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Low-energy relativistic effects and nonlocality in time-dependent tunneling
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We consider exact time-dependent analytic solutions to the Schro¨dinger equation for tunneling in one
dimension with cutoff wave initial conditions att50. We obtain that as soon astÞ0 the transmitted prob-
ability density at any arbitrary distance rises instantaneously with time in a linear manner. Using a simple
model we find that the above nonlocal effect of the time-dependent solution is suppressed by consideration of
low-energy relativistic effects. Hence at a distancex0 from the potential the probability density rises after a
time t05x0 /c restoring Einstein causality. This implies that the tunneling time of a particle can never be zero.
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Recent technological achievements such as the possib
of constructing artificial quantum structures at nanome
scales@1# or manipulating individual atoms@2# have stimu-
lated a great deal of work at both the applied and fundam
tal level. In particular, studies on tunneling have address
among other things, the controversial question of the
versal time of a particle through a classically forbidden
gion @3#. The above considerations have motivated renew
attention regarding the time-dependent treatments of qu
tum tunneling. From the theoretical side, most of these wo
are based on the numerical analysis of the time-depen
Schrödinger equation with the initial condition of a Gaussi
wave packet@4#. A common feature in most of these a
proaches is that the initial wave packet extends through
space. As a consequence the initial state, although it is
nipulated to reduce as much as possible its value along
tunneling and transmitted regions, contaminates from the
ginning the tunneling process. In the literature, however,
also finds a number of approaches to time-dependent tun
ing, pionnered by Stevens@5#, that in fact circumvent the
above situation using a cutoff wave as initial state@5–8#.

Our approach is a generalization to an arbitrary poten
@8# of the Moshinsky shutter@9#. Moshinsky considered the
solution of the time-dependent free Schro¨dinger equation
with the initial condition, att50, of a plane wave of mo-
mentumk confined in the half-space regionx,0 to the left
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of a perfectly absorbing shutter located atx50. The sudden
opening of the shutter at timet50, allows the plane wave
solution to propagate freely along the regionx.0 @10#.
Moshinsky showed that as the timet goes to infinity, the
solution to the problem tends to the stationary solution.
also found that both the current and the probability dens
for a fixed value of the distancex0 as a function oft, present
oscillations near the wave front, situated att05x0 /v. He
named this phenomenon diffraction in time, in analogy to
well known phenomenon of optical diffraction. Recently a
observation of diffraction in time has been reported@11#. If
we put a potential barrier in the region 0<x<L with the
same initial condition as above, then we may have a con
nient model to analyze tunneling times by measuring at w
time the probability density rises from zero. However,
pointed out by Holland@12# for the free case, and by
Garcı́a-Caldero´n and Rubio@8# for the case of a potential, th
solution of the time-dependent Schro¨dinger equation for a
cutoff initial plane wave has a nonlocal character. Th
means that if initially there is a zero probability for the pa
ticle to be atx.0, as soon astÞ0, there is instantaneously
finite, though very small, probability of finding it at an
point x.0. This implies a zero tunneling time for some pa
ticles.

In this work we address the issue of the behavior of
time-dependent solution to the Schro¨dinger equation for tun-
neling through a potential barrier using a cutoff wave
initial condition. Our aim is to analyze the nonlocal behav
of the time-dependent transmitted solution at early times.
also study low-energy relativistic effects by solving th
Klein-Gordon equation for a model potential. The implic
tion of our findings for the tunneling time problem is briefl
discussed.
,
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For the sake of simplicity in our approach we consider
instantaneous removal of the shutter. This may be seen
kind of ‘‘sudden approximation’’ to a shutter opening wi
finite velocity, where the treatment is more involved even
the free case@13#. In a recent paper we have shown that t
transmitted solution for the Schro¨dinger case for tunneling
through an arbitrary potential barrier may be written as a f
term solution plus an infinite sum of resonance transi
terms associated with theS-matrix poles of the problem@8#.
This corresponds to solve the time-dependent Schro¨dinger
equation for a potentialV(x) that vanishes outside the regio
0<x<L, with the initial condition,

cs~x,k,t50!5H eikx, x,0,

0, x.0.
~1!

The transmitted solution for the regionx>L reads@8#

cs~x,k,t !5T~k!M ~x,k,t !2 i(
n

`

TnM ~x,kn ,t !, ~2!

where T(k) stands for the transmission amplitude of t
problem,Tn5un(0)un(L)exp(2 iknL)/(k2kn), is given in
terms of the resonant eigenfunctionsun(x) and complex
S-matrix poleskn ; and the Moshinsky functionsM (x,k,t)
andM (x,kn ,t) are defined as

M ~x,q,t !5 1
2 e~ imx2/2\t !ey2

erfc~y!, ~3!

where and the argumenty is given by

y[e2 ip/4S m

2\t D
1/2Fx2

\q

m
t G . ~4!

