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Quantum repeaters based on entanglement purification
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We study the use of entanglement purification for quantum communication over long distances. For dis-
tances much longer than the coherence length of a corresponding noisy quantum channel, the fidelity of
transmission is usually so low that standard purification methods are not applicable. It is possible, however, to
divide the channel into shorter segments that are purified separately and then connected by the method of
entanglement swapping. This method can be much more efficient than schemes based on quantum error
correction, as it makes explicit use of two-way classical communication. An important question is how the
noise, introduced by imperfect local operations~that constitute the protocols of purification and the entangle-
ment swapping!, accumulates in such a compound channel, and how it can be kept below a certain noise level.
To treat this problem, we first study the applicability and the efficiency of entanglement purification protocols
in the situation of imperfect local operations. We then present a scheme that allows entanglement purification
over arbitrary long channels and tolerates errors on the percent level. It requires a polynomial overhead in time,
and an overhead in local resources that grows only logarithmically with the length of the channel.
@S1050-2947~99!09801-7#

PACS number~s!: 03.67.Hk, 03.65.Bz, 42.50.2p
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I. INTRODUCTION

In quantum communication, quantum bits~qubits! @1# are
sent across quantum channels that connect distant nodes
quantum network. In general, these quantum channels
noisy and therefore limit the fidelity of the transmission.
bottleneck for quantum communication is the scaling of
probability of transmission errors with the length of th
channels connecting the nodes. Different from class
~digital! communication, the ‘‘signals’’ in quantum commu
nication consist of single qubits which may be entangl
Owing to fundamental principles, these qubits cannot
cloned@2,3# nor amplified@4# without destroying the essen
tial quantum feature. This fact limits the maximum distan
between the nodes to a few multiples of the absorpt
length ~or the coherence length! of the channel, and poses
severe restriction on any practical application. For exam
in recent experiments on quantum cryptography@5#, single
photons are sent through optical fibers with a given abso
tion and depolarization length. This has two effects:~i! to
transmit a photon without absorption, the number of tri
scales exponentially withl ; ~ii ! even when a photon arrives
the fidelity of the transmitted state decreases exponent
with l . In the experiment, the distance between the node
therefore presently limited by a few multiples of the abso
tion length of the fiber@6#.

In the context of fault-tolerant quantum computing@7#,
Knill and Laflamme@8# have discussed an important schem
that allows us, in principle, to transmit a qubit over arb
trarily long distances with a polynomial overhead in the
sources. Their method requires us to encode a single q
into a concatenated quantum code~i.e., an entangled state o
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a large number of qubits! and to operate on this code repea
edly while it is propagated through the channel. The tol
able error probabilities for transmission are less than 1022,
whereas for local operations they are less than 531025.
This seems to be outside the range of any practical im
mentation in the near future. A crucial figure for any expe
ment will be the number of particles that can be manipula
locally in a coherent fashion, together with the precision w
which such local manipulations can be realized. For instan
even when the number of particles scales only polynomia
with the length of the channel, a polynomially large numb
may still be far too large for any practical implementation

A central tool in the theory of quantum information, sp
cifically for quantum communication, is entanglement pu
fication @9–12#. It allows us, in principle, to create maxi
mally entangled states of particles at different locations e
if the channel that connects those locations is noisy@1#.
These entangled particles can then be used for faithful t
portation @13# or secure quantum cryptography@12,14#. It
seems natural therefore to use this method as an ingred
for a quantum repeater. Furthermore, it allows highly e
cient two-way protocols which cannot be realized with qua
tum error correction procedures. If a noisy quantum chan
is much longer than its coherence length, one cannot dire
employ standard purification schemes. These schemes
create an ensemble of low-fidelity Einstein-Podolsky-Ros
~EPR! pairs across the channel, and then purify/distill a fe
perfect EPR pairs out of the ensemble. This, however,
quires a minimum fidelityFmin of the initial pairs to operate
with, which cannot be achieved as the lengthl of the channel
increases.

In this paper, we treat the problem of a quantum repea
based on the method of entanglement purification. The i
of such a repeater is to divide a long quantum channel
shorter segments, which are purified separately, before
are connected. Connecting two segments of a channel m
169 ©1999 The American Physical Society
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here to build up quantum correlations across the compo
channel from correlations that exist across the individ
segments. This can be done by entanglement swappin
teleportation of entanglement. A quantum repeater m
therefore combine the methods of entanglement purifica
and teleportation.

Although the combination of these methods should,
principle, allow us to create entanglement over arbitrary d
tances, it is another question how much this ‘‘costs’’ in ter
of resources needed for purification. Resources means
the number of low-fidelity EPR pairs that have to be p
vided for purification of each channel segment. This quan
is related to the number of particles that have to be man
lated locally~at the connection points between the segme!
in a coherent fashion. If the resources grow too fast with
length of the channel, not much will be gained by the wh
procedure. A further important quantity is the error toleran
for the local operations. In every real situation, the lo
operations applied to one or more particles will bear so
imperfections. Since such operations are the building blo
for any entanglement purification protocol, their imperfe
tions will limit the maximum attainable fidelity for an EPR
pair and the efficiency of the protocol. In the context of t
quantum repeater, a maximum fidelityF,1 corresponds to a
residual amount of noise for each segment. When the
ments are connected, this noise accumulates.

To give a realistic treatment of the quantum repeater,
will therefore first study the applicability and the efficienc
of entanglement purification protocols in the situation of i
perfect local operations. The general conditions under wh
standard purification protocols can be used in the presenc
errors have been studied by Giedkeet al. @15#. This includes,
in particular, thresholds and lower bounds for the attaina
fidelities. For a generic class of stochastic errors, one
give explicit representations of the imperfect operations
terms of completely positive maps~POVMs! @16#. In terms
of these maps, we derive recursion formulas for the fidelit
which generalize the results given by Bennettet al. @9# and
by Deutschet al. @12#. From these results, we estimate th
for a generic class of errors, standard entanglement puri
tion protocols work even for error probabilities of the ord
of a few percent. In the context of long distance commu
cation, we develop a purification procedure that combi
the standard protocols with quantum teleportation in a c
tain way to be specified. This purification procedure allo
quantum communication via noisy channels of arbitra
length. Since it explicitly exploits two-way classical comm
nication@10#, our procedure is much more efficient for qua
tum communication than protocols based on quantum e
correction@8#. Specifically, this solution of the quantum re
peater tolerates errors on the percent level; it requires a p
nomial overhead in time and an overhead in local resou
that grows only logarithmically with the length of the cha
nel.

