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For a weakly attractive inverse-square potential,V(x)52g\2/(2mx2) with 0,g<1/4, the standard WKB
wave function shows unphysical divergence near the origin. Introducing an appropriate nonvanishing reference
point and a related phase yields WKB wave functions whose deviation from the regular solution of the
Schrödinger equation decreases asymptotically as 1/(kx)3. This is two orders better than the alternative tech-
nique involving the Langer modification of the potential. The performance of the correspondingly modified
quantization conditions is demonstrated for the bound states of vanishing angular momentum in the two-
dimensional circle billiard and in a two-dimensional Woods-Saxon well.@S1050-2947~99!05402-5#
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The accuracy of WKB wave functions has recently be
shown to be improved considerably, if the connection form
las at classical turning points are generalized to allow
reflection phases deviating from the valuep/2 appropriate in
the short wave limit@1–6#, and/or for amplitude factors de
viating from the conventionally assumed value unity@7#. For
a particle~massm, energyE) in an inverse-square potentia

V~x!5
\2

2m

g

x2 , x.0, ~1!

with g>0, the classical momentump(x)5A2m@E2V(x)#
vanishes at the classical turning pointx1 given by kx1

5Ag (k5A2mE/\), and the WKB wave function on the
classically allowed side of the turning point is

cWKB~x!}
1

Ap~x!
cosS 1

\Ex1

x

p~x8! dx82
f

2 D . ~2!

The exact regular solution of the Schro¨dinger equation with
the potential~1! is

cex~x!}AkxJn~kx!

;S 12
g~g22!

8~kx!2 D cosS kx2n
p

2
2

p

4 D
2

g

2kx
sinS kx2n

p

2
2

p

4 D1OS 1

~kx!3D , ~3!

whereJn is the Bessel function of ordern5Ag11/4. The
difference between the appropriately normalized WKB wa
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function ~2! and the exact wave function~3! vanishes as
1/(kx)3 asymptotically, if and only if the reflection phasef
in ~2! is chosen as@1#

f5
p

2
1~Ag11/42Ag!p. ~4!

This is two orders better than is achieved in the conventio
approach@8–10#, where the reflection phase is taken asp/2
and the WKB wave functions are calculated with the Lang
modified potential,

VL~x!5V~x!1
\2

8mx2 5
\2

2m

g11/4

x2 . ~5!

Generalizations of the formula~4! have been successfull
used to derive analytic expressions for the phase shift
scattering by singular potentials@2# and to improve the ac-
curacy obtained in WKB quantization in molecular potentia
@4#.

The conditiong>0 restricts the applicability of Eq.~4! to
repulsive~or vanishing! inverse-square potentials. Attractiv
inverse-square potentials can be generated, e.g., by the
pling of angular momentum and a monopole-dipole inter
tion, as for an electron or positron in the field of an excit
hydrogen atom@11–13#. For g,21/4, the potential~1! sup-
ports an infinite number of bound states whose energies
cumulate at2` and at zero@14#, and the Schro¨dinger equa-
tion only makes sense if the potential is modified at sh
distances. However, for weakly attractive potentials,21/4
<g,0, the Schro¨dinger equation has no bound states,
regular positive energy solutions can still be written as~3!,
and the ordern5Ag11/4 remains real and non-negative
this range. The Langer modification~5! can be applied in this
1683 ©1999 The American Physical Society
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case, but the more successful approach based on the re
tion phase~4! cannot. In this Brief Report we close this ga
by presenting a simple correction of WKB wave functio
for weakly attractive inverse-square potentials,21/4<g
,0. The correction leads to the same improved accurac
the use of the appropriate reflection phase~4! does for repul-
sive inverse-square potentials.

Straightforward application of the WKB method for
weakly attractive inverse-square potential~without Langer
modification! is impossible near the originx→0, because
p(x);1/x and the integral*0

xp(x8) dx8 diverges. This prob-
lem does not occur when using the Langer modified poten
~5!, and, except forn50, the WKB wave function then ac
tually has the right behavior}xn11/2 near the origin. This
fact is not very significant, however, because the Lan
modified potential has a wrong classical turning pointxL at
kxL5Ag11/4, and the WKB wave function becomes sing
lar at xL .

