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Quantum theory of a thresholdless laser
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We develop a quantum theory of a single-mode thresholdless laser. We start from basic Heisenberg—
Langevin equations of mation for the field and atomic operators, and obtain an approximate analytical solution
to these operator equations. We compare the predictions of this model for the intensity and power spectrum of
the field to the results of a Monte Carlo numerical simulation of the original Heisenberg-Langevin equations,
and find them in excellent agreement. We also compare these predictions to those of a rate-equation model,
which takes into account spontaneous emission. We show that our model gives more reliable results in the bad
cavity limit at high intensities. Based upon these results, we propose a simple characterization of the thresh-
oldless behavior. Finally, we apply our model to microsphere Nd-doped lasers at low temperatures, which are
promising devices for a well-controlled thresholdless operafi®050-294{@9)10502-X]

PACS numbd(s): 42.55.Ah, 42.55.Sa, 32.86t

I. INTRODUCTION great attention in the last few years. The threshold of
VCSEL's is very low due to two factorgi) the large value
Lasers with small active medium volumes, on the order ofof the field-medium coupling constant, because of the small
hundreds of,u,mS, and very low pump energy, oscillating cavity volume and large amplification coefficient; &fid the
with an average number of photons on the order of 1, havéuppression of spontaneous emission outside of the laser
been developed in recent years, motivated by the potenti@node, since only a few well-spaced modes are available in
applications in optical communication and information pro-the cavity[11,12.
cessing. Quantum effects become obviously important in this The theory developed in Ref8-10Q is based on rate
case, and the semiclassical approach fails to offer a prop&quations for the field intensity and carrier den$it@], with
description even of the gross overall features of these dehe addition of terms describing spontaneous emission into
vices. The very notion of oscillation threshold breaks downthe lasing mode and the consequent depletion of the carrier
since the output intensity increases smoothly with the pumgglensity. A new definition for the laser threshold was pro-
energy. These devices are thus called thresholdless lasepgsed in Ref[10], as the situation in which the number of
Central to this behavior is the fact that, with such a lowphotons in the lasing mode is equal to 1. Results for
number of photons, spontaneous emission into the mod¥CSEL's were presented in Refll], as a function of the
plays a very important role. The fraction of spontaneoudraction 8 of spontaneous emission into the laser mode.
emission emitted into the mode has indeed been used, f&mooth transitions through the threshold 1, suppres-
semiconductor lasers, as a measure of the degree of thression of relaxation oscillations and linewidth enhancement in
oldless behavior. the near-to-threshold region were predicted. A semiclassical
Thresholdless laser operation was reported for the firstudy of the laser transition, including a contribution from
time in Ref.[1], for a dye laser with half of the wavelength spontaneous emission into the lasing mode, was presented in
distance between the cavity mirrors. In this experiment, théRef. [14].
threshold pump power was less than the sensitivity limit of The above-mentioned theoretical models hold if the po-
the measurement device. Very low oscillation thresholddarization relaxation ratd’, is larger than the rate of any
have been observed since then in several types of lasers, @her process in the laser. However, even in semiconductor
for example, in vertical cavity surface-emitting semiconduc-lasers wherd', is quite largel’, ~10* Hz [15], the damp-

tor lasers(VCSEL'’s) [2,3], heterostructure diode lasd#], ing ratek of a vertical cavity may be of the same order of
microdroplets[5], high-Q Fabry-Perot microcavity lasers magnitude asl’, . For example, for a cavity length
[6], and microsphere lasefg]. ~1 um and a reflection coefficient of the cavity mirrors

Theories of low-threshold lasef8—10 were developed R=0.9, one hasc~log(R)c/L~10" Hz~I", , wherec is
mostly in connection with VCSEL's, which have attracted the speed of light.
The same may be true for a microsphere laser. In the
experiment reported in Ref7], neodymium ions (19 at-
*Permanent address: Research Institute for Solid State Physié¥ns per cm) are embedded into a silica microsphédeam-
and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525%ter 50 um). The effective volume of the field mode is of

Hungary. the order of 508%~500 um?, so that there are about
fLaboratoire de I'UniversitePierre et Marie Curie et de 'ENS, 3 10° neodymium ions in the mode volume. Measurements
associeau CNRS(URAL1S). [7] were performed at room temperature and, under this con-
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dition, the laser exhibits a well-defined threshold. The pump R
power at threshold was of the order of 200 nW and laser
oscillation was sustained with only 31G@xcited ions at a
time. In the semiclassical Lamb model, perfectly valid in this 1B
case, the threshold depends linearly on the homogeneous q
linewidth of the lasing transition. This linewidth is expected
to decrease with temperature, from 1500 GHz at 300 K to
perhaps as low as 20 MHz at 2 K. The mode linewidth, for a
quality factorQ~2x 10, is in the range 2—10 MHz. Thus, r
at low temperatures, the polarization decay (ateportional
to the inverse of the homogeneous linewjddimd the cavity
decay rate(proportional to the inverse of the mode line- FIG. 1. Relevant level scheme.
width) should become comparable. Furthermore, under the
same conditions, the laser should become thresholdless: dgatic elimination of the atomic polarizatioi3], have al-
cillation may occur with one photon only in the mode, which ready been obtained in a large number of papers. The steady-
precludes using linearization techniques to study the quartate operating point can be obtained without the adiabatic
tum dynamics. A simple model describing the quantum feaelimination, and should be valid even in the bad-cavity limit.
tures of this interesting laser situation is therefore in a highVe will show that the predictions of this rate-equation model
demand. are in perfect agreement with ours in the good-cavity limit.
In this paper, we develop a theoretical model for a threshHowever, the rate-equation model deviates significantly from
oldless atomic laser, starting from Heisenberg-Langevin opthe quantum one and from the standard Lamb theory in the
erator equations and taking into account the polarization dybad-cavity limit at high intensities. This observation casts
namics. We solve the problem both by an approximatesome doubts on the validity of the rate-equation models in
analytical technique and by a numerical procedure whickhis regime.
takes into account the nonlinear quantum dynamics of the The notations used throughout the paper are the same as
field and atomic variables. The analytical approximation isin Ref.[17]. In Sec. II, we describe the model and the basic
based on the fact that, in the systems under consideration, ti#eisenberg-Langevin equations. We establish a very general
number of active atoms is much larger than the number ofind exact relation between the steady-state average values of
photons in the mode, so that the relative fluctuations in théhe population inversion and the intensity. We also introduce
population inversion are much smaller than the relative flucthe solutions of the standard semiclassical Lamb model as
tuations in the number of photons. We use this fact to replactseful scaling parameters. In Sec. Ill, we derive, from
the inversion by ac number. However, we do not neglect Heisenberg-Langevin equations, rate equations for the pho-
quantum correlations between the field amplitude operator®9n number and atomic populations, taking into account
and the atomic polarization; such an approximation shoulgpontaneous emission terms. The approximate analytic quan-
be indeed very bad below and near the threshold, since tHgm model is introduced in Sec. IV. We check that, under
average value of the field amplitude on the time scale oproper conditions, treating the inversion as-aumber does
interest is zero, due to phase diffusipt6]. Our approach, not affect the commutation relations involving the other op-
validated by a good agreement with the numerical resultsgrators. The solutions for the average intensity and the spec-
leads to smooth analytical expressions for the field intensitytrum are then derived. We also obtain the spontaneous emis-
the spectrum, and the linewidth, in regions of parameter§i0n rate into the laser mode. The numerical method is
where the polarization cannot be adiabatically eliminated andeveloped in Sec. V. We discuss the relation between the
where linearization is forbiddefdue to the low values of the results of the different models in Sec. VI, where a precise
average intensity, down to less than one photon in the modecharacterization of the thresholdless behavior, valid beyond
These expressions remain valid for a wide range of paranthe rate-equation limit, is proposed. In this section we dis-
eters, which may include the low-pumping, low-intensity cuss the quantitative predictions of the models using param-
quantum regime as well as the high-pumping semiclassicaters pertaining to the microsphere neodymium lasers at low
limit. The role of the spontaneous emission in the laser cavtemperature. Finally, our conclusions are summarized in Sec.
ity can be examined in detail, since spontaneous emission ¥ll.
well described by our quantum operator equations. We are
the_refpre able.to follow the transition_ from the spontaneous- Il. QUANTUM-MECHANICAL SINGLE-MODE
em|SS|on-dom|nat_ed regime to the situation, .typllcal of stan- LASER MODEL
dard laser operation, in which stimulated emission plays the
dominant role. The notion of threshold and thresholdless op- We describe the active medium by two-level ataisper
eration can be put under a new light, allowing us to define devel a, lower levelb), resonant with a single-cavity mode
simple and physically transparent criterion for the thresholddamped at a rat&. Levelsa andb decay to lower levels,
less operation. with decay constant§', and I',, respectively, as shown in
We will also compare the quantum approach to a simpleFig. 1. The relaxation rat&', is most often much smaller
rate-equation model, derived from the same Heisenberghan I',. When this is not the case, laser oscillation can
Langevin equations by neglecting the quantum correlationbardly be sustained. The atoms are uniformly coupled to the
between the atomic inversion and the photon number flucfield with a coupling constarg, equal to half the Rabi pre-
tuations. Similar rate equations, using most often an adiacession frequency in a single photon field. Inhomogeneous
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broadening and mode competition are neglected. This is ksing levels ag-number constants, given by their zero-field
severe approximation for most solid-state laser systems, suafalues, the so-called unsaturated vall2&. However, none
as neodymium doped microspheres where the emission linef these procedures can be applied to thresholdless lasers. In
width is larger than the mode spacing. However, in manythis paper we will discuss two different approaches and com-
cases, the homogeneous width of the transitibg,, is pare them to the standard semiclassical Lamb m@2i&].
smaller than or comparable to the cavity mode spacing. IWe will first derive rate equations for the quantum averages,
such cases, there is no mode competition, and a given classking into account properly the spontaneous emission in the
of atoms in the inhomogeneously broadened spectrum emitavity mode. We then develop an approximate quantum
only in a single mode of the cavity. The detunings of themodel which leads to analytical operator solutions, allowing
atoms inside the homogeneous linewidth may be accounteas to derive explicit forms for the output intensity and the
for by using an effective atom-field coupling, thus validating power spectrum. The solutions of these models are compared
our model. We assume also that the number of active atomsith numerical results, obtained by a method detailed in Sec.
is large enough so that the pumping process can be consiy-
ered as Poissonian and can be simply described by a pump- Before analyzing these models, we briefly recall the Lamb
ing rateR in the equation of motion for the population of semiclassical model. It will be used, throughout the paper, as
level a [18] (this is consistent with the experimental situa- a source of useful scaling parameters for our solutions. It can
tions regarding heavily doped microspheres which have &e recovered from Ed1) by considering all the operators as
large number of accessible nonexcited ions and a very lownere c-numbers, and suppressing the noise terms. The
number of excited ions at a time steady-state solution can be easily obtained without any fur-
We base our approach on the following Heisenbergther approximation. The oscillation threshold is given by
Langevin equations, written in the interaction picture. They
can be derived from first principles as shown in detail in Ref. «.T
al ab
[17]: Rin= > (4)
29