The paper is organized as follows. In Sec. II we introdu
a generic error model to describe imperfect local operati
such as noisy one-bit and two-bit operations and imper
measurements. With the aid of these models, we revisi
Sec. III the basic elements of quantum communication
purification and teleportation. This discussion includes
sults for the maximum attainable fidelities and the worki
d
l
or

st
n

n
-

s
ere
-
y
u-
s
e
e
e
l
e
s

-

g-

e

-
h
of

le
n

n

s,

,
a-

i-
s
r-
s
y

or

ly-
es

e
s

ct
in

-

conditions of the standard protocols under the condition
noisy local operations. After this discussion, in Sec. IV, w
are ready to attack the quantum repeater problem itself.
solution combines the methods of entanglement purifica
and entanglement swapping into a single~meta!protocol,
which we call nested entanglement purification. This pro
col allows to distribute entanglement with a given fideli
across arbitrary long distances, even when local operat
are imperfect. It requires an overhead in local resources
grows polynomially with the length of the channel. A mod
fication of this protocol works with resources that grow on
logarithmically with the length of the channel~while the
build-up time grows polynomially!.

II. IMPERFECT LOCAL OPERATIONS
AND MEASUREMENTS

Imperfections of local operations can have various o
gins. An example for an imperfect one-qubit operation is
unitary ‘‘overrotation’’ @17#, as it would be realized by a
laser pulse that effects a Bloch rotation around an angle
slightly deviates from the ideal~intended! one. If the laser is
well stabilized but the pulse area tuned incorrectly, say,
deviation of the real from the intended~unitary! rotation will
be the same when we repeat the operation, representin
example of a systematic error. If, on the other hand, the an
of the rotations fluctuates randomly around a certain m
value, every pulse introduces a certain amount of noise
the system, and the resulting operation would be descri
by a nonunitary map. In the present paper, we concentrat
this latter situation, that is, we assume only stochastic er
and neglect systematic errors.

To give a precise description of a noisy one-bit or two-
operation, one needs to know the exact form of the er
mechanisms, which in turn depend on the specific phys
implementation. In general, we have only limited knowled
of these details. A generic model for a noisy channel is
so-called~symmetric! depolarizing channel. It transforms
qubit with initial stater as

r→pr1
12p

2
I , ~1!

whereI is the identity operator and 0<p<1 depends on the
time for which the qubit is subjected to the channel. T
action of the channel thus results in admixing a complet
depolarized stateI /2 to the initial density operator. The limi
p→0 corresponds to a very noisy channel, whilep→1 de-
scribes a channel with very little noise~‘‘ideal storage’’!.

One can easily generalize Eq.~1! to the case where the
ideal operation is some arbitrary unitary~one-bit! operation
U,

r→pUrU†1
12p

2
I . ~2!

In this situation, the ideal operation is accompanied by
action of the depolarizing channel. The whole map becom
nonunitary. It describes an imperfect one-bit operati
which for p→1 becomes identical to the ideal unitary ma
We call p the reliability of the imperfect operation, which
represents a lower bound to the probability that its res
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PRA 59 171QUANTUM REPEATERS BASED ON ENTANGLEMENT . . .
corresponds to the ideal one. For a parametrizationU5UaW

5exp(2iaW•sW ), an imperfect~noisy! rotation may explicitly
be defined by the map

r→RaW r5E dbW n~bW !UaW 1bW rU
aW 1bW
†

, ~3!

where the noise functionn(bW ) is normalized to unity and
describes the fluctuationsdaW 5bW of the ~generalized! Bloch
vector a. One can easily show that for ‘‘isotropic noise,
n(bW )5 ñ(ubW u), the integral reduces to

RaW r5pUaW rUaW
†1

12p

2
I 5pRaW

idealr1
12p

2
I , ~4!

whereinRaW
idealr[UaW rUaW

† describes the ideal rotation.
Motivated by these observations, we generalize t

model to arbitrary one-qubit and two-qubit gates@18# acting
on an entangled stater of several qubits. We thereby requir
that errors introduced by local operations may only affect
local qubits on which the ideal operation acts~locality con-
dition!. Let r be a state ofq qubits, labeled by 1,2,. . . ,q. An
imperfect one-qubit operation acting on the first qubit, say
then described by the map

O1r5p1O1
idealr1

12p1

2
tr1$r% ^ I 1 ~5!

whereas an imperfect two-qubit operation acting on qubit
and 2 is described by

O12r5p2O12
idealr1

12p2

4
tr12$r% ^ I 12. ~6!

In these expressions,Oideal is the ideal~perfect! operation
and I 1 and I 12 denote unit operators on the subspace wh
the ideal operation acts, corresponding to totally depolari
one- and two-qubit states. The states of the other particles
described by the partial traces tr1$r% and tr12$r%, respec-
tively, of the initial density operator over theses subspac
The quantitiesp1 and p2 measure thereliability of the op-
erations, where perfect operations correspond topj51.
Technically speaking, an imperfect operation is modeled
the corresponding ideal operation accompanied/followed
a depolarizing channel that acts~only! on the same subspac
as the ideal operation.

Note that the maps~5! and ~6! are linear and trace con
serving, albeit nonunitary. For any stater which is diagonal
in the Bell basis defined by any two of the particles~all states
we deal with in this paper are of this form!, the model is
self-consistent in the sense thatO1^ O2 ~two single-qubit
operations, each described by an error parameterp1) can be
written as a certain two-qubit operationO12 described by an
error parameterp25p1

2. Generally, any sequence of loc
operations can be written as a single joint operation wit
this model@21#. The resulting error parameter~i.e., reliabil-
ity! describing the joint operation is obtained by multiplyin
the error parameters of the single operations.

We will use these maps to estimate the role of imperf
operations in standard protocols for entanglement purifi
tion and for teleportation. Although the model is simple, it
is
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generic at the same time. We just mention here that sim
maps may be derived from a Jaynes-type principle, insofa
their resulting states maximize the entropy of the result
state with respect to variations that are trace conserving
keep the average fidelity of the operation constant.

We finally describe animperfect measurementon a single
qubit ~in the computational basis! by a POVM @20# corre-
sponding to the ‘‘imperfect projectors’’

P0
h5hu0&^0u1~12h!u1&^1u,

~7!
P1

h5hu1&^1u1~12h!u0&^0u.

The parameterh is a measure for the quality of the proje
tion onto the basis states. Assume the qubit to be measur
in the stater5u0&^0u and we are trying to measure its sta
with the aid of a measurement apparatus described by
~7!. The expectation valueŝP0

h&5h and ^P1
h&512h sim-

ply mean that the apparatus will give us the wrong res
~‘‘1’’ ! with probability 12h>0. That is, the result is no
completely reliable. An ideal measurement, in contrast
described byh51. It is clear that the effect of the measur
ment on the measured qubit is not fully specified by t
POVM ~7!. In the present context, however, this descripti
is sufficient as all measured particles are removed from
system, i.e., we trace over their degrees of freedom after
measurement.

