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Quantum repeaters based on entanglement purification
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We study the use of entanglement purification for quantum communication over long distances. For dis-
tances much longer than the coherence length of a corresponding noisy quantum channel, the fidelity of
transmission is usually so low that standard purification methods are not applicable. It is possible, however, to
divide the channel into shorter segments that are purified separately and then connected by the method of
entanglement swapping. This method can be much more efficient than schemes based on quantum error
correction, as it makes explicit use of two-way classical communication. An important question is how the
noise, introduced by imperfect local operatidttsat constitute the protocols of purification and the entangle-
ment swapping accumulates in such a compound channel, and how it can be kept below a certain noise level.
To treat this problem, we first study the applicability and the efficiency of entanglement purification protocols
in the situation of imperfect local operations. We then present a scheme that allows entanglement purification
over arbitrary long channels and tolerates errors on the percent level. It requires a polynomial overhead in time,
and an overhead in local resources that grows only logarithmically with the length of the channel.
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I. INTRODUCTION a large number of qubitsind to operate on this code repeat-
edly while it is propagated through the channel. The toler-
In quantum communication, quantum bitgibit9 [1] are  able error probabilities for transmission are less than®10
sent across quantum channels that connect distant nodes ofvaereas for local operations they are less thanl8 °.
guantum network. In general, these quantum channels afehis seems to be outside the range of any practical imple-
noisy and therefore limit the fidelity of the transmission. A mentation in the near future. A crucial figure for any experi-
bottleneck for qguantum communication is the scaling of thement will be the number of particles that can be manipulated
probability of transmission errors with the length of the locally in a coherent fashion, together with the precision with
channels connecting the nodes. Different from classicalhich such local manipulations can be realized. For instance,
(digital) communication, the “signals” in quantum commu- even when the number of particles scales only polynomially
nication consist of single qubits which may be entangledwith the length of the channel, a polynomially large number
Owing to fundamental principles, these qubits cannot bemay still be far too large for any practical implementation.
cloned[2,3] nor amplified[4] without destroying the essen- A central tool in the theory of quantum information, spe-
tial quantum feature. This fact limits the maximum distancecifically for quantum communication, is entanglement puri-
between the nodes to a few multiples of the absorptiorfication [9—-12). It allows us, in principle, to create maxi-
length (or the coherence lengtlof the channel, and poses a mally entangled states of particles at different locations even
severe restriction on any practical application. For exampleif the channel that connects those locations is ndibly
in recent experiments on quantum cryptograpfy; single  These entangled particles can then be used for faithful tele-
photons are sent through optical fibers with a given absorpportation [13] or secure quantum cryptograpt$2,14). It
tion and depolarization length. This has two effedi$:to  seems natural therefore to use this method as an ingredient
transmit a photon without absorption, the number of trialsfor a quantum repeater. Furthermore, it allows highly effi-
scales exponentially with; (ii) even when a photon arrives, cient two-way protocols which cannot be realized with quan-
the fidelity of the transmitted state decreases exponentialljum error correction procedures. If a noisy quantum channel
with I. In the experiment, the distance between the nodes i much longer than its coherence length, one cannot directly
therefore presently limited by a few multiples of the absorp-employ standard purification schemes. These schemes first
tion length of the fibef6]. create an ensemble of low-fidelity Einstein-Podolsky-Rosen
In the context of fault-tolerant quantum computifig, (EPR pairs across the channel, and then purify/distill a few
Knill and Laflamme[8] have discussed an important schemeperfect EPR pairs out of the ensemble. This, however, re-
that allows us, in principle, to transmit a qubit over arbi- quires a minimum fidelityF i, of the initial pairs to operate
trarily long distances with a polynomial overhead in the re-with, which cannot be achieved as the lengtf the channel
sources. Their method requires us to encode a single quhitcreases.
into a concatenated quantum cdde., an entangled state of In this paper, we treat the problem of a quantum repeater
based on the method of entanglement purification. The idea
of such a repeater is to divide a long quantum channel into
*Permanent address: Institutr fliheoretische Physik, Universita shorter segments, which are purified separately, before they
Munchen, Theresienstrasse 37, D-8033%when, Germany. are connected. Connecting two segments of a channel means
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here to build up quantum correlations across the compoundonditions of the standard protocols under the condition of

channel from correlations that exist across the individuahoisy local operations. After this discussion, in Sec. IV, we

segments. This can be done by entanglement swapping, are ready to attack the quantum repeater problem itself. Our

teleportation of entanglement. A quantum repeater musgolution combines the methods of entanglement purification

therefore combine the methods of entanglement purificatio@nd entanglement swapping into a singteetaprotocol,

and teleportation. which we call nested entanglement purification. This proto-
Although the combination of these methods should, inc0! allows to distribute entanglement with a given fidelity

principle, allow us to create entanglement over arbitrary dis&Cross arbitrary long distances, even when local operations

tances, it is another question how much this “costs” in terms2'® imperfect. It requires an overhead in local resources that
’ ows polynomially with the length of the channel. A modi-

of resources needed for purification. Resources means heye™" : ;
the number of low-fidelity EPR pairs that have to be pro- ication of this protocol works with resources that grow only

vided for purification of each channel segment. This quantit)Joga”thm'_Ca”y with the Ieng_th of the channewnhile the
is related to the number of particles that have to be manipuUild-up time grows polynomially

lated locally(at the connection points between the segments

in a coherent fashion. If the resources grow too fast with the II. IMPERFECT LOCAL OPERATIONS

length of the channel, not much will be gained by the whole AND MEASUREMENTS
procedure. A further important quantity is the error tolerance Imperfections of local operations can have various ori-

for the local operations. In every real situation, the Iocalgins_ An example for an imperfect one-qubit operation is a
operations applied to one or more particles will bear SOM&nitary “overrotation” [17], as it would be realized by a
imperfections. Since such operations are the building blockg, ¢, pulse that effects a Bloch rotation around an angle that
for any entanglement purification protocol, their imperfec-gjighy deviates from the idedintended one. If the laser is
tions will limit the maximum attainable fidelity for an EPR || stapilized but the pulse area tuned incorrectly, say, the
pair and the efficiency of the protocol. In the context of thegeyjation of the real from the intendédnitary) rotation will
quantum repeater, a maximum fidelfgy<1 corresponds 0 @ e the same when we repeat the operation, representing an
residual amount of noise for each segment. When the segyample of a systematic error. If, on the other hand, the angle
ments are connected, this noise accumulates. of the rotations fluctuates randomly around a certain mean
_To give a realistic treatment of the quantum repeater, W5 e every pulse introduces a certain amount of noise into
will therefore first study the applicability and the efficiency o system, and the resulting operation would be described
of entanglement purification protocols in the situation of im'by a nonunitary map. In the present paper, we concentrate on

perfect local operations. The general conditions under whiClys |atter situation, that is, we assume only stochastic errors
standard purification protocols can be used in the presence gf,q neglect systematic errors.

