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Worldline path integral for the massive Dirac propagator: A four-dimensional approach
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We simplify and generalize an approach proposed by Di Vecchia and Ravndal to describe a massive Dirac
particle in external vector and scalar fields. Two different path integral representations for the propagator are
derived systematically without the usual five-dimensional extension and shown to be equivalent due to the
supersymmetry of the action. They correspond to a projection on the mass of the particle either continuously
or at the end of the time evolution. It is shown that the supersymmetry transformations are generated by
shifting and scaling the supertimes and the invariant difference of two supertimes is given for the general case.
A nonrelativistic reduction of the relativistic propagator leads to a three-dimensional path integral with the
usual Pauli Hamiltonian. By integrating out the photons we obtain the effective action for quenched QED and
use it to derive the gauge-transformation properties of the general Green function of the theory.
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I. INTRODUCTION

The problem of how to describe spin in a path integral h
a long and twisted history. This is mostly due to the fact t
a path integral is determined by the classical Lagrangian~or
Hamiltonian! and a classical analog for the internal spin o
particle is not readily available. Martin@1# apparently first
suggested to use anticommuting Grassmann variables for
purpose. This can be made plausible when one recalls
the spin operators[\s/2 of an electron fulfills

$si ,sj%[sisj1sjsi5
\2

2
d i j→0, i , j 51,2,3 ~1!

in the classical limit. Consequently one can describe a s
ning particle by its bosonic part, the usual trajectoryx(t),
and a fermionic degree of freedom given by a Grassm
valued functionz(t).1 Brink et al. @3# noted an important
supersymmetry between the bosonic and fermionic parts
relativistic massless Dirac particle and Berezin and Marin
@4# showed thatmassiveparticles can be described by addin
a fifth componentz5(t) to the spin variable. The reason fo
this peculiar addition is that in the rest frame of the parti
the spin is intrinsically three-dimensional@see Eq.~1!# and a
covariant four-dimensional description therefore has sup
fluous degrees of freedom which have to be cancelled by
fifth spin variable@5#.

There is now a vast amount of literature about spin in p
integrals ~a partial list of references is@6–10#! which dis-
cusses various aspects of this approach. In particular, Fra
and Gitman@11# have given a straightforward way of con
structing the corresponding relativistic propagator. In ad

1It should be noted that there are other approaches, e.g., u
coherent state path integrals@2#, which we will not consider here.
PRA 591050-2947/99/59~3!/1762~15!/$15.00
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tion to the dependence on bosonic and fermionic trajecto
mentioned above, their formulation has the special feat
that as well as the usual Schwinger proper time a Grassm
nian partner to it is required. Representing Dirac particles
a first quantized form in the ‘‘world line formalism’’ has
become popular for perturbative calculations in QED a
QCD @12–14#. These one-loop calculations of the effectiv
action are simplified by the fact that only Green functions
a circle~with simpler boundary conditions! are needed. More
recently, the method has also been used in order to de
derivative expansions of the one-loop effective action in~2
11!- and ~311!-dimensional QED@15#.

Although sufficient for many purposes the Berezi
Marinov introduction of the fifth spin variable is an awkwa
one: there is no clear physical picture associated with it
the corresponding multiplication of the propagator with t
Dirac matrixg5 @11# is very unnatural in a parity conservin
theory. A four-dimensional approach, which has not receiv
very much attention up to now, is that proposed by Di Ve
chia and Ravndal@16,17# in which the unwanted spin de
grees of freedom are simply projected out.2

It is the purpose of the present paper to develop this la
approach further and to show that it has attractive features
particular, in Sec. II, we will calculate the propagator for
Dirac particle in an external vector field and demonstrate t
the projection mentioned above can be done in two differ
ways: either at each time step during the evolution of
system or at the end. We will refer to the former as t
‘‘local’’projection method and to the latter as the ‘‘global
projection method. In Sec. III both procedures are shown
be equivalent due to the supersymmetry between bos

ing

2During the course of this work there appeared a publication@18#
in which the fifth spin variable is also eliminated but by a differe
nonlinear technique.
1762 ©1999 The American Physical Society
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and fermionic variables. However, the global projecti
leads, in general, to simpler expressions without a Gra
mann proper time. In addition, an inherent coupling betwe
orbital and spin parts which is already present for a f
particle is removed by the global projection method. Sect
IV contains the nonrelativistic reduction where we start
rectly from the path integral representation of the Dir
propagator and show that this reduces to the thr
dimensional spin path integral of the nonrelativistic theo
This is to be contrasted with Ref.@9# where the nonrelativ-
istic propagator was derived starting with the nonrelativis
Hamiltonian and introducing three-dimensional Grassm
variables instead of obtaining it from the relativistic pa
integral for the Dirac propagator. In Sec. V we show that o
can also describe a Yukawa interaction of the fermion~i.e.,
the particle in an external scalar field! in such a four-
dimensional framework. As an application we derive the
fective action in quantum electrodynamics in Sec. VI a
finally we summarize our results.

Since we aim in making this paper self-contained we
clude an Appendix with a derivation of the spin path integ
which is somewhat different, more explicit and simpler th
the one given by Fradkin and Gitman. Our conventions f
low Bjorken and Drell@19# and in general we usea2i and
j2v to denote Grassmann variables, with some except
to comply with the standard notation found in the literatu

II. DIRAC PROPAGATOR IN AN EXTERNAL VECTOR
POTENTIAL

We are looking for the path integral representation for
propagator of a Dirac particle

G~x,y!5K xU 1

p”̂2gA” ~ x̂!2M1 i0
UyL ~2!

in an external fieldAm(x) where throughout this pape
quantum-mechanical operators are denoted by hats ove
corresponding symbols. In the spinless~bosonic! case this
can be achieved by using Schwinger’s proper time repre
tation for the quantum-mechanical resolvent

1

E2Ĥ1 i0
52 i E

0

`

dTexp@ i ~E2Ĥ1 i0!T#. ~3!

However, in the fermionic case we have to make sure

the operatorĤ which plays the role of a Hamiltonian for th
quantum-mechanical system contains aneven number of
Dirac matrices. This is because in the classical limit~and
also in the path integral! only an even, commuting object ca
represent a physical quantity.

Fradkin and Gitman@11# achieved this by multiplying nu-
merator and denominator in Eq.~2! by g5 and extending the
Dirac algebra to five dimensions. However, it is much si
pler to use the representation of Di Vecchia and Ravn
@16,17# where we write

1

P”̂ 2M1 i0
5~P”̂ 1M !

1

P”̂ 22M21 i0
. ~4!
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It is now possible either to exponentiate only the denomi
tor which gives

1

P”̂ 2M1 i0
52

i

2k0
E

0

`

dT~P”̂ 1M !

3expS 2
iM 2T

2k0
DexpS i

2k0
P”̂ 2TD ~5!

or both numerator and denominator leading to

1

P”̂ 2M1 i0
5E

0

`

dTE dxexpF2
i

2k0
~M2T1Mx!G

3expF i

2k0
~P”̂ 2T1P”̂ x!G . ~6!