The operations~5! and~6! together with single-qubit mea
surements~7! are sufficient to describe all operations occu
ring in the context of teleportation and entanglement pur
cation. For example, a Bell measurement~the measuremen
of a projector in the Bell basis! on two particles, say 1 and 2
can be realized by a two-qubit operationO12[CNOT1→2

imperf

~controlled NOT operation! followed by a Hadamard rotation
of particle 1 and two single-qubit measurementsP0(1)

1 ,P0(1)
2

on particles 1 and 2@25#. Instead of performing the Had
amard transformation one can also measure particle 1
rotated basis. In summary, an imperfect Bell measureme
described by an imperfect two-qubit operation followed
two imperfect single-qubit measurements, effecting, e
u0&u0&6u1&u1&→(u0&6u1&)u0&.

III. PURIFICATION AND TELEPORTATION
WITH IMPERFECT MEANS

In this section we reconsider the basic elements of qu
tum communication, which are teleportation and purificatio
in the presence of local errors.

A. Entanglement purification

Purification is the distillation of few ‘‘perfect’’ EPR pairs
out of many imperfect pairs. In the following, we will gen
eralize two different purification protocols that have be

FIG. 1. Particles required for purification in standard recurren
schemes.
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172 PRA 59W. DÜR, H.-J. BRIEGEL, J. I. CIRAC, AND P. ZOLLER
treated in the literature, by introducing imperfect gate a
measurement operations. In Sec. III A 3, we then discus
modified version of these schemes which, generally spe
ing, has less favorable convergence properties but wo
with a smaller and constant number ofphysical resources.

1. Scheme of Bennett et al. (scheme A)

This purification scheme was introduced by Bennettet al.
@9,10#. In short, the scheme takes two pairs~1-2 and 3-4! as
in Fig. 1, both in a Werner state

r5FuF1&^F1u

1S 12F

3 D ~ uc2&^c2u1uc1&^c1u1uF2&^F2u! ~8!

with fidelity F5^f1uruf1&. Then it performs local~1- and
2-bit! operations on the particles at the same ends of
rn
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pairs. Writingr12^ r345r1234, this essentially involves two
CNOT operations, CNOT13

imperf and CNOT34
imperf, acting on

the state r1234, followed by a simple measuremen
P0(1)

3 ,P0(1)
4 of the particles 3 and 4. If the particles are foun

in the same state~00 or 11!, the remaining pair, described b
the stater128 , is kept, otherwise it is discarded. To obtain
recursive mapping between Werner states, a nonunitary
polarization operation~twirl ! is applied to the resulting stat
before it is used for the next purification step. The origin
treatment of this protocol@9,10# assumes that all operation
and measurements of the protocol are perfect.

To estimate the effect of local errors, we evaluate
protocol with the aid of the imperfect operations~5!–~7!.
The calculation of the fidelityF8 of the new pairr128 is
somewhat lengthy but straightforward, and the result can
given in analytic form. The result of this calculation is sum
marized in the formula
F85

p2
2FF21S 12F

3 D 2G@h21~12h!2#1p2
2FFS 12F

3 D1S 12F

3 D 2G@2h~12h!#1S 12p2
2

8 D
p2

2FF21
2

3
F~12F !1

5

9
~12F !2G@h21~12h!2#1p2

2FFS 12F

3 D1S 12F

3 D 2G@8h~12h!#1S 12p2
2

2 D , ~9!
p
f
for
pu-
gin-

r

which reduces to the formula given in Ref.@9# in the limiting
caseh51 andp251 ~perfect operations!. Although r128 is
no longer a Werner state, it can again be brought to We
form using~noisy! depolarization@19#. If one starts with an
ensemble of pairs with fidelityF, F8 gives the fidelity of the
remaining pairs that are left after one purification step. T
defines a fraction of 2/peven of the initial ensemble of pairs
wherepevendenotes the probability for finding the particles
and 4 in the state 00 or 11, and is given by the denomin
in Eq. ~9!. The factor 2 arises since the pair originally com
posed of particles 3 and 4 is lost due to the measureme

Each ~iterated! application of Eq.~9! corresponds to a
purification step. For each purification step, two identi
pairs~which both result from previous successful purificati
steps! are used. Thepurification resourcesare defined by the
er

s

or

.

l

average numberM of pairs needed to performkmax success-
ful purification steps, and are given by

M5)
k

kmax 2

peven
~k! , ~10!

where the probabilitiespeven
(k) depend on the purification ste

k. The physical resources, defined by the total number o
particles atA or B that are used to store the pairs needed
the purification process, are for this scheme equal to the
rification resources, since all pairs are created at the be
ning and have to be stored as can be seen in Fig. 2.

When calculating the fixed points of Eq.~9!, one finds
that one fixed point is alwaysF5 1

4 , independent of the erro
parametersp2 and h. The other two fixed pointsFmin and
Fmax ~see Fig. 12! are given by the expression
Fmax,min5
8h~h21!136A1029/p2

2164h42128h31116h2252h236h~h21!/p2
2

16h~h21!14
. ~11!
ct

rger,
gion
They depend on the error parameters and give the borde
the interval within which purification is possible. IfF
P(Fmin ,Fmax), thenF8.F. SinceFmax is an attractor, itera-
tive application of Eq.~9! leads to a resulting pair with fi
delity F→Fmax. The valueFmin thus gives the threshold fo
F where this purification scheme can be successfully appl
of

d,

while Fmax gives the maximal reachable fidelity. For perfe
local operations,Fmin5

1
2 andFmax51, meaning that all pairs

with F. 1
2 can be purified toF5Fmax51. For imperfect lo-

cal operations,Fmin.
1
2 and Fmax,1, i.e., no perfect EPR

pairs can be created. If the error parameters become la
these two fixed points approach each other and the re
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where purification is possible shrinks to zero. The limiti
situationFmax5Fmin defines the threshold for the applicab
ity of the purification protocol. For all pairs (p2 ,h) for
which there is only one real fixed point~at F51/4), the
imperfections of the local operations introduce more no
than one gains from the purification, so the scheme bre
down. For example forh51 ~perfect measurements!, Eq.
~11! simplifies to

Fmax,min5
3

4
6

1

4
A1029/p2

2 ~12!

with the threshold atp25A9/10.0.95. That is, the CNOT
gate must work with a reliability of at least 95%. The thres
old gets tighter when the measurements are imperfec
well, i.e., for h,1. In general, the threshold values for th
error parametersp2 andh are of the order of some percent
can be seen in Fig. 3. The fixed points as a function of
error parameters are plotted in Fig. 5, where we setp25h to
get a two-dimensional plot.

2. Scheme of Deutsch et al. (scheme B)

A purification protocol that converges faster and involv
fewer resources was proposed by Deutschet al. @12#. Gener-
ally speaking, this scheme can be described as a mappin
states that are diagonal in the Bell basis, but need not ne
sarily be Werner states,

r125Auf1&^f1u1Buc2&^c2u

1Cuc1&^c1u1Duf2&^f2u, ~13!

whereuf6& andc6& are the Bell states between particles
and 2 in the usual notation. In the notation of Eq.~13!, the
protocol corresponds to a mappingR4→R4 between the di-
agonal elements (A,B,C,D). In particular, between two suc
cessive purification steps, the states are not depolarized.