errors have been studied by Giedteal.[15]. This includes, To give a precise description of a noisy one-bit or two-bit
in pgrtlcular, threshold.s and lower bounds_ for the atta'”ableoperation, one needs to know the exact form of the error
fl(_jelmes. For a generic _class of sto_chastlc eIrors, one Capechanisms, which in turn depend on the specific physical
give explicit representations of the imperfect operations ifmplementation. In general, we have only limited knowledge
terms of completely positive mag®OVMs) [16]. In terms ¢ thege details. A generic model for a noisy channel is the

of t.hese maps, we derive recur;ion formulas for the ﬁdelitiesso-called(symmetri() depolarizing channel. It transforms a
which generalize the results given by Benrtil. [9] and qubit with initial statep as

by Deutschet al. [12]. From these results, we estimate that,

for a generic class of errors, standard entanglement purifica- -

tion protocols work even for error probabilities of the order p—Pp+ TI’ (1)

of a few percent. In the context of long distance communi-

cation, we develop a purification procedure that combinesyherel is the identity operator and<9p=<1 depends on the
the standard protocols with quantum teleportation in a certime for which the qubit is subjected to the channel. The
tain way to be specified. This purification procedure allowsaction of the channel thus results in admixing a completely
quantum communication via noisy channels of arbitrarydepolarized stat&/2 to the initial density operator. The limit
length. Since it explicitly exploits two-way classical commu- p—0 corresponds to a very noisy channel, while>1 de-
nication[10], our procedure is much more efficient for quan- scribes a channel with very little noiggideal storage’).

tum communication than protocols based on quantum error QOne can easily generalize Ef}) to the case where the

correction[8]. Specifically, this solution of the quantum re- ideal operation is some arbitrary unitafyne-bib operation
peater tolerates errors on the percent level; it requires a polyy

nomial overhead in time and an overhead in local resources
that grows only logarithmically with the length of the chan-
nel.

The paper is organized as follows. In Sec. Il we introduce
a generic error model to describe imperfect local operationfn this situation, the ideal operation is accompanied by the
such as noisy one-bit and two-bit operations and imperfecaction of the depolarizing channel. The whole map becomes
measurements. With the aid of these models, we revisit imonunitary. It describes an imperfect one-bit operation,
Sec. lll the basic elements of quantum communication—which for p—1 becomes identical to the ideal unitary map.
purification and teleportation. This discussion includes reWe call p the reliability of the imperfect operation, which
sults for the maximum attainable fidelities and the workingrepresents a lower bound to the probability that its result

1_
p—pUpUT+ Tpl. 2
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corresponds to the ideal one. For a parametrizatienU ; generic at the same time. We just mention here that similar
=exp(—ia-d), an imperfect(noisy) rotation may explicity ~maps may be derived from a Jaynes-type principle, insofar as
be defined by the map their resulting states maximize the entropy of the resulting
state with respect to variations that are trace conserving and
s > ot keep the average fidelity of the operation constant.
p—Rap= f dBv(B)Us+ppYs, 5 ) V\F;e finally degscribe a?mperfectpr;easuremeon a single
qubit (in the computational basidy a POVM [20] corre-
where the noise functiom'(,é) is normalized to unity and sponding to the “imperfect projectors”

describes the fluctuations@= 3 of the (generalizel Bloch - _
vector a. One can easily show that for “isotropic noise,” Pg=7|0)(0[+(1—7)|1)(1],

5Y=3(1 3 i (7
v(B)=7(|B]), the integral reduces to P7=n|1){1[+(1—7)|0)(0l.
R;p=pU;pULl+ 1—_p| =pRY%3, 4 1—_p|, (4)  The parameter is a measure for the quality of the projec-
“ 2 “ 2 tion onto the basis states. Assume the qubit to be measured is
. ideal t _ _ _ in the statep=|0)(0| and we are trying to measure its state
whereinR ;™ p=U;pU ; describes the ideal rotation. with the aid of a measurement apparatus described by Eq.

Motivated by these observations, we generalize thig7) The expectation value®g)= 7 and(P7)=1— 7 sim-
model to arbitrary one-qubit and two-qubit gafé8] acting )y mean that the apparatus will give us the wrong result
on an enta_ngled stapeof several qublt_s. We thereby require (“1" ) with probability 1— »=0. That is, the result is not
that errors introduced by local operations may only affect thgompletely reliable. An ideal measurement, in contrast, is
local qubits on which the ideal operation adiscality con-  gegcribed byy=1. It is clear that the effect of the measure-
dition). Letp be a state ofj qubits, labeled by 1,2, .,9. An mant on the measured qubit is not fully specified by the
imperfect one-qubit operation acting on the first qubit, say, issgym (7). In the present context, however, this description

then described by the map is sufficient as all measured particles are removed from the
1-p system, i.e., we trace over their degrees of freedom after the
i 1
0;p=p;0%p + 5 tu{p}®ls (5) measurement.

The operation$5) and(6) together with single-qubit mea-
urementg7) are sufficient to describe all operations occur-
ing in the context of teleportation and entanglement purifi-

cation. For example, a Bell measureméthie measurement

_ D, of a projector in the Bell basi®n two particles, say 1 and 2,

O12p=p,0'%% 7 tptels. (6)  can be realized by a two-qubit operati@h,=CNOT"S"
(controlled NOT operationfollowed by a Hadamard rotation

In these expression©®? is the ideal(perfect operation ©f particle 1 and two single-qubit measuremgﬁ&l),Pé(l)
andl, andI,, denote unit operators on the subspace wher@" Particles 1 and 225]. Instead of performing the Had-
the ideal operation acts, corresponding to totally depolarize@mard transformation one can also measure particle 1 in a
one- and two-qubit states. The states of the other particles afgtated basis. In summary, an imperfect Bell measurement is
described by the partial traces{is} and tg,{p}, respec- descrlbed by an_lmperfecfc two-qubit operation follpwed by
tively, of the initial density operator over theses subspacedW0 imperfect single-qubit measurements, effecting, e.g.,
The quantitiegp; and p, measure theeliability of the op- 0)[0)=[1)[1)—(|0)=[1))|0).

erations, where perfect operations correspondpie- 1.

Technically speaking, an imperfect operation is modeled by ll. PURIFICATION AND TELEPORTATION

the corresponding ideal operation accompanied/followed by WITH IMPERFECT MEANS

a depolarizing channel that adtnly) on the same subspace
as the ideal operation.

