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Entanglement processing and statistical inference:
The Jaynes principle can produce fake entanglement
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We show, by explicit examples, that the Jaynes principle when applied to compound quantum systems may
produce theentangledmaximum entropy states compatible with data coming froonentangledseparable
states. It means that the Jaynes statistical inference scheme may lead to a wrong conclusion about entangle-
ment, which is a crucial parameter in quantum information theory. We suggest that in all the processes where
entanglement is needed, the proper inference scheme should involve minimization of entanglement. Examples
illustrating the proposed scheme are provid&1050-2947@9)02303-3

PACS numbd(s): 03.65.Bz

. INTRODUCTION aINZ(N) _
_T:a" i=1,...p. (4)
It is well known that quantum mechanics allows us to !
reconstruct completely a state of the quantum-mechanical
system from mean values of a complete system of observ- The above maximum-entropy principler Jaynes prin-
ables measured on the ensemble of identically prepared sysiple) was applied for partial reconstruction of pure and
tems[1]. By a complete set of observablgk], one means mixed states of many different systefif§. In particular, it
the maximal set of linearly independent observables wherallowed us to interpret quantum statistical mechanics as a
the trivial observable represented by an identity operator ispecial type of statistical inferen¢8] based on the entropic

excluded. In practice we often deal with situations when thecriterion.

state of the system is unknown and only mean vahjesgi The Jaynes principle is the most rational inference scheme
=1,...p) of someincompleteset of observable$A;}F_, in the sense that it does not permit us to draw any conclu-
are available from experiments, i.e., sions unwarranted by the experimental data. However, this
argument making the principle plausible does not actually

TreA=(A)=a, i=1,...p. ) prove it[6]. In this context one can ask the guestion: Is the

entropic criterion universal? Surprisingly, as we will show in
Then, of course, there can be many states, which are iflis paper, therare situations where the Jaynes principle
agreement with the measured data. It involves the problem dgils. This concerns compound quantum systems that have
estimation of the state on the basis of the exact mean valudggcently attracted much attention due to the new phenomena
of given observables. According to the maximum entropysuch as quantum teleportatipfl, quantum dense codirig],
principle[2—4], we have to choose from a set of statethat O quantum cryptographjg].

fulfill the constraint(1), the most probabléor representative In all the above effects the most important characteristics
stateg;, which maximizes the von Neumann entropy, of state is entanglemeiir inseparability [10]. Suppose we

need the entanglement to deal with one of these effects hav-

S(o)=—Trelno. (2)  ing, however, the compound system in an unknown state and
someincompletedata of type(1). Then, usually, to proceed

Then, the representative statg is given by[3] further, we must somehow estimate the state of the system

from the data. But what scheme of inferring can be used in

p this case? The fact that we need the entanglement for our

QJ:Z()\)lexp{ _Z )\iAi)r ©) purposes imposes a basic condition on possible inference

i=1 schemes. Namely they certainly should not give us an in-

separable estimated state if only theoretically there exists a
where Z(N)=Trexp(—=P_ ;N\ Ay) is the partition function separable state compatible with the measured data. Other-
and the vectol(a)=(\q, ... ,\,) is uniquely determined wise, it may happen that we get into trouble trying to use the
by the vectora=(ay, ... a,), entanglement we inferred to be present, while in fact, there is
no entanglement at all. In this paper we show that the Jaynes

principle when applied to composite systems may produce

*Electronic address: fizrh@univ.gda.pl fake entanglement, i.e., the maximum entropy state compat-
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in all the processes involving entanglement, one must replader b<.2. So within the region 42\2<b=<.2, the

the Jaynes scheme by the one governed by minimization afaynes principle produces fake entanglement: the Jaynes
entanglement. In Sec. Il we provide explicit examples of datastate isinseparable while there is aseparablestate(9) sat-

for which there exists aseparablestate compatible with isfying the data.

them, while the state obtained by means of the Jaynes prin- One could think that this difference between the two types
ciple is inseparable(entangled In Sec. Ill we propose a of inference is due to the fact that the used observable is
scheme based on minimization of entanglement and comparenlocal, i.e., it cannot be measured itself without inter-
it with the Jaynes scheme. In the last section we discuss thehange of quantum information between the observers. If the
results, in particular, in the context of the thermodynamicalmeasurments are performed locally, then the mean value of

analogies in quantum information theory. the Bell-CHSH observable is not the only measured quantity
as we simultaneously obtain the mean values of the product

