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Quantum theory of a thresholdless laser

I. Protsenko,1 P. Domokos,2,* V. Lefèvre-Seguin,2 J. Hare,2 J. M. Raimond,2 and L. Davidovich3
1Lebedev Physics Institute, Leninsky Prospect 53, 117924 Moscow, Russia
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We develop a quantum theory of a single-mode thresholdless laser. We start from basic Heisenberg–
Langevin equations of motion for the field and atomic operators, and obtain an approximate analytical solution
to these operator equations. We compare the predictions of this model for the intensity and power spectrum of
the field to the results of a Monte Carlo numerical simulation of the original Heisenberg-Langevin equations,
and find them in excellent agreement. We also compare these predictions to those of a rate-equation model,
which takes into account spontaneous emission. We show that our model gives more reliable results in the bad
cavity limit at high intensities. Based upon these results, we propose a simple characterization of the thresh-
oldless behavior. Finally, we apply our model to microsphere Nd-doped lasers at low temperatures, which are
promising devices for a well-controlled thresholdless operation.@S1050-2947~99!10502-X#

PACS number~s!: 42.55.Ah, 42.55.Sa, 32.80.2t
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I. INTRODUCTION

Lasers with small active medium volumes, on the orde
hundreds ofmm3, and very low pump energy, oscillatin
with an average number of photons on the order of 1, h
been developed in recent years, motivated by the pote
applications in optical communication and information pr
cessing. Quantum effects become obviously important in
case, and the semiclassical approach fails to offer a pro
description even of the gross overall features of these
vices. The very notion of oscillation threshold breaks dow
since the output intensity increases smoothly with the pu
energy. These devices are thus called thresholdless la
Central to this behavior is the fact that, with such a lo
number of photons, spontaneous emission into the m
plays a very important role. The fraction of spontaneo
emission emitted into the mode has indeed been used
semiconductor lasers, as a measure of the degree of th
oldless behavior.

Thresholdless laser operation was reported for the
time in Ref.@1#, for a dye laser with half of the wavelengt
distance between the cavity mirrors. In this experiment,
threshold pump power was less than the sensitivity limit
the measurement device. Very low oscillation thresho
have been observed since then in several types of laser
for example, in vertical cavity surface-emitting semicondu
tor lasers~VCSEL’s! @2,3#, heterostructure diode lasers@4#,
microdroplets @5#, high-Q Fabry-Perot microcavity laser
@6#, and microsphere lasers@7#.

Theories of low-threshold lasers@8–10# were developed
mostly in connection with VCSEL’s, which have attracte
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great attention in the last few years. The threshold
VCSEL’s is very low due to two factors:~i! the large value
of the field-medium coupling constant, because of the sm
cavity volume and large amplification coefficient; and~ii ! the
suppression of spontaneous emission outside of the l
mode, since only a few well-spaced modes are availabl
the cavity@11,12#.

The theory developed in Refs.@8–10# is based on rate
equations for the field intensity and carrier density@13#, with
the addition of terms describing spontaneous emission
the lasing mode and the consequent depletion of the ca
density. A new definition for the laser threshold was pr
posed in Ref.@10#, as the situation in which the number o
photons in the lasing mode is equal to 1. Results
VCSEL’s were presented in Ref.@11#, as a function of the
fraction b of spontaneous emission into the laser mo
Smooth transitions through the threshold forb'1, suppres-
sion of relaxation oscillations and linewidth enhancemen
the near-to-threshold region were predicted. A semiclass
study of the laser transition, including a contribution fro
spontaneous emission into the lasing mode, was present
Ref. @14#.

The above-mentioned theoretical models hold if the p
larization relaxation rateG' is larger than the rate of an
other process in the laser. However, even in semicondu
lasers whereG' is quite large,G';1013 Hz @15#, the damp-
ing ratek of a vertical cavity may be of the same order
magnitude asG' . For example, for a cavity lengthL
;1 mm and a reflection coefficient of the cavity mirro
R50.9, one hask' log(R)c/L'1013 Hz'G' , where c is
the speed of light.

The same may be true for a microsphere laser. In
experiment reported in Ref.@7#, neodymium ions (1019 at-
oms per cm3) are embedded into a silica microsphere~diam-
eter 50 mm). The effective volume of the field mode is o
the order of 500l3'500 mm3, so that there are abou
33109 neodymium ions in the mode volume. Measureme
@7# were performed at room temperature and, under this c
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1668 PRA 59I. PROTSENKOet al.
dition, the laser exhibits a well-defined threshold. The pu
power at threshold was of the order of 200 nW and la
oscillation was sustained with only 105 excited ions at a
time. In the semiclassical Lamb model, perfectly valid in th
case, the threshold depends linearly on the homogen
linewidth of the lasing transition. This linewidth is expecte
to decrease with temperature, from 1500 GHz at 300 K
perhaps as low as 20 MHz at 2 K. The mode linewidth, fo
quality factorQ;23108, is in the range 2–10 MHz. Thus
at low temperatures, the polarization decay rate~proportional
to the inverse of the homogeneous linewidth! and the cavity
decay rate~proportional to the inverse of the mode lin
width! should become comparable. Furthermore, under
same conditions, the laser should become thresholdless
cillation may occur with one photon only in the mode, whi
precludes using linearization techniques to study the qu
tum dynamics. A simple model describing the quantum f
tures of this interesting laser situation is therefore in a h
demand.

In this paper, we develop a theoretical model for a thre
oldless atomic laser, starting from Heisenberg-Langevin
erator equations and taking into account the polarization
namics. We solve the problem both by an approxim
analytical technique and by a numerical procedure wh
takes into account the nonlinear quantum dynamics of
field and atomic variables. The analytical approximation
based on the fact that, in the systems under consideration
number of active atoms is much larger than the numbe
photons in the mode, so that the relative fluctuations in
population inversion are much smaller than the relative fl
tuations in the number of photons. We use this fact to repl
the inversion by ac number. However, we do not negle
quantum correlations between the field amplitude opera
and the atomic polarization; such an approximation sho
be indeed very bad below and near the threshold, since
average value of the field amplitude on the time scale
interest is zero, due to phase diffusion@16#. Our approach,
validated by a good agreement with the numerical resu
leads to smooth analytical expressions for the field intens
the spectrum, and the linewidth, in regions of parame
where the polarization cannot be adiabatically eliminated
where linearization is forbidden~due to the low values of the
average intensity, down to less than one photon in the mo!.
These expressions remain valid for a wide range of par
eters, which may include the low-pumping, low-intens
quantum regime as well as the high-pumping semiclass
limit. The role of the spontaneous emission in the laser c
ity can be examined in detail, since spontaneous emissio
well described by our quantum operator equations. We
therefore able to follow the transition from the spontaneo
emission-dominated regime to the situation, typical of st
dard laser operation, in which stimulated emission plays
dominant role. The notion of threshold and thresholdless
eration can be put under a new light, allowing us to defin
simple and physically transparent criterion for the thresho
less operation.

We will also compare the quantum approach to a simp
rate-equation model, derived from the same Heisenb
Langevin equations by neglecting the quantum correlati
between the atomic inversion and the photon number fl
tuations. Similar rate equations, using most often an a
p
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batic elimination of the atomic polarization@13#, have al-
ready been obtained in a large number of papers. The ste
state operating point can be obtained without the adiab
elimination, and should be valid even in the bad-cavity lim
We will show that the predictions of this rate-equation mod
are in perfect agreement with ours in the good-cavity lim
However, the rate-equation model deviates significantly fr
the quantum one and from the standard Lamb theory in
bad-cavity limit at high intensities. This observation ca
some doubts on the validity of the rate-equation models
this regime.

The notations used throughout the paper are the sam
in Ref. @17#. In Sec. II, we describe the model and the ba
Heisenberg-Langevin equations. We establish a very gen
and exact relation between the steady-state average valu
the population inversion and the intensity. We also introdu
the solutions of the standard semiclassical Lamb mode
useful scaling parameters. In Sec. III, we derive, fro
Heisenberg-Langevin equations, rate equations for the p
ton number and atomic populations, taking into acco
spontaneous emission terms. The approximate analytic q
tum model is introduced in Sec. IV. We check that, und
proper conditions, treating the inversion as ac-number does
not affect the commutation relations involving the other o
erators. The solutions for the average intensity and the s
trum are then derived. We also obtain the spontaneous e
sion rate into the laser mode. The numerical method
developed in Sec. V. We discuss the relation between
results of the different models in Sec. VI, where a prec
characterization of the thresholdless behavior, valid bey
the rate-equation limit, is proposed. In this section we d
cuss the quantitative predictions of the models using par
eters pertaining to the microsphere neodymium lasers at
temperature. Finally, our conclusions are summarized in S
VII.