Note that the map$5) and (6) are linear and trace con-
serving, albeit nonunitary. For any stagtevhich is diagonal
in the Bell basis defined by any two of the partic(a$f states
we deal with in this paper are of this fojmthe model is
self-consistent in the sense tha;® O, (two single-qubit Purification is the distillation of few “perfect” EPR pairs
operations, each described by an error paranmgercan be  out of many imperfect pairs. In the following, we will gen-
written as a certain two-qubit operati@y, described by an eralize two different purification protocols that have been
error parametep2=p§. Generally, any sequence of local
operations can be written as a single joint operation within 1 2
this model[21]. The resulting error parametére., reliabil- SN H
ity) describing the joint operation is obtained by multiplying Vo ]
the error parameters of the single operations. 3 2

We will use these maps to estimate the role of imperfect
operations in standard protocols for entanglement purifica- FIG. 1. Particles required for purification in standard recurrence
tion and for teleportation. Although the model is simple, it is schemes.

whereas an imperfect two-qubit operation acting on qubits
and 2 is described by

In this section we reconsider the basic elements of quan-
tum communication, which are teleportation and purification,
in the presence of local errors.

A. Entanglement purification
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treated in the literature, by introducing imperfect gate andpairs. Writingp;,® p3a= p1234, this essentially involves two
measurement operations. In Sec. Il A3, we then discuss @NOT operations, CNOEP®" and CNOT,*®", acting on
modified version of these schemes which, generally speakhe state p;,,, followed by a simple measurement

ing, has less favorable convergence properties but workg3 Pé(l) of the particles 3 and 4. If the particles are found

with a smaller and constant number gifysical resources in the same statéd0 or 19, the remaining pair, described by

the statep;,, is kept, otherwise it is discarded. To obtain a
) o . recursive mapping between Werner states, a nonunitary de-
This purification scheme was introduced by Bene¢tl. polarization operatioritwirl) is applied to the resulting state
[9,10). In short, the scheme takes two paiis2 and 3-4aS  pefore it is used for the next purification step. The original
in Fig. 1, both in a Werner state treatment of this protocd9,10] assumes that all operations
_ + + and measurements of the protocol are perfect.
p=F|D") (D7 To esti
imate the effect of local errors, we evaluate the
-F o o o protocol with the aid of the imperfect operatios)—(7).
—5 | WX+ [O7NPT]) () The calculation of the fidelitye’ of the new pairp), is
somewhat lengthy but straightforward, and the result can be
with fidelity F=(¢"|p|¢*). Then it performs loca{l- and  given in analytic form. The result of this calculation is sum-
2-bit) operations on the particles at the same ends of thenarized in the formula

1. Scheme of Bennett et al. (scheme A)

J’_
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which reduces to the formula given in Rg®] in the limiting  average numbeM of pairs needed to perfori,,, success-
casen=1 andp,=1 (perfect operations Although p}, is  ful purification steps, and are given by

no longer a Werner state, it can again be brought to Werner kmax
form using(noisy) depolarizatior{19]. If one starts with an M=]] . (10)
ensemble of pairs with fidelitiF, F' gives the fidelity of the k' Peven

remaining pairs that are left after one purification step. Thiswhere the probabilitiep(, depend on the purification step

defines a fraction of Pyep, Of th.e_ initiallen_semble of pairs, k. The physical resourcesdefined by the total number of
wherepeyendenotes the probability for finding the particles 3 particles atA or B that are used to store the pairs needed for

and 4 in the state 00 or 11, and is given by the denominatahe purification process, are for this scheme equal to the pu-
in Eq. (9). The factor 2 arises since the pair originally com- rification resources, since all pairs are created at the begin-
posed of particles 3 and 4 is lost due to the measurement. ning and have to be stored as can be seen in Fig. 2.

Each (iterated application of Eq.(9) corresponds to a When calculating the fixed points of E¢9), one finds
purification step. For each purification step, two identicalthat one fixed point is always= , independent of the error
pairs(which both result from previous successful purification parameterg, and ». The other two fixed point§ ,;, and
steps are used. Theurification resourcesre defined by the F .« (see Fig. 12 are given by the expression

. 87(n—1)+3+ /10— 9/p5+ 645" — 128y°+ 116°— 52— 367(n— 1)/p5
max, min— 167(n—1)+4 '

(11

They depend on the error parameters and give the borders @hile F,,, gives the maximal reachable fidelity. For perfect
the interval within which purification is possible. IF local operationsE =3 andF ,,,=1, meaning that all pairs

€ (Fmin,Fmay, thenF’>F. SinceF ., is an attractor, itera- with F>31 can be purified td- =F ,,,,=1. For imperfect lo-

tive application of Eq(9) leads to a resulting pair with fi- cal operationsfF,>3 and F,<1, i.e., no perfect EPR
delity F—F .. The valueF, thus gives the threshold for pairs can be created. If the error parameters become larger,
F where this purification scheme can be successfully appliedhese two fixed points approach each other and the region
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FIG. 2. Typical purification process. At each purification step, : : : : : :
either both pairs are discardéil the purification was not success- 0.95 096 087 088 0% 1
ful) or one pair is discardef the purification was successjulThe P,

leftover pairs are again used for purification at the next step. . o
FIG. 3. Region for error parametgps and » where purification

where purification is possible shrinks to zero. The limiting S POSsible(schemeA).

situationF .= Fmin defines the threshold for the applicabil-

ity of the purification protocol. For all pairspg,») for feature, together with additionat/2 rotations that are ap-
which there is only one real fixed poirtat F=1/4), the Pplied to the qubits before the CNOT operations, makes
imperfections of the local operations introduce more noiséchemeB a much faster converging protocol.

than one gains from the purification, so the scheme breaks In the following analysis, we evaluate scheBi@sing the
down. For example forp=1 (perfect measuremenisEq.  imperfect operation$5)—(7) instead of perfect ones. 4/2

(11) simplifies to rotation followed by a CNOT operation is thereby treated as
a joint two-qubit operation with a single error paramgier
3 1 The resulting map between the diagonal elem&fts: R* is
— 2
Fmax,min= 7 + 7 V10— 9/p> (12)  described in[22]; it completely characterizes the action of

this purification protocol. Successive purification steps are

with the threshold ap,=9/10=0.95. That is, the CNOT novy'des.cribed by iter:?lted gpplica'tions. of this map. For each
gate must work with a reliability of at least 95%. The thresh-Purification step, two identical pairgvhich result from the
old gets tighter when the measurements are imperfect devious stepare used. The resources can be calculated in a
well, i.e., for <1. In general, the threshold values for the Similar way as for schema. _

error parameterp, and» are of the order of some percentas _ The fixed points of this map are no longer described by a
can be seen in Fig. 3. The fixed points as a function of théingle parameterF but by a set of four numbers
error parameters are plotted in Fig. 5, where wepset pto  (Afix:Brix,Ciix, D). The fidelity of such a diagonal Bell