Il. JAYNES PRINCIPLE VERSUS ENTANGLEMENT: observables, which add up to the observable. Moreover, by
COUNTEREXAMPLES measuring the product observable, we gain additional infor-

_ ) mation. Indeed, if the correlations are measured, the mar-
As the first example we will take the Bell-CHSH observ- ging)| distributions are also obtained. To show that nonlocal-
able[12], ity of observables is not necessary to get fake entanglement
e _ _ via the Jaynes principle, let us consider the following data,
B=\2(0x® 05+ 0,8 0,) =2\2(| @)D |- [ W WP ) which could be obtained by distant observémio can com-
®) municate only by means of classical bjts

with the mean value

b
2 X X = 2 z z =5
(B)=b, 0<b=2\2 © (V20,8 0)=(2090)= 5

(i.e., we have only one constraintHere, the observable is (ox@l)=(o,®1)=(I®0)=(I®0,)=0. (10

expressed in terms of the so-called Bell bd4i] given by ) ] )
One can easily see that the Jaynes state is now the same as in

the previous case, and the st&® still satisfies these con-

l/,é)zqf :i(HT)IUU), straints. So we have obtained that even if the data come from
V2 measurements, which do not involve quantum-correlated ob-
servables, the Jaynes principle still produces wrong inference
. about entanglement.
Yo=Y ZE(HUiHT))- (7 Then, it follows that the above result has no classical

counterpart. Indeed, in a classical case, the Jaynes principle
gan also fake correlations, provided that the used observables

re correlated Here, we applied observables that are corre-
ated, but are noguantumcorrelated. Still, however, the
Jaynes principle fakes the quantum correlations.

Let us now apply the Jaynes inference scheme to these da
Then the Jaynes state, calculated directly by use of formul
(3) is given by

b b?
0= %{ ( 1- — 5 | DD lIl. POSSIBLE INFERENCE SCHEME FOR QUANTUM
V2 ENTANGLEMENT PROCESSING: MINIMIZATION
b b2 OF ENTANGLEMENT
1+ E‘F ARAE A. Inference scheme
) In the previous section we showed that the standard
b method of state estimation, which is the Jaynes principle, is
_ + + - - ’ ’
1 8)(|T AL AT ® ot universal. Since one cannot imagine a fully universal

inference scheme, there is no way to obtain full knowledge

We see that the state is diagonal in the Bell basis. Let us noWfm partial knowledge; the used inference scheme must de-
check the separability of the state. There is a simple separ®€nd on the particular context, i.e., on the purposes for which
bility criterion for the Bell diagonal statdd 5], namely, such the estimated state is needed. Here we deal with entangle-
a state is separable if, and only if, all its eigenvalues do nof?€nt processingthat is, we would like to use entanglement

exceed:. Then, we obtain that fob>4— 2.2, the state js [0 Some practical purposes.et us now propose a natural
inseparable Thus for that value ob using the Jaynes prin- inference scheme for this situation. As mentioned before, the

ciple we infer the presence of entanglement. Now we willsScheme must produce a sepafable state if only there exists a
see that fob= 2 there exists separablestate, which sat- separable state compatible with the data. A natural proce-

isfies the considered data. This is the following state: 'dure', ‘.Nh.'Ch 'allows us to avoid producing fake entanglement,
is minimization of entanglemenClearly the latter must be

b 1 b somehow quantified. To this end one uses the so-called mea-
o=——|® NPT+ ( Z_ _) (¥ w*|+|@-Wp-|)  Sures of entanglement, which vanish for separable stites
2\/5 2 4\/5 latter represent no entanglemeht6]. Hence, a reasonable
9 inference scheme should involve minimization of a chosen
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measure of entanglement. Then one can be sure that if tHBy definition of the Bell constraintg 2 also satisfies them.