The latter only holds ifP̂ commutes withP̂2 which is
proved in Ref.@17#. Here

P̂m5 p̂m2gAm~ x̂!, ~7!

and the Berezin integrals over Grassmann variables are
fined as@20#

E dx50, E dxx51. ~8!

k0 is a parameter which reparametrizes the proper timeT
→k0T,x→k0x without changing the physics and is a rem
nant of the local reparametrization invariance of the action
is thus related to the ‘‘einbein’’@3#. x is either called a
~one-dimensional! ‘‘gravitino’’ field or, more appropriately
in the present context, as the supersymmetric partner of
proper time, the ‘‘supertime.’’

The Di Vecchia–Ravndal representation has several
vantages compared to the standard Berezin-Marinov form@4#
for the description of amassivespinning particle: no five-
dimensional extension and multiplication withg5 are neces-
sary and, as we will see in Sec. III, the supersymmetric tra
formations are much simpler and more transparent. It can
considered as the result obtained by integrating out the
spin variable. A certain disadvantage is that not all expone
in Eq. ~6! are Grassmann even. The odd term

expS 2
iM

2k0
x D ~9!

is to be considered as part of an operator which projects

P”̂ 5M @17# and not as part of the evolution operator. In E
~5! this projection is done at the end~‘‘global’’ ! whereas in
Eq. ~6! it is done at each time step during the evoluti
~‘‘local’’ !.

It is essential that in both procedures the ‘‘Hamiltonian
which governs the proper-time evolution is even. In the g
bal projection method it is given by

H~P̂,x̂,g!52
1

2k0
P”̂ 252

P̂2

2k0
1

i

4k0
gFmn~ x̂!gmgn

~Fmn[]mAn2]nAm!, ~10!
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whereas for the local projection method it reads

H8~P̂,x̂,g!5H~P̂,x̂,g!2
1

2k0T
P̂mgmx. ~11!

In both cases the parameterk0 can be interpreted as th
‘‘mass’’ of the quantum-mechanical particle.

A. Global projection

We will first consider the projection after the end of th
evolution, i.e.,

G~x,y!52
i

2k0
E d4z^xup”̂2gA~ x̂!1M uz&E

0

`

dT

3expS 2
iM 2T

2k0
D ^zuexp~2 i ĤT!uy&

52
i

2k0
~ i ]” x2gA” ~x!1M !E

0

`

dTexpS 2
iM 2T

2k0
D

3^xuexp~2 i ĤT!uy&. ~12!

The remaining proper-time evolution operator can be writ
in path integral form following Fradkin and Gitman@11# but
staying within a four-dimensional framework. In the Appe
dix we show that

^xuexp~2 i ĤT!uy&

5expS g•
]

]G D E
x~0!5y

x~T!5x
DxDpDj.Nspin

3expH i E
0

T

dt@ i j• j̇2p• ẋ2H~P,x,2j1G!#J
G50

,

~13!

where Nspin is a normalization factor for the four
dimensional spin path integral as given in Eq.~A19! and we
use antiperiodic boundary conditions for the spin varia
j(t)

jm~0!1jm~T!50. ~14!

Equation~13! can be further simplified by shifting to the ne
spin variables

zm~ t !5
1

2
Gm1jm~ t ! ~15!

so that the boundary condition becomes

zm~0!1zm~T!5Gm . ~16!

This introduces an additional boundary term2 1
2 G•@z(T)

2z(0)#5z(T)•z(0). After shifting to the momentum~7! as
integration variable we obtain
n

e

G~x,y!52
i

2k0
~ i ]” x2gA” ~x!1M !expS g•

]

]G D E
0

`

dT

3expS 2
i

2k0
M2TDNspinE DxDPDz

3expH z~0!•z~T!1 i E
0

T

dt@ i z• ż2~P1gA~x!!• ẋ

2H~P,x,2z!#J
G50

. ~17!

As usual we can perform the functionalP-integration since
the Hamiltonian is at most quadratic in the kinematical m
mentum. We then obtain the final expression

G~x,y!52
i

2k0
~ i ]” x2gA” ~x!1M !

3expS g•
]

]G D E
0

`

dTN~T!

3expS 2
i

2k0
M2TD •E DxDzexp$ iS@x,z#%G50 ,

~18!

where

N~T!5F E DzexpS z~0!•z~T!

2E
0

T

dtz• ż D G21

•E DPexpS i E
0

T

dt
P2

2k0
D ~19!

provides the proper normalization and

S@x,z#[E
0

T

dtL~x,ẋ,z,ż !2 i z~0!•z~T!,

L~x,ẋ,z,ż !52
k0

2
ẋ21 i z• ż2gẋ•A~x!2

ig

k0
Fmn~x!zmzn

~20!

are the action and the Lagrangian, respectively. The first
terms in Eq.~20! correspond, respectively, to contribution
from the orbital and spin degrees of freedom to the kine
energy, while the last two terms are the contributions of
photon field coupling to both the electron’s convection c
rent and its spin current. The canonically conjugate mome
are given by

pm5
]L

] ẋm
52k0ẋm2gAm~x! ~21!

and

hm5
]L

]żm
52 i zm ~22!

so that the canonical Hamiltonian becomes
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H5 (
qi5x,z

q̇i

]L

]q̇i

2L52
k0

2
ẋ21

ig

k0
Fmnzmzn ~23!

when expressed in terms of~generalized! coordinates and
velocities. In terms of coordinates and momenta we have
relation H5Hup→2p . This is a consequence of our metr
which gives exp(2ip•x) as plane wave and therefore leads

the form *dt@2p• ẋ2H# for the action in the phase spac
path integral~13!.

The free Dirac propagator in momentum space is rea
obtained from Eq.~18! since orbital and spin variables de
couple. Thez-path integral cancels against the normalizat
factor Nspin and thex-path integral gives just the usual fre
bosonic evolution kernel. Thus

G~0!~p!5E d4xeip•xS 2
1

2k0
D ~ i ]” x1M !E

0

`

dT

3expS 2
i

2k0
M2TD

3E d4k

~2p!4
e2 ik•xexpS i

2k0
k2TD

5
p”1M

p22M21 i0
5

1

p”2M1 i0
, ~24!

independent of the reparametrization parameterk0 .

B. Local projection

The local projection method follows along the same lin
with two differences: first we have an additional integrati
over the supertimex and second there is an extra term in t
action due to the additional term in Eq.~11!. Thus

G8~x,y!5expS g•
]

]G D E
0

`

dTN~T!

3E dxexpF2
i

2k0
~M2T1Mx!G

3E DxDzexp$ iS8@x,z#%G50 ~25!

with

S8@x,z#[E
0

T

dtL8~x,ẋ,z,ż;x!2 i z~0!•z~T!

L8~x,ẋ,z,ż;x!5L~x,ẋ,z,ż !1
1

T
ẋmzmx ~26!

52
k0

2
ẋ21 i z• ż1

1

T
ẋ•zx2gẋ•A~x!

