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Energy-reflection symmetry of Lie-algebraic problems: Where the quasiclassical
and weak-coupling expansions meet
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We construct a class of one-dimensional Lie-algebraic problems base®pnngiere the spectrum in the
algebraic sector has a dynamical symmdiy —E. All 2j+1 eigenfunctions in the algebraic sector are
paired and inside each pair are related to each other by a simple analytic continuation except the zero
mode appearing ifis integer. Atj —« the energy of the highest level in the algebraic sector can be calculated
by virtue of the quasiclassical expansion, while the energy of the ground state can be calculated as a weak-
coupling expansion. Both series coincide identicdl§1050-2947®9)00703-9

PACS numbes): 03.65.Sq, 02.70.Hm

I. INTRODUCTION circumstances, one can develop a standard weak-coupling
perturbation theory and calculakeas a series in the weak

A hidden algebraic structure of the quasiexactly solvablecoupling. Since the energy eigenvalues of the highly excited
(QES Hamiltonians[1-4] leads to nontrivial dynamical and low-lying ER partners coincide, up to sign, the quasi-
properties of the QES systems. One such property was olglassical expansion and the weak-coupling expansion in the
served in[5]: It was noted that all levels in the algebraic QES problems with the ER symmetnyust be identicalWe
sector of the simplest QES probldisee Eq.(1) below] are  discuss how this identity is implemented, taking as a repre-
symmetric undeE« —E. This property will be referred to sentative example the ground state and its counterpart.
as theenergy-reflectiofER) symmetry. In the present paper  The simplest QES problem with the ER symmetry known
we derive a class of one-dimensional QES Hamiltoniandor a long time[5] is the sextic anharmonic oscillator, with a
with this property and explore the consequences of the ERuantized coefficient in front of?,
symmetry. A relation between the weak-coupling and quasi- . 13
classical expansions will be established. _ 2 6 /a: 5 S

One-dimensional QES problems are based dhidden H= E[p FOC=(8] +3)x)], J_0'2’1’2' e @)
sl(2) algebra; they are characterized by one quant{zetio-
mology) parameterj, wherej is a half integer[6,7]. The In this case the algebraic sector consists pt-2 levels of
number of levels in the algebraic sector i$+21. In the  positive parity. The general QES potential possessing the ER
systems to be constructed below each state in the algebragymmetry involves certain elliptic functions and is related to
sector with the energy eigenvalueE (E>0) is accompa- Some problems of practical importance.
nied by a counterpart with enerdyif 2j+1 is even. If 3
+1 is odd, a zero mode exists, while the remainindetels Il. GENERALITIES

come in pairs{¢y_g,¢g}t. The eigenfunctions of the ER- . .
symmetric levels are related to each other by a straightfor- The strategy we follow is described Ja] (see alsd7])

ward analytic continuation while the notation is borrowed frorfb]. The generators of
the s[2) algebra are defined as

X—iX, Yg—_g.
Tegje- g T=jree, Tea @
At large j the number of states in the algebraic sector is d¢’ d¢’ d¢’

large. The highest levels still belonging to the algebraic sec- . | ) , .
tor can be regarded as highly excited states and as such afe | 1S @ non-negative half-integer number, a finite-
amenable to the quasiclassical treatmi@t The parameter dimensional irreducible representation exists,
of the quasiclassical expansion ig.1At the same time, the Ry .1 ={&0,&" &) 3)
lowest levels from the algebraic sector are close to those of 2+l IR

the harmonic oscillator. The anharmonicity is small and isyhere the subscript indicates the dimension of the represen-
determined by a small parameter related th Under the  (44ion. 1n general, the generatdF$ have the meaning of the

raising (lowering) operators

+

*On leave of absence from Institut Teoreticheskoi i T T0
Eksperimental’noi Fiziki, Moscow 117259, Russia. Ry—R,+1, Wwhile R,—R,.
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The generic QES &)-based Hamiltonian is representable aswherea, B, 7y, and § are numerical constants ard B,
a quadratic combination of the generatdrs and T, and C are polynomials in¢ of the third, second, and first
degree, respectively,

