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For a weakly attractive inverse-square potentiglx) = —g#2/(2mx?) with 0<g=<1/4, the standard WKB
wave function shows unphysical divergence near the origin. Introducing an appropriate nonvanishing reference
point and a related phase yields WKB wave functions whose deviation from the regular solution of the
Schradinger equation decreases asymptotically akX)f. This is two orders better than the alternative tech-
nigue involving the Langer modification of the potential. The performance of the correspondingly modified
guantization conditions is demonstrated for the bound states of vanishing angular momentum in the two-
dimensional circle billiard and in a two-dimensional Woods-Saxon W8IL050-29479)05402-5

PACS numbsdrs): 03.65.Sq

The accuracy of WKB wave functions has recently beerfunction (2) and the exact wave functiof8) vanishes as
shown to be improved considerably, if the connection formu-1/(kx)® asymptotically, if and only if the reflection phage
las at classical turning points are generalized to allow foiin (2) is chosen a$l]
reflection phases deviating from the val& appropriate in
the short wave limif1-6], and/or for amplitude factors de- _m 7
viating from the conventionally assumed value ufify. For ¢= 2 Ty VA= y)m.

a particle(massm, energyE) in an inverse-square potential,
This is two orders better than is achieved in the conventional

4

72y approacH8-10], where the reflection phase is taken7a
V(x)= sl X 0, (1) and the WKB wave functions are calculated with the Langer-
modified potential,
with y=0, the classical momentump(x) = v2m[E—V(x)] h2 h? y+1/4
vanishes at the classical turning poir{ given by kx; Vi) =VX)+gs =57 ()
=y (k=\2mFE/#), and the WKB wave function on the
classically allowed side of the turning point is Generalizations of the formulé4) have been successfully
used to derive analytic expressions for the phase shifts in
1 1 (x & scattering by singular potentiaJ&] and to improve the ac-
Pwke(X)* —CO{ = p(x)dx'— —) . (20 curacy obtained in WKB quantization in molecular potentials
Vp(x) ) 2 [4].

_ o _ _ The conditiony=0 restricts the applicability of Ed4) to
The exact regular solution of the Schimger equation with  repulsive(or vanishing inverse-square potentials. Attractive

the potential(1) is inverse-square potentials can be generated, e.g., by the cou-
pling of angular momentum and a monopole-dipole interac-
Prex(X) 2 kX, (KX) tion, as for an electron or positron in the field of an excited
hydrogen atonf11-13. For y<— 1/4, the potentia(l) sup-
~(1— 7(7’_2))(:05{ Kx— VZ_Z) ports an infinite number of bound states whose energies ac-
8(kx)? 2 4 cumulate at-« and at zerq14], and the Schmdinger equa-

tion only makes sense if the potential is modified at short
G distances. However, for weakly attractive potentiais}/4

< <0, the Schrdinger equation has no bound states, its

regular positive energy solutions can still be written(3s
whereJ, is the Bessel function of order=y+1/4. The and the ordew=+/y+1/4 remains real and non-negative in
difference between the appropriately normalized WKB wavethis range. The Langer modificatidf) can be applied in this

+0

ar ar
- Lsin( kKx—v—=——

2kXx 2 4 (kx)g
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case, but the more successful approach based on the reflgmtential(5), where only the leading asymptotic terms agree
tion phase(4) cannot. In this Brief Report we close this gap and the error is proportonal to k).
by presenting a simple correction of WKB wave functions  Our recipe for improving the WKB wave function in the
for weakly attractive inverse-square potentialsl/4<y  presence of a weakly attractive inverse-square potential con-
< 0. The correction leads to the same improved accuracy asins the reference point; as a free parameter. The WKB
the use of the appropriate reflection ph&$edoes for repul-  wave function beyondc; does not depend on the choice of
sive inverse-square potentials. X, as long as Eq(8) is fulfilled. In a potential consisting of
Straightforward application of the WKB method for a a sum of a weakly attractive inverse-square potential and a
weakly attractive inverse-square potentfalithout Langer further potential behaving smoothly near the origin, the
modification) is impossible near the origin—0, because choice of x; will not significantly affect the WKB wave
p(x)~1/x and the integralsp(x’) dx’ diverges. This prob- function, as long as it is chosen in a region where the full
lem does not occur when using the Langer modified potentigbotential in the Schidinger equation is essentially given by
(5), and, except for=0, the WKB wave function then ac- the inverse-square potential. If we choogeo correspond to
tually has the right behaviorx”" 2 near the origin. This a given finite value of the paramete«7), then the phas¢s)
fact is not very significant, however, because the Langefloes not depend on energy. In the limit of vanishing strength
modified potential has a wrong classical turning poiptat  of the inverse-square potential— 0, the reference point;
kx_= \'y+1/4, and the WKB wave function becomes singu- tends to zero for finite and the reflection pha¢8) becomes

lar atx, . m, as for theswave radial Schrdinger equation in three
The WKB wave function(2) can be formulated consis- dimensions.
tently for a weakly attractive potentialwithout Langer In order to demonstrate the usefulness of the current pre-

