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Radiation modes of a cavity with a resonantly oscillating boundary
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We present exact analytic solutions to describe the quantum dynamics of the radiation modes in a one-
dimensional cavity vibrating at any one of its resonance frequencies. For a cavity vibrating at itsmth (m
>2) eigenfrequency,m traveling wave packets emerge in the finite part of the field energy density and their
amplitudes grow while their widths shrink in time, representing a large concentration of energy. There also
exists a ‘‘sub-Casimir’’ region where the energy density equalsm2 times the static Casimir energy density.
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Since Moore’s pioneering work in 1970@1#, there have
been intensive studies on the quantum theory of the elec
magnetic field in a cavity with moving boundaries@2–11#.
The topic is of fundamental theoretical interest in that it
veals a number of delicate features of quantum physics s
as the dynamical modification of the Casimir force@3# and
the vacuum emission of photons with nonclassical pho
statistics@4–6,10#. On the other hand, the subject is also
practical importance since it may be closely related
sonoluminescence@11,12#, high-precision optical interferom
etry @13#, the generation of squeezed light@14#, and quantum
nondemolition measurements@15#, etc.

Among these investigations, much effort has been focu
on the radiation modes of a one-dimensional cavity with o
fixed and one oscillating mirror, particularly when it osc
lates periodically at the eigenfrequencies of the unpertur
cavity modes. Such resonant couplings could greatly dis
the vacuum field and lead to pronounced modifications o
number of quantum effects of the vacuum. Theoretical st
ies of such systems have so far been mainly limited to
small-oscillation-amplitude regime by using various sma
parameter expansions~see, e.g., @5#!. However, these
schemes break down when the oscillation amplitudes
large, just when the physics become interesting. It is t
desirable to obtain exact solutions to the resonant coup
problem. Law made progress to this end by obtaining
exact solution for the particular case of a cavity vibrating
the second resonance and finding a coherent structure em
ing as narrow wave packets in the energy density@6#. To our
knowledge, no one has succeeded in obtaining any othe
act solution to the resonant coupling problem until now.

On the other hand, Cole and Schieve@7# have recently
developed a simple and elegant method to calculate num
cally the dynamics of the quantum vacuum field in a on
dimensional cavity with an arbitrarily moving boundary. A
plying this numerical method to the resonant coupli
problem, they@7# found that the long-time solution of a sys
tem with undamped resonant mirror motion is determined
just two factors: the points in time at which the wall retur
to its unperturbed position and the direction the wall w
displaced in between these points in time.
PRA 591050-2947/99/59~2!/1662~5!/$15.00
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In this paper, we present a family of exact analytical s
lutions to the resonant coupling problem, with each solut
corresponding to a particular resonant frequency at which
mirror oscillates. In the particular case of the second reson
mode, our solution reduces to the one obtained by Law@6#.
We show that the concentration of energy into narrow wa
packets is a general phenomenon forall resonance vibrations
of the cavity. Furthermore, the amplitudes of these ene
wave packets grow rapidly in time, producing sharp and
tense pulses of photons.

We consider the dynamics of the quantum vacuum i
one-dimensional cavity formed by two ideal mirrors: o
fixed atx50 and the other moving in a prescribed trajecto
x5q(t), whereq(t<0) is assumed to be a constantL0 . The
field quantization of this system is done by expressing
vector potential as@1#

A~x,t !5 (
k51

`

@akfk~x;t !1ak
†fk* ~x;t !#, ~1!

whereak and ak
† are the time-independent annihilation an

creation operators defined for the mode structure existing
t<0. The mode functionsfk(x;t) are given in terms of an
auxiliary functionR(z) as

fk~x;t !5
i

A4pk
~e2 ikpR~z1!2e2 ikpR~z2!!, ~2!

where z6[t6x and we have takenc5\51 for conve-
nience. HereR(z) is a real function that satisfies

R„t1q~ t !…5R„t2q~ t !…12 ~3!

and R(z<L0)5z/L0 . A unique solution forR(z.L0) is
then defined by the recursion relation~3! once a mirror tra-
jectory q(t>0) is given. Here we consider a family of mir
ror trajectories described by

qm~ t>0!5L01
L0

mpH sin21Fsinum cos
mpt

L0
G2umJ , ~4!
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where m>1 can be any positive integer and the princip
value of the function sin21 x is assumed. The time
independent parameterum(uumu,p/2) can be either positive
or negative and is defined by tanum[mep/2L0 , where e
can be of both signs and its magnitude characterizes the
cillation amplitude of the moving mirror. Obviously,qm de-
scribes the trajectory of a mirror oscillating at a frequen
Vm5mp/L0 , which is themth eigenfrequency of the unpe
turbed cavity. The trajectory considered by Law@6# is a
member of this family (m52 andu2.0). In general, ife is
small ~i.e., eVm!1),

qm~ t>0!5L02e sin2
Vmt

2
1O~um

3 !. ~5!

