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Energy-reflection symmetry of Lie-algebraic problems: Where the quasiclassical
and weak-coupling expansions meet
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We construct a class of one-dimensional Lie-algebraic problems based on sl~2!, where the spectrum in the
algebraic sector has a dynamical symmetryE↔2E. All 2 j 11 eigenfunctions in the algebraic sector are
paired and inside each pair are related to each other by a simple analytic continuationx→ ix, except the zero
mode appearing ifj is integer. Atj→` the energy of the highest level in the algebraic sector can be calculated
by virtue of the quasiclassical expansion, while the energy of the ground state can be calculated as a weak-
coupling expansion. Both series coincide identically.@S1050-2947~99!00703-9#

PACS number~s!: 03.65.Sq, 02.70.Hm
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I. INTRODUCTION

A hidden algebraic structure of the quasiexactly solva
~QES! Hamiltonians @1–4# leads to nontrivial dynamica
properties of the QES systems. One such property was
served in@5#: It was noted that all levels in the algebra
sector of the simplest QES problem@see Eq.~1! below# are
symmetric underE↔2E. This property will be referred to
as theenergy-reflection~ER! symmetry. In the present pape
we derive a class of one-dimensional QES Hamiltonia
with this property and explore the consequences of the
symmetry. A relation between the weak-coupling and qua
classical expansions will be established.

One-dimensional QES problems are based on a~hidden!
sl~2! algebra; they are characterized by one quantized~coho-
mology! parameterj, where j is a half integer@6,7#. The
number of levels in the algebraic sector is 2j 11. In the
systems to be constructed below each state in the alge
sector with the energy eigenvalue2E (E.0) is accompa-
nied by a counterpart with energyE if 2 j 11 is even. If 2j
11 is odd, a zero mode exists, while the remaining 2j levels
come in pairs$c2E ,cE%. The eigenfunctions of the ER
symmetric levels are related to each other by a straight
ward analytic continuation

x→ ix, cE→c2E .

At large j the number of states in the algebraic sector
large. The highest levels still belonging to the algebraic s
tor can be regarded as highly excited states and as suc
amenable to the quasiclassical treatment@8#. The parameter
of the quasiclassical expansion is 1/j . At the same time, the
lowest levels from the algebraic sector are close to thos
the harmonic oscillator. The anharmonicity is small and
determined by a small parameter related to 1/j . Under the

*On leave of absence from Institut Teoreticheskoi
Eksperimental’noi Fiziki, Moscow 117259, Russia.
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circumstances, one can develop a standard weak-coup
perturbation theory and calculateE as a series in the wea
coupling. Since the energy eigenvalues of the highly exci
and low-lying ER partners coincide, up to sign, the qua
classical expansion and the weak-coupling expansion in
QES problems with the ER symmetrymust be identical. We
discuss how this identity is implemented, taking as a rep
sentative example the ground state and its counterpart.

The simplest QES problem with the ER symmetry know
for a long time@5# is the sextic anharmonic oscillator, with
quantized coefficient in front ofx2,

H5
1

2
@p21~x62~8 j 13!x2!#, j 50,

1

2
,1,

3

2
, . . . . ~1!

In this case the algebraic sector consists of 2j 11 levels of
positive parity. The general QES potential possessing the
symmetry involves certain elliptic functions and is related
some problems of practical importance.

II. GENERALITIES

The strategy we follow is described in@1# ~see also@7#!
while the notation is borrowed from@5#. The generators of
the sl~2! algebra are defined as

T152 j j2j2
d

dj
, T052 j 1j

d

dj
, T25

d

dj
. ~2!