FIG. 2. Typical purification process. At each purification ste
either both pairs are discarded~if the purification was not success
ful! or one pair is discarded~if the purification was successful!. The
leftover pairs are again used for purification at the next step.
e
ks

-
as

e

s

on
es-

his

feature, together with additionalp/2 rotations that are ap
plied to the qubits before the CNOT operations, mak
schemeB a much faster converging protocol.

In the following analysis, we evaluate schemeB using the
imperfect operations~5!–~7! instead of perfect ones. Ap/2
rotation followed by a CNOT operation is thereby treated
a joint two-qubit operation with a single error parameterp2 .
The resulting map between the diagonal elementsR4→R4 is
described in@22#; it completely characterizes the action
this purification protocol. Successive purification steps
now described by iterated applications of this map. For e
purification step, two identical pairs~which result from the
previous step! are used. The resources can be calculated
similar way as for schemeA.

The fixed points of this map are no longer described b
single parameterF but by a set of four numbers
(Afix ,Bfix ,Cfix ,Dfix). The fidelity of such a diagonal Bel
state is given byA, theuf1& component, and, for simplicity
we shall continue to call this component the ‘‘fixed point’’ o
schemeB, although the fixed point is not sufficiently de
scribed by this single parameter. For example, it may hap
that a Werner state with a certain fidelityF0 cannot be puri-
fied, while a binary state with the same fidelityF0 that has
only two nonzero componentsuf1& anduc1&, say@in short:
‘‘binary state (A,C)’’ #, can be purified.

We have numerically compared schemesA and B, and
found that schemeB converges much faster towards the u
per fixed pointFmax if F0.Fmin , as can be seen in Fig. 4
Surprisingly, the upper fixed point for schemeB is above the
one for schemeA for given error parameters and does n
depend on the ‘‘shape’’ of the initial state. The lower fixe
point Fmin is smaller for schemeB and therefore the interva
within which purification is possible islarger for schemeB,
and so is the maximal reachable fidelity. The fixed points
a function of the error parametersp25h are plotted in Fig.

,

FIG. 3. Region for error parametersp2 andh where purification
is possible~schemeA!.
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5. One can see that schemeB is significantly less sensitive to
noisy local operations than schemeA.

3. A modified purification scheme (scheme C)

Both schemes~A and B! need many elementary pairs
start with, which have to be stored somewhere before
protocols are applied. The physical resources are thus q
large and grow with the number of necessary purificat
steps. In the following, we modify schemeB in a certain
way, and call this schemeC.

Different from schemeB, we do not use two identica
pairs at each purification step~which are left over from pre-
vious purification steps! but always purify one and the sam
pair with the help of an auxiliary pairp0 with constant fi-
delity Ap0

. Apart from that, we employ the same protoc
~that is, the sequence of local operations and measurem!
as in schemeB. The resulting map is thus the same, the o
difference being thatr34 is a diagonal Bell state which i
constant throughout the whole purification procedure an
given by (Ap0

,Bp0
,Cp0

,Dp0
). This auxiliary pair is repeat-

edly created before each purification step between two of

FIG. 4. FidelityF plotted against the number of successful p
rification steps for schemeB ~dashed line! and schemeA ~solid
line!. Based on fixed error parametersp25h of 1% and initial
fidelity F050.7.

FIG. 5. Fixed point (Fmin andFmax) of scheme (A) and scheme
(B) plotted against error parametersp25h.
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four particles as visualized in Fig. 6. If a purification proce
is not successful, one has to start from the beginning~when
both pairs 12 and 34 are put in the statep0). Using this
procedure, the fidelity converges towards a given fixed po
F(p0) which isnot equal to 1@23#. The fixed point depends
sensitively on both the initial fidelityand the shape~other
diagonal elements in the Bell basis! of the statep0 . The
properties of the fixed point will be discussed in more de
later on.

For ideal operations, this method is generally less fav
able as far as its convergence properties are concerned. H
ever, for imperfect operations, the situation changes and
drawback that the reachable fixed pointFp0

is smaller than
unity becomes less important. As we shall see later, for
perfect local operations the fixed point of schemeC may lie
evenabovethe fixed points of schemesA andB ~see Fig. 8!.
The main advantage of this scheme is, however, that
physical resources, that is, the number of particles needed
A or B to store the pairs, areconstant~namely two! and
independent of the number of necessary purification ste
This fact makes schemeC particularly interesting for the
repeater problem, where the accumulation of local partic
at the connection points of a compound long channel pl
an important role.

The purification resources, on the other hand, that is, th
~average! number of how often an auxiliary pair has to b
created in order to performkmax purification steps, now have
to be calculated in a different way. Letpeven(k) be the prob-
ability to succeed at thekth purification step. The total re
sources can be calculated using the iteration formula

Mk115~Mk11!
1

peven~k11!
. ~14!

To close this formula, note thatM051. This can be under-
stood as follows: Starting at the elementary level, one ne
two pairs for purification and has to repeat the procedure
average 1/peven(1) times. ThusM15(111)1/peven(1). For
the next purification step, one needs one additional elem
tary pair to perform the next purification step. This step h
to be performed on average 1/peven(2) times. The resource
to perform the second purification step are thus given
M25(M111)1/peven(2) and so on. To performkmax purifi-
cation steps, one needs to create on average

Mkmax
5 (

i 51

kmax F )
k5 i

kmax S 11dk1

peven~k! D G ~15!

times an auxiliary pair.
A related quantity is the average number of purificati

steps~including also those which fail!. This is given by the
iteration formula

-

FIG. 6. Typical purification process. At each step, the sa
elementary pairp0 is used. If one purification step is not successf
one has to start from the beginning.
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Sk115~Sk11!
1

peven~k11!
, ~16!

whereS050 andk denotes the number ofsuccessfulpurifi-
cation steps. If no purification is performed, the number
stepsS050. This is the only difference from the iteratio
formula ~15! for the resources, since every time an elem
tary pair is created, one performs a purification step. Thus
average total number of purification steps performed~assum-
ing thatkmax steps were successful! is given by

Skmax
5 (

i 51

kmax F )
k5 i

kmax S 1

peven~k! D G . ~17!

The fixed point discussion for this purification protocol
more involved due to the many parameters, namely the fi
ity Ap0

and the shape ~other diagonal element

Bp0
,Cp0

,Dp0
) of the elementary pair, and the error para

etersp2 andh describing the noisy local operations. For th
protocol, purification is possible if the reachable fidel
~fixed point! for a certain auxiliary pair lies above its initia
fidelity. To illustrate first the shape dependence of the fix
point, we introduce the following parametrization of diag
nal Bell states with constant fidelityF0 . In the notation of
Eq. ~13! we write

A5F0 ,

B5C5~12F0!~12e!/2, ~18!