a(t)=gM(t)— /2 a(t)+F (), 1 L : -
(=gM(t)~ «/2a(t) +F (1) (13 If R<Ry,, the semiclassical steady-state intensity is equal to

zero and the steady-state population inversion is given by
R/T ,. ForR=Ry,, the semiclassical steady-state mean pho-
ton number is given by

M (t) = g[Na(t) = Np(t)Ja(t) =T apM () +F (1), (1b)

Na(t)=R—g[a’()M(t)+ MT(t)a(t)]— T Na(t) + F4(t),

(19 lo=sal RIRp=1), (5)
Nb(t)=g[aT(t)M(t)+MT(t)a(t)]—l“bNb(t)+Fb(t)&ld) where the “saturation intensityTy is
wherea anda' are the boson operators of the field mohfe, | = Fal'apl's  Run 1 ®)
sat—

is the collective atomic polarization, aidl, andN, are the
populations in levelsa and b, respectively. The noise fea-

tures are incorporated into tHe reservoir operators. They Apove threshold, the population inversion is independent of

29T, +T,) K 1+T,/Ty’

obey the usual Langevin correlations the pumping ratéthis is the “population clamping” effect,
characteristic of homogeneously broadened laserd given
2
(Fi(HF;(t"))=2D;;o(t—t"),
. Krab 7
where the nonvanishing diffusion coefficients at zero tem- o 292 @)

perature are

The Lamb model is expected to coincide with the solution of
our model when the laser has a well-defined threshold and
operates far above it.

We now derive, from the Heisenberg-Langevin equations,
B an exact relation between the population inversion and the

2Dwm=(2lap=I'p)(No(1), 3 intensity which will be very useful in the following. Let us
first introduce the photon number operatora’a and an

2Daa=La(Na())+ R, 2Dpp=Ib(Ny(1)), operatorA defined as

2D, =k,

2Dytm= (2l ap=Ta){Na(t)) +R,

2Dpm=Tx(M(1)), 2Dpya=Ta(M(1)). A=a"M+MTa. )

No general solution for this model has been found so far
In the region high above threshold, one may linearize thes
equations(or a c-number version of theml9]) around the
steady state and calculate the spectra of fluctuations. Well )
below threshold, one may consider the populations of the n=—«n+gA+a'F, +Fla, (93

ghe Heisenberg-Langevin equations can be easily rewritten
In terms ofn and A as
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A=2ga’(N;—Np)a— (T ap+ k/2)A +2gM ™M (A)=2g((Na— Np)W{n)— (T ap+ &/2){ A ) +2g(N,),
+a'Fy+Fha+tFIM+M'F,, (9b) (130
. <Na>:R_g<A>_Fa<Na>i (1309
N,=R—gA—-T Ny+F,, (90 _
. (Np)=0(A)—T',(Np). (13d
Nb:gA_FbNb+Fb' (9d)

Note that the relaxation rate ¢f\) is (I";p+ «/2), combin-
The quantum average values of these operator equations drg the polarization and cavity damping rates. This set of rate
obviously written equations, which does not seem to have been derived before,
is obtained without any assumption regarding the relative
<h>: —k(n)+g(A), (10a magnitude of the decay constants. One thus might expect this
model to be valid either in the good-cavity limif {,> k) or
<A>: —(Tap+ x/2)(A)+2g(N,)+2g((Ny— Ny)n). in the bad-cavity onel(;,< k). We will show later on, how-
(10p  €ver, that these equations do not provide a good approxima-
tion to the steady-state solution high above threshold, unless
N.y=R—T.(N.)— (A}, 10¢ K<Fap which corresponds_ to the good—cawty_ limit.
(Na) a(Na) = g(A) (109 A simpler set of equations may be obtained when the
o relaxation ratd”,,+ «/2 is much greater than the atom-field
(Np)=—T's(Np)+9(A). (100 couplingg, as well as«, T',, andI'y,. This condition, which
; et holds in the good-cavity limit, is satisfied by several kinds of
10< ,\? %t?;nes gél(gbis)\l\l/r? F\r,l?d[eﬂlﬁ Zn?jf ttr?: Cf:ggﬁ:;gg of laserd 17]. One is then allowed to eliminatk adiabatically.
at w?[h N.—N ' Ilzrom Eqs ('10) one obtains a useful rela- One should note that this adiabatic elimination is legitimate
tion betvx?eenbihe averagé pbpulation inversiam (N in principle only for the equations involving the averages of
~Ny) and the average intensity=(n) in the steady st§ce operators, since the operator equations themselves include
b .