If j is a non-negative half-integer number, a finit
dimensional irreducible representation exists,

R2 j 115$j0,j1, . . . ,j2 j%, ~3!

where the subscript indicates the dimension of the repre
tation. In general, the generatorsT6 have the meaning of the
raising ~lowering! operators

Rn→
T6

Rn61 , while Rn→
T0

Rn .
i
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1792 PRA 59M. SHIFMAN AND A. TURBINER
The generic QES sl~2!-based Hamiltonian is representable
a quadratic combination of the generatorsT6 andT0,

Ĥ5(
6,0

~CabT
aTb1CaTa!1C, ~4!

where Cab , Ca , and C are parameters. One can alwa
eliminateC01 and C20 in favor of C10 and C02 , respec-
tively, due to the sl~2! commutation relations. Moreove
C12 andC21 can be eliminated in favor ofC00, as a con-
sequence of the irreducibility of the representationR2 j 11
@i.e., T1T21T2T112T0T052 j ( j 11)]. The reference
point for the energy is fixed by settingC50.

After a change of variable and a~quasi!gauge transforma
tion the operatorĤ can be always reduced to the Schro¨dinger
form

Ĥ→H[e2a~j!Ĥea~j!uj5j~x!52
1

2

d2

dx2
1V~x!. ~5!

The key element in constructing the QES Hamiltonians w
the ER symmetry is the following observation@9#: Any tridi-
agonal matrix of the form

3
0 u1 0 0 ••• 0

l 1 0 u2 0 ••• 0

0 l 2 0 u3 ••• 0

••• ••• ••• ••• ••• •••

0 0 0 ••• 0 un

0 0 0 ••• l n 0

4 ~6!

leads to the characteristic equation

EPn/2~E2!50 ~n even!,
~7!

P̃~n11!/2~E2!50 ~n odd!,

wherePn/2(z) andP̃(n11)/2(z) are polynomials ofz of degree
n/2 and (n11)/2, respectively, andn is defined in Eq.~6!.
Thus any matrix of the form~6! guarantees the ER symmet
of the spectrum. It is evident that the Lie-algebraic Ham
tonian~4! has the matrix representation~6! provided the sum
in Eq. ~4! doesnot include the termsT1T1, T2T2, T0T0,
and T0. Thus the most general form of the Lie-algebra
Hamiltonian compatible with Eq.~6!, which, as was ex-
plained, ensures the ER symmetry in the algebraic sector1

Ĥ5aT1T01bT0T21gT11dT2

5A~j!
d2

dj2
1B~j!

d

dj
1C~j!, ~8!

1The representation~6! is a sufficient but not necessary conditio
At some specific values ofn there may exist QES systems with th
ER symmetry that do not fall in the class of systems we built.
h

-

is

wherea, b, g, andd are numerical constants andA, B,
and C are polynomials inj of the third, second, and firs
degree, respectively,

A~j!52aj31bj, B~j!5@a~3 j 21!2g#j21~d2b j !,

C~j!52~g j 2a j 2!j. ~9!

Not all of the four constants above represent physically
teresting parameters. In general, two constants can be fi
by a combination of rescalings of the variablej and the
energy. Using this freedom and starting from nonvanishinga
and b, one can always reduce them to the ‘‘standard’’a
5b522 ~see below!. The parametersg andd remain free.

Requiring the matrix~6! to have nonvanishing eigenva
ues leads to a constraint that neither the parameters (a,g)
nor (b,d) can be set to zero. One of the parameters in e
pair can vanish however. For instance, ifa50 the general
elliptic potential degenerates into a polynomial potenti
Thus the example presented in Eq.~1! is nothing but a de-
generate case of Eq.~8!: It corresponds toa50, b5d5
22, andg52(2 j 11).

Needless to say,j is an additional free parameter taking
discrete set of values. Thus we deal with the three-param
family of potentials: two continuous and one discrete.