get a two-dimensional plot. state is given by, the| ¢ ™) component, and, for simplicity,
we shall continue to call this component the “fixed point” of
2. Scheme of Deutsch et al. (scheme B) schemeB, although the fixed point is not sufficiently de-

e . scribed by this single parameter. For example, it may happen
A purification protocol that converges faster and involves y gle p P y happ

that a Werner state with a certain fideli®y cannot be puri-
fewer resources was proposed by Deutepbl. [12]. Gener.- fied, while a binary state with the same fidelRy that has
ally speaking, this scheme can be described as a mapping rr11|y two nonzero components*) and| ), say[in short:
states that are diagonal in the Bell basis, but need not nece'séinary state (A,C)” ], can be purified ' '

sarily be Werner states, We have numerically compared schenfsand B, and

Al Wb +Blo W found that schem® converges much faster towards the up-
prz=Al¢ N7 L per fixed pointF . if Fo>Fni,, as can be seen in Fig. 4.
+Cly Ny |+D|d Wo |, (13)  Surprisingly, the upper fixed point for scheiBds above the

one for scheme for given error parameters and does not
where|¢~) and ™) are the Bell states between particles 1depend on the “shape” of the initial state. The lower fixed
and 2 in the usual notation. In the notation of E&3), the  point F,,, is smaller for schem8 and therefore the interval
protocol corresponds to a mappifR§— R* between the di-  within which purification is possible ikrger for schemeB,
agonal elementsA,B,C,D). In particular, between two suc- and so is the maximal reachable fidelity. The fixed points as
cessive purification steps, the states are not depolarized. Thasfunction of the error parameteps= 7 are plotted in Fig.
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FIG. 6. Typical purification process. At each step, the same
elementary paitrg is used. If one purification step is not successful,
one has to start from the beginning.

four particles as visualized in Fig. 6. If a purification process
is not successful, one has to start from the beginigivigen
both pairs 12 and 34 are put in the statg). Using this
procedure, the fidelity converges towards a given fixed point
F (o) which isnotequal to 1[23]. The fixed point depends
sensitively on both the initial fidelityand the shapegother
diagonal elements in the Bell bakisf the statew,. The
properties of the fixed point will be discussed in more detalil

FIG. 4. FidelityF plotted against the number of successful pu- |ater on.

rification steps for schemB (dashed ling and scheméA (solid
line). Based on fixed error parameteps= 7 of 1% and initial
fidelity F3=0.7.

5. One can see that scheiBés significantly less sensitive to
noisy local operations than schee

3. A modified purification scheme (scheme C)

For ideal operations, this method is generally less favor-
able as far as its convergence properties are concerned. How-
ever, for imperfect operations, the situation changes and the
drawback that the reachable fixed poﬁq;o is smaller than

unity becomes less important. As we shall see later, for im-
perfect local operations the fixed point of sche@enay lie
evenabovethe fixed points of schemesandB (see Fig. 8.
The main advantage of this scheme is, however, that the

Both schemegA and B) need many elementary pairs to physical resourceghat is, the number of particles needed at
start with, which have to be stored somewhere before thé\ or B to store the pairs, areonstant(namely twg and
protocols are applied. The physical resources are thus quiisdependent of the number of necessary purification steps.
large and grow with the number of necessary purificationThis fact makes schem€ particularly interesting for the

steps. In the following, we modify schent® in a certain
way, and call this schem@.

Different from schemeB, we do not use two identical
pairs at each purification stép/hich are left over from pre-

repeater problem, where the accumulation of local particles
at the connection points of a compound long channel plays
an important role.

The purification resourceson the other hand, that is, the

vious purification stepsbut always purify one and the same (average number of how often an auxiliary pair has to be

pair with the help of an auxiliary paitry with constant fi-

created in order to perform,,,, purification steps, now have

delity A, . Apart from that, we employ the same protocol to be calculated in a different way. Lpt,e(k) be the prob-
(that is, the sequence of local operations and measure}nent%b'“ty to succeed at th&th purification step. The total re-

as in schem®. The resulting map is thus the same, the only

difference being thaps, is a diagonal Bell state which is

constant throughout the whole purification procedure and is

given by QAWO,B%,C#O,DWO). This auxiliary pair is repeat-

sources can be calculated using the iteration formula

Myi1=(M+1) (14

pever(k+ 1) .

edly created before each purification step between two of the

Fixed point
f=
5

007 098 099 1

PN

095 096

FIG. 5. Fixed point F,, andF,,,) of scheme @) and scheme
(B) plotted against error parametgrs= 7.

To close this formula, note thafl;=1. This can be under-
stood as follows: Starting at the elementary level, one needs
two pairs for purification and has to repeat the procedure on
average Idgyefl) times. ThusM;=(1+1)1/peyef1). For

the next purification step, one needs one additional elemen-
tary pair to perform the next purification step. This step has
to be performed on averagepl(.{2) times. The resources

to perform the second purification step are thus given by
M,=(M1+1)1/peved2) and so on. To perform,,, purifi-
cation steps, one needs to create on average

kmax kmax

(15

1+ 68, )
pever{ k)

i=1 | k=i
times an auxiliary pair.

A related quantity is the average number of purification
steps(including also those which fail This is given by the

iteration formula
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FIG. 7. Reachable fixed point plotted against parametrization

parametere (shape of the statefor fixed initial fidelity Fy=0.7.
Plots from bottom to top correspond to error paramejgers 7 of
4%, 3%, 2%, 1%, 0%.

1
pever(k+ 1) ' (16)

whereSy;=0 andk denotes the number successfupurifi-

Sc1=(St1)

FIG. 8. Reachable fixed point plotted against initial fideky
for schemeB (constant functionand schemeC. Based on fixed
error parameterp,= 5 of 4% and binary pairsA,C).

Figure 8 demonstrates two different things. First, it shows
that the fixed pointmaximally reachable fidelijydepends

on the initial fidelity of the elementary pair even if the other
components are kept constant. Second, it demonstrates that
the reachable fidelity using this purification scheme may lie

cation steps. If no purification is performed, the number ofgpgyve the reachable fidelity using schenfeor B. [The
stepsSpy=0. This is the only difference from the iteration ypper fixed point for schema is not plotted here, but as we

kmax

I1

k=i

max

. (17)

k
Skmax: i

=1

formula (15) for the resources, since every time an elemena"eady know(see Fig. 5it always lies below the fixed point
tary pair is created, one perf_o_rms_ a purification step. Thus thgy schemeB.] One should mention, however, that this is
average total number of purification steps perforr@ssum-  only the case if the shape of the elementary pair is close to
ing thatkm, steps were successfus given by the optimal configurationA,D). This can be understood as
follows: SchemeB always picks two pairs that result from a
( 1 ) previous purification step and the shape of such a pair con-
Peved K) verges towards a “working state” which no longer depends
on the initial shape but only on the error parameters. Scheme
The fixed point discussion for this purification protocol is C, on the other hand, always uses the same auxiliary pair for
more involved due to the many parameters, namely the fideleach purification step which hastbeen influenced by noisy
ity Az, and the shape (other diagonal elements local operations in previous steps. As we have pointed out
B, CryDry) Of the elementary pair, and the error param-earlier, in general one can only increase the fidelity by a
etersp, and » describing the noisy local operations. For this
protocol, purification is possible if the reachable fidelity
(fixed poiny for a certain auxiliary pair lies above its initial

fidelity. To illustrate first the shape dependence of the fixed

point, we introduce the following parametrization of diago-
nal Bell states with constant fidelitly,. In the notation of
Eqg. (13) we write

A= Fo,

certain amount.

