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Revealing broad overlapping resonances by strong laser fields
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The resonance states of a periodically driven barrier potential are investigated. We show that narrow shape-
type resonances evolve from overlapping resonances of a static barrier as a result of an increase of the field
amplitude. These shape-type resonances are associated with the field-induced barrier transparency phenom-
enon. It is suggested that cross-section experiments in strong laser fields may be used to uncover overlapping
resonanced.S1050-294©9)01902-3

PACS numbse(s): 34.80.Qb, 73.40.Gk, 78.76g, 25.70.Ef

Tunneling through time periodically driven potential bar- dimensions, and correspond to a temporary trapping of a
riers has been intensively investigated in recent years, botlight particle between two heavy particles.
theoretically and experimentallyl]. The dynamics of a The question we address here is what happens to these
driven system is governed by metastable statesonances resonances when the periodic driving force is added. Since
that correspond to a temporary trapping of particles in thehe Hamiltonian is time periodifEq. (1)], one can use the
interaction region. Recently, it was demonstrated by VorobeFloquet formalism. In this case, the solution of the time-
ichik, Lefebvre, and Moiseyev that for a sufficiently strong dependent Schdinger equation is given in terms of time-
field a single-barrier potential can become transparent foperiodic Floquet states and quasienergies. The quasienergies
energies corresponding to the resonance states of an effectigg are the eigenvalues of the Floquet Hamiltonian
double barrier potential obtained upon one cycle averaging

[2]. In the present work we investigate the resonances of a 0 , . ,
one-dimensional barrier potential driven by an external peri- —|h5+H(x,t ) [ Pa(xt)=EPn(x,t"), (3
odic force.
The Hamiltonian is given by wheret’ acts as an additional coordinate in the extended
p2 Hilbert spacg5]. The resonance states of the driven system
~_ P )
H= om +V(X)+ €gx sin(wt), (1) 0.020 . . _ 004 |
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The potential for Vy=0.0147 a.u.(0.4 eV) and a=5 g o
X104 a.u”? (1.787x10°2 A ~?) is plotted in Fig. 1a). = 0010 p—————1 2 e e -
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These parameters are similar to ones used in [R&fwhere >
the field-induced barrier transparency was demonstrated 0.00

They correspond to a semiconductor structure, such that thi  ¢g0s F~———~ F-————- i 0.04
particle effective mass im=0.1 a.u.(0.1 times the electron \ =
mass in vacuuiand# =1. ¢; and w are the maximal field T 002
amplitude and the field frequency, respectively.
Let us first investigate the resonance stagebkich are 00,00 200 o0 200 400 002400-200 0 200 400
associated with the poles of the scattering matinixthe ab- x{a.u.) x (a.u)

sence of the driving ,=0). In Fig. Xa), the positions of
:hfc];'rshth(;ele pomﬁ]a_('./dzt)hra’fatrﬁ shownl by the horlzoln— dashed lines stand for the positions of first three resonances with
al dashed fines. The widihs of tnNese poles are Very larg&,jjest  width: E,=1.37683%10°2 au.,, E,=9.883571
such thatl’y>[E,; — E,|. Such poles correspond 0 OVer- 153 5, ang E;=5.53320% 10 3 a.u. The vertical line
lapping resonances. The resonance wave functions, obtaingd,qs for the width of the first resonancE, = 1.214 888
upon complex scaling3], are shown in Fig. (b). They are  »19-2 4.y, The widths of the second and third resonanies,
localized inside the potential barrier and, therefore, in the—3 656 166<1072 a.u. andI';=7.03430%10°2 a.u., are not
classically forbidden region in phase space. These resonanggown. The resonance states are obtained by analytical continuation
states do not affect the scattering amplitude, and, thereforgs the coordinate to the complex plang—¢xe?) [3], where 6

have no physical meaning in one dimension. However, as-0.75. (b) The wave functions of the three first resonance states
recently demonstrated by Narevicius and Moisey{@y, obtained upon complex scaling fét=0.75 and grid spacing\x
overlapping resonances of this kind become physical in twe=2 a.u.

FIG. 1. (a) The potential barrier as defined in E§). Horizontal
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£, (a.u.) FIG. 3. (a) The one-period averaged effective potential as de-

fined in Eqg. (5) for @;=200 a.u.¢€;=0.018 a.u. and w
FIG. 2. The widths ') and positiongE) of the first three reso- =0.03 a.u.). Horizontal dashed lines stand for the positions of