III. ELLIPTIC POTENTIALS: SPECIAL CASE

Prior to considering the general QES potentials with
ER symmetry we find it illuminating to discuss a few repr
sentative examples. We start from

a5b522, g52~8n16 j 11!, d52~2 j 11!,
~10!

wheren is a constant. Sincen is free, so isg; the parametri-
zation of g above, in terms ofn and j, will be considered
standard. Physical arguments~e.g. the stability of the poten
tial! requiren to be non-negative. The parameterd is fixed
for the time being. Later on we will letd vary too.

The physical variablex in Eq. ~5! is determined by the
inversion of the equation

S dj

dxD
2

54j24j3 ~11!

~see @1,3#!. Equation ~11! has the solutions2P(x) and
1/P(x), whereP is the Weierstrass function. One could u
either of them; the second solution is more convenient
our purposes. Thus

j~x!5
1

P~x!
, g254, g350, ~12!

whereg2,3 are the invariants of the Weierstrass function. F
the time being it is assumed thatjP@0,1# and xP@0,x* #,
where

x* 5E
0

1 dj

2Aj2j3
5

ApG~5/4!

G~3/4!
'1.311. ~13!
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Later on this constraint will be relaxed. Equation~12! maps
the interval@0,x* # onto @0,1#. The functionj(x) is double
periodic in the complex plane, with the periods 2x* and
2ix* . Thus, under our choice of parameters, the paralle
gram of periods of the Weierstrass function becomes squ
The symmetry of the square immediately translates in the
symmetry of the quantal problem at hand. We will use
fact that

j~2x!5j~x!, j~ ix !52j~x!, ~14!

stemming from the properties of the Weierstrass funct
with the above periods. The expansion ofj(x) at x50 runs
in powers ofx2.

The phasea(x) of the gauge transformation and th
‘‘gauge potential’’A(x) are

a~x!5
1

4E ~dA/dj!22B

A
djU

j5j~x!

52n ln~12j2!uj5j~x!

~15!

and

A52
1

2

~dA/dj!22B

A22A
5

4nj3/2

A12j2U
j5j~x!

. ~16!

As a result, we get the following potential in the Schro¨dinger
operator~5!:

V~x!5H 4n~2n21!j3

12j2
2~8 j 212 j 116n j 16n!jJ

j5j~x!

.

~17!

@The general formula for calculating the corresponding Q
potential in the case at hand reduces to

V~x!5H C~j!1
1

2
@A~j!#22

dA~j!

dj
Aj2j3J

j5j~x!

,

whereC(j) is defined in Eq.~9!.#
This Schro¨dinger problem is quasiexactly solvable a

can be considered beyond the original interval@0,x* #. For
n50 we deal with the periodic potential defined on the e
tire x axis ~Fig. 1!, which is akin to the Lame´ problem@10#.

FIG. 1. Periodic QES potential of Eq.~17! at n50 and j 52.
-
re.
R
e

n

S

-

If n.1/2 the potential is singular atx56x* ~Fig. 2! and the
problem is defined atxP(2x* ,x* ). The conditionn.1/2
is necessary for stability. The Hamiltonian changes sign
der the transformationx→ ix,

H→2H, x→ ix,

as follows from Eq.~14!. The eigenfunctions$cE ,c2E% in
each pair interchange. The ER symmetry is explicit. Let
consider separately two cases.

~i! n50. The potential and the eigenfunctions take t
form

V~x!52
2 j ~4 j 11!

P~x!
, c~x!5P2 j~j!, ~18!

whereP2 j is a polynomial of degree 2j . At positive E the
spectrum is continuous, while the counterpart wave functi
c2E with negative-energy eigenvalues correspond to
boundaries of the Bloch zones; all these eigenfunctions
periodic. A very similar system, with a different coefficie
in front of 1/P(x), emerges atn51/2.

~ii ! n.1/2. The potential has a double-well form~Fig. 2!.
The singularity atx→6x* is of the form (x6x* )22. The
wave functions must vanish atx56x* and the spectrum is
discrete. The algebraic sector includes the ground state
2 j excited states symmetric underx→2x. If j is an integer,
one level lies exactly at zero;j levels are below and abov
zero, respectively. Ifj is a half-integer, (2j 11)/2 levels lie
below zero and the same number above.

