PHYSICAL REVIEW A VOLUME 59, NUMBER 3 MARCH 1999

ARTICLES

Low-energy relativistic effects and nonlocality in time-dependent tunneling

Gasfm Garca-Caldern
Instituto de Fsica, Universidad Nacional AUutmma de Mgico, Apartado Postal 20-364, 01000 Meo, Distrito Federal, Mexico

Alberto Rubid
Facultad de Ciencias, Universidad Aumma de Baja California, Apartado Postal 1880, 22800 Ensenada, Baja California, Mexico

Jorge Villavicencid
Centro de Investigacio Cientfica y de Educacio Superior de Ensenada, Apartado Postal 2732,
22800 Ensenada, Baja California, Mexico
(Received 19 August 1998

We consider exact time-dependent analytic solutions to the Siclyer equation for tunneling in one
dimension with cutoff wave initial conditions &t=0. We obtain that as soon &% 0 the transmitted prob-
ability density at any arbitrary distance rises instantaneously with time in a linear manner. Using a simple
model we find that the above nonlocal effect of the time-dependent solution is suppressed by consideration of
low-energy relativistic effects. Hence at a distamgefrom the potential the probability density rises after a
time ty=Xxg/c restoring Einstein causality. This implies that the tunneling time of a particle can never be zero.
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PACS numbegs): 03.65—w, 73.40.Gk

Recent technological achievements such as the possibilityf a perfectly absorbing shutter locatedxat 0. The sudden
of constructing artificial quantum structures at nanometricopening of the shutter at time=0, allows the plane wave
scales[1] or manipulating individual atomg2] have stimu- ~ solution to propagate freely along the regiar-0 [10].
lated a great deal of work at both the applied and fundamerMoshinsky showed that as the tintegoes to infinity, the

tal level. In particular, studies on tunneling have addressec0!ution to the problem tends to the stationary solution. He

among other things, the controversial question of the trag;ilso found that both the current and the probability density

versal time of a particle through a classically forbidden re- 0" & fixed value of the distanog as a function of, present
scillations near the wave front, situated tgt=xq/v. He

gion [.3]' The abpve cons_lderauons have motivated reneweﬁamed this phenomenon diffraction in time, in analogy to the
attention regarding the time-dependent treatments of quaRge|| known phenomenon of optical diffraction. Recently an
tum tunneling. From the theoretical side, most of these workgpservation of diffraction in time has been reporfed]. If
are based on the numerical analysis of the time-dependeqfe put a potential barrier in the regionsx<L with the
Schralinger equation with the initial condition of a Gaussian same initial condition as above, then we may have a conve-
wave packef4]. A common feature in most of these ap- nient model to analyze tunneling times by measuring at what
proaches is that the initial wave packet extends through alime the probability density rises from zero. However, as
space. As a consequence the initial state, although it is maointed out by Holland[12] for the free case, and by
nipulated to reduce as much as possible its value along th@arca-Calderm and Rubid 8] for the case of a potential, the
tunneling and transmitted regions, contaminates from the besolution of the time-dependent Schinger equation for a
ginning the tunneling process. In the literature, however, ongutoff initial plane wave has a nonlocal character. This
also finds a number of approaches to time-dependent tunnakeans that if initially there is a zero probability for the par-
ing, pionnered by Stever$], that in fact circumvent the ticle to be atx>0, as soon as# 0, there is instantaneously a
above situation using a cutoff wave as initial stgie-8|. finite, though very small, probability of finding it at any
Our approach is a generalization to an arbitrary potentiaboint x>0. This implies a zero tunneling time for some par-
[8] of the Moshinsky shutte@]. Moshinsky considered the ticles.
solution of the time-dependent free Sctlirger equation In this work we address the issue of the behavior of the
with the initial condition, att=0, of a plane wave of mo- time-dependent solution to the ScHilger equation for tun-
mentumk confined in the half-space region<0 to the left  neling through a potential barrier using a cutoff wave as
initial condition. Our aim is to analyze the nonlocal behavior
of the time-dependent transmitted solution at early times. We
*Deceased. also study low-energy relativistic effects by solving the
TAlso at Facultad de Ciencias, Universidad Awma de Baja Klein-Gordon equation for a model potential. The implica-
California Apartado Postal 1880, Ensenada, Baja Californiation of our findings for the tunneling time problem is briefly
Mexico. discussed.
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For the sake of simplicity in our approach we consider theThe exact solutions given by Eq®) and(7), corresponding,
instantaneous removal of the shutter. This may be seen asraspectively, to absorbing and reflecting initial cutoff waves,
kind of “sudden approximation” to a shutter opening with involve each a contribution proportional to the free case so-
finite velocity, where the treatment is more involved even forlution and then an infinite sum involving tf&matrix poles,
the free cas¢13]. In a recent paper we have shown that the{k,}, and resonant statef),(x)}, of the system. As shown
transmitted solution for the Schdimger case for tunneling in Ref. [8], at very long times, the termdi(x,k,,t) that
through an arbitrary potential barrier may be written as a fre@ppear in the above equations vanish. The same occurs for
term solution plus an infinite sum of resonance transienM (x,—k,t) while, as shown first, to our knowledge, in Ref.
terms associated with tf@matrix poles of the problerf8].  [9], M(x,k,t) tends to the stationary solution. Hence, at long
This corresponds to solve the time-dependent Sthger times, each of the above exact solutions go into the station-
equation for a potential (x) that vanishes outside the region ary solutionT(k)exdi(kx—Et/%)].

