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Revealing broad overlapping resonances by strong laser fields
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Department of Chemistry and Minerva Center for Non Linear Physics, Technion,

Israel Institute of Technology, Haifa 32000, Israel
~Received 24 July 1998!

The resonance states of a periodically driven barrier potential are investigated. We show that narrow shape-
type resonances evolve from overlapping resonances of a static barrier as a result of an increase of the field
amplitude. These shape-type resonances are associated with the field-induced barrier transparency phenom-
enon. It is suggested that cross-section experiments in strong laser fields may be used to uncover overlapping
resonances.@S1050-2947~99!01902-2#

PACS number~s!: 34.80.Qb, 73.40.Gk, 78.70.2g, 25.70.Ef
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Tunneling through time periodically driven potential ba
riers has been intensively investigated in recent years, b
theoretically and experimentally@1#. The dynamics of a
driven system is governed by metastable states~resonances!
that correspond to a temporary trapping of particles in
interaction region. Recently, it was demonstrated by Voro
ichik, Lefebvre, and Moiseyev that for a sufficiently stron
field a single-barrier potential can become transparent
energies corresponding to the resonance states of an effe
double barrier potential obtained upon one cycle averag
@2#. In the present work we investigate the resonances
one-dimensional barrier potential driven by an external p
odic force.

The Hamiltonian is given by

Ĥ5
px

2

2m
1V~x!1e0x sin~vt !, ~1!

where

V~x!5V0e2ax2
. ~2!

The potential for V050.0147 a.u. ~0.4 eV! and a55
31024 a.u.22 (1.78731023 Å 22) is plotted in Fig. 1~a!.
These parameters are similar to ones used in Ref.@2#, where
the field-induced barrier transparency was demonstra
They correspond to a semiconductor structure, such tha
particle effective mass ism50.1 a.u.~0.1 times the electron
mass in vacuum! and\51. e0 andv are the maximal field
amplitude and the field frequency, respectively.

Let us first investigate the resonance states~which are
associated with the poles of the scattering matrix! in the ab-
sence of the driving (e050). In Fig. 1~a!, the positions of
the first three poles,Ea2( i /2)Ga , are shown by the horizon
tal dashed lines. The widths of these poles are very la
such thatGa.uEa612Eau. Such poles correspond to ove
lapping resonances. The resonance wave functions, obta
upon complex scaling@3#, are shown in Fig. 1~b!. They are
localized inside the potential barrier and, therefore, in
classically forbidden region in phase space. These reson
states do not affect the scattering amplitude, and, theref
have no physical meaning in one dimension. However,
recently demonstrated by Narevicius and Moiseyev@4#,
overlapping resonances of this kind become physical in
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dimensions, and correspond to a temporary trapping o
light particle between two heavy particles.

The question we address here is what happens to t
resonances when the periodic driving force is added. Si
the Hamiltonian is time periodic@Eq. ~1!#, one can use the
Floquet formalism. In this case, the solution of the tim
dependent Schro¨dinger equation is given in terms of time
periodic Floquet states and quasienergies. The quasiene
En are the eigenvalues of the Floquet Hamiltonian

S 2 i\
]

]t8
1H~x,t8!D Fn~x,t8!5EnFn~x,t8!, ~3!

where t8 acts as an additional coordinate in the extend
Hilbert space@5#. The resonance states of the driven syst

FIG. 1. ~a! The potential barrier as defined in Eq.~2!. Horizontal
dashed lines stand for the positions of first three resonances
smallest width: E151.376 83931022 a.u., E259.883 571
31023 a.u., and E355.533 20331023 a.u. The vertical line
stands for the width of the first resonance,G151.214 888
31022 a.u. The widths of the second and third resonances,G2

53.656 16631022 a.u. andG357.034 30131022 a.u., are not
shown. The resonance states are obtained by analytical continu
of the coordinate to the complex plane (x→xeiu) @3#, where u
50.75. ~b! The wave functions of the three first resonance sta
obtained upon complex scaling foru50.75 and grid spacingDx
52 a.u.
1699 ©1999 The American Physical Society
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can be found by a complex scaling of the Floquet Ham
tonian. The complex scaling, combined with the (t,t8)
method@6# developed by Moiseyev and co-workers, can
used for effective calculation of the resonances, both for
riodic and nonperiodic Hamiltonians.