2
ig

k0
Fmn~x!zmzn.
e

ly

s

Note that there is now a coupling between orbital movem
and spin, even for the free particle. This is the same mec
nism which at high energy aligns the spin of a Dirac parti
along ~or opposite! to the momentum whereas a nonrelati
istic particle with spin is unaffected.

Since the spin degrees of freedom appear at most q
dratically it is also possible to integrate them out complet
and reduce the path integral to a bosonic one modified b
‘‘spin factor’’ @21,22#. The price to be paid is that this spi
factor is highly nonlinear in the external fields. This preven
an analytic integration over the boson fields to obtain
effective interaction for the fermion only, as is done in Se
VI.

III. BOSONIC AND FERMIONIC TRANSFORMATIONS

We next discuss the transformation properties of
Lagrange function in the local formulation@3,23#. The cor-
responding ones for the global formulation can be obtain
by setting x50. There are two kinds of transformation
which leave the Lagrange functionL8 in Eq. ~26! invariant
~up to a total derivative!.

~i! Bosonic transformations~reparametrizations!

dxm5b~ t !ẋm,

dzm5b~ t !żm, ~27!

dk052k0
2 d

dtS b~ t !

k0
D⇒dL85

d

dt
@b~ t !L8#, ~28!

whereb(t) is the infinitesimal parameter of the transform
tion which, in principle, could have an arbitrary time
dependence~local transformations!. However, for quantiza-
tion the reparametrization ‘‘gauge’’ has to be fixed@4,7#
which in our case, by construction, was taken to bek0
5const. This means that we only can allowdk05const or

b~ t !5b01b1t. ~29!

Note that b150 corresponds to proper timetranslations,

e.g., dxm5xm(t1b0)2xm(t)5b0ẋm1•••, and b050 to

proper timescalings, e.g.,dxm5xm(t1b1t)2xm(t)5b1t ẋm

1•••.
~ii ! Fermionic~supersymmetric! transformations

dxm5 ia~ t !zm,

dzm5
k0

2
a~ t !F ẋm2

1

k0T
zmxG

dk05
k0

T
a~ t !x,

dx52 ik0Tȧ~ t ! ~30!

⇒dL85 i
d

dtFa~ t !S 2
k0

2
ẋ•z1gA•z D G , ~31!
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wherea(t) is the infinitesimal Grassmannian parameter
the transformation. Again, sincek0 and x are by construc-
tion time independent, one can only allow transformatio
with a(t)5const. Forx50 Ravndal@17# has shown that
similar to the bosonic case it is also possible to generate
fermionic transformations by a shift in the proper time if
Grassmannian partner of the proper timet is added. This
allows for a concise supersymmetric formulation of the
tion. In this section we will show the generalization of Rav
dal’s transformations to the case with spin-orbit couplin
which includes a special scaling of the ‘‘supertime’’ in a
dition to a shift.

Since the change of the full Lagrange function is a to
derivative, Noether’s theorem@24# allows us to define quan
tities which are conserved classically. For the bosonic tra
formation withb150 ~i.e., proper time translations! we have
dk050 and Eq.~28! therefore leads to the conservation
the canonical Hamiltonian~23!. It can be shown that prope
time scalings (b050) lead to the same result.3 For the fer-
mionic transformations we find from Eq.~31! that the pro-
jection of the spin variable on the kinematical momentu

2k0ẋ

Q52k0ẋmzm ~32!

is conserved classically without the spin-orbit term@17#.
Quantum mechanically the Noether charges either

come conserved operators or, in the functional formalis
their conservation implies that certain averages, i.e., Gr
functions with the Noether charges as insertions, stay t
independent. For quantum-mechanical averages we will
the following notation:

^O&S[expS g•
]

]G D E DxDzO~x,z!eiS[x,z] uG50 . ~33!

To be specific, we consider the fermionic transformatio
with x50 because their Noether charge~32! does not depen
dent ~explicitly! on the interaction and we make alocal,
time-dependent transformation@25#

x~ t !5x8~ t !1 ia~ t !z~ t !, z~ t !5z8~ t !1
k0

2
a~ t !ẋ~ t !

~34!

in the path integral. We assume thata(0)5a(T)50 so that
we do not have to consider boundary contributions. T
Jacobian for this transformation is 11O(a2). Since the path
integral does not change its value we obtain~omitting the
primes!

05K i E
0

T

dtdLL
S

, ~35!

3In this case the reparametrization parameterk0 , which is also
changed, is not a dynamical variable for which the equations
motion can be used. Consequently the change of the correspon
Noether chargeQ5tH with time is proportional tok0]L/]k0

5H, which gives no new information.
f

s

he

-
-
,

l

s-

e-
,
n
e
se

s

e

where

dL5 ia~ t !
d

dtS 2
k0

2
ẋ•z2gA•z D

1 i ȧ~ t !S 2
3k0

2
ẋ•z2gA•z D . ~36!

The first term is what we obtain for a global, time
independent transformation in Eq.~31!. Performing an inte-
gration by parts in the second term~no boundary terms! the
result is then

05K E
0

T

dta~ t !F2k0

d

dt
~ ẋ•z!G L

S

~37!

or sincea(t) is arbitrary

d

dt
^2k0ẋ~ t !•z~ t !&S50 ~38!

for all times.

A. Supersymmetric formulation

It is convenient to write the Lagrange function for a rel
tivistic spinning particle in explicit supersymmetric form b
combining orbital and spin degrees of freedom into a ‘‘s
perfield’’ @3# or ‘‘superposition’’ @17#

Xm~ t,u!5xm~ t !1auzm~ t !. ~39!

Hereu is an additional time-independent Grassmann varia
which acts as a superpartner of the proper timet and a a
suitably chosen constant. If, in addition, a ‘‘superderivativ
is defined as

D5
]

]u
2u

]

]t
~40!

then

L05E duS 2
k0

2 DDXmD2Xm52
k0

2
ẋ21 i z• ż ~41!

generates all terms in the free Lagrangian of the spinn
particle provided the constanta is chosen as

a5 iA2i

k0
. ~42!

Note that in this compact form only first-order derivativ
appear sinceD252]/]t. In the local projection approach
one needs an additionalx-dependent factor@3,13#

e~ux!511
a

iT
ux ~43!

in the integrand of Eq.~41! to account for the explicit spin-
orbit coupling. Thus the corresponding free action is

f
ing
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S08@X#5E
0

T

dtE due~ux!S 2
k0

2 DDX•D2X

5E
0

T

dtF2
k0

2
ẋ21 i z• ż1

1

T
z• ẋxG . ~44!

The interaction of the Dirac particle with an electromagne
field takes the equally simple form

Le.m.5gE duDXmAm~X! ~45!

which is easily proved by expanding the ‘‘superposition’’X
and performing the Berezin integration. Equation~45! thus
containsboth the convection current and the spin curre
interaction.