nances of a periodically driven barrier potenfigh. (1)] as a func-  the first three resonances with smallest widths=2.324 703
tion of the field amplitudes; for ©=0.03 a.u.(filled circles. The x107% a.u., E,=3.34967410 % a.u., and E;=4.669356
solid lines that connect the resonances into trajectories were ob< 102 a.u. Vertical lines(“error bars”) stand for the widths of
tained by calculation of the maximal overlap of the resonance statethe  resonances, I';=4.684 34%107° a.u., I',=3.641500
at successive values @f. The resonances were calculated by the X10™* a.u., andl’3=1.30930X 10" ° a.u. (b) The wave func-
complex scaledt(t’) method[6]. A one-period propagator matrix tions of the three narrowest resonance states obtained upon complex
was constructed with 201 Fourier basis functions intleeordinate  scaling for§=0.36 and a grid spacing &x=2 a.u.
[exp(n2mx/L),L=2000 a.u}, five Fourier basis functions in thé
coordinatg exp{met’)], and 250 time stefsr= (27/w)/250]. The  wherea,= €,/mw?. The oscillating frame representation al-
complex scaling parametérwas changed linearly as a function of lows one to define an effective time-averaged potential
€g, such thatd(e,=0)=0.75 andf(ey,= 0.018)=0.36. Rhombiat
€o=0) stand for the widths and positions of the resonance states of 1 (T
a static barrier shown in Fig. 1. Squares €,=0.018 a.u.) stand Vo(X)= TJ' V[ X+ agsin( wt) ]dt, (5)
for the widths and positions of the resonance states of a one-period 0

averaged effective potential shown in Fig. 3. . . . o . .
which, in the high-frequency limit, is a good approximation

can be found by a complex scaling of the Floquet Hamil-Of a time-dependent systeni8,2,9. Vy(x) for &
y P g q =0.018 a.u. is plotted in Fig.(8). As one can see, the ef-

tonian. The complex scaling, combined with thet() focti ialis a doubl I ol th .
method[6] developed by Moiseyev and co-workers, can be ective potential is a double-well potential that supports typi-

used for effective calculation of the resonances, both for pe(-:al shape-type resonances. The positions of the first three

riodic and nonperiodic Hamiltonians. narrowest resonances in the effective potential are shown by

In Fig. 2 the first three narrowest resonances of a driveﬁg,:'z.ongal dashed Ilnles In F;_g(é), and :]he qu?:'fung;qﬁns,
Gaussian barrier are shown as a function of the field ampli9 ained upon complex scaling, are shown in Figy)3The

tude. The field frequency was held fixed at=0.03 a.u resonances are nonoverlapping, and the corresponding wave

Since the quasienergies are defined modtda, they are fuhnctlons are Igcr:]ahzed in the clastS|tcaII3;]aIIowe:j reglofnf 01;
mapped into the first Brillouin zone, i.e.;0f, <% w. As one phase space. 1hese resonance states have a large efiect on

can see from Fig. 2, as the field amplitude grows the resot_he scattering amplitude. In the case of narrow resonances, if
nance widths decre:'jtse dramatically. In addition, the resot—he energy'c'Jf the incoming parﬂcle;s coincides with the reso-
nance position is changed. In the absence of Ehe drivingance position, then a total transition through the barrier is
(e0=0) the narrowest resonance has the highest positio ﬁgzglr?t?jc“:lgrz?s\l:rb:fo;hgvrrgr:?zg’ \;avhselrr:gltﬁzab?irglﬁr o
but, for a sufficiently large field amplitude, the narrowest . P . .
resonance has the lowest position. For sufficiently large quencyw IS !arger than the freql_Jency ofa partlcle. motion in
the resonances do not overlap, i.E,<|E,.,—E,|. This the one-period averaged eﬁ_‘ectlve potential, In th|§ case,
interesting behavior can be explained using the oscillatin he resonance states of a driven system are very similar to the
esonances states of the effective potential. Therefore, by

frame representation of the Hamiltonigfi in Eq. (1). In this . ; ) .
representationiknown as the Kramers-Henneberger repre_analyzmg the shape of the effective potential as a function of

sentation a pure time-dependent term, which physically is I‘;‘.” 02neAcan explain the S?[ﬁm?. CI)L the r?fotlj’lantcr:es S}f}l""{!" n
not important since it only yields an overall phase factor, is 9. 2. AS One Increases the fieid amplitude, the etfective

A L otential changes. For a sufficiently large valueegfit be-
dropped. The Hamiltonian in this representation is given bygomes a double-well potential. Therefore, by changing the

p? field amplitude adiabatically one can reveal the broad over-
_ Fx . lapping resonances of the static potents&iown by rhombi

= +V[x+ e . .

HX.D) 2m [x*agsin(wt)], “ in Fig. 2) that evolve into narrow resonances which are as-
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FIG. 4. The widths of the first three resonances of a periodically FIG. 5. The Husimi distributiofiEq. (6)] of the resonance wave

driven barrier potentidlEg. (1)] as a function of the field frequency functions in the driven barrier potential defined in Efj) for «q

o for ap=200 a.u. For each field frequency the complex scaling=200 a.u. and ¢=5x10"% (a) for driving frequency o

parameter was optimized such thd,— (i/2)I",]/96 was mini- =0.03 a.u. and(b) for driving frequency w=0.0019 a.u.(the

mal. Rhombi(at w=0) stand for the widths of the resonance statessmallest laser frequency in Fig).4