The WKB wave function~2! can be formulated consis
tently for a weakly attractive potential~without Langer
modification!, if we choose the point of referencex1 to be
not the origin but a~small! positive number. The leading
asymptotic behavior of the WKB wave function~2! then is

cWKB~x!;S 12
g~g12!

8~kx!2 D cosS kx2c12
f1

2 D
1

g

2kx
sinS kx2c12

f1

2 D1OS 1

~kx!3D , ~6!

where we have writteng for the positive number2g and
labeled the phasef with the subscript ‘‘1’’ to indicate that
its choice will depend on the choice ofx1 . The constantc1
in ~6! comes from the lower limit of integration and is give
by

c15AgFA11
1

a
2 ln~A11a1Aa!G ,

~7!

a5
g

~kx1!2 5
ugu

~kx1!2 .

The asymptotic behavior of the WKB wave function~6!
agrees with that of the exact wave function~3! up to and
including terms of order 1/(kx)2, if the constant phasec1
1f1/2 in ~6! is identical to the corresponding pha
n(p/2)1p/4 appearing in the exact wave function~3!. The
correct phasef1 to be inserted in the WKB wave functio
~6! is thus, for a given choice of the reference pointx1 ,

f15
p

2
1pA1

4
2g

12AgF ln~A11a1Aa!2A11
1

aG . ~8!

The difference between the appropriately normalized W
wave function~2! and the exact wave function~3! vanishes
as 1/(kx)3 asymptotically, as long as reference pointx1 and
phasef1 fulfill the relation~8!. This is two orders better tha
the WKB wave function constructed via the Langer-modifi
ec-

as

al

r

-

potential~5!, where only the leading asymptotic terms agr
and the error is proportonal to 1/(kx).

Our recipe for improving the WKB wave function in th
presence of a weakly attractive inverse-square potential c
tains the reference pointx1 as a free parameter. The WKB
wave function beyondx1 does not depend on the choice
x1 as long as Eq.~8! is fulfilled. In a potential consisting of
a sum of a weakly attractive inverse-square potential an
further potential behaving smoothly near the origin, t
choice of x1 will not significantly affect the WKB wave
function, as long as it is chosen in a region where the
potential in the Schro¨dinger equation is essentially given b
the inverse-square potential. If we choosex1 to correspond to
a given finite value of the parametera ~7!, then the phase~8!
does not depend on energy. In the limit of vanishing stren
of the inverse-square potential,g→0, the reference pointx1
tends to zero for finitea and the reflection phase~8! becomes
p, as for thes-wave radial Schro¨dinger equation in three
dimensions.

In order to demonstrate the usefulness of the current
scription, we study the energies of the bound states of
radial Schro¨dinger equation of the two-dimensional circ
billiard and a two-dimensional Woods-Saxon well for va
ishing angular momentum. For two-dimensional~plane! sys-
tems the radial Schro¨dinger equation contains a centrifug
potential@15#,

V~mang mom!~x!5
\2

2m

mang mom
2 21/4

x2
, ~9!

where mang mom50,61,62 . . . is the quantum number o
the angular momentum component perpendicular to
plane. For vanishing angular momentum, the potential~9!
has the form~1! with g521/4, which corresponds to th
maximum strength in our range of weakly attractive pote
tials. Berry and Ozorio de Almeida@15# pointed out the
problems associated with the WKB treatment of the tw
dimensional radial Schro¨dinger equation for vanishing angu
lar momentum, and they studied an alternative appro
based on the method of comparison equations. In an ap
cation to bound states in a logarithmic potential, they m
aged to reduce the error in the WKB approach based on
Langer modification by a factor of 12 to 30. Our prese
treatment is as simple as the conventional WKB treatme
and the quantization condition is@1#

E
x1

x2
p~x! dx5S n1

m

4 Dp\, ~10!

where

m5
f11f2

p/2
~11!

is the, not necessarily integral, Maslov index accounting
the phase lossf2 of the WKB wave function at the oute
turning pointx2 and the phasef1 from the inner point of
referencex1 .