II. QUANTUM-MECHANICAL SINGLE-MODE
LASER MODEL

We describe the active medium by two-level atoms~upper
level a, lower levelb), resonant with a single-cavity mod
damped at a ratek. Levels a and b decay to lower levels,
with decay constantsGa and Gb respectively, as shown in
Fig. 1. The relaxation rateGa is most often much smalle
than Gb . When this is not the case, laser oscillation c
hardly be sustained. The atoms are uniformly coupled to
field with a coupling constantg, equal to half the Rabi pre
cession frequency in a single photon field. Inhomogene

FIG. 1. Relevant level scheme.
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PRA 59 1669QUANTUM THEORY OF A THRESHOLDLESS LASER
broadening and mode competition are neglected. This
severe approximation for most solid-state laser systems,
as neodymium doped microspheres where the emission
width is larger than the mode spacing. However, in ma
cases, the homogeneous width of the transition,Gab , is
smaller than or comparable to the cavity mode spacing
such cases, there is no mode competition, and a given c
of atoms in the inhomogeneously broadened spectrum e
only in a single mode of the cavity. The detunings of t
atoms inside the homogeneous linewidth may be accou
for by using an effective atom-field coupling, thus validati
our model. We assume also that the number of active at
is large enough so that the pumping process can be con
ered as Poissonian and can be simply described by a pu
ing rateR in the equation of motion for the population o
level a @18# ~this is consistent with the experimental situ
tions regarding heavily doped microspheres which hav
large number of accessible nonexcited ions and a very
number of excited ions at a time!.

We base our approach on the following Heisenbe
Langevin equations, written in the interaction picture. Th
can be derived from first principles as shown in detail in R
@17#:

ȧ~ t !5gM~ t !2 k/2 a~ t !1Fk~ t !, ~1a!

Ṁ ~ t !5g@Na~ t !2Nb~ t !#a~ t !2GabM ~ t !1FM~ t !, ~1b!

Ṅa~ t !5R2g@a†~ t !M ~ t !1M†~ t !a~ t !#2GaNa~ t !1Fa~ t !,
~1c!

Ṅb~ t !5g@a†~ t !M ~ t !1M†~ t !a~ t !#2GbNb~ t !1Fb~ t !,
~1d!

wherea anda† are the boson operators of the field mode,M
is the collective atomic polarization, andNa andNb are the
populations in levelsa and b, respectively. The noise fea
tures are incorporated into theF reservoir operators. The
obey the usual Langevin correlations

^Fi~ t !&50,
~2!

^Fi~ t !F j~ t8!&52Di j d~ t2t8!,

where the nonvanishing diffusion coefficients at zero te
perature are

2Dkk†5k,

2DM†M5~2Gab2Ga!^Na~ t !&1R,

2DMM†5~2Gab2Gb!^Nb~ t !&, ~3!

2Daa5Ga^Na~ t !&1R, 2Dbb5Gb^Nb~ t !&,

2DbM5Gb^M ~ t !&, 2DMa5Ga^M ~ t !&.

No general solution for this model has been found so
In the region high above threshold, one may linearize th
equations~or a c-number version of them@19#! around the
steady state and calculate the spectra of fluctuations. W
below threshold, one may consider the populations of
a
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lasing levels asc-number constants, given by their zero-fie
values, the so-called unsaturated values@20#. However, none
of these procedures can be applied to thresholdless lase
this paper we will discuss two different approaches and co
pare them to the standard semiclassical Lamb model@21#.
We will first derive rate equations for the quantum averag
taking into account properly the spontaneous emission in
cavity mode. We then develop an approximate quant
model which leads to analytical operator solutions, allowi
us to derive explicit forms for the output intensity and t
power spectrum. The solutions of these models are comp
with numerical results, obtained by a method detailed in S
V.

Before analyzing these models, we briefly recall the La
semiclassical model. It will be used, throughout the paper
a source of useful scaling parameters for our solutions. It
be recovered from Eq.~1! by considering all the operators a
mere c-numbers, and suppressing the noise terms.
steady-state solution can be easily obtained without any
ther approximation. The oscillation threshold is given by

Rth5
kGaGab

2g2
. ~4!

If R,Rth , the semiclassical steady-state intensity is equa
zero and the steady-state population inversion is given
R/Ga . For R>Rth , the semiclassical steady-state mean p
ton number is given by

I 05I sat~R/Rth21!, ~5!

where the ‘‘saturation intensity’’I sat is

I sat5
GaGabGb

2g2~Ga1Gb!
5

Rth

k

1

11Ga /Gb
. ~6!

Above threshold, the population inversion is independen
the pumping rate~this is the ‘‘population clamping’’ effect,
characteristic of homogeneously broadened lasers! and given
by

D05
kGab

2g2
. ~7!

The Lamb model is expected to coincide with the solution
our model when the laser has a well-defined threshold
operates far above it.

We now derive, from the Heisenberg-Langevin equatio
an exact relation between the population inversion and
intensity which will be very useful in the following. Let u
first introduce the photon number operatorn5a†a and an
operatorL defined as

L5a†M1M†a. ~8!

The Heisenberg-Langevin equations can be easily rewri
in terms ofn andL as

ṅ52kn1gL1a†Fk1Fk
†a, ~9a!
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1670 PRA 59I. PROTSENKOet al.
L̇52ga†~Na2Nb!a2~Gab1k/2!L12gM1M

1a†FM1FM
† a1Fk

†M1M†Fk , ~9b!

Ṅa5R2gL2GaNa1Fa , ~9c!

Ṅb5gL2GbNb1Fb . ~9d!

The quantum average values of these operator equation
obviously written

^ṅ&52k^n&1g^L&, ~10a!

^L̇&52~Gab1 k/2!^L&12g^Na&12g^~Na2Nb!n&.
~10b!

^Ṅa&5R2Ga^Na&2g^L&, ~10c!

^Ṅb&52Gb^Nb&1g^L&. ~10d!

To obtain Eq.~10b!, we made use of the relation̂M†M &
5^Na& @see Eq.~6.18! in Ref. @17## and the commutation o
a† with Na2Nb . From Eqs.~10!, one obtains a useful rela
tion between the average population inversionD[^Na
2Nb& and the average intensityI[^n& in the steady state
From Eq.~10a!, we haveI 5(g/k)^L&. Using this expres-
sion in Eqs.~10c! and~10d! for the steady-state population
we obtain

Ga^Na&5R2kI , Gb^Nb&5kI . ~11!

It follows that the steady-state population inversion is co
nected to the mean intensity by

D2D0

D0
5

I 02I

I sat
. ~12!

We emphasize that Eq.~12! is a universal and exact ba
ance equation which must hold in all single-mode, two-lev
laser models at zero temperature. Clearly, the semiclas
results for the population inversion and for the intensity ob
Eq. ~12! since both sides are zero in this case. With t
relation, we will easily be able to obtain the population i
version from the average intensity. This will make the alg
bra noticeably more simple in the following.

III. QUANTUM RATE EQUATIONS

The exact equations~10! for the quantum average value
have no explicit solution, even for the steady state. This
of equations is indeed incomplete, since an equation
^(Na2Nb)n&, involving higher-order moments, is necessa
In this section we will discuss a simple rate-equation mo
obtained by neglecting the correlations between the pop
tion inversion and the photon number, and letting^(Na
2Nb)n&'^Na2Nb&^n&. Thus from the basic Heisenberg
Langevin equations and at the expense of a single appr
mation, the validity of which will be discussed later, w
obtain a closed set of rate equations for the average val

^ṅ&52k^n&1g^L&, ~13a!
are
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^L̇&52g^~Na2Nb!&^n&2~Gab1k/2!^L&12g^Na&,
~13b!

^Ṅa&5R2g^L&2Ga^Na&, ~13c!