D5~12F0!e,

where 0<e<1. A Werner state thereby described bye5 1
3

and a binary state (A,D) is obtained fore51. Figure 7
shows the dependence of the fixed point as a functione
for different error parameters.

For the manifold of states covered by this parametri
tion, one sees that the ‘‘optimum shape’’ of the element
pair is a binary state (A,D), meaning that the reachable fixe
point for a given initial fidelity is the largest for this shap

FIG. 7. Reachable fixed point plotted against parametriza
parametere ~shape of the state! for fixed initial fidelity F050.7.
Plots from bottom to top correspond to error parametersp25h of
4%, 3%, 2%, 1%, 0%.
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Figure 8 demonstrates two different things. First, it sho
that the fixed point~maximally reachable fidelity! depends
on the initial fidelity of the elementary pair even if the oth
components are kept constant. Second, it demonstrates
the reachable fidelity using this purification scheme may
above the reachable fidelity using schemesA or B. @The
upper fixed point for schemeA is not plotted here, but as w
already know~see Fig. 5! it always lies below the fixed poin
for schemeB.# One should mention, however, that this
only the case if the shape of the elementary pair is close
the optimal configuration (A,D). This can be understood a
follows: SchemeB always picks two pairs that result from
previous purification step and the shape of such a pair c
verges towards a ‘‘working state’’ which no longer depen
on the initial shape but only on the error parameters. Sche
C, on the other hand, always uses the same auxiliary pair
each purification step which hasnot been influenced by noisy
local operations in previous steps. As we have pointed
earlier, in general one can only increase the fidelity by
certain amount.

B. Teleportation

In the context of the quantum repeater, teleportat
comes into play when two~purified! segments of a channe
are connected. The channel segments are represented by
pairs between particles 1-2 and 3-4 that have been cre
across the corresponding segments, see Fig. 9. In gener
teleport the state of particle 2 to particle 4, a Bell measu
ment has to be made on particles 2 and 3~and the result of
this measurement communicated particle 4!. If particle 2 is
itself entangled to some other particle, say particle 1 as
Fig. 9, the effect of the teleportation is to transfer this e
tanglement to an entanglement between particles 1 an
This process has also been termed ‘‘entanglement sw
ping’’ @24#.

n FIG. 8. Reachable fixed point plotted against initial fidelityF0

for schemeB ~constant function! and schemeC. Based on fixed
error parametersp25h of 4% and binary pairs (A,C).

FIG. 9. Particles involved in the connection process. Particl
is located atA, particles 2 and 3 atC1 , and particle 4 atB.
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As a result, one obtains an EPR pair between particle
and 4 which can be used as a single channel~again with the
help of teleportation!. In this sense, the segments of the co
pound channel have been connected. Put in different te
the connection process creates quantum correlations a
the compound channel from correlations that exist across
individual segments.

We will study this process first for the particular ca
where the involved pairs~1-2 and 3-4! are not maximally
entangled but are both in a Werner state~8! with fidelity F.
To connect the pairs~1-2! and ~3-4!, we make a Bell mea-
surement on particles 2 and 3, which is realized by a~imper-
fect! CNOT operation followed by two~imperfect! single-
particle measurements, as described in the last paragrap
Sec. II. Depending on the outcome of this measuremen
one-particle operationO4 is performed on particle 4, as i
the teleportation scheme@13#. The measurement outcom
needs therefore to be sent to particle 4 using classical c
munication. The result of this sequence of operations,
lowed by a subsequent~imperfect! depolarization, is a
Werner state between particle 1 and 4 with a smaller fide
F2 , which is independent of the outcome of the measu
ment.

More generally, imagine that we have not only two pa
but a whole string ofN pairs as visualized in Fig. 10. Each o
the pairs (A2C1),(C12C2), . . . ,(CN212B) is assumed to
be in a Werner state with fidelityF. Connecting theseN
pairs using the procedure described above leads to a
(A2B) with fidelity FN given by the formula

FN5
1

4 H 113~p1
2p2!N21S 4h221

3 D N21S 4F21

3 D NJ .

~19!

The parametersh, p1 , and p2 appearing in this formula
quantify the amount of noise that is introduced by the c
nection processes. The connection therefore leads to an
ponential decrease of the resulting fidelity, unless both
elementary pairs and all the operations involved have u
fidelity.

The connection can be performed in two different wa
which both lead to the same resulting state with fidelityFN
but involve a different temporal ordering of the operation
The first way is to connect the pairssequentially, i.e., first
connect atC1 , then atC2 , and so on, each time only con
necting one additional pair. This involves a sequence oN
21 connection procedures. The second way is to connec
pairs in parallel. To achieve this, first connect simulta
neously the neighboring pairs atC1 ,C3 , . . . ,CN21 . This
leaves us with longer pairs (A2C2),(C22C4), . . . ,(CN22
2B). Then connect simultaneously these longer pairs
C2 ,C6 , . . . ,CN22 , and so on, until we get a final pair be
tweenA and B. To have at each step pairs of equal leng
and fidelity,N should be some power of 2,N52n, although
this is not an essential requirement. This method is m
faster as it requiresfewer iteration steps, namely log2 N5n

FIG. 10. Connection of a sequence ofN EPR pairs.
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instead ofN21, although the number of local connections
be made is, of course, the same.

The elementary pairs that are connected need not be
Werner state. For example, for Bell diagonal states one
derive a mapR4→R4 that relates the elements (A,B,C,D)
of the corresponding states before and after the connec
That is, Bell diagonal states are mapped to Bell diago
states under connection. All other remarks about the conn
tion procedure for a string of pairs apply here as well. T
parallel way of connecting the pairs is preferable not o
because it can be done faster, but also because, after
connection step, one deals with an ensemble ofidentical
pairs. Further details are given in@22#.

IV. QUANTUM COMMUNICATION OVER LONG
DISTANCES

A. Concept of the quantum repeater: Nested entanglement
purification

We have now all necessary tools available to introdu
the concept of the quantum repeater. Our goal is to creat
EPR pair of high fidelity between two distant location
Since nonlocal entanglement between distant particles
not be created using only local operations, this involves
usage of a quantum channel, which is noisy in general.
bottleneck for communication over large distances is
scaling of the error probability with the length of the cha
nel. When using, for example, optical fibers and single p
tons as a quantum channel, both the absorption losses an
depolarization errors scaleexponentiallywith the length of
the channel. The state of the photon or the photon itself w
therefore be destroyed with almost certainty if the channe
longer than a few half-lengths of the fiber.