For the two-dimensional circle billiard, the outer turnin
point is at its radiusR and the wave function is required t
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have a node atR, sof25p. The Langer-modified potentia
vanishes in this case, so the conventional WKB quantiza
condition is simply

kR5S n1
3

4Dp. ~12!

With our present recipe, the action integral on the left-ha
side of Eq.~10! is evaluated with the true potential,V(x)5
2\2/(8mx2) and a nonvanishing inner point of referen
x1 , and the quantization condition~10! and~11! contains the
nontrivial phasef1 . The quantization condition now reads

1

\Ex1

R

p~x! dx

[
1

2FA11~2kR!22 lnS 1

2kR
1A11

1

~2kR!2D G2c1

5S n1
m

4 Dp, m5
f11p

p/2
. ~13!

With c1 given by~7! andf1 by ~8! we now (g521/4) have
f15(p/2)22c1 , so the quantization condition~13! reduces
to

1

2FA11~2kR!22 lnS 1

2kR
1A11

1

~2kR!2D G5S n1
3

4Dp.

~14!

The resulting wave numberskn of the radial eigenfunctions
are listed in Table I forR51 and quantum numbers up t
n58. Comparison with the exact quantum-mechanical
sults, which are simply the zeros of the Bessel funct
J0(kR), shows that the present quantization rule~14! leads
to far more accurate values than the conventional quan
tion rule ~12!; the error is reduced by a factor which is abo
16 for n50, about 70 forn51, and more than 103 for n
>7.

TABLE I. Wave numberskn of the eigenstates of the two
dimensional circle billiard of radiusR51 for vanishing angular
momentum. The ‘‘conventional’’ values are obtained via the qu
tization condition ~12! based on the Langer modification of th
potential; the ‘‘present’’ values are obtained via WKB quantizati
in the ~attractive! centrifugal potential according to Eq.~14!; the
‘‘exact’’ values are the exact quantum-mechanical eigenvalues
responding to the zeros of the Bessel functionJ0(kR).

n Conventional Present Exact

0 2.356194490 2.407922305 2.404825558
1 5.497787144 5.520414929 5.520078110
2 8.639379797 8.653820273 8.653727913
3 11.78097245 11.79157166 11.79153444
4 14.92256510 14.93093620 14.93091771
5 18.06415776 18.07107445 18.07106397
6 21.20575041 21.21164313 21.21163663
7 24.34734307 24.35247584 24.35247153
8 27.48893572 27.49348213 27.49347913
n

d

-
n

a-
t

As a less trivial example we now study a two-dimension
Woods-Saxon well for angular momentum zero. The to
potential in the radial Schro¨dinger equation is

VWS
~0! ~x!52

\2

8mx22
V0

11exp@~x2R!/b#
, x.0.

~15!

The phase loss for reflection by a pure Woods-Saxon po
tial is known analytically and is given~for 2V0,E,0) by
@1#

f52 arg
G~22ikb!

G~kb2 ikb!G~11kb2 ikb!

12kbF2 ln 22 lnS 11
k2

k2 D22
k

k
arctan

k

kG . ~16!

Herek corresponds to the asymptotic (x→2`) wave num-
ber on the classically allowed side of the pure Woods-Sa
potential~without centrifugal term! andk is the asymptotic
(x→1`) value of the decay parameter on the classica
forbidden side,

k5k0A12
uEu
V0

, k5k0AuEu
V0

, k05
A2mV0

\
.

~17!

The energy eigenvalues are obtained via the quantiza
condition ~10!. As a natural choice for the inner referenc
point x1 , we take that for which the expression in the low
line of Eq. ~8! vanishes. This is achieved fora
52.276 717 531 22 . . . implying

kx150.662 743 419 35 . . .3Augu50.331 371 709 675 . . . .
~18!