^Ṅb&5g^L&2Gb^Nb&. ~13d!

Note that the relaxation rate of^L& is (Gab1k/2), combin-
ing the polarization and cavity damping rates. This set of r
equations, which does not seem to have been derived be
is obtained without any assumption regarding the relat
magnitude of the decay constants. One thus might expect
model to be valid either in the good-cavity limit (Gab@k) or
in the bad-cavity one (Gab!k). We will show later on, how-
ever, that these equations do not provide a good approxi
tion to the steady-state solution high above threshold, un
k!Gab which corresponds to the good-cavity limit.

A simpler set of equations may be obtained when
relaxation rateGab1k/2 is much greater than the atom-fie
couplingg, as well ask, Ga , andGb . This condition, which
holds in the good-cavity limit, is satisfied by several kinds
lasers@17#. One is then allowed to eliminateL adiabatically.
One should note that this adiabatic elimination is legitim
in principle only for the equations involving the averages
operators, since the operator equations themselves inc
fast-varying fluctuating forces. After this elimination, on
obtains a closed set of equations:

^ṅ&52k^n&1W^~Na2Nb!&^n&1W^Na&, ~14a!

^Ṅa&5R2Ga^Na&2W^~Na2Nb!&^n&2W^Na&,
~14b!

^Ṅb&52Gb^Nb&1W^~Na2Nb!&^n&1W^Na&, ~14c!

where

W5
2g2

Gab1k/2
. ~15!

These rate equations obviously contain spontaneous e
sion contributions@the last terms on the right-hand side
Eqs.~14!# neglected in the semiclassical treatment@22#. The
spontaneous emission rate in the lasing mode isW. As we
will see in the following, this rate plays a central role in th
thresholdless laser condition.

Since Eqs.~14! are valid in the good-cavity limit (k
!Gab), the k terms in the spontaneous emission rateW
could have been neglected. However, in the following,
will rather be interested in the steady-state solutions of E
~13!, which should also be valid in the bad-cavity limit. Th
cavity damping contribution toW will therefore be retained.

A widely used benchmark for the thresholdless behav
of a laser is the parameterb defined as the fraction of the
spontaneous emission rate corresponding to emission into
lasing mode. Under certain conditions, semiconductor las
become thresholdless whenb;1 ~see, for instance, the dis
cussion in Ref.@10#!. In order to estimate the feasibility of
thresholdless laser, one can compareW to the total sponta-
neous emission rate in bulk spaceGa

sp, sinceb;1 is ex-
pected to occur whenW@Ga

sp. Taking the basic expression
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PRA 59 1671QUANTUM THEORY OF A THRESHOLDLESS LASER
of Ga
sp andg for a dipole embedded in a bulk medium with a

index of refractionN @23#, one obtains a simple relation be
tweenW and Ga

sp similar to the Purcell factor discussed
Ref. @24#,

W

Ga
sp

5
3

4p2

v

Gab1k/2

~l/N!3

V
. ~16!

wherev andl are the angular frequency and wavelength
the dipole transition, andV is the cavity mode volume. This
expression shows that it is possible to achieveW@Ga

sp for a
narrow enough transition line resonant with a high-Q micro-
cavity mode.

The connection betweenb and W/Ga
sp depends on the

type of cavity one considers. For open cavities, spontane
emission in all the side modes will be only weakly affecte
and it is legitimate to write the fraction of the spontaneo
emission in the laser cavity mode as

b5
W

Ga
sp1W

. ~17!

This equation will not hold for a closed microcavity, fo
which the total decay rate by spontaneous emission f
level a will depend on its specific geometry.

Of course, if processes other than spontaneous emis
contribute to the decay of levela with a rateGa* , one should
rather consider the ratioW/Ga with Ga5Ga

sp1Ga* . The con-
dition b;1 does not necessarily lead then to thresholdl
behavior, and a stronger condition is needed, as will
shown in Sec. VI B.

The steady-state solution of the complete equations~13!
can be obtained exactly. As we mentioned before, the a
batic elimination~setting the time derivative of the polariza
tion to zero! is not needed for the steady state, since all ti
derivatives are zero. To provide an easy comparison with
semiclassical Lamb model, here we use the scaled varia
i re5I /I sat and r 5R/Rth . For the intensity we obtain a
second-order algebraic equation

i re
2 1 i re~12r 1b!2b8r 50, ~18!

where

b5
k/2

Gab
1

2g2

GaGab
, b85

1

I sat
. ~19!

The solution of Eq.~18! is given by

i re65 1
2 ~r 212b!6 1

2 A~r 212b!214b8r . ~20!

Only the rooti 1 behaves correctly at zero pumping, predi
ing a zero intensity. It is the only acceptable solution.
similar second-order equation could have been derived
the population inversion. However, it suffices to calculate
intensity and then use Eq.~12! to determineD.

This rate-equation model handles only average value
the intensity or of the population inversion. It is not qui
suited to compute higher-order correlation functions or
field spectrum. Qualitative values for the linewidth may
derived from the eigenfrequencies of the dynamical sys
f
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~14!, linearized around the steady-state operating point.
discussion of the rate-equation model predictions is defe
to Sec. VI C.

The spectrum or the correlations can be adequately
scribed only by a quantum model, where the operator na
of the quantities of interest would be retained. The pow
spectrum, for instance, could be calculated directly from
definition, i.e., the two-time correlation function of the fie
operators. Such a model also includes the Langevin no
that were bypassed in the rate-equation approach. In Sec
we proceed to establish such a quantum model.

IV. APPROXIMATE QUANTUM MODEL

A. Main assumption

The basic assumption in the following analytical trea
ment is that the population inversion is large enough so
its fluctuations can be neglected. This assumption is rea
able for many laser systems, especially for microlasers wh
the number of atoms taking part in the interaction is typica
much larger than the generated photon number. We
verify later, by comparing the corresponding analytical so
tions with numerical results, that this approximation is i
deed very good over a wide range of parameters.

The crucial step in applying this assumption is the
placement of the operator representing the population in
sion in Eq.~1b! by its mean value. Since we are only inte
ested in the mean values of the atomic population operat
we may replace Eqs.~1c! and~1d! with Eqs.~10c! and~10d!.
The new set of equations to be solved is then

ȧ~ t !5gM~ t !2
k

2
a~ t !1Fk~ t !, ~21a!

Ṁ ~ t !5g^Na~ t !2Nb~ t !&a~ t !2GabM ~ t !1FM~ t !,
~21b!

^Ṅa~ t !&5R2g^a†~ t !M ~ t !1M†~ t !a~ t !&2Ga^Na~ t !&,
~21c!

^Ṅb~ t !&5g^a†~ t !M ~ t !1M†~ t !a~ t !&2Gb^Nb~ t !&.
~21d!

Since, for the systems under consideration, the intens
involved will be very low, down to a few photons, we are n
allowed to linearize these equations around the steady-s
values. On the other hand, we will be interested in the
havior of the steady state, and Eqs.~21! should therefore be
considered after the transients die out and all average q
tities become constants. The essential parts of
Heisenberg-Langevin equations left to be solved are

ȧ~ t !5gM~ t !2
k

2
a~ t !1Fk~ t !, ~22a!

Ṁ ~ t !5gDa~ t !2GabM ~ t !1FM~ t !, ~22b!

which comprise coupled linear differential equations co
taining the population inversion as ac-number constant pa
rameterD. The actual value ofD can be determined from
Eq. ~12! in a self-consistent way. The inversion being treat
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as a number, we obviously neglect, as in the rate-equa
model, the correlations between the intensity and the po
lation inversion. However, we keep the whole fiel
polarization correlations. Moreover, the dynamics of t
population inversion obviously include nonvanishin
second-order correlations of the Langevin noises which w
neglected previously.

B. Operator algebra and validity conditions

When replacing one operator by ac-number in the origi-
nal Heisenberg-Langevin equations, one might fear that
operator solutions of the equations would no longer obey
standard commutation rules. We have to check this p
before proceeding to solve the model. The population inv
sion being only a source term in the polarization dynam
we have to check the polarization commutation rule, wh
is written @17#

@M†~ t !,M ~ t !#5Na2Nb . ~23!

We have here, at variance,

@M†~ t !,M ~ t !#'D5const. ~24!