H=2, (CapT" T+ CaT?) +C, @ A@=-ai+BE BO=[a(3j-1)~y&+(5-B)),
where C,,, C,, and C are parameters. One can always C(H)=2(7j—aj?)& ©

eliminateCy, andC_g in favor of C, 5 andC,_, respec-

tively, due to the $P) commutation relations. Moreover, Not all of the four constants above represent physically in-

C._ andC_, can be eliminated in favor €, as a con- teresting parameters. In general, two constants can be fixed

sequence of the irreducibility of the representatiRy , 1 by a comb_inatiqn of rescalings of .the variabjeand. thg
[le., TT +T TH+2T°T°=2j(j+1)]. The reference ©Nergy- Using this freedom and starting from nonvanislaing
pbth for the energy is fixed by settir(g='0 and B, one can always reduce them to the “standara”

After a change of variable and(guasjgauge transforma- — A~ — 2 (see below The parametery and 5 remain free.

. ~ . Requiring the matriX6) to have nonvanishing eigenval-
Rgrrr'nthe operatoH can be always reduced to the Sairger ues leads to a constraint that neither the parameters)(

nor (B,6) can be set to zero. One of the parameters in each
pair can vanish however. For instanceqif=0 the general
elliptic potential degenerates into a polynomial potential.
Thus the example presented in Ed) is nothing but a de-
generate case of E@8): It corresponds tax=0, B=46=

The key element in constructing the QES Hamiltonians with~ 2, andy=—(2j+1).

the ER symmetry is the following observatipgi: Any tridi- _ Needless to say,is an additional freg parameter taking a
agonal matrix of the form discrete set of values. Thus we deal with the three-parameter

family of potentials: two continuous and one discrete.

2

- - d
H—>HEeia(§)Hea(§)|§=§(X)=—Eﬁ‘*’V(X). (5)
X

0 u 0 O

/1 0 u, 0

0 /, 0 u3 --- 0 Prior to considering the general QES potentials with the

(6) ER symmetry we find it illuminating to discuss a few repre-
sentative examples. We start from

lll. ELLIPTIC POTENTIALS: SPECIAL CASE

0 u,
0 0 0 - /, 0 a=pB=-2, y=—(8v+6j+1), 5=—(2j+1),(10)
leads to the characteristic equation wherev is a constant. Since is free, so isy; the parametri-
) zation of y above, in terms ofv andj, will be considered
EPn2(E)=0 (n even, standard. Physical argumeritsg. the stability of the poten-
(7)  tial) requirev to be non-negative. The parametis fixed
ﬁ(nﬂ),z(Ez):o (n odd), for the time being. Later on we will lef vary too.

The physical variablec in Eqg. (5) is determined by the

whereP,(z) andP,.1,A2) are polynomials of of degree ~ "Version of the equation

n/2 and (+1)/2, respectively, and is defined in Eq(6).
Thus any matrix of the forni6) guarantees the ER symmetry
of the spectrum. It is evident that the Lie-algebraic Hamil-
tonian(4) has the matrix representatié®) provided the sum

in Eq. (4) doesnotinclude the termd *T*, T-T~, T°T°,  (see[1,3]). Equation (11) has the solutions-7(x) and
and T°. Thus the most general form of the Lie-algebraic 1/P(x), whereP is the Weierstrass function. One could use
Hamiltonian compatible with Eq(6), which, as was ex- €ither of them; the second solution is more convenient for
plained, ensures the ER symmetry in the algebraic sector, i®ur purposes. Thus

dg\?
&) =4¢—48 (11

H=aT TO04 BTOT + 4T + 6T g(x)=%, 9,=4, 03=0, (12)
d? d
=A(¢) d_§2 +B(&) d_§ +C(8), ® whereg, ; are the invariants of the Weierstrass function. For
the time being it is assumed thg&[0,1] andxe[0X, ],
where
The representatiof6) is a sufficient but not necessary condition.
At some specific values of there may exist QES systems with the = fl d¢ = \/;F(5/4) ~1.311. (13
ER symmetry that do not fall in the class of systems we built. 02\E—¢& I'(3/4)
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FIG. 2. QES potential of Eq17) at v=1 andj=2 defined on
FIG. 1. Periodic QES potential of E¢L7) at v=0 andj=2. the interval—x, <x<x, . The potential has a double-well shape.