TABLE II. Energies En /V0 of the eigenstates of the two
dimensional Woods-Saxon well for vanishing angular momentu
The parameters were chosen ask051,b50.5,R530. The
‘‘present’’ values are obtained via WKB quantization in the pote
tial ~15! according to Eq.~10!; x1 is given by Eq. ~18!, f1

5p/2,x2 is the outer turning point in the potential, andf2 is given
by Eq. ~16!. The ‘‘conventional’’ values are obtained via the WK
quantization in the Langer-modified potential in which the inver
square contribution vanishes,x150, and f25p/2. The ‘‘exact’’
values are the exact quantum-mechanical eigenvalues in the p
tial ~15!.

n Conventional Present Exact

0 20.9965786 20.9937022 20.993739
1 20.9715200 20.9670365 20.967054
2 20.9236975 20.9192126 20.919224
3 20.8540595 20.8505310 20.850539
4 20.7633378 20.7614254 20.761432
5 20.6522609 20.6524848 20.652490
6 20.5217072 20.5245293 20.524534
7 20.3729500 20.3788203 20.378825
8 20.2084060 20.2177515 20.217756
9 20.0365539 20.0490030 20.049006

-

r-
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The corresponding phase~8! is then simply

f15
p

2
1pA1

4
2ugu. ~19!

In the present example,g521/4, this corresponds tof1
5p/2 as in the conventional WKB treatment, but in the co
ventional treatment the WKB wave function is calculated
the Langer-modified potential@in which the inverse-squar
contribution now vanishes, Eq.~5!#, and the reference poin
is x150. In our treatment, the potential is left intact and t
reference pointx1 is given by Eq.~18!. The upper limitx2 of
the action integral in Eq.~10! is the outer turning point in the
potential~15!, andf2 is taken to be the phase loss~16! of the
pure Woods-Saxon potential.

Table II shows the energy eigenvalues obtained in
way for the following values of the potential paramete
k051,b50.5,R530. The results are compared with the e
act eigenvalues and with the results of the conventio
WKB treatment, based onx150,f25p/2 and the Langer-
modified potential, in which the inverse-square contribut
vanishes. The error in the present results is smaller than
error in the conventional treatment by a factor which var
from 100 for the ground state to 4000 for the least bou
state,n59. The present results are essentially independen
the choice of the inner reference pointx1 , as long as it does
not substantially exceed the value given by Eq.~18!. It is
worth mentioning, that the excellent results displayed
Table II depend on the correct choice both of the reflect
C

ys

s

-

-

is
:
-
al

n
he
s
d
of

n
n

phase at the outer turning point and of the inner refere
point and phase. Correcting for the reflection phase at
outer turning point alone already reduces the error in
energiesEn /V0 to values between 231024 and 331024;
introducing the nonvanishing inner point of reference w
the associated phase further reduces the error to the va
between 331025 and 331026 in Table II.

Summary.Weakly attractive inverse square potentials c
be accurately treated within the WKB approximation by i
troducing a nonvanishing point of referencex1 near the ori-
gin in conjunction with a phase depending onx1 via Eq.~8!.
The accuracy achieved in this way is comparable to t
obtained in repulsive inverse-square potentials via the cor
reflection phase~4!, and it is better than conventional trea
ments by two orders in 1/(kx). For the bound states of van
ishing angular momentum in the two-dimensional circle b
liard and in a two-dimensional Woods-Saxon well, we ha
demonstrated that the accuracy obtained in conventio
WKB quantization can be improved by orders of magnitu
when the quantization rule is modified by incorporating
appropriate point of reference and the correct phases.

Note added in proof: Eigenvalues of the two-
dimensional circle billiard have recently been calculated
harmonic inversion of the expansion of the periodic orb
signal @16#. The present results in Table I, obtained via im
proved WKB quantization~14!, are systemically closer to th
exacta eigenvalues than the eigenvalues obtained~for vanish-
ing angular momentum! in Ref. @16#.
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