In Fig. 2 the first three narrowest resonances of a dri
Gaussian barrier are shown as a function of the field am
tude. The field frequency was held fixed atv50.03 a.u.
Since the quasienergies are defined modulo\v, they are
mapped into the first Brillouin zone, i.e., 0<En<\v. As one
can see from Fig. 2, as the field amplitude grows the re
nance widths decrease dramatically. In addition, the re
nance position is changed. In the absence of the driv
(e050) the narrowest resonance has the highest posit
but, for a sufficiently large field amplitude, the narrowe
resonance has the lowest position. For sufficiently largee0
the resonances do not overlap, i.e.,Ga!uEa612Eau. This
interesting behavior can be explained using the oscilla
frame representation of the Hamiltonian@7# in Eq. ~1!. In this
representation~known as the Kramers-Henneberger rep
sentation! a pure time-dependent term, which physically
not important since it only yields an overall phase factor
dropped. The Hamiltonian in this representation is given

H~x,t !5
px

2

2m
1V@x1a0sin~vt !#, ~4!

FIG. 2. The widths (G) and positions~E! of the first three reso-
nances of a periodically driven barrier potential@Eq. ~1!# as a func-
tion of the field amplitudee0 for v50.03 a.u.~filled circles!. The
solid lines that connect the resonances into trajectories were
tained by calculation of the maximal overlap of the resonance st
at successive values ofe0 . The resonances were calculated by t
complex scaled (t,t8) method@6#. A one-period propagator matrix
was constructed with 201 Fourier basis functions in thex coordinate
@exp(in2px/L),L52000 a.u.#, five Fourier basis functions in thet8
coordinate@exp(imvt8)#, and 250 time steps@t5(2p/v)/250#. The
complex scaling parameteru was changed linearly as a function o
e0 , such thatu(e050)50.75 andu(e050.018)50.36. Rhombi~at
e050) stand for the widths and positions of the resonance state
a static barrier shown in Fig. 1. Squares~at e050.018 a.u.) stand
for the widths and positions of the resonance states of a one-pe
averaged effective potential shown in Fig. 3.
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wherea05e0 /mv2. The oscillating frame representation a
lows one to define an effective time-averaged potential

V0~x!5
1

TE0

T

V@x1a0sin~vt !#dt, ~5!

which, in the high-frequency limit, is a good approximatio
of a time-dependent system@8,2,9#. V0(x) for e0
50.018 a.u. is plotted in Fig. 3~a!. As one can see, the ef
fective potential is a double-well potential that supports ty
cal shape-type resonances. The positions of the first th
narrowest resonances in the effective potential are shown
horizontal dashed lines in Fig. 3~a!, and the wave functions
obtained upon complex scaling, are shown in Fig. 3~b!. The
resonances are nonoverlapping, and the corresponding w
functions are localized in the classically allowed region
phase space. These resonance states have a large effe
the scattering amplitude. In the case of narrow resonance
the energy of the incoming particles coincides with the re
nance position, then a total transition through the barrie
obtained. Moreover, as shown recently@2#, a single-barrier
potential can also become transparent when the field
quencyv is larger than the frequency of a particle motion
the one-period averaged effective potential,V. In this case,
the resonance states of a driven system are very similar to
resonances states of the effective potential. Therefore
analyzing the shape of the effective potential as a function
e0 , one can explain the source of the resonances show
Fig. 2. As one increases the field amplitude, the effect
potential changes. For a sufficiently large value ofe0 it be-
comes a double-well potential. Therefore, by changing
field amplitude adiabatically one can reveal the broad ov
lapping resonances of the static potential~shown by rhombi
in Fig. 2! that evolve into narrow resonances which are
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FIG. 3. ~a! The one-period averaged effective potential as
fined in Eq. ~5! for a05200 a.u. (e050.018 a.u. and v
50.03 a.u.). Horizontal dashed lines stand for the positions
the first three resonances with smallest widths,E152.324 703
31023 a.u., E253.349 67431023 a.u., and E354.669 356
31023 a.u. Vertical lines~‘‘error bars’’! stand for the widths of
the resonances, G154.684 34931025 a.u., G253.641 500
31024 a.u., andG351.309 30231023 a.u. ~b! The wave func-
tions of the three narrowest resonance states obtained upon com
scaling foru50.36 and a grid spacing ofDx52 a.u.
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sociated with the effective double-well potential~shown by
squares in Fig. 2!. Since the positions of the resonances
the two limits are exchanged ase0 is varied, they should
cross for a certain value of the field amplitude. This happ
when the effective potential is nearly harmonic for the r
evant range of energies. The resonance states of a harm
barrier can be calculated analytically. They all have the sa
position@E5V(x50)#, and their widths differ by the oscil
lator frequency. For larger field amplitudes, the effective p
tential is not harmonic and the double-barrier structure
pears. As one can see,high-frequency lasers can be used
reveal the unphysical resonances of a static barrier that
come physically accessible as one increases the field am
tude. Narrow resonances are obtained whena05e0 /mv2 is
sufficiently larger than the barrier width. Therefore, the lim
tation of largea0 and high frequency may result in ver
large field amplitudes for which a physical realization of t
phenomenon will become impossible. Therefore, it is imp
tant to investigate how the resonance states of a driving
rier depend on the field frequency. Since the effective pot
tial is only a0 dependent, we calculate the resonance st
by varyinge0 andv such thata05e0 /mv2 is held fixed.