Therefore, our approximation implies that the atomic pol
ization operator behaves like a bosonic operator

M ~ t !5HAuDub†~ t ! if D>0

AuDub~ t ! if D,0,
~25!

where@b(t),b†(t)#51. Consequently, the associated Lang
vin noise operators should obey the commutation relatio

^@FM
† ~ t !,FM~ t8!#&52GabDd~ t2t8!, ~26!

just as the field noiseFk does. However, it follows from Eq
~3! that

^@FM
† ~ t !,FM~ t8!#&

5~2GabD1R2Ga^Na&1Gb^Nb&!d~ t2t8!. ~27!

The necessary condition for approximation~25! to hold is
therefore that the difference between the expressions on
right-hand side of Eqs.~26! and ~27! becomes negligible
This implies that

2GabD@R2Ga^Na&1Gb^Nb&. ~28!

On the other hand, in the steady state, it follows from E
~11! that R2Ga^Na&5Gb^Nb&5kI . Therefore, as a neces
sary condition for the consistency of approximation~25!, we
obtain

D@~k/Gab!I . ~29!

For large enough intensities, for lasers operating far ab
threshold, this condition is bound to be violated. One mi
thus expect that our quantum model is valid only in a limit
region below and near threshold, especially whenGab&k.
We will see in fact that it gives sound results even in t
high-intensity limit.
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Since condition~29! plays a central role in our model, it i
important to write it in a physically more transparent wa
IntroducingD0 , condition~29! can be written as

Gab@
k

D0
I

D0

D
. ~30!

Noting thatk/D052g2/Gab and that, above threshold,D0 /D
is expected to be on the order of 1, this condition can fina
be written

Gab@gAI . ~31!

This condition has a very simple physical interpretatio
gAI is the Rabi frequency of an atom in the cavity field. T
validity condition of the model, in the region high abov
threshold, is thus that the polarization relaxation domina
the Rabi precession in the laser field. This is a weak-coup
condition ~the weak-coupling condition for a single atom
the empty cavity is writtenGab@g).

Equation~29! leads to an approximate expression for t
diffusion coefficientDM†M . Indeed, since for positive inver
sion ^Na&>D.0, Eq. ~29! implies that 2Gab^Na&@kI 5R
2Ga^Na&. Therefore, one should take

2DM†M'2Gab^Na& ~32!

in all subsequent calculations in order not to obtain incon
tent results. In fact, only this diffusion coefficient is nece
sary for the following treatment, since the quantities of
terest~intensity and power spectrum! will be defined in terms
of normal-ordered products of field operators. Therefore,
does not need to approximateDMM†.

C. Dynamical behavior: stability conditions

Before discussing the steady-state solutions for the in
sity and the power spectrum, we analyze the stability of
steady state by examining the eigenvalues of the homo
neous part of Eq.~22!, that is,

ȧ~ t !5gM~ t !2
k

2
a~ t !, ~33a!

Ṁ ~ t !5gDa~ t !2GabM ~ t !. ~33b!

The corresponding solutions will describe the transient
havior of the field and polarization operators, which is r
lated to the relaxation of the fluctuations in the field amp
tude and in the atomic polarization. Indeed, for the stea
state, one should have^a(t)&5^M (t)&50 due to phase dif-
fusion. However, an arbitrary fluctuation in the system st
should render these average values different from zero. T
subsequent behavior can be obtained from the tim
dependent solutions of Eq.~33!. The associated eigenmode
will be given by

a~ t !5a~0!elt, M ~ t !5M ~0!elt. ~34!

Replacing Eq.~34! in Eqs.~33!, we obtain

D̃~l!5S l1
k

2D ~l1Gab!2g2D50 ~35!
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with roots given by

l652F1

2S k

2
1GabD6

1

2
AS k

2
2GabD 2

14g2DG , ~36!

so thatl6 is real. There are therefore no relaxation oscil
tions. One should note that the absence of relaxation osc
tions, predicted by our analysis, is a consequence of neg
ing the population fluctuations. The numerical simulatio
presented in Sec. V, for which this assumption is not ma
will confirm our analytical results, in the sense that rela
ation oscillations do show up but with a very small amp
tude, much smaller than those predicted by semiclass
models. Wheng2D→0, these two solutions yieldl1→
2k/2 andl2→2Gab , so that in this case we may calll1

and l2 the ‘‘field-dominated’’ and ‘‘polarization-
dominated’’ modes, respectively.

We must havel6,0 in order to avoid runaway solu
tions. Rewriting Eq.~36! as

l652
1

2S k

2
1GabD F16A12

2kGab

~k/21Gab!
2S 12

D

D0
D G ,

~37!

whereD0 is given by Eq.~7!, we can see thatl6,0 if and
only if

D,D0 . ~38!

This condition implies that the population inversion mu
always be smaller than its semiclassical threshold va
which has a simple physical interpretation~cf. the equivalent
discussion in Ref.@10#!: the semiclassical threshold is ob
tained by equating the optical gain to the cavity losses; h
ever, the presence of spontaneous emission into the la
mode implies that the optical gain must always be sma
than the cavity losses, and therefore the inversion mus
smaller than the corresponding semiclassical threshold va
It follows immediately from this condition, and from Eq
~12!, that I 2I 0.0, which can also be interpreted as a co
sequence of the fact thatI 0 does not include the spontaneo
emission contribution.

D. Steady-state solutions

1. Fourier transforms of operators

We look now for the solutions of Eqs.~22! after the tran-
sients have died out. Since the system involves Lange
noises, the time derivatives do not vanish, even in the ste
state. The operator solutions of the system may thus be
tained by the Fourier transform method~the complete solu-
tion, including the initial conditions, may be obtained by t
Laplace transform method!. We define

O~ t !5
1

A2p
E

2`

`

dv e2 ivtO~v!,

O†~ t !5
1

A2p
E

2`

`

dv eivtO †~v!,
-
a-
ct-
s
e,
-

al

t
e,

-
ing
r

be
e.

-

in
dy
b-

so that the noise correlations for the Fourier-transform
Langevin operators become

^Fi~v!F j~v8!&52Di j d~v1v8!,

^Fi
†~v!F j~v8!&52Di j d~v2v8!.

The Fourier transformation applied to Eqs.~22! yields

~k/22 iv!a~v!2gM~v!5Fk~v!, ~39a!

2gDa~v!1~Gab2 iv!M ~v!5FM~v!, ~39b!

so that

a~v!5
1

D~v!
@~Gab2 iv!Fk~v!1gFM~v!#, ~40a!

M ~v!5
1

D~v!
@gDFk~v!1~k/22 iv!FM~v!#, ~40b!

where

D~v!5~k/22 iv!~Gab2 iv!2g2D

5g2~D02D!2v22 iv~k/2 1Gab!. ~41!

We obviously haveD(v)5D̃(2 iv). Therefore, the roots
of D(v) may be written asv65 il6 , where l6 are the
damping rates of the transient solutions, given by Eq.~36!. In
terms of these roots, we may write

D~v!5~v2 il1!~v2 il2!, ~42!

where, as seen before,l6 are real. These results will now b
used to calculate the steady-state values for the intensity
the population inversion, as well as the power spectrum
the laser field.

2. Intensity and population inversion

From Eq.~40a!, and using the fact that̂Fk
†(v)Fk(v8)&

as well as the cross-correlations between the field and
atomic polarization Langevin forces vanish at zero tempe
ture, we obtain

^a†~v!a~v8!&5S~v!d~v2v8!, ~43!

where

S~v!5
2g2DM†M

uD~v!u2
~44!

is the power spectrum of the laser field.
The detailed analysis of the power spectrum will be d

ferred to Sec. IV D 3. We first calculate the total intensi
given by the integral of the power spectrum over the f
quency:

^a†~ t !a~ t !&5
1

2pE E dv dv8eivte2 iv8t^a†~v!a~v8!&

52g2DM†M

1

2pE dv

uD~v!u2
. ~45!
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The integral in the above equation is evaluated in the App
dix:

1

2pE dv

uD~v!u2 5
1

2g2~D02D!~k/21Gab!
. ~46!

Replacing this result into Eq.~45! and using the expressio
for DM†M given by Eq.~32!, we obtain

I 5
Gab^Na&

~D02D!~k/21Gab!
. ~47!