For x50 Ravndal and Di Vecchia@16,17# have given a
simple way of generating both the bosonic~with b150) as
well as the fermionic transformations by a shift in the prop
times t andu:

t→t1b01eu,

u→u1e, ~46!

wheree andb0 are constants which may be zero. Indeed,
superfield changes into

X~ t,u!→X8~ t,u!5x~ t1b01eu!1a~u1e!z~ t1b01eu!

5x1b0ẋ1aez1auFz1b0ż2
e

a
ẋG1•••,

~47!

and if we set

e5
i

a
a ~48!

we obtain both transformations~27! and ~30! for the indi-
vidual components of the superfield in the special casx
50. This is not only more transparent but also treats boso
and fermionic transformations on an equal footing. T
equations of motion and the conserved quantities can als
formulated compactly in this formalism.

We can generalize the transformations~46! to the case
xÞ0 by observing that any change int,u leavesk0 ,x un-
changed, since these quantities are by construction ti
independent. This means that necessarily

dk050, ~49!

dx50. ~50!

While the latter condition is fulfilled by a constant parame
a in the fermionic transformation@see Eq.~30!# the former
one requires that the bosonic scaling parameterb1 is not
arbitrary but given by

b15
1

T
ax. ~51!
c

t

r

e

ic
e
be

e-

r

Using Eq.~48! we then find that

t85S 11
a

iT
ex D t1b01eu,

u85S 11
a

2iT
ex D u1e, ~52!

generate thex-dependent supersymmetric transformatio
with dk05dx50. Although this constitutes a scaling of th
bosonic timet by a factor

l 5S 11
a

iT
ex D ~53!

the fermionic timeu is only scaled byAl . ConsequentlyD
scales by 1/Al . Since the spin-orbit factor~43! scales again
with l and the Berezin integral overu transforms inversely
compared to a bosonic one the free action is easily foun
be invariant under scaling.

We also note that for two timest1 ,t2 ,u1 ,u2 the combina-
tion

T12[
t12t2

Ae~u1x!e~u2x!
1u1u2 ~54!

is invariant under the shift and scaling~52! of proper times.
This is the generalization of a result which is well known f
x50 @21# and is important for extensions of the polaro
variational approach to QED@26#.

B. Equivalence of local and global projection

We are now able to prove the equivalence between
local projection method and the global one. We give her
somewhat different and more explicit derivation than the o
sketched in Ref.@27#. We start from the local formulation
and perform thex integration. This gives

G8~x,y!5expS g•
]

]G D E
0

`

dTN~T!expS 2
i

2k0
M2TD

3E
x~0!5y

x~T!5x
DxE

z~0!1z~T!5G
DzeiS

3F2
i

2k0
M2

i

TE0

T

dtẋ•zG
G50

. ~55!

As we have seen in Eq.~38! the supersymmetry of the actio

S leads to the result that the expectation value ofẋ•z is time
independent and thus can be evaluated at any timet, in par-
ticular att5T. We then can perform thet integral and obtain

G8~x,y!5E
0

`

dTN~T!expS 2
i

2k0
M2TD

3 K 2
i

2k0
M2 i ẋ~T!•z~T!L

S

, ~56!

where the average with respect to the actionS is defined in
Eq. ~33!. For the calculation of the last average we use
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well-known fact ~see, e.g., Ref.@28#! that the expectation
value of time-ordered products of Heisenberg opera

ÔH(t)5exp(iĤt)Ôexp(2iĤt) is given by the insertion of
O(t) in the corresponding path integral. Thus

K x,TUT F x̂H~ t1!•
ĝH~ t2!

2
GUy,0L

[K xUe2 i ĤTT F x̂H~ t1!•
ĝH~ t2!

2
GUyL 5^x~ t1!•z~ t2!&S

~57!

since Eq.~17! tells us that the~Weyl ordered! g matrices are
to be replaced by 2z. Differentiating with respect tot1 ~the
equal time contribution vanishes! and puttingt15t25T we
obtain

^ẋ~T!•z~T!&S5^xu i @Ĥ,x̂m#
gm

2
e2 i ĤTuy&. ~58!

Evaluating the commutator with the help of Eq.~10! and the
canonical commutation relations we find

^ ẋ~T!•z~T!&S52
1

2k0
^xuP”̂ e2 i ĤTuy&

5
i

2k0
@]” x1 igA” ~x!#^xue2 i ĤTuy& ~59!

which, inserted into Eq.~56!, gives exactly the same resu
for the propagator as the global projection method, i.e.,

G8~x,y!5G~x,y!. ~60!

IV. NONRELATIVISTIC LIMIT

If the massM of the fermion becomes large the integr
over the proper timeT is dominated by the stationary poin
of its integrand which approximately occur atP0

25M2.
Therefore we make the ansatz

P05sM1E, s561. ~61!

For the nonrelativistic limit it is very convenient and natur
to take

k05M ~62!

and to assume

E5OS 1

M D . ~63!

In this section we will writeD dx,D dp, and Nd
spin with d

53,4 to stress the different dimensionality of relativistic a
nonrelativistic path integrals. In the global projection meth
we then obtain from Eq.~17!
rs

l

d

G~x,y!.2
i

2M
~ i ]” x2gA” 1M !expS g•

]

]G D
3 (

s561
E

0

`

dTexpS 2
i

2
MTDN4

spin

3E D 4xD 3PD 4zE DEexp$ iSs@x,P,E,z#%G50

~64!

with

Ss@x,P,E,z#52 i z~0!•z~T!1E
0

T

dtFM

2
2Msẋ01P• ẋ

2gA0ẋ01gA• ẋ2
P2

2M
1 i z• ż2

ig

M
Fmnzmzn

1sE2Eẋ01
E2

2M G . ~65!

According to our assumption the last term in the squ
bracket isO(1/M3) which we neglect. The path integral ove
E then gives a functionald function

d@ ẋ02s#5 lim
N→`

)
k51

N

dS x0,k2x0,k21

Dt
2sD , Dt5

T

N
.

~66!

The functional integration overx0 can now be performed
trivially, with the result that the time coordinate has th
proper time dependence

x0~ t !5y01st. ~67!

However, oned-function remains because there are on
(N21) integrations in the discretized path integral for t
coordinates

G~x,y!.2
i

2M
~ i ]” x2gA” 1M !expS g•

]

]G D
3 (

s561
E

0

`

dTd~x02y02sT!

3exp~2 iMT !N4
spinE D 3xD 3PD 4z

3expH z~0!•z~T!1 i E
0

T

dtF i z• ż1P• ẋ2
P2

2M

2gsA01gA• ẋ2
ig

M
FmnzmznG J

G50

. ~68!

The remainingd function enforces the boundary conditio
x0(T)5x0 and can be used to perform the integration ov
the proper timeT yielding

T5s~x02y0!. ~69!