B. Teleportation

In the context of the quantum repeater, teleportation
comes into play when tw@purified) segments of a channel

are connected. The channel segments are represented by EPR
pairs between particles 1-2 and 3-4 that have been created
across the corresponding segments, see Fig. 9. In general, to

teleport the state of particle 2 to particle 4, a Bell measure-
ment has to be made on particles 2 anthBd the result of
this measurement communicated particje I particle 2 is
itself entangled to some other particle, say particle 1 as in
Fig. 9, the effect of the teleportation is to transfer this en-
where O<e<1. A Werner state thereby described by 1  fanglement to an entanglement between particles 1 and 4.
and a binary state/A,D) is obtained fore=1. Figure 7 This process has also been termed “entanglement swap-
shows the dependence of the fixed point as a functioa of PINg” [24].

for different error parameters.

For the manifold of states covered by this parametriza-
tion, one sees that the “optimum shape” of the elementary
pair is a binary stateX,D), meaning that the reachable fixed  FIG. 9. Particles involved in the connection process. Particle 1
point for a given initial fidelity is the largest for this shape. is located atA, particles 2 and 3 a,, and particle 4 aB.

B=C=(1—Fo)(1—e)/2, (18)

D=(1-Fyp)e,

1

o+
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o o °c ° o ° instead ofN— 1, although the number of local connections to
A C, C, Cua B be made is, of course, the same.
_ _ The elementary pairs that are connected need not be in a
FIG. 10. Connection of a sequencefEPR pairs. Werner state. For example, for Bell diagonal states one can

derive a mapR*—R* that relates the element&B,C,D)

As a result, one obtains an EPR pair between particles f the corresponding states before and after the connection.
and 4 which can be used as a single chariaghin with the  That is, Bell diagonal states are mapped to Bell diagonal
help of teleportatioh In this sense, the segments of the com-states under connection. All other remarks about the connec-
pound channel have been connected. Put in different termgion procedure for a string of pairs apply here as well. The
the connection process creates quantum correlations acrogsrallel way of connecting the pairs is preferable not only
the compound channel from correlations that exist across thgecause it can be done faster, but also because, after each
individual segments. connection step, one deals with an ensemblddehtical

We will study this process first for the particular casepairs. Further details are given [a2].
where the involved pair¢l-2 and 3-4 are not maximally

entangled but are l_aoth in a Werner sté@gwith fidelity F. IV. QUANTUM COMMUNICATION OVER LONG

To connect the pair§l-2) and (3-4), we make a Bell mea- DISTANCES

surement on particles 2 and 3, which is realized Hyraer-

fect) CNOT operation followed by twdimperfec) single- A. Concept of the quantum repeater: Nested entanglement
particle measurements, as described in the last paragraph of purification

Sec. II. Depending on the outcome of this measurement, & \yg haye now all necessary tools available to introduce
one-particle o_perat|0|®4 is performed on particle 4, as in y,q concept of the quantum repeater. Our goal is to create an
the teleportation schemg3]. The measurement outcome gpr pair of high fidelity between two distant locations.
needs therefore to be sent to particle 4 using classical COMs;ncq nonlocal entanglement between distant particles can-
munication. The result of this sequence of operations, folyt e created using only local operations, this involves the
lowed by a subsequentimperfecl depolarization, is a 5aqe of a quantum channel, which is noisy in general. The
Werner_sta@e Petwee” particle 1 and 4 with a smaller fidelity, ,jeneck for communication over large distances is the
F2, which is independent of the outcome of the measuregcyjing of the error probability with the length of the chan-
ment. . . ._nel. When using, for example, optical fibers and single pho-
More generally, imagine that we have not only two pairsiyng a5 3 quantum channel, both the absorption losses and the
but a whole string oN pairs as visualized in Fig. 10. Each of genqiarization errors scatexponentiallywith the length of
the pairs 8—C,),(C,-Cy), ..., (Cy-1—B) is assumed 0 {he channel. The state of the photon or the photon itself will
be in a Werner state with fidelitf. Connecting thes®  (herefore be destroyed with almost certainty if the channel is
pairs using the procedure described above leads to a PaBnger than a few half-lengths of the fiber.

(A—B) with fidelity Fy given by the formula To overcome this limitation, we divide the long channel
1 ApP—1\N"1(4F — 1\ into N smaller segments z_;md create Ie_ss distant EPR pairs
Fn=- 1+3(p§p2)N—1 ) ( ) ] across each segment as visualized in Fig. 10. The number of

4 3 3 segmentdN is thereby chosen in such a way that it is pos-

(19 sible to create EPR pairs with sufficiently high initial fidelity
F>F.in over the distance of such a segment. In a next step,
The parameters;, p,, and p, appearing in this formula we connect these “elementary” pairs as described in Sec.
quantify the amount of noise that is introduced by the con4ll B. This leaves us with a pair betweeh and B with re-
nection processes. The connection therefore leads to an eguced fidelityF\ as given in Eq(19). In principle, one could
ponential decrease of the resulting fidelity, unless both theiow create many pairs betwedrandB in a similar way and
elementary pairs and all the operations involved have unitghen use this ensemble of pairs for purification. But purifica-
fidelity. tion is only possible if the fidelity of the initial pairs is above
The connection can be performed in two different ways,a certain threshold valug,,;, as we have seen in Sec. Il A.
which both lead to the same resulting state with fidefity ~ This limits the number of pairs one can connect before puri-
but involve a different temporal ordering of the operations.fication becomes impossible. We therefore connect a smaller
The first way is to connect the paisequentially i.e., first  numberL <N of pairs so that the resulting fidelify, stays
connect atC,, then atC,, and so on, each time only con- above the threshold value for purificatiof (=F,,) and
necting one additional pair. This involves a sequencéNof purification is possible.
—1 connection procedures. The second way is to connect the The general strategy will be to design an alternating se-
pairs in parallel. To achieve this, first connect simulta- quence connection ar(ge)purification procedures in such a
neously the neighboring pairs &;,Cj,...,Cy_1. This  way that the number of resources needed remains as small as
leaves us with longer pairsA-C,),(C,—Cy,),...,(Cn_>2 possible, and in particular does not grow exponentially with
—B). Then connect simultaneously these longer pairs aN and thus withl. In the remainder of this section we de-
C,,Cs,...,Cn-2, and so on, until we get a final pair be- scribe anested purification protocalvhich consists of con-
tweenA andB. To have at each step pairs of equal lengthnecting and purifying certain groups of pairs simultaneously
and fidelity,N should be some power of Rl=2", although in the following sensdsee Fig. 11 For simplicity, assume
this is not an essential requirement. This method is muchhatN=L" for some integen. On the first level, we simul-
faster as it requireewer iteration steps, namely lgdN=n  taneously connect the paifmitial fidelity F;) at all the