In the steady state, we have from Eq.~11! that R2Ga^Na&
5Gb^Nb&, so that

^Na&5
R1GbD

Ga1Gb
. ~48!

Inserting this result into Eq.~47!, we obtain, together with
Eq. ~12!, a closed set of equations which allow the determ
nation of the steady-state values of the mean intensity
the population inversion:

I 5
Gab~R1GbD!

~Ga1Gb!~Gab1k/2!~D02D!
, ~49a!

I 2I 0

I sat
5

D02D

D0
. ~49b!

Equations~49! lead to second-order algebraic equatio
for both the intensity and the population inversion, extrem
similar to the ones derived for the rate-equation model@Eq.
~18!#. In terms of the scaled variablesi qm5I /I sat and r
5R/Rth , for the intensity we obtain

i qm
2 1 i qm~12r 1c!2cr~11Ga /Gb!50, ~50!

where

c5
1

I sat~11k/2Gab!~11Ga /Gb!
5

2g2

Ga~Gab1k/2!
5

W

Ga
.

~51!

Note that the parameterc has a very transparent physic
interpretation. It is the ratio of the spontaneous emission
in the mode to the total relaxation rate of levela, and it
describes the efficiency of radiation in the cavity mode. O
thus expects that thresholdless operation occurs whenc is
large enough.

The solution of Eq.~50! is given by

i qm65 1
2 ~r 212c!6 1

2 A~r 212c!214cr~11Ga /Gb!.
~52!

Only thei qm1 solution leads to zero intensity for zero pum
ing, and we therefore have

i qm5 1
2 ~r 212c!1 1

2 A~r 212c!214cr~11Ga /Gb!.
~53!

The linear relation Eq.~49b! can be used to determineD
from the intensity.
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3. Spontaneous emission rate into the mode

The spontaneous emission rate into the laser mode i
essential quantity to describe lasers operating close to
thresholdless regime. We have shown in Sec. III that
quantum rate equations naturally incorporate spontane
emission@see Eqs.~14!#, also calculated in Ref.@25#. It is
important to check that this more complete quantum mo
gives the same spontaneous emission rate in the very w
pumping regime, well below the semiclassical thresho
where the only feeding of photons into the mode is due
spontaneous emission. In the steady state, the photons s
taneously emitted in the cavity mode balance the cav
losses. For very small pumping ratesR and intensitiesI, one
should have

kI 5
W

W1Ga
R, ~54!

whereW denotes, as above, the rate of spontaneous emis
into the single cavity mode. From result~51!, it follows that
W has the same expression as in the rate-equation mod

W5
2g2

Gab1k/2
. ~55!

The quantum model thus properly accounts for spontane
emission in the cavity mode.

E. Power spectrum

As we have seen in Sec. IV D, the power spectrum of
laser field is given by Eq.~44!. It may be represented in th
normalized form

S~v!

2pI
5

1

p

ul1l2u
ul2u2ul1uF 1

v21l1
2 2

1

v21l2
2 G , ~56!

which is the difference between two Lorentzians with lin
widths ~full width at half maximum! 2ul1u and 2ul2u.
These linewidths correspond to the decay rates of the t
sients and can be immediately obtained from Eq.~37!. They
are given in terms of the steady-state intensity by

l652
1

2S k

2
1GabD F16A12

2kGab

~k/21Gab!
2
~ i qm2 i 0!G ,

~57!

where i 05I 0 /I sat is the normalized intensity in the Lam
model.

Spectrum~56! has always a single maximum atv50.
This behavior reflects the absence of relaxation oscillati
in the laser@26# sincel6 are purely real. Of course, thes
results have been obtained in the interaction picture wh
the free evolution of the field is subtracted. The actual sp
trum is centered at the atomic transition frequency.

Expression ~56! can be simplified if 2kGab( i qm
2 i 0)/@(k/2)1Gab#

2!1. This will be the case ifi qm2 i 0
!1, which should be valid in the semiclassical limit. Th
expansion will still hold, however, ifi qm2 i 0;1, provided
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that k and Gab differ by at least one order of magnitud
Then, expanding the square root and keeping only the le
ing terms, we obtain

2ul1u>k12Gab , ~58!

2ul2u>
kGab

~k/21Gab!
~ i qm2 i 0!. ~59!

In this regime, we haveul1u@ul2u, and the spectrum ca
be well approximated by one Lorentzian with linewid
ul2u. In this limit, one may associate the narrower Loren
ian with phase fluctuations~note thatl2 is the polarization
dominated eigenvalue of the stability analysis of Sec. IV!,
while the other has its origin in photon number fluctuatio
(l1 being the field-dominated eigenvalue!. This will be the
case in the semiclassical limit, in which one usually negle
the contribution of photon number fluctuations to the pow
spectrum.

On the other hand, if the cavity field damping rate and
homogeneous linewidth of the laser transition are com
rable, and if the laser operates close to the semiclass
threshold, so that the term proportional toi qm2 i 0 inside the
square root is not necessarily small, the two Lorentzi
yield an anomalous spectral profile. Here, outside the se
classical limit, one cannot distinguish the contributions fro
photon number fluctuations and phase diffusion.

V. NUMERICAL MODEL

In order to discuss the validity of the two models pr
sented above, we have derived a numerical solution of
basic Langevin equations. The direct numerical simulation
operator equations is rather impractical. In this section,
develop a numerical method that requires much less com
tational effort and yet provides equivalent results as long
one is interested in at most second-order correlation fu
tions of the operators.

A. Principles

As it is well known, the operator variables of a quantu
mechanical system may be replaced byc-number variables if
a specific operator ordering is defined. In thisc-number de-
scription, the quantum-mechanical average of an arbitr
physical quantity is represented by a phase-space inte
Our basic idea is to apply the Monte Carlo method to
proximate the phase-space integral associated with the
quired average.

Since there is no product of noncommuting op
ators in the Heisenberg-Langevin equations, the oper
variablesâ, â†, M̂ , M̂†, N̂a , and N̂b can simply be re-
placed by thec-number variablesA, A* , M, M* , Na ,
and Nb , respectively, without formally changing th
equations. The Monte Carlo integration consists of the
lowing steps. First, one simulates the initial distributi
function by a statistical ensemble of the system variables.
element of the ensemble is a randomly chos
$A(0),A* (0),M(0),M* (0),Na(0),Nb(0)% set. From
each initial condition set, a given ‘‘history’’ is
derived by numerically integrating Eqs.~1!. At any time t,
a statistical ensemble of c-number sets
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$A(t),A* (t),M(t),M* (t),Na(t),Nb(t)% represents the
system variables. The quantum-mechanical average of
physical quantity which depends on the system variable
obtained by averaging the correspondingc-number expres-
sion over the statistical ensemble defined by the initial d
tribution function.

Thec-number functionsF corresponding to the Langevi
noise operators should be considered stochastic varia
with zero averages. Their correlation functions can be
pressed in terms of redefined diffusion coefficients, obtain
from Eqs. ~3! and from the conditions that thec-number
equations should yield the same second-order moment
the operator equations, for the previously defined order
@17#. The resulting theory is reliable as long as at mo
second-order correlations are concerned. Even though
should expect this condition to be valid in the high-intens
region, its validity is not guaranteed around threshold. W
will show nevertheless that the numerical and the analyt
solutions agree very well over a wide region of laser ope
tion, which may go from below threshold to high above i

As a consequence of our stochasticc-number representa
tion of the Langevin forces, each ‘‘history’’ of the syste
variables becomesde factostochastic. We are thus dealin
with a ‘‘double Monte Carlo method,’’ generating an e
semble of random trajectories from randomly selected ini
conditions.

We use the symmetric operator ordering for which t
corresponding distribution function~Wigner function! is al-
ways real. For this ordering, the diffusion coefficients of t
c-number Langevin forces can be written

2Di j 5Di j 1D ji , ~60!

where thec-number replacement must be performed on
right-hand side inDi j andD ji @all nonvanishing coefficients
are given in Eqs.~3!#. One should note that the diffusio
coefficients depend on the system variables. It is easy
check, for the system considered here, that the diffusion
efficients will be always positive, which is an essential co
dition for the applicability of the method.