In other words, in the nonrelativistic limit the proper tim
becomes the ordinary time~difference!, as expected. Since
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the proper time is positive, the (s511) term describes for-
ward propagation of the particle whereas the (s521) term
describes backward propagation of the antiparticle, whic
also contained in the Feynman propagator but decouple
the heavy mass limit. Furthermore, the global projection
erator in front of the propagator~68! can be replaced by

2
i

2M
~ i ]” x2gA” 1M !→2 i

1

2
~11sg0!1OS 1

M D ~70!

as thex0 derivative acting on the phase factor exp@2iMs(x0
2y0)# gives the leading contribution. Since

g05S 1
0

0
21D ~71!

the ~anti!particle propagator acts only on the~lower! upper
components of Dirac spinors if the remaining path integra
diagonal in 232 Dirac space~which will turn out to be the
case!. Shifting back to integration overp we therefore obtain

G~x,y!.2 i (
s561

Q~s~x02y0!!
1

2
~11sg0!e2 iMs~x02y0!

3expS g•
]

]G DN4
spinE D 3xD 3pD 4z

3expH z~0!•z~T!1 i E
0

T5s~x02y0!

dt

3F i z• ż1p• ẋ2
1

2M
~p2gA!22gsA0

2
ig

M
FmnzmznG J

G50

. ~72!

The time dependence of the electromagnetic potentials
fields is fixed by Eq.~67!. Substituting

t85y01st, t8P@y0 ,x0#,

x~ t !5x8~ t8!,p~ t !5p8~ t8!, z~ t !5z8~ t8! ~73!

the boundary conditions for the coordinate space path i
gral become the usual ones for a nonrelativistic path inte
@29#

x8~y0!5y, x8~x0!5x. ~74!

Omitting the primes, the action in the phase space path i
gral now reads

Ss@x,p,z#52 i zm~y0!zm~x0!1E
y0

x0
dt@ i zmżm1p• ẋ

2Hs~x,p,2z!#, ~75!

Hs~x,p,2z!5sFM1
~p2gA!2

2M G1gA01
igs

M
Fmnzmzn.

~76!

Here we have absorbed the phase factor exp@2iMs(x02y0)#
into the HamiltonianHs .
is
in
-

s

nd

e-
al

e-

Finally we simplify the spin degrees of freedom by usi

Fmnzmzn52z0E•z2B•~z3z! ~77!

and observing that the first term in Eq.~77! is linear inz0 .
After shifting z05G0/21j0 , the j0 integration can be per
formed and leads to a term in the remaining action which
of O(1/M2): the Fourier transform of a Gaussian is again
Gaussian. In that process part of the spin normalization
tor is cancelled. The same argument can be applied w
respect to thez integration so that in leading order onl
igsG0E•G/M survives from the first term in Eq.~77!. Per-
forming the required differentiations with respect toG0 we
see that we obtain a contribution to Eq.~70! of the same
order which was already neglected. Notice that 2z0E•z is
‘‘odd’’ in the sense of connecting large and small comp
nents in the Dirac equation; from the standard Fold
Wouthuysen transformation of the Dirac Hamiltonian it al
follows that the odd parts are suppressed by a factor 1M
compared to the ‘‘even’’ ones. In addition, since

g ig j5S 0
2s i

s i

0 D S 0
2s j

s j

0 D52S s i

0
0
s i

D S s j

0
0
s j

D ~78!

one can set

exp~g•“G!→exp~ i s•“G! ~79!

for the remaining even part of the action. After changing t
signs of the spin terms by the substitutionz→ i z the nonrel-
ativistic limit for the Dirac propagator finally becomes

G~x,x0 ;y,y0!

.2 i (
s561

Q@s~x02y0!#
1

2
~11sg0!es•“GN̄3

spin

3E
x~y0!5y

x~x0!5x
D 3xD 3pE

z~y0!1z~x0!5G
D 3z

3expH z~y0!•z~x0!1 i E
y0

x0
dt@ i z• ż1p• ẋ

2Hs~x,p,2z!#J
G50

~80!

with

N̄3
spin5H E

z~y0!1z~x0!5G
D 3zexpFz~y0!•z~x0!

2E
y0

x0
dtz• żG J 21

. ~81!

The Hamiltonian

Hs~x,p,2z!5sFM1
~p2gA!2

2M G1gA01
igs

M
B•~z3z!

~82!

coincides exactly with the standard Foldy-Wouthuys
Hamiltonian for particles and antiparticles@see, e.g., Ref.
@19#, Eq. ~4.5!#
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HFW~x,p,s!5g0FM1
~p2gA!2

2M G1gA02
g

2M
g0s•B

1OS 1

M2D ~83!

if the last term~the so-called Pauli term! is rewritten using

s3s52i s. ~84!

This ensures that the time evolution is governed by
Grassmann-even Hamiltonian. It is, of course, straightf
ward to start from the nonrelativistic spin-dependent Ham
tonian~83! and by using the identity~84! to derive the three-
dimensional path integral~80! for the propagator as has bee
done in Ref.@9#, Sec. 5. Here we proceeded in the reve
order showing how the nonrelativistic limit can be tak
within the path integral representation of the Dirac propa
tor. It should also be possible to evaluate higher-order te
in the nonrelativistic reduction in this way or to obtain th
semiclassical limit of the propagator@30#.

V. DIRAC PROPAGATOR IN AN EXTERNAL
SCALAR POTENTIAL

For some applications one needs the propagator of a
mion which moves in an external scalar fieldS(x) as well.
For example, in the Walecka model@31# the exchange of a
scalar meson generates attraction between nucleons wh
massive vector mesons are responsible for repulsion
shorter distances. In such cases we need to evaluate the
lowing Green function

G~x,y!5K xU 1

P” 2M !~x!1 i0
UyL , ~85!

where

M !~x!5M1S~x! ~86!

is the effective, position-dependent mass of the fermion.
The previous method of multiplying numerator and d

nominator in Eq.~85! by P” 1M ! obviously does not work
anymore since

~P” 2M !!~P” 1M !!5P” 22M !21@P” ,M !# ~87!

is not Grassmann even. Consequently there are stateme
the literature@27# that in this case a five-dimensional forma
ism is the only possible approach. However, this isnot the
case: the problem to rationalize the denominator of the Gr
function is analogous to the problem of inverting compl
matrices by using only real arithmetic. This is eas
achieved by writing

1

A1 iB
5~12 iA21B!

1

A1BA21B
. ~88!

Therefore we have
a
r-
-

e

-
s

r-

eas
at
fol-
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s in

en

1

P” 2M !
5S M1

M

M !
P” D 1

P” ~M /M !!P” 2MM !1 i0
~89!

as the Di Vecchia-Ravndal representation for the pres
case. Again we have the choice to project onP” 5M ! either
during the evolution or at the end. If we adopt the lat
approach the quantum-mechanical Hamiltonian which g
erns the proper time evolution is now

Ĥ52
1

2k0
P”̂

M

M !~ x̂!
P”̂ . ~90!

The phase-space path integral representation of the prop
tor is now determined by evaluating the Wigner transform
Eq. ~90! ~see the Appendix!. With the abbreviationU(x)
5M /M !(x) one obtains

H~p,x,g!52
1

2k0
P2U~x!1

ig

4k0
gmgnFmn~x!U~x!