In the above two equationsq stands either fork or kn . In the
absence of a potential the solution given by Eq.~2! becomes
the solution for the free case obtained by Moshinsky@9#,

cs
0~x,k,t !5M ~x,k,t !. ~5!

As discussed by Moshinsky, the initial condition given
Eq. ~1! refers to a shutter that acts as a perfect absorber~no
reflected wave!. One can also envisage a shutter that acts
a perfect reflector. In such a case the initial wave may
written as

cs~x,k,t50!5H eikx2e2 ikx, x,0,

0, x.0.
~6!

The transmitted solution for the regionx>L now reads

cs~x,k,t !5T~k!M ~x,k,t !2T~2k!M ~x,2k,t !

22ik(
n

`

TnM ~x,kn ,t !, ~7!

whereTn5un(0)un(L)exp(2 iknL)/(k22kn
2). The solution

for the free case with the reflecting initial condition is

cs
0~x,k,t !5M ~x,k,t !2M ~x,2k,t !. ~8!
e
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r

e
t
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The exact solutions given by Eqs.~2! and~7!, corresponding,
respectively, to absorbing and reflecting initial cutoff wave
involve each a contribution proportional to the free case
lution and then an infinite sum involving theS-matrix poles,
$kn%, and resonant states,$un(x)%, of the system. As shown
in Ref. @8#, at very long times, the termsM (x,kn ,t) that
appear in the above equations vanish. The same occur
M (x,2k,t) while, as shown first, to our knowledge, in Re
@9#, M (x,k,t) tends to the stationary solution. Hence, at lo
times, each of the above exact solutions go into the stat
ary solutionT(k)exp@ i (kx2Et/\)#.

At very short times, for a givenx>L, the argument of
M (x,k,t), given by Eq. ~4! with q5k, becomes very
large and in fact becomes independent of the value ok,
y'exp(2 ip/4)@m/2\t#1/2x. Since for very largey, M (y)
;1/y @9,8#, it follows that M (x,k,t) goes liket1/2. As dis-
cussed also in Ref.@8#, the functions dependent on the pole
M (x,kn ,t), behave in a similar fashion provided the value
t5t0 is sufficiently small to guarantee, for a fixedx5L, that
L@\uknut/m. Since the distribution of the complexS-matrix
poles on thek plane fulfills @ uk1u,uk2u•••,uknu•••, one
sees that ast becomes smaller and smaller there will be mo
and more values ofn for which the correspondingM func-
tions goes liket1/2 as do all the rest ofM functions associated
with smaller values ofn. In the appropriate limit ast→0 and
n→`, the correspondingM function then vanishes ast1/2.
Consequently forx>L, the solutions given by Eqs.~2! and
~7! are proportional tot1/2, namely,

cs~x,k,t !;
A

x
t1/2 ~x>L !, ~9!

whereA is a constant. Note that att50 the solution vanishes
in accordance with the initial condition. It is not difficult t
see that Eq.~9! will hold also for a cutoff initial condition
that is something between the initial conditions conside
above, and more generally, for a wave packet formed b
linear combination of cutoff waves. Equation~9! tells us that
the probability density at any distancex from the potential
will rise instantaneously with time. This intriguing nonloc
behavior implies that an ideal detector will measure a z
tunneling time. The existence of action-at-a-distance effe
in the time-dependent Schro¨dinger equation should not, in
principle, pose any conceptual difficulties since the treatm
is nonrelativistic. However, one could ask whether the ab
nonlocal behavior arises because the initial condition i
cutoff wave. In order to answer the above question we c
sider low-energy relativistic effects by solving the Klein
Gordon equation with a cutoff wave as initial condition for
simple potential model. Moshinsky@9# solved the Klein-
Gordon equation for the free shutter problem with the init
condition of a cutoff plane wave in the regionx,0 and
showed that the probability density at a pointx.0 is non-
zero only after a timet0.x0 /c, with c the velocity of light.
To our knowledge, a numerical analysis of this solution h
not yet been performed. We would like to learn also how
relativistic solution is affected at early times by tunnelin
through a potential.