Thusum,0(.0) corresponds to the case of a vibrating m
ror that always displaces outward~inward! from its original
position during each oscillation. In addition,qm(t>0) is
well described by a simple harmonic motion with the fr
quencyVm as long as the oscillation amplitudeme is small
compared to the original cavity lengthL0 .

Usingqm(t<0)5L0 andqm(t>0) from Eq.~4!, the cor-
responding unique exact solution for the recursion equa
~3! is R(z<L0)5z/L0 and

Rm@~2n21!L01j#

52n211
2

mp
cot21FcotS Vmj

2 D22n tanumG ,
~6!

where Rm is the R(z) corresponding to the trajector
qm(t), n>1 is any positive integer, andjP(0,2L0# is a
variable. Here the branch of the multivalued functi
cot21(x) should be properly chosen to avoid any discontin
ity in R(z). The particular solutionR2 for positiveu2 can be
easily shown to be identical to the solution found by Law@6#
except for the different notation. We have checked our a
lytic solutions for some of the trajectories in Eq.~3! with
numerical solutions using the method in Ref.@7# and found
excellent agreement.

We plot Rm(z) for m51,2,3,4, e50.01L0 , and positive
um in Fig. 1 as an illustration. It can be seen from Fig. 1 a
Eq. ~6! thatRm(z) has the staircase structure that develops
z increases. Asz→`, Rm(z) approaches a ‘‘perfect’’ stair
case with arbitrarily flat steps of widths 2/m and arbitrarily
small transition regions between the steps of heights 2m.
These steps of the phase factors in the mode funct
fk(x;t) impart to the vacuum a coherent structure that
exhibited as narrow wave packets in the energy density.
mentioned above, the long-time solution ofR(z) for a sys-
tem with an undamped resonant wall motion is shown@7# to
be determined by only two factors, namely, the points
time at which the wall returns to its unperturbed positio
and the direction the wall is displaced in between th
points in time. Hence each one of our solutions, say, fo
fixed m and um.0 (,0), is representative of a class o
motions where the wall is displaced inward~outward! at each
oscillation and returns to its unperturbed position with per
2L0 /m. Therefore, our exact solutions represent in fact
l
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possible kinds of resonant perturbations as far as the lo
time asymptotics are concerned.

Once the solutionR(z) is known, the vacuum energy den
sity can be found immediately by using the general form
derived by Fulling and Davies@8#. The cutoff-independen
expression of the vacuum energy is@6,7#

^T00~x,t !&52 f ~ t1x!2 f ~ t2x!, ~7!

with

24p f 5
R-

R8
2

3

2S R9

R8
D 2

1
p2

2
~R8!2, ~8!

FIG. 1. Phase functionR(z) @see Eq.~6!# for a one-dimensional
cavity vibrating with an amplitudee50.01L0 and positiveum at the
first four resonance frequenciesm51,2,3,4.
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whereR8, R9, etc., are the derivatives ofR. Substituting the
form Rm into this equation, we obtain the correspondingf
~denotedf m) as

f m@~2n21!L01j#52
m2

2
Esct2

~m221!p

48L0
2Dn,m

2 ~j!

1
m2pe

24L0
2

d~j22L0!, ~9!

where Esct52p/24L0
2 is the static Casimir term that i

present even when the mirrors are at rest and

FIG. 2. Snapshots of the energy density in a one-dimensio
cavity vibrating with an amplitudee50.01L0 and positiveum at
four resonance frequenciesm52,3,4,5. The curves correspond
four instancest520L0 ,30L0 ,40L0 ,50L0 .
Dn,m~j!5112tn,m
2 ~12cosVmj!22tn,m sinVmj,

~10!

with tn,m[n tanum5neVm/2. Again, the expressionf 2 for
positive u2 is easily shown to be identical to that found b
Law @6#.