2
ig

4k0
gmgn@]mU~x!Pn2Pm]nU~x!#

2
1

8k0
]2U~x!. ~91!

Since the Hamiltonian is quadratic inP5p2gA the mo-
mentum path integral can still be performed so that the
grangian path integral representation of the propagator re

G~x,y!52
i

2k0
@U~x!@ i ]”2gA” ~x!#1M #E

0

`

dTN~T!

3expS 2
iMM !~x!T

2k0
D

3expS g•
]

]G D E
x~0!5y

x~T!5x
DxE

z~0!1z~T!5G
Dz

3expH z~0!•z~T!1 i E
0

T

dtL~x,ẋ,z,ż !J
G50

~92!

with

L~x,ẋ,z,ż !5 i z• ż2
k0

2U~x!
ẋ22gA~x!• ẋ

2
ig

k0
U~x!Fmn~x!zmzn22i ẋ•z

1

U~x!
z•]U~x!

1
1

8k0
]2U~x!12id~0!lnU~x!. ~93!

The last term arises from the quadratic fluctuations
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)
k

1

U2~xk!
5expS 22(

k
logU~xk! D

5expS i2i
1

Dt
Dt(

k
lnU~xk! D ~94!

in the discretized momentum path integral which are n
position dependent due to the effective massM !(x). The
awkwardd(0) appears as the formal limit of 1/Dt when the
time slicing Dt is made infinitesimal~see Ref.@32#, Chap.
19! and cancels consistently against other divergencies@33#.

VI. EFFECTIVE ACTION FOR QUENCHED QED

In order to reduce the number of degrees of freedom
advantageous for some applications to integrate out
bosons which mediate the interactions. The price to be p
is, of course, a more complicated two-time effective inter
tion. We will outline this procedure by considering quantu
electrodynamics~QED! ~or the Walecka model without sca
lar mesons4!

L5L0~A!1c̄~ i ]”2gA” 2M0!c, ~95!

where

L0~A!52
1

4
FmnFmn1

1

2
m2A22

1

2
l~]•A!2 ~96!

is the Stu¨ckelberg Lagrangian with a gauge parameterl. We
have given the photons a massm in order to regularize in-
frared divergencies.

The generating functional for the two-point function wi
an arbitrary number of photons is

Z8@ j ,x#5E DA^xu
1

i ]”2gA” 2M0

u0&exp$ iA0@A#1~ j ,A!%.

~97!

Here the free vector meson action is denoted byA0@A#
5*d4xL0(A) and we have neglected closed fermion loo
~quenched approximation! @34# in order to have a single
world line for the fermion. For integrating out the vect
field Am we use the path integral representation of the Di
propagator in an external vector field in its supersymme
form and the Gaussian integration formula

E DAmexpF i

2
@Am ,~G21!mnAn#1~Am ,hm!G

}expF i

2
~hm ,Gmnhn!G . ~98!

Here

4If one also wants to integrate out the scalar mesons, the fi
dimensional Berezin-Marinov description has to be used beca
only then is a Gaussian path integral for the scalar mesons obta
our four-dimensional form~93! is highly nonlinear inS(x).
is
e
id
-

s

c
c

Gmn~k!52Fgmn2kmkn/m2

k22m2
1

kmkn/m2

k22m2/l
G ~99!

is the standard propagator for massive vector particles~Ref.
@24#!. From the linear terms inAm we read off

hm~y!5 j m~y!1 igE
0

T

dtE duDXm~ t,u!d4~y2X~ t,u!!.

~100!

For the present purposes the local projection method
preferable because the whole dependence on the photon
resides in the free photon action and the electron-photon
teraction. After integration over the photon field we th
obtain for the generating functional~97!

Z8@ j ,x#5const expS g•
]

]G D E
0

`

dTN~T!

3expS 2
i

2k0
M2TD •E dx

3expS 2
i

2k0
Mx DDxDzeiSeff[X, j ] uG50 , ~101!

where the effective action is given by

Seff@X, j #5S08@X#1
1

2
~hm ,Gmnhn!. ~102!

As in Ref. @34#, it is advantageous to split it up into term
involving zero, one or two external sourcesj (y). The latter
one leads to disconnected diagrams and can be disca
We then have

Seff@X, j #5S08@X#1S1@X#1S2@X, j #, ~103!

where the free action is given in Eq.~44! and the interaction
part by

S1@X#5
g2

2 E
0

T

dt1E du1E
0

T

dt2E du2E d4k

~2p!4

3Gmn~k!DXm~ t1 ,u1!DXn~ t2 ,u2!

3exp$2 ik•@X~ t1 ,u1!2X~ t2 ,u2!#%. ~104!

Note that the ‘‘current’’

Jm~X![DXm~ t,u!52u ẋm~ t !1azm~ t ! ~105!

looks similar to scalar QED but is Grassmann odd and d
not depend on the integration variablek. Therefore thek
integration can be performed easily giving the photon pro
gator in configuration space with argumentX(t1 ,u1)
2X(t2 ,u2) @14#. Written in components the interaction ter

e-
se
ed;
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S1@x,z#52
g2

2 E
0

T

dt1dt2E d4k

~2p!4

3Gmn~k!F ẋm~ t1!1
2

k0
zm~ t1!k•z~ t1!G

3F ẋn~ t2!2
2

k0
zn~ t2!k•z~ t2!Ge2 ik•[x~ t1!2x~ t2!]

~106!

is seen to contain up toquartic terms in the spin variablez.
This means that, unlike the case of external fields, the Gr
mann variables cannot be integrated out anymore to giv
‘‘spin factor.’’ Vice versa, it is impossible to eliminate th
photon field starting from the spin factor formulation for th
propagator.

The source term becomes

S2@X, j #5 igE d4y jm~y!E
0

T

dtE duE d4k

~2p!4

3Gmn~k!DXn~ t,u!exp$2 ik•@X~ t,u!2y#%.

~107!

It is also possible to use the global projection method wh
does not have a spin-orbit coupling. However, there is
additional dependence on the photon field in the covar
derivative acting on the path integral in Eq.~18! which
makes it less suitable for deriving an effective action.

To conclude this section, we note that the effective act
in Eq. ~103! allows a particularly concise derivation of th
transformation properties of Green functions5 under a change
of the gauge parameterl: We see from the photon propag
tor Gmn(k) in Eq. ~99! that a change inl only effects the
term proportional tokmkn . For this term the integrals ove
the proper timest i and u i occurring in the effective action
may be performed exactly as the integrand is a total der
tive, i.e.,

E
0

T

dtE duk•DX~ t,u!e2 ik•X~ t,u!

5 i E
0

T

dtE duDe2 ik•X~ t,u!5 i ~12e2 ik•x!. ~108!