Later on this constraint will be relaxed. Equatiti?) maps
the interval[ 0,x, ] onto[0,1]. The functiong(x) is double
periodic in the complex plane, with the periods,2and
2ix, . Thus, under our choice of parameters, the parallelo
gram of periods of the Weierstrass function becomes squar
The symmetry of the square immediately translates in the ER

symmetry of the quantal problem at hand. We will use the )
fact that H——H, Xx—ix,

If v>1/2 the potential is singular at= =x, (Fig. 2) and the
problem is defined ate (—x, ,x,). The conditiony>1/2

is necessary for stability. The Hamiltonian changes sign un-
der the transformatiorn—ix,

§(=x)=¢&(x), &(ix)=—&(x), (14
as follows from Eq.(14). The eigenfunctiong¢e, g} in

stemming from the properties of the Weierstrass function, ., pair interchange. The ER symmetry is explicit. Let us
with the above periods. The expansionggk) at x=0 runs consider separately two cases.

in powers ofx?. N »—0. Th il he eigenfuncti ke th
The phasea(x) of the gauge transformation and the forgw) v=0. The potential and the eigenfunctions take the
“gauge potential” A(x) are

1 [ (dA/dé)—2B
a0=¢ [ R0 = v g 2i(4j +1)

£=£(x) 15 V(x)=— TP #(x)=Py(§), (18)

and
where P,; is a polynomial of degreej2 At positive E the
A=_ _ spectrum is continuous, while the counterpart wave functions
2 J-2A Ji-&2| ¢ _g with negative-energy eigenvalues correspond to the
¢=¢00 boundaries of the Bloch zones; all these eigenfunctions are
As a result, we get the following potential in the Satirger ~ periodic. A very similar system, with a different coefficient
operator(5): in front of 1/P(x), emerges ab=1/2.
(i) v>1/2. The potential has a double-well foiffig. 2).
The singularity atx— *x, is of the form &*x,) 2. The
wave functions must vanish at= =x, and the spectrum is
§:§<X>(17) discrete. The algebraic sector includes the ground state and
2 excited states symmetric under- —x. If j is an integer,
[The general formula for calculating the corresponding QESNe level lies exactly at zerg;levels are below and above

potentia| in the case at hand reduces to Zero, respectively. ”: is a half-integer, (2+ 1)/2 levels lie
below zero and the same number above.

1 (dA/dé)—2B  4pg3?

(16)

4p(2v—1)&°

V(X)= YT -

(8j2+2j+16vj+6v)§]

1 dA(¢)
V(X)={C(§)+ E[A(g)]z—d—gvg—é] ,
£ IV. GENERIC ELLIPTIC POTENTIALS
whereC(€) is defined in Eq(9).] WITH THE ER SYMMETRY
This Schrdinger problem is quasiexactly solvable and
can be considered beyond the original interM@k, ]. For To proceed to the general case we invoke the only re-

v=0 we deal with the periodic potential defined on the en-maining freedom and lef in Eq. (9) float. The following
tire x axis (Fig. 1), which is akin to the Lam@roblem[10]. parametrization will be used:



1794 M. SHIFMAN AND

B (19

—2j+D)—p,

while @, B, andy are the same as in E(LO). If w#0 Eqgs.
(15—(17) are modified as

2
a(x)=[—v|n(1—§2)—%ln ¢ 2] . (20
=8 o
4v§3’2 M§—1/2 ]
A:[ - , (21)
V=88 2v1-8)
and
4p(2v—1)&°
V(X):{V(i—gz)g—(Sj2+2j+16vj+6v)§
M M 2vué
R A -3 2 }__ ,
" 1—62[2 (173 1—§2L§<x>
(22)

whereé&(x) is the same as before; see EtR). By inspecting
this potential one concludes on physical grounds that

8v—4>p=2. (23)

Since the potential22) is singular atx—0 (it explodes as
1/x?) the problem is defined fqu>2 on the interva 0, ].

If w=2 there is no singularity at=0 and the problem is
defined on the intervdl—x, ,x, ]. The potential is depicted
in Fig. 3.

V. x—ix AND H——H

Since the Hamiltonian we built possesses this propert)()
one might ask why the ER symmetry is realized only in the

A. TURBINER PRA 59
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FIG. 3. QES potential of Eq(22) at v=1, =3, andj=3
defined on the interval @x<x, .