From Eq.(108, we havel =(g/x)(A). Using this expres- Lﬁ;%igngozggtiz?%% gg[jc:;isc.méfter this elimination, one
sion in Egs.(100 and(100) for the steady-state populations, '
we obtain :

(N)=—x{NM)+W((Na—Np)}(n) +W(Ny), (143
TN =R—«l, Tp(Ny)=«l. (11) ,
(Na)=R—T a(Ng) = W((Nz—Np)}(n) —W(N),
It follows that the steady-state population inversion is con-
nected to the mean intensity by .

(Np)=—T'p(Np)+W((Na—Np)){(n) + W(N,), (140

A=Ay o1
A (120 where
0 sat
2
We emphasize that Eq12) is a universal and exact bal- W= 29 _ (15)
ance equation which must hold in all single-mode, two-level, Lapt /2

laser models at zero temperature. Clearly, the semiclassical , ) . .
results for the population inversion and for the intensity obey! N€Se rate equations obviously contain spontaneous emis-
Eq. (12) since both sides are zero in this case. With thisSiOn contributiongthe last terms on the right-hand side of
relation, we will easily be able to obtain the population in- EAS-(14)] neglected in the semiclassical treatmgg]. The

version from the average intensity. This will make the alge-SPontaneous emission rate in the lasing mode/isAs we
bra noticeably more simple in the following. will see in the following, this rate plays a central role in the

thresholdless laser condition.
Since Eqgs.(14) are valid in the good-cavity limit £
<I',p), the « terms in the spontaneous emission réte
The exact equationd0) for the quantum average values could have been neglected. However, in the following, we
have no explicit solution, even for the steady state. This sewill rather be interested in the steady-state solutions of Egs.
of equations is indeed incomplete, since an equation fof13), which should also be valid in the bad-cavity limit. The
((Na—Np)n), involving higher-order moments, is necessary.cavity damping contribution t& will therefore be retained.
In this section we will discuss a simple rate-equation model A widely used benchmark for the thresholdless behavior
obtained by neglecting the correlations between the populasf a laser is the parametg defined as the fraction of the
tion inversion and the photon number, and lettiidN,  spontaneous emission rate corresponding to emission into the
—Np)n)~(N,—Np)(n). Thus from the basic Heisenberg- lasing mode. Under certain conditions, semiconductor lasers
Langevin equations and at the expense of a single approxbecome thresholdless whei~1 (see, for instance, the dis-
mation, the validity of which will be discussed later, we cussion in Ref[10]). In order to estimate the feasibility of a
obtain a closed set of rate equations for the average valueghresholdless laser, one can compéfdo the total sponta-
. neous emission rate in bulk spaté®, since B~1 is ex-
(n)=—k(n)+g(A), (139  pected to occur whew>T"3P. Taking the basic expressions

Ill. QUANTUM RATE EQUATIONS
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of I'SPandg for a dipole embedded in a bulk medium with an (14), linearized around the steady-state operating point. The
index of refractionN [23], one obtains a simple relation be- discussion of the rate-equation model predictions is deferred

tweenW and I'SP similar to the Purcell factor discussed in t0 Sec. VIC. _
Ref. [24], The spectrum or the correlations can be adequately de-

scribed only by a quantum model, where the operator nature
W 3 w  (MN)3 of the quantities of interest would be retained. The power
e S NIy R v (16 spe_c@r.um, .for instance, lcould be ca_lculated .dlrectly from its
Iy 4m® lab definition, i.e., the two-time correlation function of the field
operators. Such a model also includes the Langevin noises
that were bypassed in the rate-equation approach. In Sec. IV
we proceed to establish such a quantum model.

wherew and\ are the angular frequency and wavelength of
the dipole transition, an¥f is the cavity mode volume. This
expression shows that it is possible to achigve 'SP for a
narrow enough transition line resonant with a highwicro-
cavity mode.

The connection betweep and W/T';” depends on the A. Main assumption
type of cavity one considers. For open cavities, spontaneous
emission in all the side modes will be only weakly affected
and it is legitimate to write the fraction of the spontaneou
emission in the laser cavity mode as

IV. APPROXIMATE QUANTUM MODEL

The basic assumption in the following analytical treat-
'ment is that the population inversion is large enough so that
Sits fluctuations can be neglected. This assumption is reason-
able for many laser systems, especially for microlasers where
W the number of atoms taking part in the interaction is typically
= ) (17) much larger than the generated photon number. We will
rsP+w verify later, by comparing the corresponding analytical solu-
tions with numerical results, that this approximation is in-
This equation will not hold for a closed microcavity, for deed very good over a wide range of parameters_
which the total decay rate by spontaneous emission from The crucial step in applying this assumption is the re-
level a will depend on its specific geometry. placement of the operator representing the population inver-
Of course, if processes other than spontaneous emissi@fion in Eq.(1b) by its mean value. Since we are only inter-
contribute to the decay of levalwith a ratel'; , one should  ested in the mean values of the atomic population operators,
rather consider the ratd//T", with T',=T3:P+T% . The con-  we may replace Eq$1c) and(1d) with Egs.(100 and(100d).
dition B~1 does not necessarily lead then to thresholdles§he new set of equations to be solved is then
behavior, and a stronger condition is needed, as will be

B

shown in Sec. VI B. : K
The steady-state solution of the complete equatidi3s AH=gM(t)~ Ea(t)+FK(t)‘ (213
can be obtained exactly. As we mentioned before, the adia-
batic elimination(setting the time derivative of the polariza- M (1) =g(Na(t) = Ny(t))a(t) = T guM (1) + Fy (1),
tion to zerg is not needed for the steady state, since all time (21b

derivatives are zero. To provide an easy comparison with the

semiclassical Lamb model, here we use the scaled variables (§_t))=R—g(a'(t)M(t)+ MT(t)a(t))— [ x(NL(1)),
ie=1/lg5 and r=R/Ry,. For the intensity we obtain a 2
second-order algebraic equation

10

\ —alat t _
iZ+i(1-r+b)—b'r=0, (18) (Np())=g{@'()M(t) +M'(t)a(t)) Fb<Nb(t)>'(21
where Since, for the systems under consideration, the intensities
2 involved will be very low, down to a few photons, we are not
kl2 29 1 ) ) .
=— 4+ —— b'=— . (199  allowed to linearize these equations around the steady-state
Pap  Fal'ap l'sat values. On the other hand, we will be interested in the be-

havior of the steady state, and E¢®1) should therefore be
considered after the transients die out and all average quan-
i=2(r—1-b)=iJ(r—1—b)2+4b'r. (20) titigs become constants. The essential parts of the
Heisenberg-Langevin equations left to be solved are

Only the rooti , behaves correctly at zero pumping, predict-
ing a zero intensity. It is the only acceptable solution. A ) — _k
similar second-order equation could have been derived for at=gM() Za(t)+F"(t)’ (229
the population inversion. However, it suffices to calculate the
intensity and then use E¢L2) to determineA. M(t)=gAa(t) =T ;,M (1) +Fy(t), (22b

This rate-equation model handles only average values of
the intensity or of the population inversion. It is not quite which comprise coupled linear differential equations con-
suited to compute higher-order correlation functions or theaining the population inversion ascenumber constant pa-
field spectrum. Qualitative values for the linewidth may berameterA. The actual value ofA can be determined from
derived from the eigenfrequencies of the dynamical systenkq. (12) in a self-consistent way. The inversion being treated

The solution of Eq(18) is given by
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as a number, we obviously neglect, as in the rate-equation Since conditior(29) plays a central role in our model, it is
model, the correlations between the intensity and the popumportant to write it in a physically more transparent way.
lation inversion. However, we keep the whole field- IntroducingA,, condition(29) can be written as

polarization correlations. Moreover, the dynamics of the

population inversion obviously include nonvanishing r >i| & (30)
second-order correlations of the Langevin noises which were TN A

neglected previously.