IV. GENERIC ELLIPTIC POTENTIALS
WITH THE ER SYMMETRY

To proceed to the general case we invoke the only
maining freedom and letd in Eq. ~9! float. The following
parametrization will be used:

FIG. 2. QES potential of Eq.~17! at n51 and j 52 defined on
the interval2x* ,x,x* . The potential has a double-well shape
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d52~2 j 11!2m, ~19!

while a, b, andg are the same as in Eq.~10!. If mÞ0 Eqs.
~15!–~17! are modified as

a~x!5H 2n ln~12j2!2
m

8
ln

j2

12j2J
j5j~x!

, ~20!

A5H 4nj3/2

A12j2
2

mj21/2

2A12j2J
j5j~x!

, ~21!

and

V~x!5H 4n~2n21!j3

12j2
2~8 j 212 j 116n j 16n!j

1
m

4j

1

12j2Fm2 2~123j2!G2
2nmj

12j2J
j5j~x!

,

~22!

wherej(x) is the same as before; see Eq.~12!. By inspecting
this potential one concludes on physical grounds that

8n24.m>2. ~23!

Since the potential~22! is singular atx→0 ~it explodes as
1/x2) the problem is defined form.2 on the interval@0,x* #.
If m52 there is no singularity atx50 and the problem is
defined on the interval@2x* ,x* #. The potential is depicted
in Fig. 3.

V. x˜ ix AND H˜2H

Since the Hamiltonian we built possesses this prope
one might ask why the ER symmetry is realized only in t
algebraic sector rather than for the whole spectrum. Fr
Fig. 2 it is quite obvious that the whole spectrum cann
have this symmetry: The states at positiveE stretch indefi-
nitely, while for negativeE the lowest level is the ground
state. Although the answer to this question is rather obvio
an explanation is in order.

At arbitrary E the second-order differential equationHc
5Ec has two linearly independent solutions; let us call th
c1,2. Generically, both are non-normalizable. ForE5En one
of the solutions~say,c1) is normalizable; the other is no
ty

m
t

s,

Generically, for arbitraryn, the transformationx→ ix con-
nects a normalizable solution at positiveE to a non-
normalizable one at negativeE. The latter does not lie in the
physical Hilbert space and there is no physical symme
E↔2E. However, ifn belongs to the algebraic sector, th
transformationx→ ix does not generate a non-normalizab
solution since the phase factora is invariant underx→ ix.
Rather, in this casex→ ix connects a normalizable solutio
at positiveE to another normalizable solution at negativeE.
Both belong to the physical Hilbert space andE↔2E is a
valid symmetry.

The argument above is somewhat simplified; we
corners. Although the conclusion is perfectly valid, t
careful treatment would require the explicit introduction
the Stokes lines and consideration of sectors in the com
plane. It is important that in the problems with the E
symmetry under consideration, one doesnot jump from
one branch onto another in the process of the anal
continuation from the purely real to purely imaginary valu
of x. In this respect the situation is different from that di
cussed in@11#, where the emphasis was on problems with t
branch intertwining and the leaps from one branch o
another.

VI. THE ZERO MODE

If j is integer, there always exists a solution of the eq
tion Ĥc̃5Ec̃ with the vanishing energy eigenvalueE50.
The corresponding wave functionc̃0(j) contains only even
powers ofj, so that it is invariant underx→ ix; it can be
given in the closed form

FIG. 3. QES potential of Eq.~22! at n51, m53, and j 53
defined on the interval 0,x,x* .
c̃0~j!5 (
k50

j
j !

k! ~ j 2k!!

