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Radiation modes of a cavity with a resonantly oscillating boundary
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We present exact analytic solutions to describe the quantum dynamics of the radiation modes in a one-
dimensional cavity vibrating at any one of its resonance frequencies. For a cavity vibratingrah iten
=2) eigenfrequencyn traveling wave packets emerge in the finite part of the field energy density and their
amplitudes grow while their widths shrink in time, representing a large concentration of energy. There also
exists a “sub-Casimir’ region where the energy density equalstimes the static Casimir energy density.
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Since Moore’s pioneering work in 197], there have In this paper, we present a family of exact analytical so-
been intensive studies on the quantum theory of the electrdutions to the resonant coupling problem, with each solution
magnetic field in a cavity with moving boundarigg-11].  corresponding to a particular resonant frequency at which the
The topic is of fundamental theoretical interest in that it re-mirror oscillates. In the particular case of the second resonant
veals a number of delicate features of quantum physics sudhode, our solution reduces to the one obtained by [@lv
as the dynamical modification of the Casimir fof& and  We show that the concentration of energy into narrow wave
the vacuum emission of photons with nonclassical photorPackets is a general phenomenondmesonance vibrations
statistics[4—6,10. On the other hand, the subject is also of Of the cavity. Furthermore, the amplitudes of these energy
practical importance since it may be closely related towave packets grow rapidly in time, producing sharp and in-
sonoluminescendd 1,12, high-precision optical interferom- tense pulses of photons.
etry[13], the generation of squeezed light], and quantum We consider the dynamics of the quantum vacuum in a
nondemolition measuremerits5], etc. one-dimensional cavity formed by two ideal mirrors: one

Among these investigations, much effort has been focusetixed atx=0 and the other moving in a prescribed trajectory
on the radiation modes of a one-dimensional cavity with onex=q(t), whereq(t<0) is assumed to be a constant The
fixed and one oscillating mirror, particularly when it oscil- field quantization of this system is done by expressing the
lates periodically at the eigenfrequencies of the unperturbedector potential agl]
cavity modes. Such resonant couplings could greatly distort .
the vacuum field and lead to pronounced modifications of a
number of quantum effects of the vacuum. Theoretical stud- A(X't):gl [adi(x;t) + gk (;1)], @
ies of such systems have so far been mainly limited to the

small-oscillation-amplitude regime by using various small-wherea, anda; are the time-independent annihilation and
parameter expansiongsee, e.g.,[5]). However, these (reation operators defined for the mode structure existing for

schemes break down when the oscillation amplitudes are<g The mode functiongb(x;t) are given in terms of an
large, just when the physics become interesting. It is thu%uxiliary functionR(z) as

desirable to obtain exact solutions to the resonant coupling
problem. Law made progress to this end by obtaining an i
exact solution for the particular case of a cavity vibrating at dr(x;t) = ——(e K7R(Z1) — g~ ikmR(z))
the second resonance and finding a coherent structure emerg- 4k
ing as narrow wave packets in the energy derigity To our
knowledge, no one has succeeded in obtaining any other e}¢there z.=t*x and we have takem=#=1 for conve-
act solution to the resonant coupling problem until now.  nience. HereR(z) is a real function that satisfies

On the other hand, Cole and Schievd have recently
developed a simple and elegant method to calculate numeri- R(t+q(t)=R(t—q(t)+2 3
cally the dynamics of the quantum vacuum field in a one- . . .
dim)(/ansiona)lll cavity with an grbitrarily moving boundary. Ap- and R(zéLO):Z/LO' A unique sol.ut|on forR(z} Lo) is
plying this numerical method to the resonant couplingf[hen defined bY th? recursion relatl(m_once a mirror tra-
problem, they{ 7] found that the long-time solution of a sys- Jectoryq(tz_O) Is given. Here we consider a family of mir-
tem with undamped resonant mirror motion is determined by©" trajectories described by
just two factors: the points in time at which the wall returns L
to its unperturbed position and the direction the wall was ¢ (1=0)=L,+ -0
displaced in between these points in time. mi
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wherem=1 can be any positive integer and the principal 40
value of the function sin'x is assumed. The time-
independent parametdy,(| ,,| < /2) can be either positive sl ™1
or negative and is defined by tap=mem/2L,, wheree

can be of both signs and its magnitude characterizes the os
cillation amplitude of the moving mirror. Obviously,, de-
scribes the trajectory of a mirror oscillating at a frequency
Q,,=mmx/Lg, which is themth eigenfrequency of the unper- 10
turbed cavity. The trajectory considered by L4#] is a
member of this family fn=2 and#,>0). In general, ife is
small (i.e., eQ,<<1),