To overcome this limitation, we divide the long chann
into N smaller segments and create less distant EPR p
across each segment as visualized in Fig. 10. The numbe
segmentsN is thereby chosen in such a way that it is po
sible to create EPR pairs with sufficiently high initial fidelit
F.Fmin over the distance of such a segment. In a next s
we connect these ‘‘elementary’’ pairs as described in S
III B. This leaves us with a pair betweenA and B with re-
duced fidelityFN as given in Eq.~19!. In principle, one could
now create many pairs betweenA andB in a similar way and
then use this ensemble of pairs for purification. But purific
tion is only possible if the fidelity of the initial pairs is abov
a certain threshold valueFmin as we have seen in Sec. III A
This limits the number of pairs one can connect before p
fication becomes impossible. We therefore connect a sma
numberL!N of pairs so that the resulting fidelityFL stays
above the threshold value for purification (FL>Fmin) and
purification is possible.

The general strategy will be to design an alternating
quence connection and~re!purification procedures in such
way that the number of resources needed remains as sm
possible, and in particular does not grow exponentially w
N and thus withl . In the remainder of this section we de
scribe anested purification protocolwhich consists of con-
necting and purifying certain groups of pairs simultaneou
in the following sense~see Fig. 11!. For simplicity, assume
that N5Ln for some integern. On the first level, we simul-
taneously connect the pairs~initial fidelity F1) at all the



th
fo
n
f
e

ity
ro
t

w
ai

s’

l i
ti
e

a

a
te
ur

g

a
tal
n
.
e

ycle

al-
as

s
able

of

es

a
s
le.

e,
pu-
the

d
,

ni-

ntly

are

PR

PRA 59 177QUANTUM REPEATERS BASED ON ENTANGLEMENT . . .
checkpoints except atCL ,C2L ,...,CN2L . As a result, we
haveN/L pairs of lengthL ~and fidelityFL) betweenA and
CL , CL andC2L , and so on.

To purify these pairs, we need a certain numberM of
copies that we construct in parallel fashion.~For keeping
track of the resources, it is convenient to arrange them in
form of an array of elementary pairs as is done in Fig. 11
L53 andM54). We then use these copies on the segme
A andCL , CL andC2L , etc., to purify and obtain one pair o
fidelity >F1 on each segment. This last condition determin
the ~average! number of copiesM that we need, which will
depend on the initial fidelity, the degradation of the fidel
under connections, and the efficiency of the purification p
tocol. The total number of elementary pairs we used up
this point isLM . On the second level, we connectL of these
larger pairs at every checkpointCkL (k51,2,...) except at
CL2,C2L2,...,CN2L2. As a result, we haveN/L2 pairs of
lengthL2 betweenA andCL2, CL2 andC2L2, and so on, of
fidelity >FL . Again, we needM parallel copies of these
long pairs to repurify up to a fidelity>F1 . The total number
of elementary pairs involved up to this point is (LM )2. We
iterate the procedure to higher and higher levels, until
reach thenth level. As a result, we have obtained a final p
betweenA andB of lengthN and fidelity>F1 . In this way,
the total numberR of elementary pairs will be (LM )n ~where
Mn alone gives the number of required ‘‘parallel channel
in Fig. 11!. We can reexpress this result in the form

R5NlogL M11 ~20!

which shows that the resources growpolynomiallywith the
distanceN.

The central feature of this nested purification protoco
the two-step process connection-purification on each nes
level. This purification loop is visualized in Fig. 12. Th
curves shown in this figure are described by the formulas~9!
for purification~upper curve!, and~19! for connection~lower
curve, withN replaced byL!, respectively. Let us consider
given nesting levelk, where we haveN/Lk21 pairs of fidel-
ity F each. Starting fromF, the fidelityFL after connecting
L pairs can be read off from the curve below the diagon
Reflecting this value back to the diagonal line, as indica
by the arrows in Fig. 12, sets the starting value for the p
fication curve. If FL lies within the purification interval
(Fmin ,Fmax), then the purification curve lies above the dia

FIG. 11. Nested purification with an array of elementary E
pairs.
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onal,F8(FL).FL , and iterative application of Eq.~9! leads
back to a fidelity larger than or equal to the initial valueF.
Each step in the ‘‘staircase’’ of Fig. 12 corresponds to
successful purification step, and with the help of the to
number of necessary stepskmax needed to recover one ca
calculate the needed resourcesM as described in Sec. III A
Once the initial valueF of the fidelity is reobtained, we hav
N/Lk pairs and we can start with the next levelk11. In
summary, each level in the protocol corresponds to one c
in Fig. 12.

There are two conditions that have to be fulfilled to re
ize a closed loop. First, the fidelity after the connection h
to be larger than the minimum value for purification~lower
fixed point!, FL.Fmin . If FL<Fmin , then repurification is
impossible. Second, the fidelityF one starts with and want
to reach again has to be smaller than the maximal reach
fidelity ~upper fixed point!, F,Fmax. These two conditions
determine both a threshold value for the error tolerances
the local operations and they limit the valueL ~the number of
pairs which can be connected before purification becom
necessary!. Please note that, being polynomial inL, the
lower curve gets steeper and steeper nearF51 for higher
and higher values ofL. From this one can see that, for
given initial fidelity F, there is a maximum number of pair
one can connect before repurification becomes impossib

The threshold value for the nested purification schem
i.e., the repeater, is tighter than the threshold for simple
rification on a single segment. Consider, as an example,
situation in Fig. 12. The chosen valuep250.97 of the error
parameter~with h51) lies above the purification threshol
of 0.95 that we have found after Eq.~12!. On the other hand
for p250.95, the purification interval in Fig. 12 would
shrink essentially to a point atFmin5Fmax50.75. Clearly, in
this situation no loop can be realized; even if we start i
tially at F50.75, the purification ‘‘interval’’ is left after the
first connection process and the fidelity would subseque
converge towards the trivial fixed pointF50.25.

When we employ the protocolsA or B in the purification
part of the nested scheme, we find error thresholds that
typically in the percent region. For schemeC, the situation is

FIG. 12. ‘‘Purification loop’’ for connecting and purifying EPR
pairs. The parameters areL53, h5p151, andp250.97. The~up-
per! purification curve corresponds to schemeA, Eq. ~9!. The
~lower! connection curve is described by Eq.~19! with N53.
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similar, as long aswe do not use depolarization after ea
purification step~i.e., keep all involved pairs during the pu
rification process in the Werner form!. If we do use depolar-
ization, thus realizing a modified version of protocolA, the
loop cannot be closed. In other words, for Werner states,
fidelity that is lost by the connection process can never
regained by purification with this scheme. For this to be tr
the repurification conditionFmax„FL(F)…>F must be ful-
filled, where the upper fixed pointFmax is a function of the
fidelity of the auxiliaryL pair. It can be shown analytically
that this is not possible for schemeC with Werner states.
This underlines the fact that the purification schemeC is not
a trivial variant of either of the schemesA andB.

Note that both connection and purification are not smo
processes. This means that one can only perform whole s
and not parts of a step. Due to this fact, one will not get
exactly closed purification loop, in general, but the final
delity after the purification~this is the value at which the
ladder in Fig. 12 ends! may be slightly larger than the initia
fidelity; second, the final fidelity may be different at ea
nesting level, but it is always larger than or equal to t
fidelity of the elementary pairs.