@g2a j #@g2a~ j 22!#•••@g2a~ j 22k12!#

@~ j 21!b2d#@~ j 23!b2d#•••@~ j 22k11!b2d#
j2k. ~24!



ra

a
ua

at
ni
th
si
am
ig

s
it

ky
p

e

es

s;
q
o
s

g

il
ad

rgy

s in
ic
1/

r

rive
y

be
ER
e-

of
n

e

ve

-

the

e i

PRA 59 1795ENERGY-REFLECTION SYMMETRY OF LIE-ALGEBRAIC . . .
VII. QUASICLASSICAL VS WEAK-COUPLING
EXPANSIONS

Consider the lowest and the highest levels in the algeb
sector in the limitj @1. We will denote them byc2E0

and

cE0
, respectively. The highest level is highly excited and

such is amenable to the quasiclassical treatment. The q
classical calculation of the energy ofcE0

was carried out2 in

Ref. @8#. On the other hand,c2E0
corresponds to a system

the bottom of the well. This system is close to the harmo
oscillator, with a weak anharmonicity. One can develop
standard perturbation theory. The quasiclassical expan
and the weak-coupling expansion have one and the s
parameter and coincide term by term, up to the overall s
@12#.

Although the assertion above is quite general and refer
all QES problems with the ER symmetry, we will elucidate
using the simplest example. This will allow us to avoid bul
formulas. The generalization to the general case is trans
ent.

As was noted in@5#, the simplest QES problem with th
ER symmetry is that of Eq.~1!. It is convenient to introduce
a slightly different notation

Ĥ522T0T22~2 j 11!T222T1,

Hc[H 2
1

2

d2

dx2
1Fx6

2
2

k

2
x2G J c~x!5Ec~x!, ~25!

wherek58 j 1353,7,11,15, . . . . We areinterested in the
limit k→`.

At largek the depth of the double-well potential becom
large and the well width small. The minima ofV(x) lie at

x56x0 , x0[~k/3!1/4. ~26!

Near, say, the right minimum

V~x!52
~k!3/2

3A3
12k~x2x0!2110S k

3D 3/4

~x2x0!31•••,

~27!

where the ellipsis denotes quartic- and higher-order term
similar expansion is valid near the left minimum. From E
~27! it is easy to find the ground-state energy in the form
an expansion in 1/k. Indeed, if we neglect exponential term
of the type exp(2Ck), whereC is a positive constant, arisin
due to tunneling from one well into another,3 the ground-
state level can be considered as that of the harmonic osc
tor slightly perturbed by cubic, quartic, etc., terms. The le

2Note that the unnumbered equation after Eq.~12! in @8# contains
errors in signs. These errors miraculously combine with ano
error @the parameter of the quasiclassical quantizationn was taken
to be (k11)/2 in Ref.@8#, while actually it is (k23)/2] to annihi-
late each other. The final expansion for the energyE0 presented in
Eq. ~13! of Ref. @8# is perfectly valid. Note that ourk corresponds
to 4J21 in @8#.

3The impact of tunneling and the issue of the analytic structur
k are discussed in more detail in Sec. VIII.
ic

s
si-

c
e
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n

to

ar-

a
.
f

la-
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ing term in the ground-state energyE0 is just the classical
energy of the particle at rest in the minimum, i.e., atx0 ,

2
~k!3/2

3A3
.

The next-to-leading term is the zero-point oscillation ene
of the harmonic oscillator

v

2
5k1/2.

Then come the corrections due to the anharmonic term
the potential~27!. The first-order correction due to the cub
term obviously vanishes. Therefore, the next term in thek
expansion ofE0 comes from the quartic term in Eq.~27!
~treated as a first-order perturbation! plus the second-orde
perturbation generated by 10(k/3)3/4(x2x0)3:

135

32

1

3A3k1/2
2

275

32

1

3A3k1/2
,

respectively. Assembling all these terms together we ar
at the following expansion for the ground state energ
2E0 :

2E052S k

3D 3/2F12
3A3

k
1

35

8k2
1O~k23!G . ~28!