Noting thatx/A = 2g?/T ,, and that, above thresholfly/A

is expected to be on the order of 1, this condition can finally

B. Operator algebra and validity conditions :
be written

When replacing one operator bycanumber in the origi-
nal Heisenberg-Langevin equations, one might fear that the [NESVNID (3D
operator solutions of the equations would no longer obey the
standard commutation rules. We have to check this point This condition has a very simple physical interpretation.
before proceeding to solve the model. The population invergy/l is the Rabi frequency of an atom in the cavity field. The
sion being only a source term in the polarization dynamicsyalidity condition of the model, in the region high above
we have to check the polarization commutation rule, whichthreshold, is thus that the polarization relaxation dominates

is written[17] the Rabi precession in the laser field. This is a weak-coupling
condition (the weak-coupling condition for a single atom in
[MT(t),M(t)]=Na—Np. (23)  the empty cavity is writted,,>g).
_ Equation(29) leads to an approximate expression for the
We have here, at variance, diffusion coefficientD 1\ . Indeed, since for positive inver-
[MT(t),M(t)]~A = const. (24) sion (N,)=A>0, Eq. (29) implies that 2" ,,(N,)>«l=R

—TI"x(Ny). Therefore, one should take

Therefore, our approximation implies that the atomic polar- ~
ization operator behaves like a bosonic operator 2Dwim~2Tan{Na) (32
: . in all subsequent calculations in order not to obtain inconsis-
M(D) = VIAbT(t) ifA=0 25 tent results. In fact, only this diffusion coefficient is neces-
JVAlb(t)  if A<O, sary for the following treatment, since the quantities of in-
terest(intensity and power spectrynill be defined in terms
where[b(t),b’(t)]=1. Consequently, the associated Lange-of normal-ordered products of field operators. Therefore, one
vin noise operators should obey the commutation relation does not need to approximaig .

([FL(), Fu(t)])=2T A 8(t—t"), (26) C. Dynamical behavior: stability conditions
just as the field nois€ . does. However, it follows from Eq. Before discussing the steady-state solutions for the inten-
(3) that “ ’ sity and the power spectrum, we analyze the stability of the
steady state by examining the eigenvalues of the homoge-
([FL(t),Fmt)H]) neous part of Eq(22), that is,
= (2 A +R—Ta(Na) + Tp(Np)) 8(t—t").  (27) é(t)=gM(t)—%a(t), (339
The necessary condition for approximati(®b6) to hold is .
therefore that the difference between the expressions on the M(t)=gAa(t)—T ;,M(t). (33b
right-hand side of Eqs(26) and (27) becomes negligible.
This implies that The corresponding solutions will describe the transient be-
havior of the field and polarization operators, which is re-
2T ), A R—T (N + T, (Np). (28)  lated to the relaxation of the fluctuations in the field ampli-

tude and in the atomic polarization. Indeed, for the steady
On the other hand, in the steady state, it follows from Eqgstate, one should hay@(t))=(M(t))=0 due to phase dif-
(11) that R—I',(N,)=TI",(Np)=«l. Therefore, as a neces- fusion. However, an arbitrary fluctuation in the system state
sary condition for the consistency of approximati@), we  should render these average values different from zero. Their

obtain subsequent behavior can be obtained from the time-
dependent solutions of E¢R3). The associated eigenmodes
A>(klTgp)l. (29 will be given by
For large enough intensities, for lasers operating far above a(t)=a(0)eM, M(t)=M(0)eM. (34

threshold, this condition is bound to be violated. One might
thus expect that our quantum model is valid only in a limitedReplacing Eq(34) in Egs.(33), we obtain
region below and near threshold, especially whgp= «.

We will see in fact that it gives sound results even in the BN =

—g2A =
high-intensity limit. (AN +Tap)—g°A=0 (39

7\+K
2
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with roots given by so that the noise correlations for the Fourier-transformed
Langevin operators become
1/« 1 K 2 )
)\tz_ E §+Fab iz E_Fab +4g A , (36) <Fi(w)Fj(w’)>=2Dij5(w+w'),

f (0"))=2D:; —w'
so thath .. is real. There are therefore no relaxation oscilla- (Fi()Fj(0")=2D;d(0—w").
tions. One should note that the absence of relaxation oscillarne Fourier transformation applied to E4g2) yields
tions, predicted by our analysis, is a consequence of neglect-

ing the population fluctuations. The numerical simulations (kl2—iw)a(w)—gM(w)=F (), (399
presented in Sec. V, for which this assumption is not made,
will confirm our analytical results, in the sense that relax- —gAa(w)+(Ipp—iw)M(w)=Fy(w), (39b)

ation oscillations do show up but with a very small ampli-

tude, much smaller than those predicted by semiclassic&° that

models. Wheng?A—0, these two solutions yield , — 1

— /2 and\ _— —T',p, so that in this case we may call, a(w)==—(Tayp—iw)F (0)+gFy(w)], (409
and A_ the “field-dominated” and “polarization- D(w)

dominated” modes, respectively.

. . 1
We must havex. <0 in order to avoid runaway solu- M — AF +(kl2=iw)E 40b)
tions. Rewriting Eq(36) as (@) D(w)[g )t ©)Fu(@)]. (400
A.= ! A | P \/1 2rlab (1 A) were
=2l (kl2+ T2\~ Ao |’ D(w)=(k/2=iw)(I'ap=iw)~gA
(

=0%(Ag—A)—w’—iw(k/2+T,,). (41
whereA, is given by Eq.(7), we can see that. <0 if and

only if We obviously havé® (w) = 5(— i w). Therefore, the roots
of D(w) may be written asw.=i\., where\. are the
A<Ag. (38)  damping rates of the transient solutions, given byB6). In

terms of these roots, we may write

This condition implies that the population inversion must
always be smaller than its semiclassical threshold value,

which has a simple physical interpretati@i. the equivalent \here a5 seen before, are real. These results will now be

discussion in Ref[10)): the semiclassical threshold is ob- \se tg calculate the steady-state values for the intensity and
tained by equating the optical gain to the cavity losses; howg,e honylation inversion, as well as the power spectrum of
ever, the presence of spontaneous emission into the lasingeq |aser field.

mode implies that the optical gain must always be smaller

than the cavity losses, and_therefo_re the_ inversion must be 2. Intensity and population inversion

smaller than the corresponding semiclassical threshold value. ) + ,

It follows immediately from this condition, and from Eq.  From Eq.(408, and using the fact that~,(w)F (')

(12), thatl —1,>0, which can also be interpreted as a con-2 Well as the cross-correlations between the field and the

sequence of the fact thij does not include the spontaneous atomic polarization Langevin forces vanish at zero tempera-

D(w)=(w—iNy)(w—IiN_), (42

emission contribution. ture, we obtain
_ (a'(w)a(w')=S(w)s(w-o'), (43
D. Steady-state solutions
1. Fourier transforms of operators where
We look now for the solutions of Eq$22) after the tran- 29%D ity
sients have died out. Since the system involves Langevin S(w)= (44)

BTYIRYE
noises, the time derivatives do not vanish, even in the steady D(w)

state. The operator solutions of the system may thus be o
tained by the Fourier transform meth@ithe complete solu-

tion, including the initial conditions, may be obtained by thefer
Laplace transform methgdWe define

t?s'; the power spectrum of the laser field.