B. Physical resources

The length of a segment is limited by the transmiss
errors, and the number of segmentsN one splits up the tota
channel should be varied in order to find out the optim
configuration. The quantum repeater can be characterize
two quantities, which depend on the used connection
purification protocol: ~i! The total physical resources pe
segmentneeded to build up the EPR pair—this gives t
number of necessary ‘‘parallel channels’’ between t
checkpoints;~ii ! the total time which is needed to build up
the EPR pair. The way to calculate these quantities is s
lar for schemesA andB, while the properties of schemeC
are totally different.

C. Physical resources per segment

The number of physical resources~per segment!, Rsegment,
is given by the number of required connection lines betw
two checkpoints. At the end points~at A andB!, Rsegmentis
also equal to the number of particles to be stored, while
each checkpointCi , the number of particles to be stored
2Rsegment, since there are connections in both directions.

For schemesA andB, Rsegment~vertical axis in Fig. 11! is
completely determined by the resourcesM needed for each
purification loop and is given byRsegment5Mn, where n
5 logL N is the number of nesting levels. The resourcesM
needed for purification can be calculated as described in
III A. Figure 13 shows the resourcesM needed for a single
purification loop, where it is assumed thatL52, i.e., only
two pairs are connected before repurification takes placeM
is plotted against a ‘‘working fidelity,’’ which is the fidelity
one starts with before connection and one ends up with a
repurification. Although the difference between schemesA
and B does not look very dramatic, note thatM has to be
taken to thenth power to calculate the resources per s
ment, where for long range communicationn'10 ~see Sec.
IV E!. One can see that there exists an optimal working
gion, which can be understood as follows: For small work
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fidelities F, due to the polynomial law for the connectio
the fidelity decreases strongly. Second, purification beco
less effective near the lower fixed pointFmin ~the gain per
purification step gets smaller!. For both reasons, many pur
fication steps are needed to recover and thus the neede
sources are large. For working fidelitiesF close to the maxi-
mal reachable fidelity~upper fixed pointFmax), one does not
lose much due to the connection, but purification is le
effective—the gain per purification step is smaller. The
fore, the number of necessary steps is again quite large
so are the needed resources. In between there exists a r
which is optimal in the sense that the needed resources
minimized. Here a working fidelityF'0.95 turns out to be
optimal for the chosen error parameters.

The error dependence of the resources is shown in
14. For smaller error probabilities~larger error parameters!,
two things happen: the optimal working fidelity gets larg
and the needed resourcesM decrease. For imperfect loca
operations, the needed resources increase to infinity if
really wants to reach the maximal achievable fidelityFmax,
only for perfect operations andF51 this is not true becaus
one starts with perfect pairs and does not lose due to con
tion. Therefore no purification is necessary andM51.

Using schemeC for purification, the situation is different
The vertical axis of Fig. 11~which corresponds to the re
sources! is translated into a ‘‘temporal axis.’’ Instead of cre
ating all needed pairs at the beginning and operating pa
lelly on ensembles of pairs at each checkpoint~as in scheme
A andB!, one creates the pairs needed for purification ev
time one needs one and operates sequentially on the pair
perform the purification process, only two pairs are involv
every time. One is needed to store the purified state and
other one is repeatedly created to purify the first pair as
sualized in Fig. 6. The number ofphysical resourcesre-
quired for purification is thus only two, but every time th
purification is not successful one has to start from the v
beginning. Using schemeA or B one obtains a purified pai
after kmax successful purification steps, which is in this ca
also the number of actually performed purification ste
Looking at Fig. 2, one sees that a purification step which w
not successful eliminates one branch of the tree, but a
four steps~in this example! one ends up with a purified pair

FIG. 13. ResourcesM for purification versus working fidelityF
for schemeA ~upper curve! and schemeB ~lower curve!. The errors
of all operations are 0.5%, andL52.
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In schemeC, on the other hand, one does not follow a
branches parallel but follows the branches sequentially~and
using always the same elementary pair for each purifica
step!. This limits the number of involved particles, but in
creases the required time.

Looking now at the nested algorithm, it turns out that t
required number of physical resources for schemeC grows
linearly with the number of nesting levels and thus logari
mically with the number of segments~and the distance!. This
is because one additional pair is needed for storage purp
at each nesting level. One can understand this by inspec
Fig. 15. First, three elementary pairs are connected~line 4!
and used to purify the pair at line 3, which now is the ‘‘e
ementary pair’’ for the next nesting level. Second, three
these repurified pairs~line 3! are connected and used to p
rify the pair at line 2. Since one has to create such a p
repeatedly and all particles at lines 3 and 4 are involved,
necessary to store the pair to be purified~here in line 2!.
Therefore one needs one additional particle to store the
at each new nesting level~see Fig. 16!. This particle is not
needed in all checkpoints, but only in those which lie on
bordersof the corresponding nesting levels. That is why t
maximum number of additional particles~physical re-
sources! is required at the outermost places~A andB!, while,
e.g., at checkpointC1 , no additional particle is needed. Th
maximalnumber of additional particles~physical resources!
grows only linearly with the number of nesting levels a

FIG. 14. ResourcesM versus working fidelityF for different
error parameters~schemeB with L52). The curves from bottom to
top correspond to error probabilities of 0%, 0.25%, 0.5%, 0.75
and 1%. The center curve correspond to the lower curve in Fig.

FIG. 15. The nested purification algorithm using the Innsbru
protocol. At each nesting level, one additional particle at the b
ders of this nesting level is needed to store the pair.
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therefore logarithmically with the number of segments
contrast to the polynomially growing resources when us
schemeA or B. The maximal resources per segment~in this
case particles needed to store the pair! can be calculated by

Rsegment511 logL N511n. ~21!

D. Temporal resources

Here we will discuss the total time needed to create
EPR pair. This involves at least three parameters, as follo

~i! The typical timetop needed to perform local opera
tions ~single qubit, two qubit, and measurements!.

~ii ! The typical timetpair to create an elementary pai
Using optical fibers and the model of the absorption fr
channel~AFC! @26,27#, tpair can be expressed in terms of th
other two parameters and is given by

tpair5tAFC5~5top12tclass!e
~ l segment/ l 0!, ~22!

wherel 0 is the coherence length of the fiber andl segmentis the
length of a segment. This just reflects the fact that fo
single use of the AFC, altogether five operations and t
classical communications~in this case the transmission of
photon! are necessary. The exponential function gives
average number of repetitions which are necessary du
absorption losses.

~iii ! The timetclassneeded for classical communication
broadcast the result of the measurement.tclass is determined
by the length of the segment and the speed of lightc and is
given by

tclass5
l segment

c
. ~23!