So far only the lowest level was discussed. What can
said about the highest level in the algebraic sector? The
symmetry implies that the last level belonging to the alg
braic sector has the energy

E05S k

3D 3/2F12
3A3

k
1

35

8k2
1O~k23!G . ~29!

Being considered as an excited state from the full set
states of the Hamiltonian~25!, this level should have bee
labeled by (k23)/2. Indeed,c2E0

is the ground state, then
comes the firstP-odd state, the firstP-even excitation, etc.
The ground state and 2j P-even excitations belong to th
algebraic sector. The last (P-even! state from the algebraic
sector has

n5
k23

2
, ~30!

wheren is the number of zeros in the corresponding wa
function.

Let us discuss now how the very same expansion forE0
emerges in the WKB approximation@8#. It is instructive to
start from the leading WKB approximation. Bohr and Som
merfeld’s quantization rule at largen implies that

E
b

a

p dx5np5
kp

2
, k→`, ~31!

where

p5A2E2x61kx2 ~32!

r

n
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1796 PRA 59M. SHIFMAN AND A. TURBINER
anda andb are the turning points. We check that Eq.~31! is
satisfied atE5E05(k/3)3/2. It is convenient to rescale th
coordinatex,

x521/2321/4k1/4y. ~33!

Then

p~E0!5A2S k

3D 3/4

A124y613y2

5A2S k

3D 3/4

A~12y2!~112y2!2. ~34!

At E5E0 the expression forE2V factorizes and the integra
*p dx, which in general is representable through ellip
functions, in fact reduces to elementary functions@8#. Owing
to factorization, we immediately see that the turning poi
are aty561,

E
b

a

p dx5
4

3
kE

0

1

dy ~112y2!A12y25
kp

2
. ~35!

Q.E.D.
The first correction in the quasiclassical expansion can

calculated as easily as the leading term. Indeed, at this l
the only change to be done is the substitution

n→n1
1

2
5

k

2
21 ~36!

in the WKB quantization condition~31! and

E→E05S k

3D 3/2S 12
C1

k D , ~37!

whereC1 is a numerical coefficient, to be determined fro
the quantization condition

E
b

a

p~E0!dx5S k

2
21Dp. ~38!

Now p(E0) takes the form

p~E0!5A2S k

3D 3/4A12
C1

k
24y613y2

5A2S k

3D 3/4FA~12y2!~112y2!2

2
C1

2k

1

A~12y2!~112y2!2
1•••G . ~39!

We have already checked that theO(k) term in Eq. ~38!
~which corresponds to keeping the first term in the squ
brackets! impliesE05(k/3)3/2. Matching of theO(k0) term
in Eq. ~38! ~which corresponds to the second term in t
square brackets! yields

C153A3, ~40!

in full accord with Eq.~29!.
s

e
el

e

Next-to-leading corrections in the quasiclassical exp
sion are calculated too@8#; see also footnote 1 above. Th
third and higher terms in the expansion require certain mo
fications of the WKB quantization condition that go beyo
Eq. ~38!. From what we already know about the QES sy
tems under consideration, it is clear that the 1/k expansion of
E0 obtained through the WKB quantization condition mu
match the weak-coupling expansion. Six terms in the qu
classical expansion ofE0 were found in Ref.@8#. Although it
was expected, it was amusing to observe the coincide
with the first six terms in the weak-coupling expansion.