The detailed analysis of the power spectrum will be de-
red to Sec. IV D 3. We first calculate the total intensity,
given by the integral of the power spectrum over the fre-
guency:

1 o )
O(t)=—| dwe 'O(w),

V2m (aT(t)a(t)>=$f f do do’e e al(w)a(w’))

1 dw

1 (= .
Oof(t)=—| dwe“'0f(w), — 292 il B
(t) _ o (w) 29°Dwtm5— D) (45)

V27



1674 I. PROTSENKOet al. PRA 59

The integral in the above equation is evaluated in the Appen- 3. Spontaneous emission rate into the mode

dix: The spontaneous emission rate into the laser mode is an

essential quantity to describe lasers operating close to the

if do — 1 (46) thresholdless regime. We have shown in Sec. Il that the

27 ) |D(w)|? 292(A0—A)(K/2+Fab)' quantum rate equations naturally incorporate spontaneous
emission[see Eqs(14)], also calculated in Ref.25]. It is

Replacing this result into Ed45) and using the expression important to check that this more complete quantum model

for Dty given by Eq.(32), we obtain gives the same spontaneous emission rate in the very weak
pumping regime, well below the semiclassical threshold,
|— Uan(Na) 47 where the only feeding of photons into the mode is due to

(Ag—A)(/2+T )" spontaneous emission. In the steady state, the photons spon-
taneously emitted in the cavity mode balance the cavity
In the steady state, we have from E¢1) thatR—I'(N,)  losses. For very small pumping ratesand intensities, one

=I"y(Np), so that should have

R+TpA
- (48) w

R, (54)

<= Wi,

Inserting this result into Eqg47), we obtain, together with .
Eq. (12), a closed set of equations which allow the determi-WhereW denotes, as above, the rate of spontaneous emission

nation of the steady-state values of the mean intensity anft® the single cavity mode. From res¢l), it follows that
the population inversion: W has the same expression as in the rate-equation model:

In(R+THA 292
= abl WAY) ’ (493 we % (55
(Ca+ T apt+ &/2)(Ag—A) |
I—1g Ag—A The quantum model thus properly accounts for spontaneous
. A~ (49D emission in the cavity mode.
sat 0
Equations(49) lead to second-order algebraic equations E. Power spectrum
for both the intensity and the population inversion, extremely )
similar to the ones derived for the rate-equation mdéej. As we have seen in Sec. IV D, the power spectrum of the

(18)]. In terms of the scaled variablegy=1/lgy and r laser fi_eld is given by Eq44). It may be represented in the
=R/Ry,, for the intensity we obtain normalized form

2 i 4 _ _ S(w) 1 |Apn_| 1
igmtigm(l—r+c)—cr(1+I',/T,)=0, (50 P |)\|_|)\+|L)2+)\2+ ~ =7 (56)
where
) which is the difference between two Lorentzians with line-
c 1 29 w widths (full width at half maximum 2|x.| and 2\ _|.

AT a6t &/2) :Fa' These linewidths correspond to the decay rates of the tran-
(51)  sients and can be immediately obtained from &3). They

. are given in terms of the steady-state intensity by
Note that the parametar has a very transparent physical

interpretation. It is the ratio of the spontaneous emission rate

T el L k120 ) (1T ,/T,)

in the mode to the total relaxation rate of leval and it :_E erodl1e \/1_ 2k ap (i—io)
describes the efficiency of radiation in the cavity mode. One ™~ 202 At (k24T )2 " o
thus expects that thresholdless operation occurs vehisn (57)
large enough.

The solution of Eq(50) is given by whereig=1q/l¢y is the normalized intensity in the Lamb

model.

Spectrum(56) has always a single maximum at=0.
This behavior reflects the absence of relaxation oscillations
in the laser{26] since\. are purely real. Of course, these
results have been obtained in the interaction picture where
the free evolution of the field is subtracted. The actual spec-
i qm= Lr—1—c)+iJ(r—1—c)2+4cr(1+T,/T,). trum is cen_tered at the atomic trgnsit_ipn fre_quency. _

(53 Expression (56) can be simplified if ZT p(igm
—ig)/[(k/2)+T 4,]?<1. This will be the case ifigm—1io

The linear relation Eq(49b) can be used to determint <1, which should be valid in the semiclassical limit. This
from the intensity. expansion will still hold, however, ifq,—io~1, provided

igme =3(r—1—C)=3\(r—1—c)?+4cr(1+T,/Ty).
(52)

Only thei gy, solution leads to zero intensity for zero pump-
ing, and we therefore have
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that k and I",,, differ by at least one order of magnitude. TA(L), A* (1), M(t), M* (1), NL(t), Np(t)} represents the
Then, expanding the square root and keeping only the leagystem variables. The quantum-mechanical average of any
ing terms, we obtain physical quantity which depends on the system variables is
obtained by averaging the correspondinngumber expres-

2\ i [=r+ 20y, (58) sion over the statistical ensemble defined by the initial dis-
tribution function.
b . i i i
2In_|= /2:} (iqm—io) (59) The c-number functions”” corresponding to the Langevin
(k ab) noise operators should be considered stochastic variables,

with zero averages. Their correlation functions can be ex-
pressed in terms of redefined diffusion coefficients, obtained
from Egs. (3) and from the conditions that the-number
equations should yield the same second-order moments as
the operator equations, for the previously defined ordering
: . i .~ [17]. The resulting theory is reliable as long as at most
while the other _has Its originin photon nu"_]ber_ﬂuCtu""t'onssecond-order correlations are concerned. Even though one
(A being the field-dominated eigenvajudhis will be the 14 expect this condition to be valid in the high-intensity
case in the semiclassical limit, in which one usually neglect§egion, its validity is not guaranteed around threshold. We

tsr;zgt?gmbuuon of photon number fluctuations to the poweryij show nevertheless that the numerical and the analytical

: e . solutions agree very well over a wide region of laser opera-
On the other _hand_, if the cavity field damP'_”g rate and thetion, which may go from below threshold to high above it.
homogeneous linewidth of the laser transition are compa- g 5 consequence of our stochastinumber representa-
rable, and if the laser operates close to the semiclassicgl,, of the Langevin forces, each “history” of the system
threshold, so that the term proportionalitg,—io inside the 4 ijapies becomede factostochastic. We are thus dealing
square root is not necessarily small, the two Lorentzian§ i, 4 “double Monte Carlo method.” generating an en-
yield an anomalous spectral profile. Here, outside the seMigmpie of random trajectories from randomly selected initial
classical limit, one cannot distinguish the contributions from.,4itions.
photon number fluctuations and phase diffusion. We use the symmetric operator ordering for which the
corresponding distribution functiofWigner function is al-

V. NUMERICAL MODEL ways real. For this ordering, the diffusion coefficients of the

c-number Langevin forces can be written

In this regime, we havp\ ,|>|\ _|, and the spectrum can
be well approximated by one Lorentzian with linewidth
IN_|. In this limit, one may associate the narrower Lorentz-
ian with phase fluctuation@ote that\ _ is the polarization
dominated eigenvalue of the stability analysis of Sec. )y C

In order to discuss the validity of the two models pre-
sented above, we have derived a numerical solution of the 2D =D +D
basic Langevin equations. The direct numerical simulation of v
operator equations is rather impractical. In this section, we
develop a numerical method that requires much less compuvhere thec-number replacement must be performed on the
tational effort and yet provides equivalent results as long a§ght-hand side irD;; andDj; [all nonvanishing coefficients

one is interested in at most second-order correlation funcare given in Egs(3)]. One should note that the diffusion
tions of the operators. coefficients depend on the system variables. It is easy to

check, for the system considered here, that the diffusion co-
efficients will be always positive, which is an essential con-
dition for the applicability of the method.

jis (60)

A. Principles

As it is well known, the operator variables of a quantum-
mechanical system may be replacedchyumber variables if
a specific operator ordering is defined. In thisumber de- B. Implementation
Scription, the quantum-meChanical average of an arbitrary Having given the basic princip|es of our numerical
physical quantity is represented by a phase-space integrahethod, we now consider the details of the computation. The
Our basic idea is to apply the Monte Carlo method to approblem consists in integrating a set of coupled nonlinear
proximate the phase-space integral associated with the rgtochastic differential equations. For each gtiyrationdt),
quired average. _ one should account for two kinds of contributions. The first

