have support atk50,
measurements can be carried out in such a way that
modification will not effect the results of the measureme
@3#. Nonetheless, after the measurement, the particle will
arrive on time with a probability of 1/2. One cannot useTe to
prepare a system in a state which arrives at a certain tim

Previously, we have argued that time-of-arrival measu
ments should be thought of as continuous measurement
cesses, and that there is an inherent inaccuracy in time
arrival measurements, given bydtA.1/Ēk @3,8#. This current
paper supports the claim that the time of arrival is not a w
defined observable in quantum mechanics@12#.
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