VIII. HIGH-ORDER BEHAVIOR OF THE EXPANSION

It goes without saying that the weak-coupling expans
~28! is asymptotic. This is due to the possibility of the ‘‘leak
age’’ from the right to the left well. The high-order terms a
factorially divergent and of the same sign. The behavior
the high-order terms in the 1/k series for the ground-stat
energy is determined@13# by the action of the instanton, th
classical trajectory connecting the left and right minima
the Euclidean time. Let the instanton action beS0k, where
S0 is a number that we will calculate shortly. The Bore
resummed expression for the ground-state energy has
form

E0;E dg
e21/g

g2~2S0k!21
, ~41!

where the principle-value prescription applies. The ima
nary part of the integral is canceled by the imaginary p
coming from the instanton–anti-instanton transition, whi
in turn is proportional@13# to exp(22S0k). The condition of
cancellation fixes the denominator of the integrand. Expa
ing Eq. ~41! in 1/k, we find the high-order tail of theE0
expansion

2E0;2k3/2 (
n.n0

n!
1

~2S0k!n
, ~42!

wheren0 is an integer large enough for the asymptotics to
in. The instanton action is readily calculable

S0k5E
2x0

x0
dxA2k3/2

3A3
1x62kx2, x05S k

3D 1/4

, ~43!

from where we obtain

S05 ln
11A3

A2
'0.658. ~44!

The ER symmetry and Eq.~42! imply that the very same
factorial divergence is inherent to the quasiclassical exp
sion for energies of the highly excited states. Certainly, t
phenomenon is known in the literature@14#. We find the
argument above to be an illuminating way of demonstrat
the asymptotic nature of the quasiclassical expansion. In f
it is likely that the asymptotic regime starts quite early. I
deed, the first five coefficients in the quasiclassical expans
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can be inferred from Ref.@8#. Denote the coefficients in fron
of 1/(2S0k)n by Cn . Then, from Eq.~13! of this work we
get

C3'6.57, C4'20.2, C5'117,

to be compared with the asymptotic prediction~42!

C353!56, C454!524, C555!5120.

Barring the possibility of a coincidental proximity, we con
clude thatn0 can be as low as 3.

The parameterk is related to the cohomology paramet
and is quantized. The nature of the 1/k expansions is closely
related to the singularity structure in the complexk plane. In
discussing this structure one should exercise caution s
the analytic continuation is performed from a discrete se
points k53,7,11, . . . . This is one of the reasons why th
singularity structure in the complexk plane turns out to be
totally different from that discussed in earlier works@11#,
devoted to the analytic continuation in continuous para
eters in the QES problems. There are also some other rea
responsible for the distinctions, e.g.,k appears as a coeffi
cient of a subleading term in the potential, which is impo
tant. We do not dwell on this issue here since it deserve
dedicated analysis.

The quasiclassical quantization and the associated ex
sion imply that k is an integer ~more exactly, k
53,7,11, . . . ). At thesame time, the weak-coupling expa
sion ~28! is the same independently of whether or notk
P$3,7,11, . . . %. It holds for any sufficiently largek. Both
expansions coincide order by order, to any finite order; ye
k¹$3,7,11, . . . % the physical ER symmetry is absent a
there is no reason for the coincidence of the absolute va
of energy. This means that the factorially divergent we
coupling series and the quasiclassical expansion, prese
in the square brackets in Eqs.~28! and ~29!, respectively,
define, generally speaking, two distinct functions, despite
fact that the expansionsper seare identical, order by order
The difference between these two functions is of the ty
sin(pk)exp(2Ck); it vanishes atk53,7,11, . . . . For these
and only these values ofk, making a full 2p circle in the
complex plane aroundk5`, starting from a positivek and
returning to the very same point, we smoothly interpol
between the lowest and the highest levels in the algeb
sector; their positions interchange.

IX. THE ER SYMMETRY IN THE FINITE-DIFFERENCE
PROBLEMS

We have to mention that the energy reflection symme
appears also in quantum-algebraic problems with the Ha
tonians built from finite-difference operators~such problems
naturally emerge in solid-state physics!. In order to display
this property let us consider, for instance, the dilatatio
invariant discrete operatorDj defined as

Dj f ~j!5
f ~j!2 f ~qj!

~12q!j
, ~45!
ce
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also known as the Jackson derivative~see, e.g.,@15,16#!.
Hereq is a complex number. In the limitq→1 the Jackson
symbol obviously goes into the conventional derivative.