Generically, for arbitraryn, the transformatiorx—ix con-
nects a normalizable solution at positie to a non-
normalizable one at negatie The latter does not lie in the
physical Hilbert space and there is no physical symmetry
E«~ —E. However, ifn belongs to the algebraic sector, the
transformationx—ix does not generate a non-normalizable
solution since the phase factaris invariant undex—ix.
Rather, in this casg&—ix connects a normalizable solution
at positiveE to another normalizable solution at negatire
Both belong to the physical Hilbert space afd-—E is a
valid symmetry.

The argument above is somewhat simplified; we cut
corners. Although the conclusion is perfectly valid, the
careful treatment would require the explicit introduction of
the Stokes lines and consideration of sectors in the complex
plane. It is important that in the problems with the ER
symmetry under consideration, one doest jump from
one branch onto another in the process of the analytic
continuation from the purely real to purely imaginary values
of x. In this respect the situation is different from that dis-
cussed if11], where the emphasis was on problems with the
ranch intertwining and the leaps from one branch onto
another.

algebraic sector rather than for the whole spectrum. From
Fig. 2 it is quite obvious that the whole spectrum cannot

have this symmetry: The states at positiwestretch indefi-
nitely, while for negativeE the lowest level is the ground

state. Although the answer to this question is rather obvious,

an explanation is in order.
At arbitrary E the second-order differential equatibhy

VI. THE ZERO MODE

If j is integer, there always exists a solution of the equa-
tion Hy=Ey with the vanishing energy eigenvalli=0.

= E ¢ has two linearly independent solutions; let us call themThe corresponding wave functiofy(£) contains only even

¥ . Generically, both are non-normalizable. o= E, one
of the solutions(say, #,) is normalizable; the other is not.

j il

[y—ailly—a(j=2)]-- - [y—a(j-2k+2)]

powers of¢, so that it is invariant undex—ix; it can be
given in the closed form

2k

D=3 L

k=0

K=K [(G-DB=6][(1—3)B—4]---[(—2k+1)B—6]"

(24
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VII. QUASICLASSICAL VS WEAK-COUPLING ing term in the ground-state ener@y is just the classical
EXPANSIONS energy of the particle at rest in the minimum, i.e. xgf
Consider the lowest and the highest levels in the algebraic (k)32

sector in the limitj>1. We will denote them by/_g_  and 33
Pe, respectively. The highest level is highly excited and as

such is amenable to the quasiclassical treatment. The quadihe next-to-leading term is the zero-point oscillation energy
classical calculation of the energy q}go was carried odtin of the harmonic oscillator

Ref.[8]. On the other handj_ Eo corresponds to a system at °

the bottom of the well. This system is close to the harmonic —=x12
oscillator, with a weak anharmonicity. One can develop the 2

standard perturbatio.n theory. T_he quasiclassical expansiophen come the corrections due to the anharmonic terms in
and the weak-cogpl[ng expansion have one and the SaMfie potentiak27). The first-order correction due to the cubic
parameter and coincide term by term, up to the overall S19%rm obviously vanishes. Therefore, the next term in the 1/

expansion ofg, comes from the quartic term in Eq27)
&reated as a first-order perturbatigolus the second-order

all QES problems with the ER symmetry, we will elucidate it perturbation generated by 10@)¥(x— xo)*:

using the simplest example. This will allow us to avoid bulky

formulas. The generalization to the general case is transpar- 135 1 275 1
ent. S e N
As was noted irff5], the simplest QES problem with the 32 3\3kY2 32 3312

ER symmetry is that of EqJ). It is convenient to introduce

a slightly different notation respectively. Assembling all these terms together we arrive

at the following expansion for the ground state energy

A=-2T0T —(2j+1)T —2T*, ~Eo:
312
33 35
1d> [x° —E ——(5) 1-22 4 2 4ok 8
__ % 1 K _ 0= (k7). (28

Hw—| 2a¢ 2 2 }t/f(x)—Ew(x), (25 3 PP
i Lo ' . So far only the lowest level was discussed. What can be
Yivmhﬁri:_oo& +3=3,7,1115... . We areinterested in the .4 2ot the highest level in the algebraic sector? The ER

symmetry implies that the last level belonging to the alge-
braic sector has the energy

«\¥ 3J3 35
_ I T -3
3) 1 - +8K2+O(K )

At large  the depth of the double-well potential becomes
large and the well width small. The minima 9{x) lie at

X=%Xy, Xo=(x/3)¥ (26) Eo= . (29

Near, say, the right minimum

Being considered as an excited state from the full set of
states of the Hamiltoniaf25), this level should have been
labeled by ¢«—3)/2. Indeed/_ Eo is the ground state, then

(27 comes the firsP-odd state, the firsP-even excitation, etc.

