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Entanglement processing and statistical inference:
The Jaynes principle can produce fake entanglement
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We show, by explicit examples, that the Jaynes principle when applied to compound quantum systems may
produce theentangledmaximum entropy states compatible with data coming fromnonentangled~separable!
states. It means that the Jaynes statistical inference scheme may lead to a wrong conclusion about entangle-
ment, which is a crucial parameter in quantum information theory. We suggest that in all the processes where
entanglement is needed, the proper inference scheme should involve minimization of entanglement. Examples
illustrating the proposed scheme are provided.@S1050-2947~99!02303-3#
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I. INTRODUCTION

It is well known that quantum mechanics allows us
reconstruct completely a state of the quantum-mechan
system from mean values of a complete system of obs
ables measured on the ensemble of identically prepared
tems @1#. By a complete set of observables@1#, one means
the maximal set of linearly independent observables wh
the trivial observable represented by an identity operato
excluded. In practice we often deal with situations when
state of the system is unknown and only mean valuesai ( i
51, . . . ,p) of someincompleteset of observables$Ai% i 51

p

are available from experiments, i.e.,

Tr %Ai[^Ai &5ai , i 51, . . . ,p. ~1!

Then, of course, there can be many states, which ar
agreement with the measured data. It involves the problem
estimation of the state on the basis of the exact mean va
of given observables. According to the maximum entro
principle@2–4#, we have to choose from a set of states% that
fulfill the constraint~1!, the most probable~or representative!
state%J , which maximizes the von Neumann entropy,

S~% !52Tr % ln %. ~2!

Then, the representative state%J is given by@3#

%J5Z~l!21expS 2(
i 51

p

l iAi D , ~3!

where Z(l)5Tr exp(2( i 51
p lkAk) is the partition function

and the vectorl(a)5(l1 , . . . ,lp) is uniquely determined
by the vectora5(a1 , . . . ,ap),
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]l i
5ai , i 51, . . . ,p. ~4!

The above maximum-entropy principle~or Jaynes prin-
ciple! was applied for partial reconstruction of pure a
mixed states of many different systems@5#. In particular, it
allowed us to interpret quantum statistical mechanics a
special type of statistical inference@3# based on the entropic
criterion.

The Jaynes principle is the most rational inference sche
in the sense that it does not permit us to draw any con
sions unwarranted by the experimental data. However,
argument making the principle plausible does not actua
prove it @6#. In this context one can ask the question: Is t
entropic criterion universal? Surprisingly, as we will show
this paper, thereare situations where the Jaynes princip
fails. This concerns compound quantum systems that h
recently attracted much attention due to the new phenom
such as quantum teleportation@7#, quantum dense coding@8#,
or quantum cryptography@9#.

In all the above effects the most important characteris
of state is entanglement~or inseparability! @10#. Suppose we
need the entanglement to deal with one of these effects
ing, however, the compound system in an unknown state
someincompletedata of type~1!. Then, usually, to proceed
further, we must somehow estimate the state of the sys
from the data. But what scheme of inferring can be used
this case? The fact that we need the entanglement for
purposes imposes a basic condition on possible infere
schemes. Namely they certainly should not give us an
separable estimated state if only theoretically there exis
separable state compatible with the measured data. O
wise, it may happen that we get into trouble trying to use
entanglement we inferred to be present, while in fact, ther
no entanglement at all. In this paper we show that the Jay
principle when applied to composite systems may prod
fake entanglement, i.e., the maximum entropy state com
ible with incomplete data may be entangled even if the d
come from a nonentangled~separable! state. It suggests tha
1799 ©1999 The American Physical Society
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in all the processes involving entanglement, one must rep
the Jaynes scheme by the one governed by minimizatio
entanglement. In Sec. II we provide explicit examples of d
for which there exists aseparablestate compatible with
them, while the state obtained by means of the Jaynes p
ciple is inseparable~entangled!. In Sec. III we propose a
scheme based on minimization of entanglement and com
it with the Jaynes scheme. In the last section we discuss
results, in particular, in the context of the thermodynami
analogies in quantum information theory.