A potential that has been widely used in studies on tim
dependent tunneling is the square barrier, characterized
heightV0 and a widthL. This potential has an infinite set o
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S-matrix poles situated at increasing energies on top of
barrier. There is, however, a simpler potential model tha
more amenable for a relativistic treatment. This is thed po-
tential V(x)5bsd(x). The solution corresponding to th
time-dependent Schro¨dinger equation has been obtained
Elberfeld and Kleber using ad-function propagator@14#.
One can also follow a derivation by Laplace transformi
directly the time-dependent Schro¨dinger equation of the
problem using the initial condition given by Eq.~1! @15#.
Defining p252ims/\ the Laplace transformed solutio
c̄s(x,s) for the regionx.0 reads

c̄s~x,k,s!5
im

\

eipx

~p1 ib !~p2k!
, ~10!

whereb5mbs /\2. After a simple partial fraction decompo
sition the inverse Laplace transform yields, forx.0,

cs
d~x,k,t !5T~k!M ~x,k,t !1R~k!M ~x,2 ib;t !, ~11!

whereT(k) andR(k) stand for the transmission and refle
tion amplitudes for the stationary situation,T(k)5k/(k
1 ib) and R(k)5 ib/(k1 ib). Note that here instead of a
infinite number ofS-matrix poles the onlyS-matrix pole cor-
responds to an antibound state located atka52 ib. At a very
short time one can easily see thatcs

d(x,k,t) goes like t1/2

fulfilling also, as the square barrier, Eq.~9!.
The shutter problem for the Klein-Gordon equation w

the d potentialV(x)5brd(x) requires the solution of

]2

]x2
c r

d~x,kr ,t !5
1

c2

]2

]t2
c r

d~x,kr ,t !

1@brd~x!1m2#c r
d~x,kr ,t !, ~12!
e
is
wherem5mc/\. with the initial condition given by

c r
d~x,kr ,t50!5H eikrx, x,0,

0, x.0,
~13!

where we defineEr
25kr

21m2 and kr5k„12(k/m)2
…

21/2.
Note thatEr is given in units of the reciprocal length, i.e
Er[E/\c. The condition given by Eq.~13! follows from the
fact that, fort,0, when the shutter was closed, we had
the left side of the shutter,cd(x,kr ,t)5exp@ i (krx2Erct)#,
for x,0 and a vanishing value forx.0. By direct applica-
tion of the Laplace transform method one gets a set of
ferential equations corresponding to the regionsx.0 andx
,0. In order to derive an expression for the transmitted wa
function, we have to consider the matching conditions
take into account the discontinuity of the wave function d
rivatives at x50, obtaining the Laplace-transformed sol
tion,

c̄ r~x,s!5
1

2

~s2 icEr !

~q1b0c!~q1 ikrc!
e2qx/c. ~14!

whereq5@s21m2c2#1/2 andb05br /2. Using the Bromwich
contour to evaluate the inverse Laplace transform of Eq.~14!
it is convenient to make the change of variable@9# 2 iu
5(q1s)/(mc). In this form q5 imc(u212u)/2 and as a
consequence the branch points ats56 imc go into an essen-
tial singularity atu50 and two simple poles located on th
lower half of the complexu plane. After separating into par
tial fractions one then may evaluate the resulting integrals
standard complex variable techniques to obtain the w
function,
c r
d~x,kr ,t !5H Ac r

0~x,kr ,t !1BCc r
0~x,2 ib0 ,t !1BD@c r

0~x,2 ib0 ,t !#* , t.x/c,

0, t,x/c,
~15!

where A5kr /(kr1 ib0), B5 ib0 /(kr1 ib0), C5(e1Er)/(2e), and D5(e2Er)/(2e), and alsoe5(m22b0
2)1/2. In Eq.

~15!, the functionc r
0(x,kr ,t) is the solution of the free Klein-Gordon case@9,16#, namely,

c r
0~x,kr ,t !5H ei ~krx2Erct!1

1

2
J0~h!2 (

n50

`

@j/ iz#nJn~h!, t.x/c,

0, t,x/c,

~16!
ry
lta
e

tiv-
whereJn(h) stands for the Bessel function of ordern and,

j5Fct1x

ct2xG1/2

, h5m~c2t22x2!1/2, z5
1

m
~kr1Er !.

~17!

The expressions,c r
0(x,2 ib0 ,t) and @c r

0(x,2 ib0 ,t)#* in
Eq. ~15! have the same form as the free solution in Eq.~16!
with kr replaced by2 ib0 . Asymptotically for very long
times in the solutionc r

d(x,kr ,t), given by Eq. ~15!, the
termsc r
0(x,2 ib0 ,t) and@c r

0(x,2 ib0 ,t)#* vanish, while the
term c r

0(x,kr ,t) goes into the stationary solution exp@ i (krx
2Erct)#.