Since there is no product of noncommuting oper-gne js the deterministic evolution due to the atom-light inter-
ators in the Heisenberg-Langevin equations, the operatQiction, simply treated by a Runge-Kutta step. The second is
variablesa, af, M, MT, N,, andN, can simply be re- the Brownian motion due to the random effect of the large
placed by thec-number variablesd, A*, M, M*, N, reservoir on the small quantum systems. The accumulated
and A,, respectively, without formally changing the action of as-correlated random force indit interval yields
equations. The Monte Carlo integration consists of the fol-a random displacement that follows Gaussian statistics with
lowing steps. First, one simulates the initial distribution a variance proportional tdt. Therefore, the diffusion coef-
function by a statistical ensemble of the system variables. Aficients in Eqs.(60) are multiplied bydt to yield the vari-
element of the ensemble is a randomly choserances for the Gaussian random variables. One must then gen-
{A(0),A*(0),M(0),M*(0),NM,(0),Np,(0)} set. From erate six random numbers obeying the correlation and cross-
each initial condition set, a given “history” is correlation relations given by Eqgs(60). The cross-
derived by numerically integrating Eqél). At any timet, correlations for the atomic random displacements can be
a statistical ensemble of c-number sets taken into account by a linear transformation on four inde-
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pendent Gaussian stochastic variables. This operation re- 1 r,/r,
gtuel::)es the diagonalization of a4 diffusion matrix in each lgm=lo—77 W2l 14T Ty (62

We note here that, when using normal ordering, the dif-rpis quantity is always smaller thaR,/T'y, much lower
fusion matrix could have negative eigenvalues. Even thougkyan 1 for any practical laser situation. Therefore, there is a
this fact does not prevent getting correct results for the,egjigible difference between the quantum and Lamb model
physically relevant quantitigl7,18), it makes it impossible o5 its as expected in the semiclassical high-intensity regime
to simulate the evolution with Gaussian random variables 17].

This explains why we have chosen here the symmetrical or- | ot us now expand the steady-state intens2g), ob-

dering, which y_ields always positive diff_usion coefficients. t5ined from the rate-equation modéB), into powers of the
The correlations depend on reservoir-averaged values Qformalized pumping rate:

the system variables. For the system evolution froto t

+dt, one needs to know these averages. To this end, the . K2 29°

histories must be simulated in parallel, which puts severe |re:r_1_l—w_+ﬁ+o(1/r)- (63
requirements on the computer memory but not on the simu- ab  “ablb

lation time. The intensity difference with the Lamb model can be ex-

In conclusion, we have developed a method that enableﬁressed in terms of photons number, in the limit, as
us to simulate numerically the dynamics of a damped quan- ’ ' '

tum system. Our approach, which allows the treatment of a | A T, I
set of equations describing the laser in the nonlinear regime, lie—log—— AT+ Ty) + ST
has two limitations: the loss of precision due to statistical g tamlo atlp 40
ot reat correlations of the ficld and atomi variabies at or 1S MsMateh: which increases uith the caty damping rate
ders higher than the second. In spite of this, the agreemer'f’ may be Iar_ge for realistic parameters. Moreover, t_he -
with the analytical solutions ié very good The,computationalt nSity IS predicted to be lower t_heha, weldmg an inversion
) - i - . higher than the Lamb’s model inversion:
effort is minimum: only two complex(field amplitude,

(64)

atomic polarizationand two realatomic populationsquan- 2
tities are calculatedalthough many times for establishing a A=A~ —, (65)
good statistics At variance, the Schrdinger-Markov ap- 49

proach leads to an enormous number of variables whenthe = = = | .
photon number is large. Our method, based on thé quite intriguing result. Our quantum model predicts that a

Heisenberg-Langevin picture, applies for the usual lasers a%olution With such a population inversion should be'unstable.
well as for microlasers. It would be interesting to check whether the full Heisenberg-

Langevin equations, linearized around the operating point

predicted by the rate-equation approdiihearization is pos-

sible in the semiclassical regimeredict a stable or unstable
The remaining part of this paper will be devoted to asolution. This work is under progress. In the following we

comparison of the results of the models introduced aboveyill find other indications of a failure of the rate-equation

i.e., the rate-equations model, the approximate quanturodel in the high-intensity limit, particularly in the bad-

model, and the numerical model. They will also be comparedavity case.

to the very simple Lamb model. We will then use these mod-

els to make quantitative predictions for a thresholdless mi- B. Characterization of thresholdless behavior

crosphere laser, under construction.

VI. COMPARISON OF THE MODELS

Expression53) can be used to give a very natural defini-
tion of the thresholdless laser regime. Many definitions of
A. Semiclassical limit the laser threshold in such regimes have already been pro-
In this subsection we analyze the behavior of the varioué)osed' The one we discuss here re_lles only on th_e Input-
. . ; . . . output characteristic of the laser, which can be easily mea-
models in the semiclassical regime, achieved at very high

pumping rates and resulting in an intense field in the cavitysured experimentally. In the semiclassical reginéR)

" o response presents a slope discontinuity at threshold. For a
mode. Intuitively, it is expected that all models should con- ; . L :
laser operating near the thresholdless regime, this disconti-
verge toward the Lamb one.

We show first that the approximate quantum model,rlulty disappears. One might expect that tii&) curve be-
comes smoother and smoother when the laser approaches

though it is expected to be valid only near threshold, gives fhresholdless operation. It thus seems natural to define the

steady-state average f?“mbef of photons very plose_ 0 th[ﬁreshold as the point where the second derivative of the
Lamb resultl ;. Expanding the steady-state soluti(@8) in . : . : . .
intensity with respect to the pumping rate is at a maximum,

terms ofr>1, we obtain the dominant terms and to characterize the “distance” to the thresholdless re-
iqm=r—1+cl,/Ty+O(1hr). (61)  gime by the maximum value of the curvature. A closely re-
lated definition based on second-order intensity correlation

functions was proposed in R¢27]. In Lamb’s semiclassical
The asymptotic photon number mismatch with the Lambtheory, this definition of the threshold obviously coincides
model,l =14, is given by with the standard one. The second derivative turns out to
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have, in our approximate quantum model, a maximum at the v Y v T v T v T
normalized pumping rate,m, « given by

[ qm, 1= 1— C(1+ 204 /T). (66) ] 1
|5
When the parameter is much lower than 1, this yields £
r=1, in agreement with the Lamb model. Whemcreases, § 7
the threshold decreases and the thresholdless laser condition ‘s
reads as g -
| =
w 2T, . .
F_a( T, )>1' 67) 0.0 0.5 1.0 15 2.0

. . normalized pumping rate r
If I',<T'y, we simply obtain
FIG. 2. Normalized intensity=1/1¢4 vs normalized pumping
c= ﬂ>l. (68) rater =R/Ry,. The parametec is chosen to be 0.0008, and 0.02,
I, 0.2, 0.8, 80, for curvesd), (b), (c), (d), and @), respectively.
For the smallerc values, the semiclassical threshold is clearly ap-
The parametec represents the ratio diV, the rate of  parent. Small arrows indicate the positions of threshold defined as
spontaneous emission into the laser mode to the total relaxhe position of the maximum curvature. Whenincreases, the
ation rate of level. It measures the spontaneous emissiorthreshold comes closer to zero pumping, until it finally disappears
efficiency from levela into the cavity mode as compared to for c=1.
other decay processes. As stated earlier, the connection be-
tweenc and 8 depends on the characteristics of the dipolethe | (R) curve decreases montonically, is apparent. The ar-
and of the cavity under consideration, and it is not alwaysows indicate, for each curve, the position of the threshold
sufficient to reach the limiB—1 to observe thresholdless defined as above.