II. JAYNES PRINCIPLE VERSUS ENTANGLEMENT:
COUNTEREXAMPLES

As the first example we will take the Bell-CHSH obser
able @12#,

B5A2~sx^ sx1sz^ sz!52A2~ uF1&^F1u2uC2&^C2u!
~5!

with the mean value

^B&5b, 0<b<2A2 ~6!

~i.e., we have only one constraint!. Here, the observable i
expressed in terms of the so-called Bell basis@14# given by

c 1
~2!

[F75
1

A2
~ u↑↑&7u↓↓&),

c 3
~0!

[C65
1

A2
~ u↑↓&6u↓↑&). ~7!

Let us now apply the Jaynes inference scheme to these
Then the Jaynes state, calculated directly by use of form
~3! is given by

%J5 1
4 F S 12

b

A2
1

b2

8 D uF1&^F1u

1S 11
b

A2
1

b2

8 D uC2&^C2u

1S 12
b2

8 D ~ uC1&^C1u1uF2&^F2u!G . ~8!

We see that the state is diagonal in the Bell basis. Let us
check the separability of the state. There is a simple sep
bility criterion for the Bell diagonal states@15#, namely, such
a state is separable if, and only if, all its eigenvalues do
exceed1

2 . Then, we obtain that forb.422A2, the state is
inseparable. Thus for that value ofb using the Jaynes prin
ciple we infer the presence of entanglement. Now we w
see that forb<A2 there exists aseparablestate, which sat-
isfies the considered data. This is the following state:

%5
b

2A2
uF1&^F1u1S 1

2
2

b

4A2
D ~ uC1&^C1u1uF2&^F2u!

~9!
ce
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for b<A2. So within the region 422A2,b<A2, the
Jaynes principle produces fake entanglement: the Ja
state isinseparable, while there is aseparablestate~9! sat-
isfying the data.

One could think that this difference between the two typ
of inference is due to the fact that the used observabl
nonlocal, i.e., it cannot be measured itself without int
change of quantum information between the observers. If
measurments are performed locally, then the mean valu
the Bell-CHSH observable is not the only measured quan
as we simultaneously obtain the mean values of the prod
observables, which add up to the observable. Moreover
measuring the product observable, we gain additional in
mation. Indeed, if the correlations are measured, the m
ginal distributions are also obtained. To show that nonloc
ity of observables is not necessary to get fake entanglem
via the Jaynes principle, let us consider the following da
which could be obtained by distant observers~who can com-
municate only by means of classical bits!,

^A2sx^ sx&5^A2sz^ sz&5
b

2
,

^sx^ I &5^sz^ I &5^I ^ sx&5^I ^ sz&50. ~10!

One can easily see that the Jaynes state is now the same
the previous case, and the state~9! still satisfies these con
straints. So we have obtained that even if the data come f
measurements, which do not involve quantum-correlated
servables, the Jaynes principle still produces wrong infere
about entanglement.

Then, it follows that the above result has no classi
counterpart. Indeed, in a classical case, the Jaynes prin
can also fake correlations, provided that the used observa
arecorrelated. Here, we applied observables that are cor
lated, but are notquantumcorrelated. Still, however, the
Jaynes principle fakes the quantum correlations.

III. POSSIBLE INFERENCE SCHEME FOR QUANTUM
ENTANGLEMENT PROCESSING: MINIMIZATION

OF ENTANGLEMENT

A. Inference scheme

In the previous section we showed that the stand
method of state estimation, which is the Jaynes principle
not universal. Since one cannot imagine a fully univer
inference scheme, there is no way to obtain full knowled
from partial knowledge; the used inference scheme must
pend on the particular context, i.e., on the purposes for wh
the estimated state is needed. Here we deal with entan
ment processing~that is, we would like to use entangleme
for some practical purposes!. Let us now propose a natura
inference scheme for this situation. As mentioned before,
scheme must produce a separable state if only there exi
separable state compatible with the data. A natural pro
dure, which allows us to avoid producing fake entangleme
is minimization of entanglement. Clearly the latter must be
somehow quantified. To this end one uses the so-called m
sures of entanglement, which vanish for separable states~the
latter represent no entanglement! @16#. Hence, a reasonabl
inference scheme should involve minimization of a chos
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measure of entanglement. Then one can be sure that i
data could be produced by a separable state, the estim
state would also be separable.