data could be produced by a separable state, the estimatg@dcording to the propertiesi) and (i), we haveE(gg)

state would also be separable. <E(gg) andS(eE)=S(gg). But asgg is the representative
The problem is that the measures are usually not strictlgtate no other state satisfying the constraints can be less

convex. As a consequence, under a given set of constraints ghtangled; hencé(0?)=E(og). As the stateog is unique

type (1), the state of minimum entanglement does not need 9, ,ong the states of minimum entanglement, no other state

be unlﬂue. To '(\)Ivercome the difficulty, we propose ]EO MaXl-can have entropy greater than or equabto As a result we
mize the von Neumann entropfter minimization of en- e 0B~ 5 Bt this means that the stat. does not

tanglement. Such a procedure producesigue representa- change under the measurement in the Bell basis. This is pos-

tve State[lfg]' We shall denote it b whereE s the Used  siple if, and only if,e is diagonalin this basis. This ends
measure of entangiement. the proof of the lemma.

_ From the lemma it follows that for the Bell constraints,
B. Bell constraints one can perform the procedure of minimization of entangle-

Before we provide an example of the use of our schemenent (and subsequent maximization of entrpmnly over
let us introduce the notion of the so-called Bell constraintsthe Bell diagonal states and in this way would obtain the
They are characterized by the following condition: any statesame result as if the procedure were performed over the
that fulfills the constraints would also satisfy them if sub-Wwhole set of states satisfying the constraints. Let us stress
jected to dephasingremoving off-diagonal elementin the  here that the lemma applies to any entanglement measure, as
Bell basis. It turns out that for the Bell constraints, the num-it uses general features of entanglement, which must be sat-
ber of the state parameters, which are to be varied within thisfied by any measure.
minimization procedure, can be considerably reduced. This
follows from the following lemma. C. Examples

Lemma.For the Bell constraints the representative state
¢e is diagonal in the Bell basiéndependently on the used
entanglement measyre

Proof. To prove the lemma we note two important prop-

Here we will apply our scheme to the constraif@s Of
course, aB is diagonal in the Bell basis, it forms Bell con-
straints. Indeed, for any stagg we have

erties of the operation of dephasing in the Bell basis
Namely, such an operatiofi) does not increase entangle- bZTrQBZTF<QZ PiBBPiB):Tr > PiBQPiBB)-
ment (for any possible entanglement meaguaad (i) does ! ! (15
not decrease entropy. In other words, for any sw@tewe
have Hence the state after measurement still satisfies the con-
straints. So we can now deal only with Bell diagonal states,
E(es)<E(e), S(es)=S(0), 11 which satisfy the constraints.

In our analysis we will use two measures: entanglement
of formation E; [20] and relative entropy entanglemeB
[21]. Both of them are calculated for the two spinstates

where o is the state resulting fronp after performing
dephasing in the Bell basis

3 diagonal in the Bell basig7) [22]. In this case both the
0—0g= E PBoPB (12) measures depend only on the largest eigenvialoga given
= ' state and are increasing functionsFof20,21],

with PE=|4;)(si|. To see thati) holds, it suffices to note Ei=H[3+VF(1-F)], E,=In2—H(F), (16

that the above operation can be alternatively represented as a

random application of one of four local unitary transforma-for F>3 and E,=E;=0; otherwise, hereH(x)=—xInx

tions (cf. Appendix A in Ref.[20]), —(1-X)In(1—x). Therefore if the state of minimum entangle-
ment is diagonal in the Bell basis, it is of tsameform for

1 both measure§.e., Q= QEr). So, in our case, the two mea-

QB:Ziz%,Z’O Ti®0iRIi® i, 13 sures wil produce the same representative state, call it
To obtain it we need to minimize the largest eigenvalue of
whereo;, i=x,y,z are Pauli matrices and,=1 is iden-  the state of the form

tity. As such an operation does not require exchange of quan- N N _ _ N N _
tum information between Alice and Bob, it cannot increase &= Pal® )@ [+ P2l W)W ™|+ ps[ W) (W ™|+ py @)
entanglement. This is independent on possible used mea- X(d, (17)
sures. The properttii) follows from the fact that removing

off-diagonal elements in any basis does not decrease the efghere =,p;=1, p;=0, andp,;— p,=b/2\/2. Note that ifb