The ground state andj2P-even excitations belong to the

where the ellipsis denotes quartic- and higher-order terms; giyepraic sector. The lasP¢even state from the algebraic
similar expansion is valid near the left minimum. From Eq. ggctor has

(27) it is easy to find the ground-state energy in the form of
an expansion in k. Indeed, if we neglect exponential terms k—3
of the type exp{Ck), whereC is a positive constant, arising n= 2 (30
due to tunneling from one well into anoththe ground-
state level can be considered as that of the harmonic oscillavheren is the number of zeros in the corresponding wave
tor slightly perturbed by cubic, quartic, etc., terms. The leadfunction.
Let us discuss now how the very same expansiorEgpr
emerges in the WKB approximatidi®]. It is instructive to
2Note that the unnumbered equation after B in [8] contains ~ Start from the leading WKB approximation. Bohr and Som-
errors in signs. These errors miraculously combine with anotheMerfeld’s quantization rule at largeimplies that
error [the parameter of the quasiclassical quantizatiomas taken a
to be (k+1)/2in Ref.[8], while ac.tually itis «—3)/2] to annlhll- f p dx=nm= E, K—s 0, (31)
late each other. The final expansion for the endEgyresented in b 2
Eq. (13) of Ref.[8] is perfectly valid. Note that ouk corresponds
to 4J—1 in[8]. where

3The impact of tunneling and the issue of the analytic structure in
« are discussed in more detail in Sec. VIII. p=V2E—x®+ kx? (32)

(K)3/2

3V3

| 34
+2K(X—Xo) %+ 10(—) (X—Xg)3+ -+,

V(x)=— 3
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anda andb are the turning points. We check that Eg1) is Next-to-leading corrections in the quasiclassical expan-
satisfied atE=E,=(«/3)*2 It is convenient to rescale the sion are calculated tof8]; see also footnote 1 above. The

coordinatex, third and higher terms in the expansion require certain modi-
a1/ 1) fications of the WKB quantization condition that go beyond

x=2123" Wty (33 Eq. (38). From what we already know about the QES sys-

tems under consideration, it is clear that the ékpansion of
E, obtained through the WKB quantization condition must
K\ 34 match the weak-coupling expansion. Six terms in the quasi-
p(Eg) = \/§<§) V1—4y®+3y? classical expansion @&, were found in Ref[8]. Although it
was expected, it was amusing to observe the coincidence
with the first six terms in the weak-coupling expansion.

Then

K 3/4
= ﬁ(g) V=Y (a+2y?? (34
VIII. HIGH-ORDER BEHAVIOR OF THE EXPANSION

At E=E, the expression fdE —V factorizes and the integral
fpdx, which in general is representable through elliptic
functions, in fact reduces to elementary functipd®s Owing
to factorization, we immediately see that the turning point
are aty==*1,

It goes without saying that the weak-coupling expansion
(28) is asymptotic. This is due to the possibility of the “leak-
ge” from the right to the left well. The high-order terms are
factorially divergent and of the same sign. The behavior of
the high-order terms in the &/series for the ground-state
a 4 1 KT energy is determineflL3] by the action of the instanton, the
f pdx= §’<f dy(1+2y?)V1-y*= — - (39 classical trajectory connecting the left and right minima in
b 0 the Euclidean time. Let the instanton action &g¢, where
Q.E.D. S is a number that we will calculate shortly. The Borel-
summed expression for the ground-state energy has the

The first correction in the quasiclassical expansion can bie
rm

calculated as easily as the leading term. Indeed, at this lev
the only change to be done is the substitution