The problem is that the measures are usually not stri
convex. As a consequence, under a given set of constrain
type~1!, the state of minimum entanglement does not nee
be unique. To overcome the difficulty, we propose to ma
mize the von Neumann entropyafter minimization of en-
tanglement. Such a procedure produces aunique representa-
tive state@19#. We shall denote it by%E whereE is the used
measure of entanglement.

B. Bell constraints

Before we provide an example of the use of our sche
let us introduce the notion of the so-called Bell constrain
They are characterized by the following condition: any st
that fulfills the constraints would also satisfy them if su
jected to dephasing~removing off-diagonal elements! in the
Bell basis. It turns out that for the Bell constraints, the nu
ber of the state parameters, which are to be varied within
minimization procedure, can be considerably reduced. T
follows from the following lemma.

Lemma.For the Bell constraints the representative st
%E is diagonal in the Bell basis~independently on the use
entanglement measure!.

Proof. To prove the lemma we note two important pro
erties of the operation of dephasing in the Bell basis~7!.
Namely, such an operation~i! does not increase entangl
ment ~for any possible entanglement measure! and ~ii ! does
not decrease entropy. In other words, for any state%, we
have

E~%B!<E~% !, S~%B!>S~% !, ~11!

where %B is the state resulting from% after performing
dephasing in the Bell basis

%→%B5(
i 50

3

Pi
B%Pi

B ~12!

with Pi
B5uc i&^c i u. To see that~i! holds, it suffices to note

that the above operation can be alternatively represented
random application of one of four local unitary transform
tions ~cf. Appendix A in Ref.@20#!,

%B5
1

4 (
i 5x,y,z,0

s i ^ s i%s i ^ s i , ~13!

wheres i , i 5x,y,z are Pauli matrices ands05I is iden-
tity. As such an operation does not require exchange of qu
tum information between Alice and Bob, it cannot increa
entanglement. This is independent on possible used m
sures. The property~ii ! follows from the fact that removing
off-diagonal elements in any basis does not decrease the
tropy @6#.

Let us take the state%E , which is representative unde
some Bell constraints. Consider a new state%E

B given by

%E
B5(

i
Pi

B%EPi
B . ~14!
he
ted
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By definition of the Bell constraints,%E
B also satisfies them

According to the properties~i! and ~ii !, we haveE(%E
B)

<E(%E) andS(%E
B)>S(%E). But as%E is the representative

state, no other state satisfying the constraints can be
entangled; hence,E(%E

B)5E(%E). As the state%E is unique
among the states of minimum entanglement, no other s
can have entropy greater than or equal to%E . As a result we
have %E

B5%E . But this means that the state%E does not
change under the measurement in the Bell basis. This is
sible if, and only if,%E is diagonal in this basis. This ends
the proof of the lemma.

From the lemma it follows that for the Bell constraint
one can perform the procedure of minimization of entang
ment ~and subsequent maximization of entropy! only over
the Bell diagonal states and in this way would obtain t
same result as if the procedure were performed over
whole set of states satisfying the constraints. Let us str
here that the lemma applies to any entanglement measur
it uses general features of entanglement, which must be
isfied by any measure.

C. Examples

Here we will apply our scheme to the constraints~9!. Of
course, asB is diagonal in the Bell basis, it forms Bell con
straints. Indeed, for any state%, we have

b5Tr %B5TrS %(
i

Pi
BBPi

BD 5TrS (
i

Pi
B%Pi

BBD .

~15!

Hence the state after measurement still satisfies the
straints. So we can now deal only with Bell diagonal stat
which satisfy the constraints.

In our analysis we will use two measures: entanglem
of formation Ef @20# and relative entropy entanglementEr
@21#. Both of them are calculated for the two spin-1

2 states
diagonal in the Bell basis~7! @22#. In this case both the
measures depend only on the largest eigenvalueF of a given
state and are increasing functions ofF @20,21#,

Ef5H@ 1
2 1AF~12F !#, Er5 ln 22H~F !, ~16!

for F. 1
2 and Er5Ef50; otherwise, hereH(x)52x ln x

2(12x)ln(12x). Therefore if the state of minimum entangle
ment is diagonal in the Bell basis, it is of thesameform for
both measures~i.e.,%Ef