B. Implementation

Having given the basic principles of our numeric
method, we now consider the details of the computation. T
problem consists in integrating a set of coupled nonlin
stochastic differential equations. For each step~durationdt),
one should account for two kinds of contributions. The fi
one is the deterministic evolution due to the atom-light int
action, simply treated by a Runge-Kutta step. The secon
the Brownian motion due to the random effect of the lar
reservoir on the small quantum systems. The accumula
action of ad-correlated random force in adt interval yields
a random displacement that follows Gaussian statistics w
a variance proportional todt. Therefore, the diffusion coef
ficients in Eqs.~60! are multiplied bydt to yield the vari-
ances for the Gaussian random variables. One must then
erate six random numbers obeying the correlation and cr
correlation relations given by Eqs.~60!. The cross-
correlations for the atomic random displacements can
taken into account by a linear transformation on four ind
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pendent Gaussian stochastic variables. This operation
quires the diagonalization of a 434 diffusion matrix in each
step.

We note here that, when using normal ordering, the
fusion matrix could have negative eigenvalues. Even tho
this fact does not prevent getting correct results for
physically relevant quantities@17,18#, it makes it impossible
to simulate the evolution with Gaussian random variab
This explains why we have chosen here the symmetrical
dering, which yields always positive diffusion coefficients

The correlations depend on reservoir-averaged value
the system variables. For the system evolution fromt to t
1dt, one needs to know these averages. To this end,
histories must be simulated in parallel, which puts sev
requirements on the computer memory but not on the si
lation time.

In conclusion, we have developed a method that ena
us to simulate numerically the dynamics of a damped qu
tum system. Our approach, which allows the treatment o
set of equations describing the laser in the nonlinear regi
has two limitations: the loss of precision due to statisti
effects of the Monte Carlo method, and the fact that we
not treat correlations of the field and atomic variables at
ders higher than the second. In spite of this, the agreem
with the analytical solutions is very good. The computatio
effort is minimum: only two complex~field amplitude,
atomic polarization! and two real~atomic populations! quan-
tities are calculated~although many times for establishing
good statistics!. At variance, the Schro¨dinger-Markov ap-
proach leads to an enormous number of variables when
photon number is large. Our method, based on
Heisenberg-Langevin picture, applies for the usual laser
well as for microlasers.

VI. COMPARISON OF THE MODELS

The remaining part of this paper will be devoted to
comparison of the results of the models introduced abo
i.e., the rate-equations model, the approximate quan
model, and the numerical model. They will also be compa
to the very simple Lamb model. We will then use these m
els to make quantitative predictions for a thresholdless
crosphere laser, under construction.

A. Semiclassical limit

In this subsection we analyze the behavior of the vari
models in the semiclassical regime, achieved at very h
pumping rates and resulting in an intense field in the ca
mode. Intuitively, it is expected that all models should co
verge toward the Lamb one.

We show first that the approximate quantum mod
though it is expected to be valid only near threshold, give
steady-state average number of photons very close to
Lamb resultI 0 . Expanding the steady-state solution~53! in
terms ofr @1, we obtain the dominant terms

i qm5r 211cGa /Gb1O~1/r !. ~61!

The asymptotic photon number mismatch with the La
model,I 2I 0 , is given by
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I qm2I 0→
1

11k/2Gab

Ga /Gb

11Ga /Gb
. ~62!

This quantity is always smaller thanGa /Gb , much lower
than 1 for any practical laser situation. Therefore, there
negligible difference between the quantum and Lamb mo
results as expected in the semiclassical high-intensity reg
@17#.

Let us now expand the steady-state intensity~20!, ob-
tained from the rate-equation model~13!, into powers of the
normalized pumping rate:

i re5r 212
k/2

Gab
1

2g2

GabGb
1O~1/r !. ~63!

The intensity difference with the Lamb model can be e
pressed, in terms of photons number, in ther→` limit, as

I re2I 0→2
GaGbk

4g2~Ga1Gb!
1

Ga

Ga1Gb
'

kGa

4g2 . ~64!

This mismatch, which increases with the cavity damping r
k, may be large for realistic parameters. Moreover, the
tensity is predicted to be lower thanI 0 , yielding an inversion
higher than the Lamb’s model inversion:

D re2D0'
k2

4g2 , ~65!

a quite intriguing result. Our quantum model predicts tha
solution with such a population inversion should be unstab
It would be interesting to check whether the full Heisenbe
Langevin equations, linearized around the operating po
predicted by the rate-equation approach~linearization is pos-
sible in the semiclassical regime!, predict a stable or unstabl
solution. This work is under progress. In the following w
will find other indications of a failure of the rate-equatio
model in the high-intensity limit, particularly in the bad
cavity case.

B. Characterization of thresholdless behavior

Expression~53! can be used to give a very natural defin
tion of the thresholdless laser regime. Many definitions
the laser threshold in such regimes have already been
posed. The one we discuss here relies only on the in
output characteristic of the laser, which can be easily m
sured experimentally. In the semiclassical regime,I (R)
response presents a slope discontinuity at threshold. F
laser operating near the thresholdless regime, this disco
nuity disappears. One might expect that theI (R) curve be-
comes smoother and smoother when the laser approa
thresholdless operation. It thus seems natural to define
threshold as the point where the second derivative of
intensity with respect to the pumping rate is at a maximu
and to characterize the ‘‘distance’’ to the thresholdless
gime by the maximum value of the curvature. A closely r
lated definition based on second-order intensity correla
functions was proposed in Ref.@27#. In Lamb’s semiclassica
theory, this definition of the threshold obviously coincid
with the standard one. The second derivative turns ou
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have, in our approximate quantum model, a maximum at
normalized pumping rater qm, th given by

r qm, th512c~112Ga /Gb!. ~66!

When the parameterc is much lower than 1, this yields
r 51, in agreement with the Lamb model. Whenc increases,
the threshold decreases and the thresholdless laser con
reads as

W

Ga
S 11

2Ga

Gb
D.1. ~67!

If Ga!Gb , we simply obtain

c5
W

Ga
.1. ~68!

The parameterc represents the ratio ofW, the rate of
spontaneous emission into the laser mode to the total re
ation rate of levela. It measures the spontaneous emiss
efficiency from levela into the cavity mode as compared
other decay processes. As stated earlier, the connection
tweenc and b depends on the characteristics of the dip
and of the cavity under consideration, and it is not alwa
sufficient to reach the limitb→1 to observe thresholdles
lasing. In fact, when Eq.~17! applies, one has

b5
c

c1Ga
sp/Ga

, ~69!

which yields a simple relation between the parametersb and
c, when spontaneous emission is the only source of deca
the population from levela (Ga

sp5Ga). One then hasb
5c/(11c). In this case, the extreme thresholdless limitc
@1 corresponds tob→1, while b→0 is associated with a
regime reminiscent of the semiclassical threshold. O
should note, however, that there could be a well-mar
threshold even ifb;1, as long as other decay channels a
available andGa

sp!Ga* . Note also that, from Eq.~51!, c
'I sat

21 if k&Gab ~good cavity! and Ga&Gb . Thus, in this
case, the criterion for thresholdless lasing isc'I sat;1. On
the other hand, ifk@Gab ~bad-cavity limit!, the thresholdless
behavior impliesI sat!1.

When the thresholdless condition is not met, the ‘‘d
tance’’ from the thresholdless regime can be characterize
the value of the curvature at threshold.

h[S ]2i

]r 2D
r qm, th

5
1

4F S 11
Ga

Gb
D cS 12

Ga

Gb
cD G21/2

. ~70!

If Ga!Gb , then this expression reduces to

h5
1

4

1

Ac
. ~71!

In Fig. 2 we represent normalized intensityi qm5I /I sat
curves as a function of the normalized pumping rater
5R/Rth for various parametersc. The progressive evolution
from the semiclassical regime, where there is a discontin
of the slope, to the thresholdless laser, where the curvatu
e

ion

x-
n

be-

s

of

e
d
e

-
by

ty
of

the I (R) curve decreases montonically, is apparent. The
rows indicate, for each curve, the position of the thresh
defined as above.

Let us note that the rate equations lead, with the previ
definition of the laser threshold, to the same condition~67!
for a thresholdless laser. On the other hand, when there
clearly defined threshold, the corresponding pumping r
differs from the one given in Eq.~66!. In terms of pumping
rates, we immediately obtain

Rre, th5Rqm, th

Gab1k/2

Gab
. ~72!