—1/g
E ~J dg———, (41
1 0 _
n—>n+§=g—1 (36) g (2Sp)
_ o . where the principle-value prescription applies. The imagi-
in the WKB quantization conditiori31) and nary part of the integral is canceled by the imaginary part

coming from the instanton—anti-instanton transition, which
, (37)  inturn is proportiona[13] to exp(-2Sk). The condition of
cancellation fixes the denominator of the integrand. Expand-
ing Eq. (41 in 1/k, we find the high-order tail of th&,

K 3/2 Cl
E—Eop=(3| |1-—

whereC, is a numerical coefficient, to be determined from

the guantization condition expansion
¢ K 3/2
27 —Bo~—x n! , 42
fb P(Eo)dx (2 1) ™ =5 ° Eno (2Spk)" (42)
Now p(Eo) takes the form whereny is an integer large enough for the asymptotics to set

in. The instanton action is readily calculable

K 3/4 Cl
p(Eo):\E(g) \/1_7_4y6+3y2 %o [5,:32 | 1/
- 6_ oy 2 ==
Sox—fxodx 3\/§+x KX%,  Xg (3) , (43

3/
- a3 A[J(l—y2><1+2y2>2

from where we obtain

o 1 1
— +. ] (39 1++3
2K 2 2\2 =I|n
V(1-y?)(1+2y?) So N7
We have already checked that ti¥ «) term in Eq.(38) .
(which corresponds to keeping the first term in the squard N ER symmetry and Ed42) imply that the very same

bracket implies Ey= (x/3)32. Matching of theO(x°) term factorial divergence is inherent to the quasiclassical expan-

in Eq. (38) (which corresponds to the second term in thesion for energies of the highly excited states. Certainly, this
square brackelsjields phenomenon is known in the literatuf@4]. We find the

argument above to be an illuminating way of demonstrating
Clzg\/§, (40) the asymptotic nature of the quasiclassical expansion. In fact,
it is likely that the asymptotic regime starts quite early. In-
in full accord with Eq.(29). deed, the first five coefficients in the quasiclassical expansion

~0.658. (44)
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can be inferred from Ref8]. Denote the coefficients in front also known as the Jackson derivatiteee, e.g.[15,16)).
of 1/(25«)" by C,. Then, from Eq.(13) of this work we  Hereq is a complex number. In the limg— 1 the Jackson

get symbol obviously goes into the conventional derivative.
Now one can easily introdudé 7] a finite-difference ana-

Cs~6.57, C,~20.2, Cg~117, log of the algebra of the differential operatd® based on

the operatoD,, instead of the continuous derivativier a

discussion seg7
to be compared with the asymptotic predicti@2) ¥7)

Cs=31=6, C,=41=24, Cg=5!=120. Tr={n}é-&D,, T°=-n+éD,, T =D,

Barring the possibility of a coincidental proximity, we con-
clude thatn, can be as low as 3.

The parametek is related to the cohomology parameter
and is quantized. The nature of thecExpansions is closely 1-q"
related to the singularity structure in the compleyplane. In {n}= 1—q
discussing this structure one should exercise caution since
the analytic continuation is performed from a discrete set of

where

points k=3,7,11 ... . This is one of the reasons why the is the so-called) number and
singularity structure in the complex plane turns out to be

totally different from that discussed in earlier workkl], . {n{n+1}
devoted to the analytic continuation in continuous param- n=

eters in the QES problems. There are also some other reasons {2n+2}

responsible for the distinctions, e.g,appears as a coeffi-

cient of a subleading term in the potential, which is impor- It is easy to check that the operatd#6) obey the com-

tant. We do not dwell on this issue here since it deserves mutation relations of the quantum algebrg, gbr any value

dedicated analysis. of the parametej=n/2 (see, e.g18)). If j is a non-negative
The quasiclassical quantization and the associated expaimteger, the finite-dimensional representati@p of the alge-

sion imply that « is an integer (more exactly, k  bra(46) exists; it is irreducible when is not a prime root of

=3,7,11 ...). At thesame time, the weak-coupling expan- unity. The same line of reasoning that we followed to dem-

sion (28) is the same independently of whether or not onstrate the ER symmetry of the Hamiltoni@ can be used

€{3,7,11 .. .}. It holds for any sufficiently largec. Both  in the case of the finite-difference generat¢4$). In this

expansions coincide order by order, to any finite order; yet ifvay we arrive at the conclusion that the discrete Hamiltonian