5%Er
). So, in our case, the two mea

sures will produce the same representative state, call it%E .
To obtain it we need to minimize the largest eigenvalue
the state of the form

%5p1uF1&^F1u1p2uC2&^C2u1p3uC1&^C1u1p4uF2&

3^F2u, ~17!

where ( i pi51, pi>0, and p12p25b/2A2. Note that ifb
<A2, then forp25 1

2 2b/2A2 the state is separable as th
the largest eigenvalue isp15 1

2 . This is compatible with the
results of Sec. II. We will not calculate the state%E in this
case: if the estimated state is separable~hence useless fo
quantum communication!, one is not especially interested i
its particular form. Forb.A2, the state~17! is always in-
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separable asp1. 1
2 . The latter is minimal ifp250. Then we

obtain the family of states with minimal entanglement of t
form

%5
b

2A2
uF1&^F1u1p3uC1&^C1u1p4uF2&^F2u.

~18!

Subsequently, maximizing the von Neumann entropy, we
tain the representative state%E of the form

%E5
b

2A2
uF1&^F1u

1S 1

2
2

b

2A2
D ~ uC1&^C1u1uF2&^F2u!, ~19!

for b.A2. As seen, the scheme of minimization of entang
ment allows us to check whether there exists a separ
state for given constraints. Here we obtained that only
b<A2 it is the case~we used it in the previous section!. For
b.A2 the data do not admit separable state; still, howe
we have a quantitative difference: the Jaynes state exhib
too ‘‘optimistic’’ value of entanglement. Indeed, the large
eigenvalue of%J is greater than the one of%E . Hence, fol-
lowing remarks on entanglement measure~16!, the first state
has greater entanglement than the second one.

Let us now consider the constraints given by the projec
P2 corresponding to the singlet state vectorC2. One can
check that here%E5%J for any mean valueF5Tr %P2 and
both the states are equal to a suitable Werner state@11,23#
~we again deal with Bell constraints!. So, in this case, if the
Jaynes state is inseparable, then the data certainly do
come from any separable state. This involves an interes
problem: for which type of constraints does the Jayn
scheme fail? However, it goes beyond the scope of this
per.

Finally, it is worth mentioning how the problem of th
entanglement processing with incomplete data appeared
plicitly in the context of the protocols of entanglement d
tillation. Namely, the first proposed distillation scheme@24#
is based on information about the state given just by
projector P2 . As a result, in contrast with more gener
schemes that involve full knowledge about the state@25#, it
works only forF. 1

2 . In the present context, this appears
be a consequence of the fact that the minimum entanglem
s
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state forF< 1
2 is separable. Now, if the real state is in fa

inseparable, we must gain some more information~i.e., in-
crease the number of observables! to be able to distill the
state.

IV. CONCLUDING REMARKS

In conclusion, we have considered the problem of sta
tical inference of incomplete data in the context of entang
ment processing. We have shown that the Jaynes princ
when applied to composite quantum systems can prod
fake entanglement. We have suggested a statistical infer
scheme based on minimization of entanglement.

One can ask what is the place of the two inferen
schemes~the entropic one and the entanglement one! in
quantum communication theory. It seems that they are,
way, complementary. As the quantum noisy channels
usually described in terms of entanglement@20,26#, the
scheme proposed in this paper could be a suitable tool
estimation of parameters of quantum channels. On the o
hand, the capacity of a quantum source is described by
Neumann entropy@27#. Thus the Jaynes principle is here th
natural scheme. Indeed, it has been recently shown tha
Jaynes scheme offers optimal compression of quantum in
mation if we have partial knowledge about the source para
eters@28#.

We hope that the present results will stimulate furth
effort to clarify the problem of statistical inference for e
tanglement processing. As the Jaynes scheme plays a fu
mental role in the understanding of the statistical thermo
namics@3#, we believe that the development of the theory
entanglement~or more generally, quantum information! pro-
cessing of incomplete data will be crucial in the construct
of a kind of ‘‘thermodynamics of entanglement’’@29,17,30#.
In particular, in Refs.@30# the distillable entanglement wa
proposed to be an analogue of free energy. Then, if we u
the distillable entanglement as a suitable entanglement m
sure in our scheme, we would obtain an interesting analo
of minimization of free energy~condition of thermodynami-
cal equilibrium!.
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