lasing. In fact, when Eq17) applies, one has Let us note that the rate equations lead, with the previous
definition of the laser threshold, to the same conditi6r)

c for a thresholdless laser. On the other hand, when there is a

'BZHF—E"/Q’ (69) clearly defined threshold, the corresponding pumping rate

differs from the one given in Eq66). In terms of pumping

which yields a simple relation between the paramegessid ~ 'ates, we immediately obtain
¢, when spontaneous emission is the only source of decay of
the population from leveh (I';P=T,). One then has3
=c/(1+c). In this case, the extreme thresholdless limit
>1 corresponds t@B— 1, while 3—0 is associated with a
regime reminiscent of the semiclassical threshold. OndEven in the semiclassical regime, where all models should
should note, however, that there could be a well-markegonverge to the Lamb one, rate equati¢h3) may predict a
threshold even |'B 1, as |ong as other decay channels aretthShOld different from the usual one. The difference is van-

available andl'S’<I'* . Note also that, from Eq(51), ¢ ishingly small in the good-cavity limit, whel,,, is by far
“1if k=T, (good cavity andT,<I',. Thus, in this the highest damping rate, and the adiabatic rate equations

calssgt, the criterion for thresholdless lasingisl,~1. on (14 apply. For bad cavities, the difference is large. More-
the other hand, ik>T",;, (bad-cavity limi), the thresholdless Oover, in the very bad—cgwty limit, the above equation pre-
behavior implied .,<1. dicts a quadratic variation of the threshold with the cavity
When the thresholdless condition is not met, the “dis- dampmg rate. This is at complete variance with the expecta-
tance” from the thresholdless regime can be characterized plions for a semiclassical laser. This result seems to indicate
the value of the curvature at threshold. at the rate equationd3) correctly describe the laser only
in the good-cavity limit. Since the only approximation lead-
9 1 T, L, \]7¥2 ing to these equations is the decorrelation hypothesis, this
’F(W), -3l[ rb) 1 r

Fab+ K/2
Rre, th— qu, th T . (72
ab

(70 shows that the quantum correlations between the atomic in-
gm, th version and the photon number play an important role for the
. ) evolution of the quantum averages. This can be understood
If T'a<T'p, then this expression reduces to qualitatively. When the laser intensity increases, the absolute
amplitude of the photon number fluctuations increases,
roughly as the square root of the laser intensity. Since the
average population inversion is clamped, the relative fluctua-
tions of the populations are increasing with the intensity. The
In Fig. 2 we represent normalized intensity,=1/ls;  correlation between these quantities may therefore play an
curves as a function of the normalized pumping rate increasing role in the laser dynamics. This is of course only
=R/Ry, for various parameters The progressive evolution a qualitative argument. It is somewhat supported by the nu-
from the semiclassical regime, where there is a discontinuitynerical simulations, where the correlations can be estimated.
of the slope, to the thresholdless laser, where the curvature dhey effectively play an increasing role at high intensity and

1
=7 (71)

e
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contribute by an increase of the laser intensity and a diminuKelvin. At very low temperature, this behavior is bound to
tion of the population inversion. A much more detailed saturate, and we have used the minimum valug(T
analysis of these correlations is in high demand to clarify this=0 K)=20 Mrad/s(the actual value is yet completely un-

point. known experimentally With this range of variation of ,,
and k, the laser can operate either in an ordinary semiclas-
C. Application of the models to the microsphere laser sical regime, with a well-marked threshold, or in a threshold-
less one.

We discuss now the results from the above models. To
clarify the discussion and make it relevant to the experiments o .
in progress, we will restrict the parameter space to the one of 2. Average number of photons and population inversion

that our quantum model is not restricted to the study of th'spumping rate in Fig. 3. For Figs.(® and 3b), the cavity

very peculiar laser, and could be adapted to very many othggayation ratex is chosen to be 10 Mrad/s, and the coupling

situations. parameter is set tg=1 and 0.1, respectively. The threshold
disappears and a deviation from the semiclassical theory can
be observed in a wide range of the pumping rate, even far

The system considered in R¢T] was a multimode laser. from the semiclassical threshold. The approximate analytical
The total linewidth of the neodymium transitiqgabout 60 model[Eq. (53)] is in excellent agreement with the numeri-
nm) includes the nonresolved contributions of many inhomo-cal results in both cases. As expected from the general dis-
geneously broadened transitions between various sublevelsussion, it can be seen in Fig(b} that the rate equations
It was much larger than the spacing between adjacent modggedict a somewhat smaller operating intensity. This behav-
of the microspherical resonatgabout 4.5 nm However, jor is more conspicuous in Fig(®, where the cavity has a
this mode spacing is at least comparable with the homogenhigh relaxation rate #=100 Mrad/sg=0.1 Mrad/s). It is
neous linewidth of the ionic transitio(l500 GHz at room  quite apparent from this figure that the threshold predicted by
temperature, corresponding to about 5 nm, of the same ordetie rate equations, by extrapolation of the linear asymptotic
of magnitude as the inhomogeneous broadening for a singleehavior, is significantly different from the Lamb one.
transition. The ions whose frequency is within one homoge- To make this mismatch more evident, in Fig. 4 we plot
neous linewidth from a resonant mode of the microspherghe analytical and numerical results for the population inver-
have only a slight interaction with the other modes. Indepension (in number of atomsversus the pumping rate. The ana-
dent cavity modes therefore interact with independent ionidytical curves are derived from Eq&20) and (53) with the
populations. Furthermore, it was observed in the experimertielp of the balance equatiaii2). Any mismatch between
[7] that all the lasing modes have approximately the samehe different models for the steady-state intensities is ampli-
threshold. It is thus a good approximation to ignore the mulfied by a factorAqy/lg,=«(I'3+T)/T I y~«/T, for the
timode nature of the radiated field, replacing it by an effec-population inversion. This factor is of the order of'6r the
tive interaction between the atoms and a single mode of thexplored range of the parameters. The population inversion
field. The corresponding coupling constant, which mimicsis therefore much more sensitive to the validity of the models
the couplings and frequencies of the different atoms, is amhan the intensity. The results provided by the two analytical
adjustable parameter, which can be determined from the exspproaches are in good agreement in the region near and
perimental data. below the semiclassical threshdlsee the inset in Fig.(d)

For the upper state of the lasing transitidi, has been for g=1 Mrad/s andk=10 Mrad/s]. They start to deviate
measured to bd’,=1 krad/s. The relaxation rate &fis  in an intermediate pumping regime between the threshold
much higher. Since it does not enter in the final results agind the inversion clamping region, while the analytical quan-
long as it is much larger thall,, it can be taken a¥', tum model's curve still fits well on the numerical data. Fi-
=10 Mrad/s. The cavity damping rate is, for the best nally, for high pumping, the inversion is clamped at different
spheres, of the ordet=10 Mrad/s. It can be increased at values, as already discussed in Sec. VI A. Within the numeri-
will by adjusting the distance between the sphere and theal precision, in this high pumping regime, the numerical
coupling prism used to feed in the pumping lidif. The  results tend towards the semiclassical akg, without any
coupling parameteg is not very well known experimentally, remaining mismatch. In accordance with the original as-
since it depends on the sphere mode volume which cannot Bgimption expressed in EQY), i.e., a population inversion
determined directly. In this discussion we will use two dif- much larger than the photon number in the mode, the ap-
ferent valuesg=0.1 and 1 Mrad/s, which should span the proximate quantum model’s agreement with the numerical
entire variation range. values is slightly worse for higher pumping. However, the

Finally, the homogeneous linewidih,y, is close to 5000 maximum difference does not exceed 5%. Although the va-
Grad/s at room temperature. When the sphere temperaturelidity of the quantum model approximation can be ques-
reduced, this relaxation rate is bound to decrease, due to thiened for such pumping rates, it seems to reproduce the
lowering density of phonons in the material. Though thisnumerical predictions satisfactorily.
temperature dependence is not very well known experimen- On the other hand, as shown in Figcy in the case of a
tally, one might expectl’,,(T)~T? down to quite low bad cavity =1 Mrad/sxk=100 Mrad/s) the rate equa-
temperatures. Therefore, taking I',,(T=300 K) tions yield a population inversion strikingly different from
=5000 Grad/s as a reference, we may approximatéhe ones, more or less equal, predicted by the three other
I'.,(T)~50T2 Mrad/s, where the temperature is given in models.