0=<x=L, with the initial condition, At very short times, for a givex=L, the argument of
_ M(x,k,t), given by Eq.(4) with q=k, becomes very
e x<o, large and in fact becomes independent of the valué, of
Js(xk1=0)= 0, x>0, @) y~exp(—im/4)[m/i2it]¥%. Since for very largey, M(y)
~1ly [9,8], it follows that M(x,k,t) goes liket¥2. As dis-
The transmitted solution for the regior=L reads[8] cussed also in Ref8], the functions dependent on the poles,

M(x,k,,t), behave in a similar fashion provided the value of

- t=t, is sufficiently small to guarantee, for a fixee-L, that
Psx K O=TUOMOKD =12 TM(Ka,t), (2 Lk, |t/m. Since the distribution of the complé&matrix
" poles on thek plane fuffills [|kq|<|Kky|---<|kpy|---, one
sees that asbecomes smaller and smaller there will be more
and more values ofi for which the correspondinyl func-
tions goes like'? as do all the rest dfl functions associated
with smaller values ofi. In the appropriate limit as—0 and
n—o, the corresponding/ function then vanishes a2
Consequently fox=L, the solutions given by Eq$2) and
3 (7) are proportional ta'?, namely,

where T(k) stands for the transmission amplitude of the
problem,T,=u,(0)u,(L)exp(—ik,L)/(k—k,), is given in
terms of the resonant eigenfunctiong(x) and complex
Smatrix polesk, ; and the Moshinsky function® (x,k,t)
andM (x,k, ,t) are defined as

M(x,q,t)= %e“mxz’zm)ey2 erfa(y),

where and the argumeptis given by (X, K, )~ étl/'é‘ (x=L), 9)
) m 1/2] ﬁq
yse‘””“(z—ﬁt) X— Ft}. (4)  whereAis a constant. Note that &0 the solution vanishes
in accordance with the initial condition. It is not difficult to

see that Eq(9) will hold also for a cutoff initial condition
that is something between the initial conditions considered
above, and more generally, for a wave packet formed by a
linear combination of cutoff waves. Equati@®) tells us that

the probability density at any distangefrom the potential
will rise instantaneously with time. This intriguing nonlocal
behavior implies that an ideal detector will measure a zero

Eq. (1) refers to a shutter that acts as a perfect absarr tunneling time. The existence of action-at-a-distance effects

reflected wavke One can also envisage a shutter that acts ag].th(.a ltlme—dependent Sck:a‘mgg_:(f_eqngﬂon_ Shofhld tnot,t In ¢
a perfect reflector. In such a case the initial wave may pdMNCIPIE, pose any conceptual diflicutlies since he treatmen