tropy [6]. o _ <2, then forp,=1—b/2y2 the state is separable as then
Let us take the stat@g, which is representative under the |argest eigenvalue js,= 1. This is compatible with the
some Bell constraints. Consider a new stafegiven by results of Sec. IIl. We will not calculate the state in this
case: if the estimated state is separalfience useless for
uantum communicationone is not especially interested in
0p=23 PPocP?. (a9 9 on pecially

its particular form. Fob> /2, the statg(17) is always in-
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separable ap;>3. The latter is minimal ifp,=0. Then we state forF<3 is separable. Now, if the real state is in fact
obtain the family of states with minimal entanglement of theinseparable, we must gain some more informatiog., in-
form crease the number of observablés be able to distill the
state.
b + + + + - -
e 2\/§|(b HTH P )T+ pa| € 7) (D], IV. CONCLUDING REMARKS
(18) In conclusion, we have considered the problem of statis-
Subsequently, maximizing the von Neumann entropy, we obtical inference of incomplete data in the context of entangle-
tain the representative stagg: of the form ment processing. We have shown that the Jaynes principle
when applied to composite quantum systems can produce
fake entanglement. We have suggested a statistical inference
b scheme based on minimization of entanglement.
QE=m|‘D+><q’+| One can ask what is the place of the two inference
schemes(the entropic one and the entanglement )oire
1 b quantum communication theory. It seems that they are, in a
+<___ (PN H+]|DNDT]), (19  Wway, complementary. As the quantum noisy channels are
2 22 usually described in terms of entanglemd0,26], the
o scheme proposed in this paper could be a suitable tool for
for b> /2. As seen, the scheme of minimization of entangle-estimation of parameters of quantum channels. On the other
ment allows us to check whether there exists a separablgang, the capacity of a quantum source is described by von
state for given constraints. Here we obtained that only folNeymann entropy27]. Thus the Jaynes principle is here the
b<+2 itis the casdwe used it in the previous sectioFor  natural scheme. Indeed, it has been recently shown that the
b> /2 the data do not admit separable state; still, howeverjaynes scheme offers optimal compression of quantum infor-

we have a quantitative difference: the Jaynes state exhibits@ation if we have partial knowledge about the source param-
too “optimistic” value of entanglement. Indeed, the largest eters[28].

eig(_anvalue ofe, is greater than the one @fz. Hence, fol- We hope that the present results will stimulate further
lowing remarks on entanglement meas(ik®), the first state  effort to clarify the problem of statistical inference for en-
has greater entanglement than the second one. tanglement processing. As the Jaynes scheme plays a funda-

Let us now consider the constraints given by the projectomental role in the understanding of the statistical thermody-
P_ corresponding to the singlet state vectbr. One can namics[3], we believe that the development of the theory of
check that her@g= @, for any mean valu&=TroP_ and  entanglemenfor more generally, quantum informatjopro-
both the states are equal to a suitable Werner $&tg?3  cessing of incomplete data will be crucial in the construction
(we again deal with Bell constraintsSo, in this case, if the of a kind of “thermodynamics of entanglemenf29,17,3(Q.
Jaynes state is inseparable, then the data certainly do npt particular, in Refs[30] the distillable entanglement was
come from any separable state. This involves an interestingroposed to be an analogue of free energy. Then, if we used
problem: for which type of constraints does the Jayneshe distillable entanglement as a suitable entanglement mea-
scheme fail? However, it goes beyond the scope of this pasure in our scheme, we would obtain an interesting analogue
per. of minimization of free energycondition of thermodynami-

Finally, it is worth mentioning how the problem of the cal equilibrium.
entanglement processing with incomplete data appeared im-
plicitly in the context of the protocols of entanglement dis-
tillation. Namely, the first proposed distillation schef24] ACKNOWLEDGMENTS
is based on information about the state given just by the
projector P_. As a result, in contrast with more general This work was supported by the Polish Committee for
schemes that involve full knowledge about the sfafg], it  Scientific Research under Contract No. 2 PO3B 024 12. M.H.
works only forF>1. In the present context, this appears toand P.H. kindly acknowledge support from the Foundation
be a consequence of the fact that the minimum entanglemefar Polish Science.
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