To exemplify the above results Fig. 1 exhibits the ve
short time behavior of the probability density for the de
potential at a fixed distancex5L50.3 Å . One sees that th
Schrödinger description~broken line!, obtained from Eq.
~11! with parametersbs52.0 eV-Å and E50.01 eV,
yields an instantaneous response with time while the rela
istic solution, calculated using Eq.~15!, starts after t0
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5L/c. This tell us something relevant: The nonlocal behav
of the Schro¨dinger description is due to its nonrelativist
nature. The nonlocal behavior of the Schro¨dinger solution
would result from the fact that in a nonrelativistic descripti
there is no restriction on the velocity of some component
the initially confined wave function. The sharp relativis
wave front of height 0.25 in Fig. 1 follows as a conseque
of the initial condition given by Eq.~13!. This jump occurs
also in the free case and may be obtained analytically@9#.
For an initial function of the type

exp~ ikrx!1exp~ ia!exp~2 ikrx!, ~x,0!,

FIG. 1. Plot of ucs
d(x,t)u2 ~dashed line! and uc r

d(x,t)u2 ~solid
line!, respectively, for the Schro¨dinger and Klein-Gordon solution
for a d potential, as a function of time at a fixed distance at ea
times and at long times~inset!. See text.
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r

f

e

with a an arbitrary phase, the peak height will be a functi
of a. In particular, for a reflecting initial condition, (a
5p), the solution starts smoothly from zero att05L/c. It
might be of interest to mention that in fully relativistic qua
tum field theories Hegerfeldt@17# has pointed out that the
sudden opening of a shutter may lead to violation of Einst
causality, i.e., no propagation faster than light. This aut
has argued that the difficulty is of a theoretical nature a
has discussed some ways to solve it. Our relativistic mo
satisfies Einstein causality. The inset to Fig. 1 shows tha
longer times the above two solutions approach each ot
both presenting the characteristic transient behavior near
‘‘classical’’ wave front atx5vt, which in our example oc-
curs at a very short time. Our analysis has a consequenc
interest for the tunneling time problem. Since the probabi
density rises with time after a timet05x0 /c, it implies that
the tunneling time of a particle can never be zero, contrar
some claims in the literature@3#.

Thus we can see that a proper description of the quan
mechanical propagation for the transmitted solution, even
low energies, strictly requires a relativistic treatment. Ho
ever, since the corresponding solutions are practically id
tical up to the relativistic cutoff, att5L/c, suggests that the
Schrödinger description is quite accurate provided the vel
ity components larger thanc are omitted.
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México, under Grant No. 940085-R97 and DGAPA-UNAM
under Grant No. IN106496.

y

e it

on,

se.
@1# E. E. Mendez, inPhysics and Applications of Quantun We
and Superlattices, edited by E. E. Mendez and K. Von Klitzing
~Plenum, New York, 1987!, p. 159.

@2# M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science262,
218 ~1993!.

@3# See, for example, E. H. Hauge and J. A. Stovneng, Rev. M
Phys.61, 917 ~1989!; R. Landauer and Th. Martin,ibid. 66,
217 ~1994!.

@4# See, for example, T. E. Hartman, J. Appl. Phys.33, 3427
~1962!; S. Collins, D. Lowe, and J. R. Barker, J. Phys. C20,
6213 ~1987!; J. G. Muga, S. Brouard, and D. Macias, An
Phys.~N.Y.! 240, 351 ~1995!.

@5# K. W. H. Stevens, J. Phys. C16, 3649~1983!.
@6# P. Moretti, Phys. Rev. A46, 1233~1992!.
@7# S. Brouard and J. G. Muga, Phys. Rev. A54, 3055~1996!.
@8# G. Garcı´a-Caldero´n and A. Rubio, Phys. Rev. A55, 3361

~1997!.
d.

@9# M. Moshinsky, Phys. Rev.88, 625 ~1952!.
@10# Note that the shutter refers to the initial condition and henc

is not part of the system.
@11# P. Szriftgiser, D. Gue´ry-Odelin, M. Arndt, and J. Dalibard,

Phys. Rev. Lett.77, 4 ~1996!.
@12# P. R. Holland,The Quantum Theory of Motion~Cambridge

University Press, New York, 1995!, p. 490.
@13# R. Gähler and R. Golub, Z. Phys. B56, 5 ~1984!.
@14# W. Elberfeld and M. Kleber, Am. J. Phys.56, 154 ~1988!; M.

Kleber, Phys. Rep.236, 331 ~1994!.
@15# G. Garcı´a-Caldero´n, J. L. Mateos, and M. Moshinsky~unpub-

lished!.
@16# Moshinsky solved also the free shutter for the Dirac equati

M. Moshinsky, Rev. Mex. Fis.1, 151 ~1952!. In one dimen-
sion there is no essential difference in the Klein-Gordon ca

@17# G. C. Hegerfeldt, Phys. Rev. Lett.72, 596 ~1993!.