PRA 59 QUANTUM REPEATERS BASED ON ENTANGLEMEN . . . 177

1

0.9

FIG. 11. Nested purification with an array of elementary EPR 03
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checkpoints except at, ,C,,,...,Cn_L. As a result, we
haveN/L pairs of lengthL (and fidelityF,) betweenA and
C., C_ andC,_, and so on.

To purify these pairs, we need a certain numbgrof
copies that we construct in parallel fashidfror keeping
track of the resources, it is conver_lient to arrange th_em in th%naI,F’(FL)>FL, and iterative application of E9) leads
form of an array of elementary pairs as is done in Fig. 11 folhack 10 a fidelity larger than or equal to the initial valiie
L=3 andM =4). We then use these copies on the segmentgach step in the “staircase” of Fig. 12 corresponds to a
AandC,, CandC,, etc., to purify and obtain one pair of gyccessful purification step, and with the help of the total
fidelity =F, on each segment. This last condition determineqmmber of necessary stefis,. needed to recover one can
the (averagg number of copied that we need, which will - caiculate the needed resourddsas described in Sec. 11l A.
depend on the initial fidelity, the degradation of the fidelity once the initial valugE of the fidelity is reobtained, we have
under connections, and the efficiency of the purification proq k pairs and we can start with the next levet 1. In
tocol. The total number of elementary pairs we used Up tQummary, each level in the protocol corresponds to one cycle
this point isLM. On the second level, we connécbf these Fig. 12.
larger pairs at every checkpoid, (k=1,2,...) except at There are two conditions that have to be fulfilled to real-
C2,Cy.2,....Cn-12. As a result, we havéN/L? pairs of  ize a closed loop. First, the fidelity after the connection has
lengthL? betweenA andCyz, C 2 andCy 2, and S0 on, of  {q pe larger than the minimum value for purificatidower
fidelity =F_ . Again, we needV parallel copies of these fixed poin), F|>F . If FL<F i, then repurification is
long pairs to repurify up to a fidelityF, . The total number  jmpossible. Second, the fidelify one starts with and wants
of elementary pairs involved up to this point iENI)?. We  tg reach again has to be smaller than the maximal reachable
iterate the procedure to higher and higher levels, until Weigelity (upper fixed point F<F,. These two conditions
reach thenth level. As a result, we have obtained a final pair determine both a threshold value for the error tolerances of
betweerA andB of lengthN and fidelity=F; . In this way,  the |ocal operations and they limit the valugthe number of
the total numbeR of elementary pairs will bel(M)" (where  pairs which can be connected before purification becomes
M" alone gives the number of required “parallel channels”necessaw Please note that, being polynomial in the
in Fig. 11). We can reexpress this result in the form lower curve gets steeper and steeper rfearl for higher
and higher values of. From this one can see that, for a

FIG. 12. “Purification loop” for connecting and purifying EPR
pairs. The parameters ake=3, n=p;=1, andp,=0.97. The(up-
pen purification curve corresponds to schemAe Eq. (9). The
(lower) connection curve is described by E§9) with N=3.

R=NloaL M+1 (20) R . . .
given initial fidelity F, there is a maximum number of pairs
one can connect before repurification becomes impossible.

which shows that the resources grgwlynomiallywith the The threshold value for the nested purification scheme,
distanceN. i.e., the repeater, is tighter than the threshold for simple pu-

The central feature of this nested purification protocol isrification on a single segment. Consider, as an example, the
the two-step process connection-purification on each nestingjtuation in Fig. 12. The chosen valpg=0.97 of the error
level. This purification loop is visualized in Fig. 12. The parametefwith »=1) lies above the purification threshold
curves shown in this figure are described by the form(8as of 0.95 that we have found after E@.2). On the other hand,
for purification(upper curvg and(19) for connection(lower  for p,=0.95, the purification interval in Fig. 12 would
curve, withN replaced byL), respectively. Let us consider a shrink essentially to a point &,,,=F.=0.75. Clearly, in
given nesting levek, where we havé\/L¥~* pairs of fidel-  this situation no loop can be realized; even if we start ini-
ity F each. Starting fronf, the fidelity F| after connecting tially at F=0.75, the purification “interval” is left after the
L pairs can be read off from the curve below the diagonalfirst connection process and the fidelity would subsequently
Reflecting this value back to the diagonal line, as indicatedconverge towards the trivial fixed poift=0.25.
by the arrows in Fig. 12, sets the starting value for the puri- When we employ the protocols or B in the purification
fication curve. If F|_ lies within the purification interval part of the nested scheme, we find error thresholds that are
(Fmin.Fmax, then the purification curve lies above the diag-typically in the percent region. For schei@e the situation is
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similar, as long aswe do not use depolarization after each 100
purification step(i.e., keep all involved pairs during the pu- 90|
rification process in the Werner foymf we do use depolar- 30|

ization, thus realizing a modified version of proto#gl the
loop cannot be closed. In other words, for Werner states, the
fidelity that is lost by the connection process can never be M 60 -

70+

regained by purification with this scheme. For this to be true, 50+
the repurification conditiorF,,,(F (F))=F must be ful- 40
filled, where the upper fixed poiri,, iS a function of the 30!
fidelity of the auxiliaryL pair. It can be shown analytically "

that this is not possible for schent with Werner states.