modification), if we choose the point of referenog to be  scription, we study the energies of the bound states of the
not the origin but a(smal) positive number. The leading radial Schrdinger equation of the two-dimensional circle

asymptotic behavior of the WKB wave functid) then is billiard and a two-dimensional Woods-Saxon well for van-
ishing angular momentum. For two-dimensioflane sys-

g(g+2) b1 tems the radial Schdinger equation contains a centrifugal
Pwie(X)~| 1= gz |coq kx—cim 5 potential[15],
g . ¢1 #2 M2q mon 114
+ ms”]( kx— C1— 7) +0 W) , (6) V(mang monA(X) = ﬁ %, (9)
X

where we have writtery for the positive number-+y and 1. )
labeled the phase with the subscript “1” to indicate that WN€r€ Mang moni=0,=1,%£2. .. is the quantum number of
its choice will depend on the choice 8f. The constanc, (1€ angular momentum component perpendicular to the

in (6) comes from the lower limit of integration and is given Plan€. For vanishing angular momentum, the poterigal
by has the form(1) with y=—1/4, which corresponds to the

maximum strength in our range of weakly attractive poten-

tials. Berry and Ozorio de Almeid@l5] pointed out the
, problems associated with the WKB treatment of the two-

dimensional radial Schdinger equation for vanishing angu-

(7) lar momentum, and they studied an alternative approach

based on the method of comparison equations. In an appli-
cation to bound states in a logarithmic potential, they man-
aged to reduce the error in the WKB approach based on the
Langer modification by a factor of 12 to 30. Our present
treatment is as simple as the conventional WKB treatment,
and the quantization condition j&]

c,= @[ \/1+ é—ln(\/1+a+ Ja)

a9 |yl
(KXq (kxq)<

The asymptotic behavior of the WKB wave functidf)
agrees with that of the exact wave functi@) up to and
including terms of order 1Kx)?, if the constant phase;
+¢@4/2 in (6) is identical to the corresponding phase
v(w/2)+ wl4 appearing in the exact wave functi@®). The

correct phasep, to be inserted in the WKB wave function J'pr(X) dx= ( n+ ® wh, (10)
(6) is thus, for a given choice of the reference point X1 4
T 1 where
$r1=5+7\7-0
2 4
1t (1)
K=

+2g . (8)

1
In(vV1+a+ya)—\/1+ 2
is the, not necessarily integral, Maslov index accounting for

The difference between the appropriately normalized WKBthe phase losgb, of the WKB wave function at the outer
wave function(2) and the exact wave functio8) vanishes turning pointx, and the phasep, from the inner point of
as 1/kx)® asymptotically, as long as reference poiptand  referencex; .

phaseg, fulfill the relation(8). This is two orders better than For the two-dimensional circle billiard, the outer turning
the WKB wave function constructed via the Langer-modifiedpoint is at its radiusR and the wave function is required to
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TABLE |. Wave numbersk, of the eigenstates of the two-
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dimensional circle billiard of radiuR=1 for vanishing angular
momentum. The “conventional” values are obtained via the quan-The parameters were chosen dg=1,b=0.5R=30. The

tization condition(12) based on the Langer modification of the “present” values are obtained via WKB quantization in the poten-
potential; the “present” values are obtained via WKB quantizationtial (15 according to Eq.(10); x; is given by Eq.(18), ¢,

in the (attractive centrifugal potential according to E@l4); the
“exact” values are the exact quantum-mechanical eigenvalues coby Eq.(16). The “conventional” values are obtained via the WKB
responding to the zeros of the Bessel functig(kR).
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TABLE II. Energies E,,/V, of the eigenstates of the two-
dimensional Woods-Saxon well for vanishing angular momentum.

=m/2 X, is the outer turning point in the potential, agd is given

guantization in the Langer-modified potential in which the inverse-
square contribution vanisheg; =0, and ¢,=m/2. The “exact”

n Conventional Present Exact values are the exact quantum-mechanical eigenvalues in the poten-
0 2356194490 2407922305 2404825558
1 5.497787144 5.520414929 5.520078110 n Conventional Present Exact
2 8.639379797 8.653820273  8.653727913
3 11.78097245 1179157166  11.79153444 O —0.9965786  —0.9937022  —0.993739
4 1492256510 14.93093620  14.93091771 L —0.9715200  ~0.9670365  —0.967054
5 18.06415776 ~  18.07107445 1807106397 2 —09236975  ~09192126  ~0.919224
6 2120575041 2121164313 2121163663  ° —08540595  ~0.8505310  ~0.850539
7 2434734307 24.35247584 2435247153 % —0.7633378  ~07614254  —0.761432
8 27.48893572 2749348213 27.49347913  ° —0.6522609  ~0.6524848  —0.652490
6 ~05217072  —05245293  —0.524534
7 ~0.3729500  —0.3788203  —0.378825
have a node dR, so ¢,= 7. The Langer-modified potential 8 —0.2084060 —0.2177515 —0.217756
vanishes in this case, so the conventional WKB quantization 9 —0.0365539 —0.0490030 —0.049006

condition is simply

3 As a less trivial example we now study a two-dimensional
kR={n+ 7. (12 woods-Saxon well for angular momentum zero. The total
potential in the radial Schdinger equation is
With our present recipe, the action integral on the left-hand 9 Vv
side of Eq.(10) is evaluated with the true potentidl(x) = VOL(x) = — 0 x>0.
—#2/(8mx?) and a nonvanishing inner point of reference ws 8mx  1+exd(x—R)/b] ’
X,, and the quantization conditiq0) and(11) contains the (15

nontrivial phasep,. The quantization condition now reads,

The phase loss for reflection by a pure Woods-Saxon poten-
tial is known analytically and is giveffor —Vy<E<0) by