Now one can easily introduce@17# a finite-difference ana-
log of the algebra of the differential operators~2! based on
the operatorDj , instead of the continuous derivative~for a
discussion see@7#!

T̃15$n%j2j2Dj , T̃052n̂1jDj , T̃25Dj ,
~46!

where

$n%5
12qn

12q

is the so-calledq number and

n̂[
$n%$n11%

$2n12%
.

It is easy to check that the operators~46! obey the com-
mutation relations of the quantum algebra sl2q for any value
of the parameterj 5n/2 ~see, e.g.,@18#!. If j is a non-negative
integer, the finite-dimensional representation~3! of the alge-
bra ~46! exists; it is irreducible whenq is not a prime root of
unity. The same line of reasoning that we followed to de
onstrate the ER symmetry of the Hamiltonian~8! can be used
in the case of the finite-difference generators~46!. In this
way we arrive at the conclusion that the discrete Hamilton

Ĥ5aT̃1T̃01bT̃0T̃21gT̃11dT̃2

5Ã~j!Dj
21B̃~j!Dj1C̃~j! ~47!

possesses the ER symmetry. Herea, b, g, andd are nu-
merical constants andÃ, B̃, and C̃ are polynomials of the
third, second, and first degree inj, respectively,

Ã~j!52aqj31bj,

B̃~j!5@a~$n%1n̂21!2g#j21~d2b$n%!, ~48!

C̃~j!5$n%~g2an̂!j,

wheren52 j .
It is remarkable that a particular form of this quantum

algebraic Hamiltonian~with a slightly different definition of
the discrete derivative! appears in the Azbel-Hofstadter prob
lem of the electron motion on the two-dimensional lattice
the transverse constant magnetic field@19,20#. In this case
the parameterq is a prime root of unity; it is related to the
magnetic flux through the lattice plaquette~the flux is given
by a rational number with an even denominator!.
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X. COMMENT ON THE LITERATURE

In Ref. @21# a certain ‘‘duality’’ transformation was sug
gested for the QES systems that inverts the signs of all le
belonging to the algebraic sector and simultaneously chan
the form of the potential in a concerted way. It was observ
that the potential~1! is self-dual. Thus the ER symmetry o
the Schro¨dinger problem~1! was rediscovered. It was note
then that the quasiclassical treatment of the QES probl
should be qualitatively different from that of ‘‘conventional
problems, where there is no~quasi!exact solvability. The
corresponding remark in@21# is rather vague and we feel tha
an explanation is in order here.

Suppose that the wave functions of a quantal system
treated in the WKB approximation. The WKB asymptotic
being considered in the complexx plane, contains singulari
ties at the points where the classical momentum vanis
The Stokes lines are attached to these points; they divide
complexx plane into several sectors. The appropriate WK
expression for the wave function in the given sector, wh
analytically continued across a Stokes line, may or may
match the appropriate WKB expression in another sector
other words, distinct asymptotics may apply in the differe
sectors in the complex plane. This is a general situation
the QES problems, for those levels that are determined a
braically, the wave function is analytic everywhere exce
r,

d-

3:
n

ls
es
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s

re
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s.
he

n
ot
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t
In
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t

infinity.4 One and the same asymptotics remains valid in
sectors; one can freely do analytic continuations across
Stokes lines. The singularities of separate parts of the W
expressions for the wave functions are superficial; they c
cel when all parts are assembled together. This propert
well known in the harmonic oscillator; it extends to all QE
systems however.

The observation above belongs to Vainshtein. He poin
out that the requirement of cancellation of these appa
singularities can be used in order to generate QES potent
This requirement acts as a substitute of the algebraic st
ture within the Lie-algebraic approach.
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4It is implied that the original problem is defined onxP
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finite interval, the wording must be changed appropriately.
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