This underlines the fact that the purification schethis not 10 ¥J

a trivial variant of either of the schemésandB. 0% 05 o5 393 )
Note that both connection and purification are not smooth ’ ) F ’

processes. This means that one can only perform whole steps

and not parts of a step. Due to this fact, one will not get an FIG. 13. Resourceb! for purification versus working fidelitf

exactly closed purification loop, in general, but the final fi- for schemeA (upper curvgand schem® (lower curve. The errors

delity after the purification(this is the value at which the of all operations are 0.5%, arig=2.

ladder in Fig. 12 endamay be slightly larger than the initial

fidelity; second, the final fidelity may be different at eachfidelities F, due to the polynomial law for the connection,
nesting level, but it is always larger than or equal to thethe fidelity decreases strongly. Second, purification becomes

fidelity of the elementary pairs. less effective near the lower fixed poiRt,, (the gain per
purification step gets smalleror both reasons, many puri-
B. Physical resources fication steps are needed to recover and thus the needed re-

sources are large. For working fidelitiesclose to the maxi-

The length of a segment is limited by the transmission = ) :
errors, and the number of segmehtsne splits up the total M2l reachable fidelityupper fixed poinf ), one does not
|Iose much due to the connection, but purification is less

channel should be varied in order to find out the optima . ) e )
fective—the gain per purification step is smaller. There-

configuration. The quantum repeater can be characterized . . .
nipre, the number of necessary steps is again quite large and

two quantities, which depend on the used connection a ; :
so are the needed resources. In between there exists a region

purification protocol: (i) The total physical resources per g ) X
segmentneeded to build up the EPR pair—this gives theWhich is optimal in the sense that the needed resources are
minimized. Here a working fidelitf=~0.95 turns out to be

number of necessary “parallel channels” between two''™".
optimal for the chosen error parameters.

checkpointsgii) the total time which is needed to build up . o
the EPR pair. The way to calculate these quantities is simi- 1€ error dependence of the resources is shown in Fig.
lar for schemesA and B, while the properties of schen@ 14. For smaller error probabilitiedarger error parameters
are totally different. two things happen: the optimal working fidelity gets larger

and the needed resourckk decrease. For imperfect local
operations, the needed resources increase to infinity if one
really wants to reach the maximal achievable fidehty.y,

The number of physical resourcgeer segmenf Rsegmers 0Ny for perfect operations arfé=1 this is not true because
is given by the number of required connection lines betweemne starts with perfect pairs and does not lose due to connec-
two checkpoints. At the end pointat A andB), ReegmendS  tion. Therefore no purification is necessary avie- 1.
also equal to the number of particles to be stored, while at Using scheme for purification, the situation is different.
each checkpoin€;, the number of particles to be stored is The vertical axis of Fig. 1Awhich corresponds to the re-
2Rsegmemt SiNCe there are connections in both directions.  sourcegis translated into a “temporal axis.” Instead of cre-

For scheme# andB, ReegmendVertical axis in Fig. 11is  ating all needed pairs at the beginning and operating paral-
completely determined by the resourddsneeded for each lelly on ensembles of pairs at each checkp@ast in scheme
purification loop and is given byRsegmer=M", Where n A andB), one creates the pairs needed for purification every
=log, N is the number of nesting levels. The resourbés time one needs one and operates sequentially on the pairs. To
needed for purification can be calculated as described in Seperform the purification process, only two pairs are involved
Il A. Figure 13 shows the resourcé$ needed for a single every time. One is needed to store the purified state and the
purification loop, where it is assumed that=2, i.e., only  other one is repeatedly created to purify the first pair as vi-
two pairs are connected before repurification takes plsice. sualized in Fig. 6. The number gihysical resourcese-
is plotted against a “working fidelity,” which is the fidelity quired for purification is thus only two, but every time the
one starts with before connection and one ends up with aftgpurification is not successful one has to start from the very
repurification. Although the difference between schemes beginning. Using schem& or B one obtains a purified pair
and B does not look very dramatic, note thst has to be afterk,,,, successful purification steps, which is in this case
taken to thenth power to calculate the resources per seg-also the number of actually performed purification steps.
ment, where for long range communicatior-10 (see Sec. Looking at Fig. 2, one sees that a purification step which was
IV E). One can see that there exists an optimal working renot successful eliminates one branch of the tree, but after
gion, which can be understood as follows: For small workingfour steps(in this examplg one ends up with a purified pair.

C. Physical resources per segment
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10 FIG. 16. Additional particles needed at each checkpoint for the

Innsbruck protocol. The number of segmems=24=16, L=2
M pairs are connected at each nesting level, and the number of nesting

levels isn=4.

5 L
therefore logarithmically with the number of segments in
contrast to the polynomially growing resources when using
schemeA or B. The maximal resources per segméntthis

0 . . . ) 1 T

0 0.85 09 0.95 | case particles needed to store the )pa@m be calculated by

F Rsegmen 1+10g. N=1+n. (22)
FIG. 14. ResourceM versus working fidelityF for different

error parameter&chemeB with L=2). The curves from bottom to
top correspond to error probabilities of 0%, 0.25%, 0.5%, 0.75%, D. Temporal resources

and 1%. The center curve correspond to the lower curve in Fig. 13. Here we will discuss the total time needed to create an
EPR pair. This involves at least three parameters, as follows.

In schemeC, on the other hand, one does not follow all (i) The typical timer,, needed to perform local opera-

branches parallel but follows the branches sequentiayl  tions (single qubit, two qubit, and measurements

using always the same elementary pair for each purification (ji) The typical time 7, to create an elementary pair.

step. This limits the number of involved particles, but in- Using optical fibers and the model of the absorption free

creases the required time. _ _ channel(AFC) [26,27, 7,4, can be expressed in terms of the

required number of physical resources for scheingrows
linearly with the number of nesting levels and thus logarith- Toair= Tarc= (5 Top+ 2 Tgjasd €' seamento), (22)
mically with the number of segmentand the distangeThis
is because one additional pair is needed for storage purpose1°,1
at each nesting level. One can understand this by inspectirl\g
Fig. 15. First, three elementary pairs are conneclieg 4)
and used to purify the pair at line 3, which now is the “el-
ementary pair” for the next nesting level. Second, three o
these repurified pairdine 3) are connected and used to pu-
rify the pair at line 2. Since one has to create such a pai
repeatedly and all particles at lines 3 and 4 are involved, it i&
necessary to store the pair to be purifigatre in line 2. ; )
Therefore one needs one additional particle to store the p roadcast the result of the measuremetssis de'Fermm.ed
at each new nesting levésee Fig. 1& This particle is not _ythe length of the segment and the speed of lighnd is
needed in all checkpoints, but only in those which lie on thed!Ven by
bordersof the corresponding nesting levels. That is why the
maximum number of additional particlegphysical re- | segment
sourcegis required at the outermost plad@sandB), while, Tolass~ o (23
e.g., at checkpoint,, no additional particle is needed. The
maximalnumber of additional particleg@hysical resources
grows only linearly with the number of nesting levels and  To simplify the discussion, we will assume that the num-
ber of pairsL which are connected at each nesting level is

————— some power of 2L =2', because in this case the connection
process can be performed in parallel. For each connection
process, three elementary operatig@NOT, measurement,
operation depending on the outcome of the measurement
and classical communication over the distance of one seg-
" ment are needed. For purification, also three elementary op-

~20r erations(e.g., for schemd@ depolarization, bilateral CNOT,

f and bilateral measuremeérdand classical communication of
S0 the result are necessary.