«&{3,7,11 ...} the physical ER symmetry is absent and

there is no reason for the coincidence of the absolute values N mam . mgmL, mg S

of energy. This means that the factorially divergent weak- H=aT T+ BT 49T+ 0T

coupling series and the quasiclassical expansion, presented _7 2.5 =

in the square brackets in Eq&8) and (29), respectively, ADE+B(OD+C() (“47)

define, generally speaking, two distinct functions, despite the

fact that the expansionser seare identical, order by order. possesses the ER symmetry. Here 8, v, andd are nu-

The difference between these two functions is of the typenerical constants and, B, andC are polynomials of the

sin(mx)exp(—Ck); it vanishes atv=3,7,11 ... . Forthese third, second, and first degree én respectively,

and only these values of, making a full 27 circle in the

complex plane aroung=<, starting from a positivec and ~ 3

returning to the very same point, we smoothly interpolate A(§)=—aqé>+ B,

between the lowest and the highest levels in the algebraic

sector; their positions interchange.

B(&)=[a({n}+n—1)—y]&+(5—-p{n}), (49

IX. THE ER SYMMETRY IN THE FINITE-DIFFERENCE - .
PROBLEMS C(&)={n}(y—an)é,

We have to mention that the energy reflection symmetry i
; ) ; ; swheren=2j.
appears also in quantum-algebraic problems with the Hamil , ) )
tonians built from finite-difference operatofsuch problems It is remarkable that a particular form of this quantum-

naturally emerge in solid-state physicin order to display algeb_raic Hamil_toni_arﬁwith a sl_ightly different definition of
the discrete derivatiyeappears in the Azbel-Hofstadter prob-

this property let us consider, for instance, the dilatation 1 . : s
invariant discrete operatd, defined as lem of the electron motion on thg tvyo—dmensmnal lattice in
the transverse constant magnetic figl®,20. In this case
the parameteq is a prime root of unity; it is related to the
D,f(¢)= f(§)—f(ad) (45) magnetic flux through the lattice plaquettae flux is given
¢ (1—q)¢ by a rational number with an even denominator
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X. COMMENT ON THE LITERATURE infinity.* One and the same asymptotics remains valid in all
- o . sectors; one can freely do analytic continuations across the

In Ref. [21] a certain “duality” transformation was SUg- giokes lines. The singularities of separate parts of the WKB
gested for the QES systems that inverts the signs of all levelsypressions for the wave functions are superficial; they can-
belonging to the algebraic sector and simultaneously changeg| when all parts are assembled together. This property is
the form of the potential in a concerted way. It was observedvell known in the harmonic oscillator; it extends to all QES
that the potentia(l) is self-dual. Thus the ER symmetry of systems however.
the Schrdinger problem(1) was rediscovered. It was noted  The observation above belongs to Vainshtein. He pointed
then that the quasiclassical treatment of the QES problemsut that the requirement of cancellation of these apparent
should be qualitatively different from that of “conventional” singularities can be used in order to generate QES potentials.
problems, where there is n@uas)jexact solvability. The This requirement acts as a substitute of the algebraic struc-
corresponding remark if21] is rather vague and we feel that ture within the Lie-algebraic approach.
an explanation is in order here.

Suppose that the wave functions of a quantal system are
treated in the WKB approximation. The WKB asymptotics, We are grateful to A. Vainshtein and M. Voloshin for
being considered in the complexplane, contains singulari- useful and stimulating discussions. M.S. acknowledges an
ties at the points where the classical momentum vanishegxchange of messages with Professor M. Moshe. A.T. would
The Stokes lines are attached to these points; they divide tHike to thank his colleagues from the Theoretical Physics
complexx plane into several sectors. The appropriate WKBInstitute, University of Minnesota, for warm hospitality. This
expression for the wave function in the given sector, wherwork was supported in part by the U.S. DOE under Grant
analytically continued across a Stokes line, may or may nolNo. DE-FG02-94ER40823.
match the appropriate WKB expression in another sector. In
other words, distinct asymptotics may apply in the different
sectors in the complex plane. This is a general situation. In4t is implied that the original problem is defined oxe
the QES problems, for those levels that are determined algg—«,«), as in Eq.(1). If the original problem is formulated on a
braically, the wave function is analytic everywhere excepffinite interval, the wording must be changed appropriately.
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