Even in the semiclassical regime, where all models sho
converge to the Lamb one, rate equations~13! may predict a
threshold different from the usual one. The difference is v
ishingly small in the good-cavity limit, whenGab is by far
the highest damping rate, and the adiabatic rate equat
~14! apply. For bad cavities, the difference is large. Mor
over, in the very bad-cavity limit, the above equation p
dicts a quadratic variation of the threshold with the cav
damping rate. This is at complete variance with the expe
tions for a semiclassical laser. This result seems to indic
that the rate equations~13! correctly describe the laser onl
in the good-cavity limit. Since the only approximation lea
ing to these equations is the decorrelation hypothesis,
shows that the quantum correlations between the atomic
version and the photon number play an important role for
evolution of the quantum averages. This can be underst
qualitatively. When the laser intensity increases, the abso
amplitude of the photon number fluctuations increas
roughly as the square root of the laser intensity. Since
average population inversion is clamped, the relative fluct
tions of the populations are increasing with the intensity. T
correlation between these quantities may therefore play
increasing role in the laser dynamics. This is of course o
a qualitative argument. It is somewhat supported by the
merical simulations, where the correlations can be estima
They effectively play an increasing role at high intensity a

FIG. 2. Normalized intensityi 5I /I sat vs normalized pumping
rate r 5R/Rth . The parameterc is chosen to be 0.0008, and 0.0
0.2, 0.8, 80, for curves (a), (b), (c), (d), and (e), respectively.
For the smallerc values, the semiclassical threshold is clearly a
parent. Small arrows indicate the positions of threshold defined
the position of the maximum curvature. Whenc increases, the
threshold comes closer to zero pumping, until it finally disappe
for c.1.
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contribute by an increase of the laser intensity and a dim
tion of the population inversion. A much more detaile
analysis of these correlations is in high demand to clarify t
point.

C. Application of the models to the microsphere laser

We discuss now the results from the above models.
clarify the discussion and make it relevant to the experime
in progress, we will restrict the parameter space to the on
the Nd microsphere laser described in Ref.@7#. Let us stress
that our quantum model is not restricted to the study of t
very peculiar laser, and could be adapted to very many o
situations.

1. Parameters relevant to the microsphere laser

The system considered in Ref.@7# was a multimode laser
The total linewidth of the neodymium transition~about 60
nm! includes the nonresolved contributions of many inhom
geneously broadened transitions between various suble
It was much larger than the spacing between adjacent m
of the microspherical resonator~about 4.5 nm!. However,
this mode spacing is at least comparable with the homo
neous linewidth of the ionic transition~1500 GHz at room
temperature, corresponding to about 5 nm, of the same o
of magnitude as the inhomogeneous broadening for a si
transition!. The ions whose frequency is within one homog
neous linewidth from a resonant mode of the microsph
have only a slight interaction with the other modes. Indep
dent cavity modes therefore interact with independent io
populations. Furthermore, it was observed in the experim
@7# that all the lasing modes have approximately the sa
threshold. It is thus a good approximation to ignore the m
timode nature of the radiated field, replacing it by an effe
tive interaction between the atoms and a single mode of
field. The corresponding coupling constant, which mim
the couplings and frequencies of the different atoms, is
adjustable parameter, which can be determined from the
perimental data.

For the upper state of the lasing transition,Ga has been
measured to beGa51 krad/s. The relaxation rate ofb is
much higher. Since it does not enter in the final results
long as it is much larger thanGa , it can be taken asGb
510 Mrad/s. The cavity damping ratek is, for the best
spheres, of the orderk510 Mrad/s. It can be increased
will by adjusting the distance between the sphere and
coupling prism used to feed in the pumping light@7#. The
coupling parameterg is not very well known experimentally
since it depends on the sphere mode volume which canno
determined directly. In this discussion we will use two d
ferent values,g50.1 and 1 Mrad/s, which should span th
entire variation range.

Finally, the homogeneous linewidthGab is close to 5000
Grad/s at room temperature. When the sphere temperatu
reduced, this relaxation rate is bound to decrease, due to
lowering density of phonons in the material. Though th
temperature dependence is not very well known experim
tally, one might expectGab(T);T2 down to quite low
temperatures. Therefore, taking Gab(T5300 K)
55000 Grad/s as a reference, we may approxim
Gab(T)'50T2 Mrad/s, where the temperature is given
-
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Kelvin. At very low temperature, this behavior is bound
saturate, and we have used the minimum valueGab(T
50 K)520 Mrad/s~the actual value is yet completely un
known experimentally!. With this range of variation ofGab

andk, the laser can operate either in an ordinary semic
sical regime, with a well-marked threshold, or in a thresho
less one.

2. Average number of photons and population inversion

The intensity of the laser mode is plotted against
pumping rate in Fig. 3. For Figs. 3~a! and 3~b!, the cavity
relaxation ratek is chosen to be 10 Mrad/s, and the coupli
parameter is set tog51 and 0.1, respectively. The thresho
disappears and a deviation from the semiclassical theory
be observed in a wide range of the pumping rate, even
from the semiclassical threshold. The approximate analyt
model @Eq. ~53!# is in excellent agreement with the numer
cal results in both cases. As expected from the general
cussion, it can be seen in Fig. 3~b! that the rate equation
predict a somewhat smaller operating intensity. This beh
ior is more conspicuous in Fig. 3~c!, where the cavity has a
high relaxation rate (k5100 Mrad/s,g50.1 Mrad/s). It is
quite apparent from this figure that the threshold predicted
the rate equations, by extrapolation of the linear asympt
behavior, is significantly different from the Lamb one.

To make this mismatch more evident, in Fig. 4 we p
the analytical and numerical results for the population inv
sion ~in number of atoms! versus the pumping rate. The an
lytical curves are derived from Eqs.~20! and ~53! with the
help of the balance equation~12!. Any mismatch between
the different models for the steady-state intensities is am
fied by a factorD0 /I sat5k(Ga1Gb)/GaGb'k/Ga for the
population inversion. This factor is of the order of 104 for the
explored range of the parameters. The population invers
is therefore much more sensitive to the validity of the mod
than the intensity. The results provided by the two analyti
approaches are in good agreement in the region near
below the semiclassical threshold@see the inset in Fig. 4~a!
for g51 Mrad/s andk510 Mrad/s]. They start to deviate
in an intermediate pumping regime between the thresh
and the inversion clamping region, while the analytical qua
tum model’s curve still fits well on the numerical data. F
nally, for high pumping, the inversion is clamped at differe
values, as already discussed in Sec. VI A. Within the num
cal precision, in this high pumping regime, the numeric
results tend towards the semiclassical one,D0 , without any
remaining mismatch. In accordance with the original a
sumption expressed in Eq.~29!, i.e., a population inversion
much larger than the photon number in the mode, the
proximate quantum model’s agreement with the numer
values is slightly worse for higher pumping. However, t
maximum difference does not exceed 5%. Although the
lidity of the quantum model approximation can be que
tioned for such pumping rates, it seems to reproduce
numerical predictions satisfactorily.

On the other hand, as shown in Fig. 4~c!, in the case of a
bad cavity (g51 Mrad/s,k5100 Mrad/s) the rate equa
tions yield a population inversion strikingly different from
the ones, more or less equal, predicted by the three o
models.
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3. Spectrum

Figure 5 compare the phase diffusion linewidth 2ul2u as
a function of the pumping rate, obtained from Eq.~57!, with
the numerical results. Analytical and numerical results
very close to each other. These figures show clearly that
quantum model may safely be used to determine the l
spectrum. Some estimate of the linewidth can be infer

FIG. 3. Mean photon numberI vs normalized pumping rater
found numerically ~solid dots!, analytically from the quantum
model ~solid line! or analytically from the rate equations~short
dashed line!. The semiclassical linear dependence is displa
~dotted-dashed line! as well. Values of the parameters~in Mrad/s!
areGb510, Ga50.001, andGab520. To explore a wide range o
different output characteristics,g and k are varied: ~a! g
51 Mrad/s,k510 Mrad/s; ~b! g50.1 Mrad/s,k510 Mrad/s;
and ~c! g50.1 Mrad/s,k5100 Mrad/s. These parameter sets c
respond to operating points~a! c580 ~far in the thresholdless re
gime!, ~b! c50.8 ~almost a thresholdless laser!, and ~c! c50.27
~weak threshold!.
e
he
er
d

from the rate-equation approach as well. The eigenfrequ
cies of the rate-equation system, linearized around its ste
state operating point, should give an indication of the lin
width, as in the quantum approach.