Using schem@é or B, the time needed to performpai-

FIG. 15. The nested purification algorithm using the Innsbruckfification loop (the connection of =2! pairs and repurifica-
protocol. At each nesting level, one additional particle at the bortion, wherek,,,, successful purification steps are necessary
ders of this nesting level is needed to store the pair. at nesting levem is given by

erel is the coherence length of the fiber digyends the

ngth of a segment. This just reflects the fact that for a
single use of the AFC, altogether five operations and two
fclassical communication@n this case the transmission of a
photor) are necessary. The exponential function gives the
pverage number of repetitions which are necessary due to
bsorption losses.

(iii ) The timer,ssneeded for classical communication to

o — O

— O —P O — O

s~

0—00~a¢
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tioop(M) = 3 Top+ f(mM)(2'— 1) Tgjass TABLE I. Resources and time needed for (;reating a distant EPR
pair via optical fibers. See text for more details.
+ kma)J:3Top+ f(m)2| Telasd» (24)
Continental scale Intercontinental scale
where f(m)=(2')™ gives the length dependence of the el-
ementary pair on the nesting level. The first two terms give Resources Time Resources Time
the time required to perform the connection process in par-A  1.58<10°  3.88<1072  9.01x10% 0.298
allel fashion, wheré connections and classical communica- B 329 1.341072 4118 0.103
tion over the distance of (2 1) times the length of an el- C 7 0.77 10 15.69

ementary pair is needed. The purification process involves
Kmax purification steps and for each purification step classical o
communication over the distance dftimes the length of an ~ cation process has to be started from the very beginning
e|ementary pa“(sinceL:Zl pairs were connected bef()re when 0bta|n|ng.a ba.d result. This results in thefaCt that the
One only has to take into account the successful purificatioRerformed purification stepS and the used purification re-
steps, since one runs through the whole purification@see ~ sourcesM (and therefore the required timenight vary from
Fig. 2 in a parallel fashion. To calculate the total time case to case. This formula is sufficient to'calculate the tqtal
needed to perform the nested algorithm, one can use tHéme needed to perform the nested algorithm up to nesting
iteration formula level m and tio(n)=t0p(N) gives the total time needed to
build up an EPR pair betweeh andB.

A rough estimation of the total time can be obtained when
using Egs(15) and(17) to calculate theaveragenumber of

where m corresponds to thenth nesting level and,,(n)  Purification resources and purification stepsS. In this
gives the total time needed for the creation of an EPR paif@se, one can write down a closed expression for the total
betweenA andB. To complete this iteration formula, note time, which is polynomially growing with the number of
that ti(0)=may, Which is just the time needed to create ansegmentN and thus with the distance. Comparing this time

elementary pair at the beginning. The total time if one hagVith the results obtained from a simulation of the whole
N=L" segments antd=2'is thus process, it turns out to be smaller by a factora3. In some

sense, the vertical axigphysical resourcesin Fig. 11 is
translated into a temporal axis.

tiol(M) =t M—1) +tige(M), (29

tie?=n(31 + 3Kmax) Top

E. Comparison of the three schemes

+ Tclasst Tpair- (26)

ol 14k X2|<(2|)n_1>
=

We will give some typical numbers to quantify the prop-
erties of the nested purification protocol if the purification
‘loop is performed with the help of scheme B, or C. Table
| is based on error parameters $% (p;=p,= 7=0.995)
and a working fidelity-=0.96, the fidelity one starts with at
the lowest nesting level and one ends up after each purifica-
tion loop. The length of a segment is assumed to be on the
tioop( M) =[MaXtjpop(Mm—1)} order of the coherence length of an optical fibRgyment

| ~10 km. In this case, the number of segments is propor-
31 7op T F(M) (27— 1) 7erasd M tional to the distance between two Iocationg. If the nunabee of
+S(37opt f(mM)2' 7gasd, (27 segments is on the order bf=2"=128, this will be called
the “Continental scale”(distance of=~1000 km), whileN
where the first term is the time needed to create a pair foe21°=1024 is called the “Intercontinental scalddistance
purification [by building up 2 pairs at nesting levelni  of ~10000 km), since one can create an EPR pair between
—1) and connecting themwhich must be donsequentially  two international cities. It is assumed that the connection is
M times. The second term gives the time needed for purifiperformed in parallel. The columns from left to right have
cation(operations and classical communication over the disthe following meaning: (i) resources:gives thephysical
tance of 2 times the length of an elementary paiwhereS  resources per SegmeRLegmen; (ii) time: gives the total time
purification steps have to be performed. The functi¢m) in seconds needed to create an EPR pair. The number is
=(2"Y™ reflects the length dependence of the elementary pairased on the application of the AFC to create elementary
on the nesting level and the time needed to create an elemepairs (rpq= Tarc= 3.2X 104 s). The coherence length of
tary pair at the lowest nesting level,,=1t,0,(0), which  the fiber is considered to be 10 km, which is also the length
completes this iteration formula. The maximum appearing irof the elementary segment{,.—=0.33x 10" s). All opera-
this expression is taken over all fegments on nesting level tions (single-qubit, two-qubit, measuremgrire considered
(m—1), which is necessary because dllrew elementary to be performed iMop= 107° s. The time is calculated using
pairs have to be built up before the next connection procesa simulation of the nested entanglement purification process,
can start. Therefore one has to wait for the slowest one. Notaveraging over a few hundred runs.
that the time for purification is fixed for schemésand B In Table | one sees that the physical resources needed
(obtaining bad results in this case corresponds to the elimwhen using schem€ are some orders of magnitude smaller,
nation of a branch in Fig.)2while for schemeC the purifi-  while the time needed is larger. For a practical implementa-

The main contribution is given by the classical communica
tion if 74, is not too large and is justo~(2Knaxt 1)N7gass:

Using schemeC for purification, the time needed to per-
form a purification loop on nesting levet is given by
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tion, the achievable bit rates are not very impressive, butvhile the time needed for the creation grows polynomially.
note that all numbers get much better if the local operationdhe central idea is to use a nested purification protocol for
can be performed bettéerror parameters closer t9 4s can  connecting a sequence of EPR pairs at certain “connection
be seen in Fig. 14. points” within the channel, whose roles are reminiscent of

So the reachable fidelity is larger and at the same time thelassical repeaters. Different from the classical situation, the
required resources are smaller when using better local operaencept of the quantum repeater is not a local amplifier, but
tions. Note that the total time needed is on the order of thét involves both the local checkpoints and global purification
time for classical communication over this distance, which igprotocol. Our scheme tolerates errors for local operations and
just tgase= 10 240 km/X 10° km/s=0.034 s. measurements that are in the percent region.
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