IS nonrelativistic. However, one could ask whether the above

In the above two equatiorggstands either fok or k,,. In the

absence of a potential the solution given by Et).becomes

the solution for the free case obtained by Moshingkly
Poxk,H)=M(x,K,1). (5)

As discussed by Moshinsky, the initial condition given by

written as nonlocal behavior arises because the initial condition is a
elkx_g=ikx 0 cutoff wave. In order to answer the above question we con-
Ps(X,k,t=0)= (6) sider low-energy relativistic effects by solving the Klein-
0, x=>0. Gordon equation with a cutoff wave as initial condition for a
) ) ) simple potential model. Moshinskf@] solved the Klein-
The transmitted solution for the regior=L now reads Gordon equation for the free shutter problem with the initial

condition of a cutoff plane wave in the region<O and

Ps(xkO=T(KM X,k ) = T(=K)M(x,— k1) showed that the probability density at a poit 0 is non-

o zero only after a time,>x,/c, with c the velocity of light.
—2ik2 ToM(X,kp,t), (7) To our knowledge, a numerical analysis of this solution has
n not yet been performed. We would like to learn also how the
relativistic solution is affected at early times by tunneling

WhereTn:un(O)un(L)exp(—iknL)/(kZ—kﬁ). The solution through a potential.
for the free case with the reflecting initial condition is A potential that has been widely used in studies on time-
0 dependent tunneling is the square barrier, characterized by a
Ps(X K1) =M (XK 1) = M(x, —kt). (8 heightV, and a widthL. This potential has an infinite set of
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S matrix poles situated at increasing energies on top of thevhereu=mdc/%. with the initial condition given by
barrier. There is, however, a simpler potential model that is

more amenable for a relativistic treatment. This is éhpo- ek x<0
tential V(x)=b.8(x). The solution corresponding to the Yo%k, t=0)= ' ' (13)
time-dependent Schdinger equation has been obtained by 0, x>0,

Elberfeld and Kleber using @&-function propagatof14].

One can also follow a derivation by Laplace transformingwhere we defineE?=k?+ u? and k,=k(1— (k/u)?) 2.
directly the time-dependent Scliiager equation of the Note thatE, is given in units of the reciprocal length, i.e.,
problem using the initial condition given by E@l) [15].  E,=E/#c. The condition given by Eq13) follows from the
Defining p?>=2ims/#i the Laplace transformed solution fact that, fort<0, when the shutter was closed, we had on

Js(x,s) for the regionx>0 reads the left side of the shutteg)°(x,k, ,t)=exdi(k,x—E,ct)],
) ox for x<0 and a vanishing value for>0. By direct applica-
J(x K,s)= Im e’ (10 tion of the Laplace transform method one gets a set of dif-
S [RAY] -

h (p+ib)(p—k)’ ferential equations corresponding to the regigns0 andx

) _ _ _ <0. In order to derive an expression for the transmitted wave

whereb=mbs/A. After a simple partial fraction decompo- function, we have to consider the matching conditions to

sition the inverse Laplace transform yields, for 0, take into account the discontinuity of the wave function de-
. rivatives atx=0, obtaining the Laplace-transformed solu-

PO D=TOM KD +RIOM(x, ~ i), (A  goo o o ning P !

whereT (k) andR(k) stand for the transmission and reflec-

tion amplitudes for the stationary situatiof,(k)=k/(k —

+ib) and R(k)=ib/(k+ib). Note that here instead of an r(x.8)=
infinite number ofS-matrix poles the only{s-matrix pole cor-

responds to an antibound state locatekl.at —ib. At a ver . .
shoF;t time one can easily see thaf(x K t) goes Iiket”g whereq=[s"+ u*c’]"® andbo=D;/2. Using the Bromwich

- . contour to evaluate the inverse Laplace transform of([E4).
fulfilling also, as the square barrier, E@®). P (4

; . .. it is convenient to make the change of varia —iu
The shutter problem for the Klein-Gordon equation with g b

: 8 . . =(q+s)/(uc). In this form gq=iuc(u t—u)/2 and as a
the & potentialV(x) = b 5(x) requires the solution of consequence the branch pointsat*iuc go into an essen-

(s—icE,)