The change inS1 @Eq. ~104!# andS2 @Eq. ~107!# induced by
a change inl from l1 to l2 , say, is therefore only depen
dent on the end points of the pathx(t) and not on the path
itself. If we defineD(x2) to be the Fourier transform of th

change of the coefficient@[D̃(k2)# of kmkn in the photon
propagator, i.e.,

5These transformations were first derived for the electron pro
gator and the electron-photon vertex by Landau and Khalatni
@35# and extended to general Green functions by Fradkin
Zumino @36#.
s-
a

h
n
nt

n

a-

D~x2!52
1

m2E d4k

~2p!4S 1

k22m2/l2

2
1

k22m2/l1
D e2 ik•x,

~109!

then the corresponding change inS1 is given by

dS15S1
l5l2@X#2S1

l5l1@X#

5
g2

2 E d4k

~2p!4
D̃~k2!i 2~12e2 ik•x!~12eik•x!

5g2@D~x2!2D~0!# ~110!

while the change inS2 is

dS252 igE d4y j~y!•]y@D~@y2x#2!2D~y2!#.

~111!

Note that not only is the change inS1,2 independent of the
path, so that it may be pulled out of the path integral in E
~101!, it also does not involve the Grassmann valuedG nor is
it dependent on the proper timeT. Hence the generating
function for the Green functions with gauge parameterl2 is
related to that with gauge parameterl1 in a very simple way,
namely,

Zl2
8 @ j ,x#5ei ~dS11dS2!Zl1

8 @ j ,x#

5expH ig2@D~x2!2D~0!#

1gE d4y j~y!•]y@D~@y2x#2!2D~y2!#J
3Zl1

8 @ j ,x#. ~112!

As special cases we can derive the transformation laws
the propagator and the electron-photon vertex from t
expression.6 Setting j 50 we obtain

Gl2~x,0!5eig2[D~x2!2D~0!]Gl1~x,0!, ~113!

while by differentiating once with respect to the current a
then settingj 50 we obtain the~untruncated! vertex function

G2,1
l2m

~y;x,0!5g$]y
m@D~@y2x#2!2D~y2!#%Gl2~x,0!

1eig2[D~x2!2D~0!]G2,1
l1m

~y;x,0!. ~114!

It should be noted that these relations are valid even if
photon mass~which violates gauge invariance! is kept non-
zero in the photon propagator.

a-
v
d

6See Ref.@35#. Note that in that paper the photon propagator
defined with a minus sign with respect to ours. Hence our funct
D(y2) is 2DF(y) of Ref. @35# and our untruncated vertex functio
is the negative of the functionBm defined by Landauet al.
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VII. SUMMARY AND CONCLUSIONS

The main purpose of this work is to explore a fou
dimensional path integral representation for the Dirac pro
gator general enough to describe the particle’s motion
both vector and scalar fields. Although the four-dimensio
approach, for an external vector field, was proposed by
Vecchia and Ravndal almost twenty years ago, it had
ceived limited attention up to now. Instead it is standard
use the Berezin-Marinov approach where one introduce
fifth component to eliminate the extra spin degree of fr
dom. However, the fifth component has no clear phys
meaning and the necessity of introducing ag5 for the evalu-
ation of the propagator seems rather unnatural. The fo
dimensional representation avoids these difficulties; in ad
tion the supersymmetry transformations become easier
more natural to generate.

Working within this four-dimensional formalism we hav
presented two alternative methods to project out the
wanted spin degree of freedom. The first method proje
onto the final state after the time evolution and is hen
termed global, whereas in the second method the projec
is done at each step in the time evolution and it is theref
referred to as local. Extending previous work by Reut
Schmidt, and Schubert we have shown that due to the su
symmetry the two methods are completely equivalent
may be used according to convenience. The main differe
between the two approaches is that the path integral re
sentation using the local projection has an explicit spin-o
coupling term. It was therefore crucial for the proof
equivalence to generalize the results of Ravndal and Di V
chia regarding the supersymmetry transformations to ap
also in the case where the spin-orbit term appears. In R
@16,17# it was pointed out that, in the case where no sp
orbit term was present, a simple way of generating b
bosonic and fermionic transformations is to shift the timet
andu. We show in this paper that in the presence of a sp
orbit term in addition to a shift an appropriate scaling of t
times t and u is needed in order to generate the correct
persymmetry transformations. This scaling is such that
parameterk0 and the supertimex remain unchanged.

For the case of a Dirac particle in an external scalar
tential it was generally believed that a five-dimensional
proach was unavoidable. We have here shown that this isnot
the case and we used the four-dimensional description
obtain the Dirac propagator in an external scalar field.

Despite the attention given to spin in the path integrals
nonrelativistic reduction starting directly from the Dira
propagator was still missing. By expanding the relativis
expression in powers of 1/M we were able to reduce the pa
integrals to three-dimensional form and to obtain the lead
nonrelativistic result described by the Foldy-Wouthuys
Hamiltonian.

Finally we applied the four-dimensional approach
quenched QED in order to obtain a supersymmetric form
lation for the generating functional of Green functions w
one electron line and an arbitrary number of external pho
lines. It was possible to do this as in the quenched appr
mation the photons can be integrated out, yielding a p
integral only in the electron degrees of freedom, albeit wit
complicated nonlocal interaction. In this form one can ap
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methods along the same lines as those used in the stud
the polaron problem as described in Ref.@26#. Furthermore,
we showed that it is a rather simple matter to derive
Landau-Khalatnikov transformations for the propagator, v
tex function, and indeed any higher-point function from th
formalism.

From a field-theoretic point of view, the world line tech
nique is particularly appropriate whenever one deals wit
situation where internal fermion loops may either be n
glected or taken into account perturbatively. As this situat
arises quite naturally in the nonrelativistic regime, the te
nique would appear to be particularly appropriate in that s
ting. We think that the reason it has not received a great d
of attention by physicists working in that area is partly due
the fact that the commonly used five-dimensional repres
tation appears artificial within this context. In this paper w
have tried to convey the message that for most problems
five-dimensional formulation is not only unnecessary but
fact less transparent than the four-dimensional one. It is
hope, therefore, that this paper makes world line techniq
more accessible to a wider audience than they have bee
to now.

Note added in proof. Recently it was pointed out to us tha
the elimination of the fifth spin variable was also consider
by T. Allen using Hamiltonian methods@T. Allen, Phys.
Lett. B 214, 87 ~1988!; see also T. Allen, Ph.D. thesis, Cal
fornia Institute of Technology~1988!#. Also, J. W. van Hol-
ten has advocated the use of a commuting rather than
commuting fifth spin variable and a different fou
dimensional approach@see the first reference in@10# as well
as a more concise discussion of the problem in Nucl. Phy
~Proc. Suppl.! 49, 319 ~1996!#. Finally, another important
contribution to the literature on spin in path integrals miss
from Ref. @6# is the paper by M. Halpern, A. Jevicki, and P
Senjanovic@Phys. Rev. D16, 2476~1977!#. We are grateful
to Professor T. Allen, Professor M. Halpern, and Professo
W. van Holten for correspondence regarding these re
ences.
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APPENDIX: SPIN PATH INTEGRAL FOR THE TIME
EVOLUTION OPERATOR

Here we consider the matrix element of the time evolut
operator

U~x,y!5^xuexp~2 i ĤT!uy&, ~A1!

where

Ĥ5H~ p̂,x̂,g! ~A2!

is a Weyl-ordered Hamiltonian. Breaking up the evoluti
operator inN time steps we obtain in the usual way
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U~x,y!5 lim
N→`

E d4x1•••d4xN21

d4p1

~2p!4
•••

d4pN

~2p!4

3expF2 i(
i 51

N

pi•~xi2xi 21!G
3exp@2 iHW~pN ,xN ,gN!Dt#•••

3exp@2 iHW~p1 ,x1 ,g1!Dt# ~A3!

with x05y andxN5x. Here

HW~p,x,g!5E d4yK x2
y

2UĤUx1
y

2L e2 ip•y ~A4!

is the Wigner transform~or Weyl symbol! of the Hamil-
tonian which is the closest classical analog to the~Weyl-
ordered! quantum operator@37#. We will suppress the sub
script W in the following.