of a static barrier shown in Fig. 1. Squar@s »=0.03 a.u.) stand

for the widths of the resonance states of a one-period averagegimaller laser frequencies, the resonances widths change and

effective potential shown in Fig. 3. they overlap. Eventually, ab=0.025 a.u., the resonances
have about the same width. This happens since, in the small-

sociated with the effective double-well potentiahown by  field frequency case, the coupling between different Floquet

squares in Fig. 2 Since the positions of the resonances inchannels is very large and the resonance states are strongly

the two limits are exchanged ag is varied, they should coupled one to another. To illustrate this, in Fig. 5 we com-

cross for a certain value of the field amplitude. This happengare the Husimi distribution of the resonance states of the

when the effective potential is nearly harmonic for the rel-griven barrier for w=0.03 a.u. [Fig. 5@] and for w

evant range of energies. The resonance states of a harmoniqy 0p19 a.u[Fig. 5(b)]. (We were unable to calculate the

barrier can be calculated analytically. They all have the samgasonances for smaller laser frequencies, due to numerical

position[E=V(x=0)], and their widths differ by the oscil- gifficulties) The Husimi distribution is defined 440]
lator frequency. For larger field amplitudes, the effective po-

tential is not harmonic and the double-barrier structure ap- 14 2
pears. As one can seigh-frequency lasers can be used to G(x,,p,)= ‘ (_) f e—[v(x—Xo)Z/Zﬁ]+i(po/ﬁ)x\P(X)dX
reveal the unphysical resonances of a static barrier that be- mh
come physically accessible as one increases the field ampli- (6)
tude Narrow resonances are obtained wheyp- €,/mo? is
sufficiently larger than the barrier width. Therefore, the limi- In our caseW (x) is the resonance complex scaled Floquet
tation of largeay and high frequency may result in very wave function at=n2#/w (n=0,1,2...) obtained by a
large field amplitudes for which a physical realization of thediagonalization of a one-period propagator. For the complex-
phenomenon will become impossible. Therefore, it is impor-scaled functions, the coordinate in Eq(6) is replaced by a
tant to investigate how the resonance states of a driving bacomplex onexe'’.
rier depend on the field frequency. Since the effective poten- In Fig. 5, the Husimi distributions of the Floquet reso-
tial is only ay dependent, we calculate the resonance statesance states are shown. They are not symmetricxfoer
by varying ey and » such thatag= e,/mw? is held fixed. —x and p— —p, since this symmetry is of the field-free

In Fig. 4 the widths of the first three resonances of theHamiltonian and not of the time-dependent Hamiltonian
driven barrier as a function of the laser frequency égy  given in Eg.(1). As one can see in Fig.(&, Husimi distri-
=200 a.u. are shown. The resonance states of the effectilmitions of the three resonances of a driven barrier dor
potential are the same as in Fig. 3, and their widths are=0.03 a.u. are different from one another. However, dor
shown by squares ab=0.03 a.u. As one can see, in the =0.0019 a.u[Fig. 5b)], Husimi distributions of all three
range 0.01 a.&=w<<0.03 a.u., the resonances of the effec-resonances are very similar, and they only differ by phases.
tive potential are very similar to the resonances of the driverThis might be a result of a strong coupling between different
barrier. These laser frequencies are much larger than the freesonance states. Such states have previously been found to
quency of the particle trapped in the one-period averagetie associated with the classical chaotic dynamics of similar
effective potential  =0.001 a.u. forag=200 a.u., in our systems, and can be referred to as ‘“chaotic quasienergy
studied case Therefore, in this range of frequencies, a field- states”[11]. Indeed, by analyzing the classical phase space
induced barrier transparency will be obtained. However, forof the driven barrier for the parameters of Fig. 4, one obtains

— o0
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that for frequencies smaller than 0.01 a.u. a mixed regulareverlap, and are strongly coupled to one another. In such a
chaotic dynamics is obtained. For very small driving fre-case, a field-induced barrier transparency is not obtained. In
quencies <<0.003 a.u.), one cannot use the classicathis limit, however, the behavior of the resonance states is
phase-space plots, since the classical particle escapes frantriguing and worth further investigation. In previously
the interaction region during a time that is smaller than onestudied caseglL2] it was shown that it is very difficultif at
period of the driving force. all possible to trace the overlapping resonances experimen-
In conclusion, we have shown that the resonance states @f|ly. we suggest a way to uncover the overlapping reso-
a driven barrier are very different in high- and low-frequencynances. We have shown in this Brief Report that such reso-
limits. The resonance structure in the high-frequency limityces states can be revealed by carrying out cross-section
can be understood by using an oscillating frame representaarering experiments in strong laser fields.
tion of the Hamiltonian. For sufficiently high frequency and
a large-amplitude field, narrow resonances states are ob- This work was supported by the Israel-U.S.A. Binational
tained, leading to a pronounced structure in the scatterin§cience Foundation, and by the fund for the promotion of
cross section. In the low-frequency limit, the resonance state®search at the Technion.
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