For the caseg51 Mrad/s andk510 Mrad/s represented
in Fig. 5~a!, there are two distinct, real eigenvalues below
well-defined pumping rate. Above this pumping rate, cor
sponding to the singular point in Fig. 5~a!, the two eigenval-
ues become complex~above this point, we plot only the rea
part of the eigenvalues!. A complex eigenvalue means tha
the laser undergoes relaxation oscillations, not found in
quantum model. We note that one of the eigenfrequencie

d

-

FIG. 4. Steady-state population inversionD vs normalized
pumping rater, calculated numerically~solid dots! and analytically
from the quantum model~solid line! and the rate equations~short
dashed line!. The semiclassical clamped inversion is shown by
dotted-dashed line. Parameter values are the same as for Figs.~a!,
3~b!, and 3~c!, respectively. In the inset of~a!, a pumping rate range
corresponding to Fig. 3~a! is plotted.



ua
e

at

w
e
in

i

-

ith

ion
ut

y a
scil-
to

ent

the
vely
um
the
de,
ua-
r
illa-
ble

dy
.

f a
dif-

on
a

to-
pre-
ap-
and

on.
ree
tle
e of
to-

ity.

tw
ea
c
is
illa
la

rve
te-

e
uch
ber

1680 PRA 59I. PROTSENKOet al.
the rate-equation model approaches quite well, at least q
tatively, the numerically calculated linewidths. For the oth
parameter settings,g50.1 Mrad/s andk510, there is no
complex eigenvalue within the plotted range of pumping r
@Fig. 5~b!#.

The analytical solution for the linewidth in Eq.~57!, in the
high pumping regime, leads to a modified Schawlo
Townes limit. Approximation~59! pertains to this case. Th
differencei qm2 i 0 can be expressed by means of expand
solution ~53! into powers of 1/i 0 . Thus one obtains

2ul2u>
kGab

k/21Gab

c

i 0
F11~11 i 02c!

Ga

Gb
2cS Ga

Gb
D 2G

1O~1/i 0
2!. ~73!

The Schawlow-Townes formula is recovered in the lim
Ga /Gb→0,

2ul2u>
kGab

2

~Gab1k/2!2

1

I 0
, ~74!

FIG. 5. Laser linewidth found numerically~solid dots! and ana-
lytically from the quantum model~solid line! for the parameter
values~in Mrad/s! Ga50.001, Gb510, andGab520. ~a! and ~b!
correspond tog51 Mrad/s,k510 Mrad/s andg50.1 Mrad/s,k
510 Mrad/s, respectively. The short dashed lines represent
eigenfrequencies of the rate equations linearized around the st
state. In~a!, the two eigenfrequencies become degenerate at a
tain pumping rate. Above this pumping rate, they have nonvan
ing imaginary parts indicating the presence of relaxation osc
tions. The dash-dotted line represents a Schawlow-Townes
adjusted to the high-above-threshold regime.
li-
r

e

-

g

t

reducing tok/I 0 in the good-cavity limit, as expected. Oth
erwise, the linewidth tends to a finite value wheni 0@1. With
our parameter setting,Ga /Gb is negligible. As a result, the
Schawlow-Townes law, properly scaled, fits quite well w
the laser linewidth~see Fig. 5!.

The quantum-mechanical model never exhibits relaxat
oscillations in the laser intensity. They are clearly ruled o
by the assumption that the population inversion is nearl
constant. Since the rate-equation model predicts such o
lations for a high enough pumping rate, it is interesting
look at the numerical predictions. We display the transi
buildup of the laser field at pumping rater 51000 in Fig. 6,
and compare the numerical results with the predictions of
quantum and rate-equation models. One observes effecti
small-amplitude oscillations, not predicted by the quant
model. Note that the relaxation oscillations predicted by
Lamb semiclassical model have a much larger amplitu
equal to five times the steady-state intensity. The rate eq
tions ~13!, which fail to describe correctly the lasers fa
above threshold, nevertheless correctly predict these osc
tions. Since the relaxation oscillations are easily observa
experimentally, it would be extremely interesting to stu
them in detail in order to check the validity of the models

VII. CONCLUSIONS

In this work we have presented a theoretical analysis o
thresholdless laser. We have solved the problem by two
ferent procedures: an analytical quantum model, based
neglecting the fluctuations in the atomic inversion; and
numerical integration of the corresponding nonlinear s
chastic Langevin equations. We have also compared the
dictions of these models to the ones of a rate-equation
proach, which takes into account spontaneous emission
does not require the adiabatic elimination of the polarizati
The numerical predictions and the quantum model ag
quite well, either for the laser intensity or for more sub
quantities such as the laser spectrum, in a very wide rang
parameters. Moreover, these two models nicely converge
ward the Lamb semiclassical predictions at high intens

o
dy

er-
h-
-
w

FIG. 6. Transient behavior of the laser intensity. The solid cu
found is from quantum theory, the dashed curve from the ra
equation model. Parameters are the same as for Fig. 3~a!, and the
pumping rate isr 51000 in terms of threshold pumping rate. For th
same parameter setting, the semiclassical theory predicts m
more accentuated oscillations, attaining a maximum photon num
of about 50.
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The agreement with the quantum rate equations is less
pressive, especially at high intensities. These results
some doubt on the rate-equation model, particularly in
bad-cavity limit.

We use also the quantum model to shed some light on
role of the spontaneous emission rate in the laser cavity.
give a definition of the laser threshold and of the thresho
less laser regime which can be easily used experiment
since it is based only on the intensity vs pumping charac
istic of the laser. The thresholdless regime is defined b
simple and intuitive criterion: the spontaneous emission
in the mode should dominate the decay rate of the up
level of the lasing transition. When the only decay chan
from level a is spontaneous emission into the lasing mo
thresholdless operation occurs as soon asb.1. When levela
may decay by nonradiative channels, we show that this d
nition does not hold any longer. The laser might still hav
well-marked threshold in spite of a largeb factor.

Finally, we have studied in detail the models in the ca
of neodymium-doped microsphere lasers. We have sh
that the thresholdless regime could be reached experim
tally at low temperatures. We have also calculated the po
spectrum of the laser field, obtaining an expression wh
can be applied to the region close to threshold, when b
phase diffusion and photon-number fluctuations contribut
the linewidth, and which reproduces the well-know
Schawlow-Townes spectrum when the laser is well ab
threshold. The experiment aiming at testing these results
microsphere laser are now under progress.
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APPENDIX: INTEGRAL IN EQ. „47…

In this appendix we calculate the integral

J5
1

2pE dv

uD~v!u2
~A1!
T
nt,

.

P.
-
st
e

e
e
-

ly,
r-
a
te
er
l
,

fi-
a

e
n
n-
er
h
th
to

e
a

f
,

where, according to Eq.~41!,

uD~v!u25~v21l1
2 !~v21l2

2 !,

with

l1
2 1l2

2 522g2~D02D!1S k

2
1GabD 2

,

~A2!

l1
2 l2

2 5g4~D02D!2.

The integralJ can be performed by going through the fo
lowing steps:

J5
1

2pE dv

~v21l1
2 !~v21l2

2 !

5
1

2p

1

l2
2 2l1

2 E F 1

v21l1
2 2

1

v21l2
2 Gdv

5
1

2p

1

l2
2 2l1

2 F 1

ul1u
2

1

ul2uG E dy

11y2

5
1

2

ul2u2ul1u
ul2uul1u~l21l1!~l22l1!

5
1

2

1

ul2uul1u~ ul2u1ul1u!
,

where we obtain from Eq.~A2! that

ul1uul2u5g2uD02Du,

~ ul1u1ul2u!25l1
2 1l2

2 12ul1uul2u.

Since we know thatD0.D, because of the stability of the
solution, we can get rid of the absolute value signs and
nally obtain

J5
1

2g2~D02D!~k/21Gab!
. ~A3!
.
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