1 (R
= () dx [1]
X1
$—2 I'(—2ikb)
1 1 1 = argi, — —
=/ R Rl | _ (kb—ikb)I'(1+ kb—ikb)
2 1+ (2kR) |n<2kR+ 1+ W) Cq , )
u b+ +2kb/2In2—In 1+% —ZEarctan;. (16)
= n+Z LI ey (13

With ¢, given by(7) and ¢, by (8) we now (@= —1/4) have
¢,=(m/2)—2c,, so the quantization conditiqi3) reduces

Herek corresponds to the asymptotig-{ — o) wave num-
ber on the classically allowed side of the pure Woods-Saxon
potential (without centrifugal termand « is the asymptotic

to (x— + ) value of the decay parameter on the classically
forbidden side,
! V1+(2kR)?—| ! \/1 L l- > VA
E +( )“—1In TR'F +(2kR)2 = n+Z . i 1_@ e E - 2mV,
(14) ONATY, TNy TR

1
The resulting wave numbels, of the radial eigenfunctions ol
are listed in Table | foR=1 and quantum numbers up to  The energy eigenvalues are obtained via the quantization
n=8. Comparison with the exact quantum-mechanical recondition (10). As a natural choice for the inner reference
sults, which are simply the zeros of the Bessel functionpointx;, we take that for which the expression in the lower
Jo(kR), shows that the present quantization r(ld) leads line of Eq. (8) vanishes. This is achieved foa
to far more accurate values than the conventional quantiza=2.2767175312. .. implying
tion rule (12); the error is reduced by a factor which is about
16 for n=0, about 70 fom=1, and more than fofor n  kx;=0.66274341938...x]y|=0.33137170965. .. .
=7, (18
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The corresponding phag8) is then simply phase at the outer turning point and of the inner reference
point and phase. Correcting for the reflection phase at the
& ZZJMT /E_| | (19 outer turning point alone already reduces the error in the

172 g 7 energiesE,/V, to values between 210 # and 3x 10 4;

introducing the nonvanishing inner point of reference with

In the present exampley=—1/4, this corresponds @, he gssociated phase further reduces the error to the values
= 7/2 as in the conventional WKB treatment, but in the CON-patveen X 10°5 and 3x 106 in Table 1.

ventional treatment the WKB wave function is calculated via
the Langer-modified potentidin which the inverse-square
contribution now vanishes, E¢5)], and the reference point
is x;=0. In our treatment, the potential is left intact and the
reference poink; is given by Eq(18). The upper limitx, of
the action integral in Eq10) is the outer turning point in the

SummaryWeakly attractive inverse square potentials can
be accurately treated within the WKB approximation by in-
troducing a nonvanishing point of referencgnear the ori-
gin in conjunction with a phase dependingonvia Eq.(8).

The accuracy achieved in this way is comparable to that
potential(15), ande¢, is taken to be the phase logs) of the obtaingd in repulsive inv_er.se—square potentials v_ia the correct
pure Woods-Saxon potential. reflection phasd4), an_d it is better than conventional treat-

Table Il shows the energy eigenvalues obtained in thignents by two orders in k). For the bound states of van-
way for the following values of the potential parameters:ishing angular momentum in the two-dimensional circle bil-
ko=1,b=0.5,R=230. The results are compared with the ex-liard and in a two-dimensional Woods-Saxon well, we have
act eigenvalues and with the results of the conventionaflemonstrated that the accuracy obtained in conventional
WKB treatment, based or, =0, ¢,= /2 and the Langer- WKB quantization can be improved by orders of magnitude
modified potential, in which the inverse-square contributionwhen the quantization rule is modified by incorporating an
vanishes. The error in the present results is smaller than theppropriate point of reference and the correct phases.
error in the conventional treatment by a factor which varies Note added in proof Eigenvalues of the two-
from 100 for the ground state to 4000 for the least bounddimensional circle billiard have recently been calculated by
state,n=9. The present results are essentially independent diarmonic inversion of the expansion of the periodic orbit
the choice of the inner reference poiqt, as long as it does signal[16]. The present results in Table I, obtained via im-
not substantially exceed the value given by Etg). It is  proved WKB quantizatiofl4), are systemically closer to the
worth mentioning, that the excellent results displayed inexacta eigenvalues than the eigenvalues obt&fioedanish-
Table Il depend on the correct choice both of the reflectioring angular momentujrin Ref.[16].
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