The first term on the right-hand side of Eq.~9! is inde-
pendent of the space-time variable and determines the lo
time energy density in the so-called sub-Casimir region, i
the region far from those of the wave packets@6#. It contrib-
utes m2Esct to the vacuum energy density. Thed-function
term is caused by an abrupt initial acceleration of the mov
mirror at t50 @6,7#. The second term on the right-hand sid
of Eq. ~9! describes a coherent structure exhibited as nar

al FIG. 3. Energy density atx50.5L0 vs time in a one-dimensiona
cavity vibrating with an amplitudee50.01L0 and positiveum at
four resonance frequenciesm52,3,4,5.
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wave packets in the energy density. A straightforward ana
sis of the functionDn,m shows that for a given value ofn and
m>2, f m hasm identical peaks located within the interv
jP(0,2L0), representingm wave packets traveling back an
forth inside the cavity with the speed of light, as shown
Fig. 2. Their heights and widths are proportional totn,m

4 and
tn,m

22 , respectively, asutn,mu@1, which means that the ampl
tudes of the traveling wave packets grow while their wid
shrink in time. This is shown clearly in Fig. 3, where th
energy density atx50.5L0 is plotted as a function of time.

For the special case ofm51, the second term on th
right-hand side of Eq.~9! vanishes because it is proportion
to (m221) and hence there exists no traveling wave pac
even thoughDn,m51

22 does have a maximum value within th
intervaljP(0,2L0) proportional totn,m51

4 asutn,m51u@1. A
staircase structure does develop inR1(z) and asz→`, it
approaches a perfect staircase with a height of 2, the hig
jump height of allm ~note that the jump height is 2/m).
However, the combination of the derivativesR18 , R19 , and
R1- in the expression of the vacuum energy density happ
to exactly cancel out the effect of the jump inR1 , resulting
in no traveling wave packet at all.

We emphasize that the emergence of them (>2) travel-
ing wave packets in themth resonant perturbation case is
generic and robust result. The existence of these wave p
ets is insensitive to the exact form ofq(t). However, their
absence in the fundamental resonant case (m51) is not a
generic behavior. In other words, a wave packet may eme
if the mirror trajectory deviates only a little from our chose
q1 . This can be understood by noting that the cancellation
the jump effect ceases to be exact if some or all of the
rivatives R18 , R19 , and R1- are slightly modified. However
even a partial cancellation should greatly reduce the am
tude of the wave packet form51 compared to other reso
nances@7#. This point, together with the fact that the ener
density in the sub-Casimir regionm2Esct is identical to the
static Casimir energyEsct for m51, reflects the reluctance o
the vacuum to respond to the fundamental resonant pertu
tion. In other words, the fundamental resonant perturbatio
not effective in creating photons and in enhancing the
simir force. This conclusion has previously been drawn
small-amplitude oscillations only@3#, while here we show
that it is true in general. As discussed above, our exact a
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lytical expression for the vacuum energy density for the t
jectory family qm(t) captures all the robust and generic fe
tures of the vacuum energy density for all possible kinds
resonant perturbationsq(t).

The emergence of narrow wave packets in the ene
density implies a large concentration of energy within t
cavity. By the action of driving a cavity to vibrate at one
its resonance frequencies, one cansqueezean initially uni-
form field of energy into extremely sharp pulses, ev
though the governing equation for the cavity field is a sim
linear wave equation. The resulting photon production r
can be easily calculated using our exact results forR and a
formula developed by Dodonov and Klimov@5#; we plan to
present and discuss these elsewhere. It will be extrem
interesting to observe this effect experimentally. We are a
exploring the possibility that this mechanism may expla
the phenomenon of single-bubble sonoluminescence,
which an air bubble suspended in water driven to oscillate
ultrasound emits an intense light pulse in every cycle, rep
senting an enormous energy concentration@12#.

In summary, we have presented a family of exact anal
cal solutions for the quantum vacuum field in a on
dimensional cavity vibrating in any one of its resonance f
quencies. We show that forall harmonic resonances
staircase structures develop in the phase functionR and wave
packets emerge in the energy density form>2, whose am-
plitudes grow while their widths shrink in time, greatly con
centrating the energy. Outside these wave packets is the
Casimir region where the energy density equalsm2 times the
static Casimir energy density. In view of the conclusion fro
numerical solutions that the long-time behavior of the syst
is insensitive to the exact trajectories of the moving mir
@7#, our exact analytical solutions presented here contain
the main generic features for all possible kinds of reson
vibrations of a one-dimensional cavity.
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