In Fig. 4 the widths of the first three resonances of
driven barrier as a function of the laser frequency fora0
5200 a.u. are shown. The resonance states of the effe
potential are the same as in Fig. 3, and their widths
shown by squares atv50.03 a.u. As one can see, in th
range 0.01 a.u.,v,0.03 a.u., the resonances of the effe
tive potential are very similar to the resonances of the dri
barrier. These laser frequencies are much larger than the
quency of the particle trapped in the one-period avera
effective potential (V.0.001 a.u. fora05200 a.u., in our
studied case!. Therefore, in this range of frequencies, a fie
induced barrier transparency will be obtained. However,

FIG. 4. The widths of the first three resonances of a periodic
driven barrier potential@Eq. ~1!# as a function of the field frequenc
v for a05200 a.u. For each field frequency the complex scal
parameter was optimized such that]@Ea2( i /2)Ga#/]u was mini-
mal. Rhombi~at v50) stand for the widths of the resonance sta
of a static barrier shown in Fig. 1. Squares~at v50.03 a.u.) stand
for the widths of the resonance states of a one-period avera
effective potential shown in Fig. 3.
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smaller laser frequencies, the resonances widths change
they overlap. Eventually, atv.0.025 a.u., the resonance
have about the same width. This happens since, in the sm
field frequency case, the coupling between different Floq
channels is very large and the resonance states are stro
coupled one to another. To illustrate this, in Fig. 5 we co
pare the Husimi distribution of the resonance states of
driven barrier for v50.03 a.u. @Fig. 5~a!# and for v
50.0019 a.u.@Fig. 5~b!#. ~We were unable to calculate th
resonances for smaller laser frequencies, due to nume
difficulties.! The Husimi distribution is defined as@10#

G~x0 ,p0!5US s

p\ D 1/4E
2`

`

e2[s~x2x0!2/2\] 1 i ~p0 /\!xC~x!dxU2

.

~6!

In our case,C(x) is the resonance complex scaled Floqu
wave function att5n2p/v (n50,1,2, . . . ) obtained by a
diagonalization of a one-period propagator. For the compl
scaled functions, thex coordinate in Eq.~6! is replaced by a
complex one,xeiu.

In Fig. 5, the Husimi distributions of the Floquet res
nance states are shown. They are not symmetric forx→
2x and p→2p, since this symmetry is of the field-fre
Hamiltonian and not of the time-dependent Hamiltoni
given in Eq.~1!. As one can see in Fig. 5~a!, Husimi distri-
butions of the three resonances of a driven barrier forv
50.03 a.u. are different from one another. However, forv
50.0019 a.u.@Fig. 5~b!#, Husimi distributions of all three
resonances are very similar, and they only differ by phas
This might be a result of a strong coupling between differ
resonance states. Such states have previously been fou
be associated with the classical chaotic dynamics of sim
systems, and can be referred to as ‘‘chaotic quasiene
states’’ @11#. Indeed, by analyzing the classical phase sp
of the driven barrier for the parameters of Fig. 4, one obta
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FIG. 5. The Husimi distribution@Eq. ~6!# of the resonance wave
functions in the driven barrier potential defined in Eq.~1! for a0

5200 a.u. and s5531024 ~a! for driving frequency v
50.03 a.u. and~b! for driving frequencyv50.0019 a.u.~the
smallest laser frequency in Fig. 4!.



la
e
ca
fr
n

s
cy

n
d
o

rin
at

h a
. In

s is
ly

en-
so-
so-
ction

al
of

1702 PRA 59BRIEF REPORTS
that for frequencies smaller than 0.01 a.u. a mixed regu
chaotic dynamics is obtained. For very small driving fr
quencies (v,0.003 a.u.), one cannot use the classi
phase-space plots, since the classical particle escapes
the interaction region during a time that is smaller than o
period of the driving force.

In conclusion, we have shown that the resonance state
a driven barrier are very different in high- and low-frequen
limits. The resonance structure in the high-frequency lim
can be understood by using an oscillating frame represe
tion of the Hamiltonian. For sufficiently high frequency an
a large-amplitude field, narrow resonances states are
tained, leading to a pronounced structure in the scatte
cross section. In the low-frequency limit, the resonance st
nd

.
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overlap, and are strongly coupled to one another. In suc
case, a field-induced barrier transparency is not obtained
this limit, however, the behavior of the resonance state
intriguing and worth further investigation. In previous
studied cases@12# it was shown that it is very difficult~if at
all possible! to trace the overlapping resonances experim
tally. We suggest a way to uncover the overlapping re
nances. We have shown in this Brief Report that such re
nances states can be revealed by carrying out cross-se
scattering experiments in strong laser fields.
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