—qgx/c
@btk 14

1
2

72 1 22 tial singularity atu=0 and two simple poles located on the

— s =4S lower half of th mpl lane. After rating int r-
SUPOGK D= = — (XK ) ower half of the complexi plane. After separating into pa

X ce at tial fractions one then may evaluate the resulting integrals by

ot s standard complex variable techniques to obtain the wave

5 AY(x.k; 1) +BCyO(x,—ibg,t) +BD[40(x,—ibg,t)]*, t>x/c,
(XK 1) = (15
0, t<x/c,
where A=k, /(k,+ibg), B=iby/(k,+iby), C=(e+E,;)/(2¢), and D=(e—E,)/(2¢), and alsoe=(u?—b3)*2 In Eq.
(15), the functionz,bf’(x,kr ,t) is the solution of the free Klein-Gordon ca#&16], namely,

| 1 S
ol (kx—Erct) |- 530(7) = > [&iz]"(n), t>xlc,
=0

P2(x,k; 1) = (16)

0, t<xl/c,

whereJ,(7) stands for the Bessel function of ordeand,  termsy?(x,—ibg,t) and[ 49(x, —ib,t)]* vanish, while the

term z,b?(x,kr ,t) goes into the stationary solution gxgk,x

1 —E,ct)].

= p(ctP=x?) 2= ;(kf+Ef)' To exemplify the above results Fig. 1 exhibits the very
a7 short time behavior of the probability density for the delta

potential at a fixed distanoe=L=0.3 A . One sees that the

The expressionsy®(x,—ibg,t) and [¢2(x,—ibg,t)]* in  Schralinger description(broken ling, obtained from Eq.

Eq. (15) have the same form as the free solution in B  (11) with parametersh,=2.0 eV-A and E=0.01 eV,

with k, replaced by—ib,. Asymptotically for very long yields an instantaneous response with time while the relativ-

times in the solution:,//f(x,kr 1), given by Eq.(15), the istic solution, calculated using Eql5), starts aftertg

ct+x]¥2

ct—x
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0.25 with « an arbitrary phase, the peak height will be a function
o of «. In particular, for a reflecting initial condition, o
020 08 =), the solution starts smoothly from zerotgt=L/c. It

06 might be of interest to mention that in fully relativistic quan-

2 sk 04 tum field theories Hegerfeldtl7] has pointed out that the

s oz sudden opening of a shutter may lead to violation of Einstein
Z 4o 05 1.0 causality, i.e., no propagation faster than light. This author
§ 0101 Time ps) has argued that the difficulty is of a theoretical nature and

has discussed some ways to solve it. Our relativistic model
satisfies Einstein causality. The inset to Fig. 1 shows that at
longer times the above two solutions approach each other,
0.00 k=== - - both presenting the characteristic transient behavior near the
o0 "0 20 0 o “classical” wave front atx=uvt, which in our example oc-
Time (10°7ts) curs at a very short time. Our analysis has a consequence of
FIG. 1. Plot of|¢(x,t)|? (dashed ling and |?(x,t)|? (solid  interest for the tunneling time problem. Since the probability
line), respectively, for the Schdinger and Klein-Gordon solutions density rises with time after a timg=x,/c, it implies that
for a & potential, as a function of time at a fixed distance at earlythe tunneling time of a particle can never be zero, contrary to
times and at long timeénse}. See text. some claims in the literature].

Thus we can see that a proper description of the quantum
=L/c. This tell us something relevant: The nonlocal behaviormechanical propagation for the transmitted solution, even at
of the Schrdinger description is due to its nonrelativistic jow energies, strictly requires a relativistic treatment. How-
nature. The nonlocal behavior of the Satlirer solution  ever, since the corresponding solutions are practically iden-
would result from the fact that in a nonrelativistic descriptiontical up to the relativistic cutoff, at=L/c, suggests that the
there is no restriction on the velocity of some components o&chralinger description is quite accurate provided the veloc-
the initially confined wave function. The sharp relativistic jty components larger thanare omitted.
wave front of height 0.25 in Fig. 1 follows as a consequence
of the initial condition given by Eq(13). This jump occurs

b

=3

o
T
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