1. Parameters relevant to the microsphere laser
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FIG. 3. Mean photon numbdrvs normalized pumping rate
model (solid line) or analytically from the rate equatior(short
(dotted-dashed lineas well. Values of the parameteiis Mrad/9

different output characteristicsg and « are varied: (@) ¢
=1 Mrad/sk=10 Mrad/s; (b) g=0.1 Mrad/sk=10 Mrad/s;
and(c) g=0.1 Mrad/sk=100 Mrad/s. These parameter sets cor-
respond to operating point®) c=80 (far in the thresholdless re-
gime), (b) c=0.8 (almost a thresholdless lageand (c) c=0.27

(weak threshold

4

3. Spectrum

Figure 5 compare the phase diffusion linewidth 2| as
a function of the pumping rate, obtained from E%7), with

6
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FIG. 4. Steady-state population inversidn vs normalized
found numerically (solid dotg, analytically from the quantum pumping rate, calculated numericallysolid dot$ and analytically
from the quantum moddksolid line) and the rate equatior{short
dashed ling The semiclassical linear dependence is displayedjashed ling The semiclassical clamped inversion is shown by the
dotted-dashed line. Parameter values are the same as for @&ps. 3
arel',=10, I';=0.001, andl’,,=20. To explore a wide range of 3(b), and c), respectively. In the inset ¢&), a pumping rate range
corresponding to Fig.(3) is plotted.

from the rate-equation approach as well. The eigenfrequen-
cies of the rate-equation system, linearized around its steady-
state operating point, should give an indication of the line-
width, as in the quantum approach.
For the casg=1 Mrad/s andk=10 Mrad/s represented
in Fig. 5a), there are two distinct, real eigenvalues below a
well-defined pumping rate. Above this pumping rate, corre-
sponding to the singular point in Fig(&, the two eigenval-
the numerical results. Analytical and numerical results araies become compleiabove this point, we plot only the real
very close to each other. These figures show clearly that theart of the eigenvalugsA complex eigenvalue means that
guantum model may safely be used to determine the lasehe laser undergoes relaxation oscillations, not found in the
spectrum. Some estimate of the linewidth can be inferredjuantum model. We note that one of the eigenfrequencies of
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FIG. 6. Transient behavior of the laser intensity. The solid curve

10 ] found is from quantum theory, the dashed curve from the rate-
) equation model. Parameters are the same as for Fay. &d the
8 8 _ pumping rate is = 1000 in terms of threshold pumping rate. For the
2 same parameter setting, the semiclassical theory predicts much
:*:6 6 i more accentuated oscillations, attaining a maximum photon number
= A of about 50.
:, ]
% : ; reducing tok/l in the good-cavity limit, as expected. Oth-
E 2 . erwise, the linewidth tends to a finite value whger 1. With

o ' ' Lo, our parameter settind, ,/T"y, is negligible. As a result, the

Schawlow-Townes law, properly scaled, fits quite well with
the laser linewidthsee Fig. 5.
The quantum-mechanical model never exhibits relaxation

FIG. 5. Laser linewidth found numericallgolid dotg and ana- oscillations in the laser intensity. They are clgarly ruled out
lytically from the quantum modeisolid ling) for the parameter PY the assumption that the population inversion is nearly a
values(in Mrad/9 T',=0.001, T',=10, andl',,=20. (a) and (p) ~ constant. Since the rate-equation model predicts such oscil-
correspond tog=1 Mrad/sx=10 Mrad/s andg=0.1 Mrad/sk lations for a high enough pumping rate, it is interesting to
=10 Mrad/s, respectively. The short dashed lines represent twlOK at the numerical predictions. We display the transient
eigenfrequencies of the rate equations linearized around the steaddildup of the laser field at pumping rate= 1000 in Fig. 6,
state. In(a), the two eigenfrequencies become degenerate at a ce&nd compare the numerical results with the predictions of the
tain pumping rate. Above this pumping rate, they have nonvanishquantum and rate-equation models. One observes effectively
ing imaginary parts indicating the presence of relaxation oscillasmall-amplitude oscillations, not predicted by the quantum
tions. The dash-dotted line represents a Schawlow-Townes lawnodel. Note that the relaxation oscillations predicted by the
adjusted to the high-above-threshold regime. Lamb semiclassical model have a much larger amplitude,

equal to five times the steady-state intensity. The rate equa-
the rate-equation model approaches quite well, at least qualiions (13), which fail to describe correctly the lasers far
tatively, the numerically calculated linewidths. For the otherabove threshold, nevertheless correctly predict these oscilla-
parameter settinggg=0.1 Mrad/s andk=10, there is no tions. Since the relaxation oscillations are easily observable
complex eigenvalue within the plotted range of pumping rateexperimentally, it would be extremely interesting to study
[Fig. 5(b)]. them in detail in order to check the validity of the models.

The analytical solution for the linewidth in E¢G7), in the
high pumping regime, leads to a modified Schawlow-
Townes limit. Approximation(59) pertains to this case. The
differencein—io can be expressed by means of expanding In this work we have presented a theoretical analysis of a
solution (53) into powers of li. Thus one obtains thresholdless laser. We have solved the problem by two dif-
ferent procedures: an analytical quantum model, based on
neglecting the fluctuations in the atomic inversion; and a
numerical integration of the corresponding nonlinear sto-
chastic Langevin equations. We have also compared the pre-

+0O(14 (2)). (73 dictions of these models to the ones of a rate-equation ap-
proach, which takes into account spontaneous emission and
The Schawlow-Townes formula is recovered in the limit does not require the adiabatic elimination of the polarization.
I,/T,—0, The numerical predictions and the quantum model agree
quite well, either for the laser intensity or for more subtle
2 guantities such as the laser spectrum, in a very wide range of
Krab 1 i
P . —— (74) ~ parameters. Moreover, these two models nicely converge to-
(Tut «/2)% 1o ward the Lamb semiclassical predictions at high intensity.

0 1 2 3 4 5 6
normalized pumping rate r

VII. CONCLUSIONS

kD , r, (raZ
2|)\,|=ma 1+(1+|O_C)F_b_c F_b
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The agreement with the quantum rate equations is less inwhere, according to Eq41),

pressive, especially at high intensities. These results cast

some doubt on the rate-equation model, particularly in the ID(0)]2=(02+\2)(0?+2\2),
bad-cavity limit.

We use also the quantum model to shed some light on the.
role of the spontaneous emission rate in the laser cavity. W}Q"th
give a definition of the laser threshold and of the threshold-
less laser regime which can be easily used experimentally, 2 2 2
since it is based only on the intensity vs pumping character- A FAZ=—20%(A0—A)+
istic of the laser. The thresholdless regime is defined by a (A2)
simple and intuitive criterion: the spontaneous emission rate AZNZ=g4(Ag—A)?
in the mode should dominate the decay rate of the upper +A==0120 ’
level of the lasing transition. When the only decay channel
from level a is spontaneous emission into the lasing mode,The integralJ can be performed by going through the fol-
thresholdless operation occurs as soopasl. When leven  lowing steps:
may decay by nonradiative channels, we show that this defi-

K 2

2+I‘ab

nition does not hold any longer. The laser might still have a 1 do
weII-_marked threshold in_ spi_te of a_Iar@factor. _ J= ZJ (@2 +22)(02+N2)
Finally, we have studied in detail the models in the case
of neodymium-doped microsphere lasers. We have shown 1 1 1 1
that the thresholdless regime could be reached experimen- “onr N N2 ) | 0P a2 wZtA? do
tally at low temperatures. We have also calculated the power
spectrum of the laser field, obtaining an expression which 1 1 [ 1 1 dy
can be applied to the region close to threshold, when both “onr N N2 L] IS 1+y?
phase diffusion and photon-number fluctuations contribute to
the linewidth, and which reproduces the well-known 1 INC| =Ny
Schawlow-Townes spectrum when the laser is well above T2 NN A (A —Ny)
threshold. The experiment aiming at testing these results on a
microsphere laser are now under progress. 1 1
2 N[NNI D
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Since we know that\;>A, because of the stability of the

APPENDIX: INTEGRAL IN EQ. (47) solution, we can get rid of the absolute value signs and fi-

nally obtain
In this appendix we calculate the integral
1
1 dw _
= | — _ J= . (A3)
=0 f D(w)]? (A1) 20%(Ao— M) (k/2+T )
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