There are two essential steps to derive a path integral
spin.

~i! Because the Dirac matrices do not commute, the ord
ing of the factors is essential and the exponentials canno
combined with impunity. As is well known this also happe
in ordinary quantum mechanics for time dependent Hami
nians. We therefore have assigned an artificial tim
dependence to the Dirac matrices and can write now the
evolution operator as a time-ordered path integral@29#

U~x,y!5E DxDpT

3expH 2 i E
0

T

dt$p• ẋ1H@p~ t !,x~ t !,g~ t !#%J
5E DxDpexpH 2 i E

0

T

dtFp• ẋ

1HS p~ t !,x~ t !,
d

dr~ t ! D G J T
3expF E

0

T

dtrm~ t !gm~ t !G
rm50

. ~A5!

Here rm(t) are Grassmann sources which are assume
anticommute with the Dirac matrices. The boundary con
tions for thex-space path integral are

xm~0!5ym , xm~T!5xm . ~A6!

The time-ordering symbolT would be disastrous for furthe
manipulation of the path integral. However, in the spec
case it can be eliminated by the relation
th

r-
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-
-
e
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l

V~T![TexpH E
0

T

dtrm~ t !gm~ t !J
5expH 2E

0

T

dt1E
0

t1
dt2rm~ t1!rm~ t2!J

3expH E
0

T

dtrm~ t !gmJ . ~A7!

This can be proved by solving the corresponding evolut
equation

]V~T!

]T
5rm~T!gmV~T!, V~0!51 ~A8!

by using the Magnus expansion@38#

V~T!5expH E
0

T

dtrm~ t !gm

1
1

2E0

T

dt1E
0

t1
dt2@rm~ t1!gm,rn~ t2!gn#1•••J .

~A9!

The commutator yields22rm(t1)rm(t2) which is a commut-
ing c number so that all higher terms in the expansion wh
involve multiple commutators vanish. On the right-hand s
of Eq. ~A7! we can now drop the artificial time dependen
of the Dirac matrices.

~ii ! The differentiations with respect torm(t) which are
required in Eq.~A5! can only be performed easily if the
appear linearly in the exponent. This can be achieved
‘‘undoing the square,’’ which is a standard procedure@29#.
However, becauserm(t) is anticommuting and one needs a
even object in the exponent as evolution operator, we hav
do it with the help of a Grassmann path integral. We thus
the identity

expH 2E
0

T

dt1E
0

t1
dt2rm~ t1!rm~ t2!J

5E DjexpH E
0

T

dt@2jm~ t !j̇m~ t !12rm~ t !jm~ t !#J
3F E DjexpS 2E

0

T

dtjm~ t !j̇m~ t ! D G21

~A10!

and the antiperiodic boundary conditionjm(0)1jm(T)50
for the Grassmann path integral. The standard way of pr
ing this identity in the continuum formulation is by solvin
the ~differential! equations of motion which should give th
exact result for quadratic actions. However, it is very use
~and reassuring! to have an unambiguous formulation wit
finite time stepsDt, which we will present now: the dis
cretized form of

S52E
0

T

dt@2jm~ t !j̇m~ t !12rm~ t !jm~ t !# ~A11!

may be written as
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S5(
i 51

N Fj i ,mS j i 11
m 2j i 21

m

2 D 2
Dt

2
r i ,m~j i 11

m 12j i
m1j i 21

m !G ,
~A12!

whereDt5T/N andN needs to be even for the path integr
to be an even quantity. In discretized form the path integ
overj in Eq. ~A10! can now be done by the stationary pha
method. The~difference! equation of motion

jk11
m 2jk21

m 52
Dt

2
~rk11

m 12rk
m1rk21

m ! ~A13!

can be solved using antiperiodic boundary conditions forj,
i.e.,jN

m52j0
m , jN11

m 52j1
m . It is convenient~but not nec-

essary! to impose the equivalent boundary conditions forr.
Note that the particular discretization ofr(t)•j(t) in Eq.
~A12! is chosen so that the equations of motion~A13! for the
odd and even sites are coupled. This avoids the infam
‘‘fermion doubling’’ problem. The solution to the equatio
of motion is

jclj
m 5

Dt

2
r j

m2Dt (
k51

j

rk
m1

Dt

2 (
k51

N

rk
m . ~A14!

Substituting the solutionjcl into Eq. ~A12! we find

Scl5~Dt !2(
i 51

N

rm,i (
k51

i 21

rk
m1

~Dt !2

8 (
i 51

N

rm,i~r i 11
m 2r i 21

m !.

~A15!

The path integral overj can now be performed yielding

E Djexp@2S#

E DjexpF2E
0

T

jmj̇mG 5exp@2Scl# ~A16!

since the determinant from the quantum fluctuations is c
celed by the denominator. Taking the continuous limit ofScl
only the first term in Eq.~A15! survives and we obtain th
e,

nt
l
l

us

n-

required result. Having proven the relation~A10! by writing
the functional integrals in a well defined discretized form w
can now use it in Eq.~A5! with all manipulations formally
done in the continuum.

Using the representation

expH E
0

T

dtrm~ t !gmJ
5expH gm

]

]Gm
J expH E

0

T

dtrm~ t !GmJ U
Gm50

~A17!

we obtain

U~x,y!5expS g•
]

]G D E DxDpDjNspinexpH 2 i E
0

T

dt@p• ẋ

2 i j• j̇1H~p,x,2j1G!#J
G50

. ~A18!

Here

Nspin5F E DjexpS 2E
0

T

dtjmj̇mD G21

~A19!

is a normalization factor for the spin integral. Note that t
operation in Eq.~A17! is in generalnot just a replacement o
the boundary variableG by the corresponding Diracg matrix
but involves an antisymmetrization as well. For examp
exp$g•]/]G%GmuG505gm , but

expH gm
]

]GmJ GmGnU
G50

5
1

2S g•
]

]G D 2

GmGnU
G50

5
1

2S g•
]

]G D ~gmGn1Gmgn!U
G50

5
1

2
~2gngm1gmgn!. ~A20!

This is the inverse transformation of the Weyl representat
for fermionic operators.
B
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