To simplify the discussion, we will assume that the nu
ber of pairsL which are connected at each nesting level
some power of 2,L52l , because in this case the connecti
process can be performed in parallel. For each connec
process, three elementary operations~CNOT, measurement
operation depending on the outcome of the measurem!
and classical communication over the distance of one s
ment are needed. For purification, also three elementary
erations~e.g., for schemeA depolarization, bilateral CNOT
and bilateral measurement! and classical communication o
the result are necessary.

Using schemeA or B, the time needed to perform apu-
rification loop ~the connection ofL52l pairs and repurifica-
tion, wherekmax successful purification steps are necessa!
at nesting levelm is given by

,
3.

k
r-

FIG. 16. Additional particles needed at each checkpoint for
Innsbruck protocol. The number of segmentsN524516, L52
pairs are connected at each nesting level, and the number of ne
levels isn54.
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t loop~m!53l top1 f ~m!~2l21!tclass

1kmax@3top1 f ~m!2ltclass#, ~24!

where f (m)5(2l)m gives the length dependence of the
ementary pair on the nesting level. The first two terms g
the time required to perform the connection process in p
allel fashion, wherel connections and classical communic
tion over the distance of (2l21) times the length of an el
ementary pair is needed. The purification process invol
kmax purification steps and for each purification step class
communication over the distance of 2l times the length of an
elementary pair~sinceL52l pairs were connected before!.
One only has to take into account the successful purifica
steps, since one runs through the whole purification tree~see
Fig. 2! in a parallel fashion. To calculate the total tim
needed to perform the nested algorithm, one can use
iteration formula

t tot~m!5t tot~m21!1t loop~m!, ~25!

where m corresponds to themth nesting level andt tot(n)
gives the total time needed for the creation of an EPR p
betweenA and B. To complete this iteration formula, not
that t tot(0)5tpair, which is just the time needed to create
elementary pair at the beginning. The total time if one h
N5Ln segments andL52l is thus

t tot
A,B5n~3l 13kmax!top

1F2l211kmax2
l S ~2l !n21

2l21 D Gtclass1tpair. ~26!

The main contribution is given by the classical communi
tion if top is not too large and is justt tot'(2kmax11)Ntclass.

Using schemeC for purification, the time needed to pe
form a purification loop on nesting levelm is given by

t loop~m!5@max$t loop~m21!%

13l top1 f ~m!~2l21!tclass#M

1S„3top1 f ~m!2ltclass…, ~27!

where the first term is the time needed to create a pair
purification @by building up 2l pairs at nesting level (m
21) and connecting them#, which must be donesequentially
M times. The second term gives the time needed for pu
cation~operations and classical communication over the d
tance of 2l times the length of an elementary pair!, whereS
purification steps have to be performed. The functionf (m)
5(2l)m reflects the length dependence of the elementary
on the nesting level and the time needed to create an elem
tary pair at the lowest nesting leveltpair5t loop(0), which
completes this iteration formula. The maximum appearing
this expression is taken over all 2l segments on nesting leve
(m21), which is necessary because all 2l new elementary
pairs have to be built up before the next connection proc
can start. Therefore one has to wait for the slowest one. N
that the time for purification is fixed for schemesA and B
~obtaining bad results in this case corresponds to the el
nation of a branch in Fig. 2!, while for schemeC the purifi-
e
r-

s
l

n

he

ir

s

-

r

-
-

ir
n-

n

ss
te

i-

cation process has to be started from the very beginn
when obtaining a bad result. This results in the fact that
performed purification stepsS and the used purification re
sourcesM ~and therefore the required time! might vary from
case to case. This formula is sufficient to calculate the to
time needed to perform the nested algorithm up to nes
level m and t tot(n)5tloop(n) gives the total time needed t
build up an EPR pair betweenA andB.

A rough estimation of the total time can be obtained wh
using Eqs.~15! and~17! to calculate theaveragenumber of
purification resourcesM and purification stepsS. In this
case, one can write down a closed expression for the t
time, which is polynomially growing with the number o
segmentsN and thus with the distance. Comparing this tim
with the results obtained from a simulation of the who
process, it turns out to be smaller by a factor of'3. In some
sense, the vertical axis~physical resources! in Fig. 11 is
translated into a temporal axis.

E. Comparison of the three schemes

We will give some typical numbers to quantify the pro
erties of the nested purification protocol if the purificatio
loop is performed with the help of schemeA, B, or C. Table
I is based on error parameters of1

2 % (p15p25h50.995)
and a working fidelityF50.96, the fidelity one starts with a
the lowest nesting level and one ends up after each purifi
tion loop. The length of a segment is assumed to be on
order of the coherence length of an optical fiber,l segment
'10 km. In this case, the number of segments is prop
tional to the distance between two locations. If the numbe
segments is on the order ofN5275128, this will be called
the ‘‘Continental scale’’~distance of'1000 km), whileN
521051024 is called the ‘‘Intercontinental scale’’~distance
of '10000 km), since one can create an EPR pair betw
two international cities. It is assumed that the connection
performed in parallel. The columns from left to right hav
the following meaning: ~i! resources:gives thephysical
resources per segmentRsegment; ~ii ! time: gives the total time
in seconds needed to create an EPR pair. The numbe
based on the application of the AFC to create elemen
pairs (tpair5tAFC53.231024 s). The coherence length o
the fiber is considered to be 10 km, which is also the len
of the elementary segment (tclass50.3331024 s). All opera-
tions ~single-qubit, two-qubit, measurement! are considered
to be performed intop51025 s. The time is calculated usin
a simulation of the nested entanglement purification proc
averaging over a few hundred runs.

In Table I one sees that the physical resources nee
when using schemeC are some orders of magnitude smalle
while the time needed is larger. For a practical implemen

TABLE I. Resources and time needed for creating a distant E
pair via optical fibers. See text for more details.

Continental scale Intercontinental scale

Resources Time Resources Time
A 1.583109 3.8831022 9.0131012 0.298
B 329 1.3431022 4118 0.103
C 7 0.77 10 15.69
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tion, the achievable bit rates are not very impressive,
note that all numbers get much better if the local operati
can be performed better~error parameters closer to 1! as can
be seen in Fig. 14.

So the reachable fidelity is larger and at the same time
required resources are smaller when using better local op
tions. Note that the total time needed is on the order of
time for classical communication over this distance, which
just tclass510 240 km/33105 km/s50.034 s.

V. SUMMARY

We have shown that it is possible to create EPR pairs
a noisy channel, with an overhead in physical resources
grows only logarithmically with the length of the channe
N.
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nt

J.

.
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re

.

t
s

e
ra-
e
s

ia
at

while the time needed for the creation grows polynomial
The central idea is to use a nested purification protocol
connecting a sequence of EPR pairs at certain ‘‘connec
points’’ within the channel, whose roles are reminiscent
classical repeaters. Different from the classical situation,
concept of the quantum repeater is not a local amplifier,
it involves both the local checkpoints and global purificati
protocol. Our scheme tolerates errors for local operations
measurements that are in the percent region.
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