35

R(2 29

30
30 35

Q.t 30, m=2
qm(t>O):Lo—esinsz+O(0,3n). (5) s
RA2 204

Thus 6,,<0(>0) corresponds to the case of a vibrating mir-
ror that always displaces outwatthward) from its original 10
position during each oscillation. In additiow,,(t=0) is 30
well described by a simple harmonic motion with the fre-
quency(),, as long as the oscillation amplitudee is small
compared to the original cavity length,.

Usingq,,(t<0)=L, andq,,(t=0) from Eq.(4), the cor- 301 -3
responding unique exact solution for the recursion equation 35
(3) is R(z=Lg)=27/L, and R{2) 20

o

Ral(2n=1)Lo+£] .

30

2 Q
=2n—1+ —cot ! cot(—mg) —2ntané,,
mar 2

(6)
30
where R,, is the R(z) corresponding to the trajectory m=4 35
dm(t), n=1 is any positive integer, ande (0,2Ly] is a R 20
variable. Here the branch of the multivalued function
cot }(x) should be properly chosen to avoid any discontinu-
ity in R(z). The particular solutioR, for positive 4, can be
easily shown to be identical to the solution found by L@y % *
except for the different notation. We have checked our ana- 0
lytic solutions for some of the trajectories in E) with
numerical solutions using the method in Regf] and found

excellent agreement. . FIG. 1. Phase functioR(z) [see Eq(6)] for a one-dimensional
We plotRn(2) for m=1,2,3,4, €=0.01Lo, and positive  cayity vibrating with an amplitude=0.01L, and positived,, at the
m in Fig. 1 as an illustration. It can be seen from Fig. 1 andfirst four resonance frequencies=1,2,3,4.

Eq. (6) thatR,(z) has the staircase structure that develops as
zincreases. Ag—x, R,(2) approaches a “perfect” stair-
case with arbitrarily flat steps of widthsr@/and arbitrarily
small transition regions between the steps of heights. 2/
These steps of the phase factors in the mode function&
é(x;t) impart to the vacuum a coherent structure that isd
exhibited as narrow wave packets in the energy density. A
mentioned above, the long-time solution Rfz) for a sys-
tem with an undamped resonant wall motion is sh¢&to

be determined by only two factors, namely, the points in (Tog(X,t)y=—f(t+x)—f(t—x), (7)
time at which the wall returns to its unperturbed position,

and the direction the wall is displaced in between these .

points in time. Hence each one of our solutions, say, for vith

fixed m and 6,,>0 (<0), is representative of a class of

1] 10 20 30 40

2L,

possible kinds of resonant perturbations as far as the long-
time asymptotics are concerned.

Once the solutioR(z) is known, the vacuum energy den-
ty can be found immediately by using the general formula
erived by Fulling and Davieg3]. The cutoff-independent
@xpression of the vacuum energy[&7]

motions where the wall is displaced inwga@ltward at each R 3[R'\2 2
oscillation and returns to its unperturbed position with period 20mf= — — _( _ _,_W_(R/)Z, (8)
2Lo/m. Therefore, our exact solutions represent in fact all R 2\R 2
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FIG. 2. Snapshots of the energy density in a one-dimensional FIG. 3. Energy density at=0.5_ vs time in a one-dimensional
cavity vibrating with an amplitude=0.01L, and positived,, at cavity vibrating with an amplitude=0.01L, and positived,, at
four resonance frequencies=2,3,4,5. The curves correspond to four resonance frequencies=2,3,4,5.
four instances=20L,,30L,40L,,50L.

2 .
whereR’, R’, etc., are the derivatives & Substituting the Dnm(€)=1+27; n(1—008Qy&) — 270, SINQé, 10
form R,, into this equation, we obtain the corresponding

(denotedf;) as with 7, n=ntanf,=ne() /2. Again, the expressiofy, for

positive 6, is easily shown to be identical to that found by

m? (m*—1)m Law [6].
ful(2n—1)Lo+ &)=~ 7E5°t_48L2D2 (&) The first term on the right-hand side of E@®) is inde-
0= n.m pendent of the space-time variable and determines the long-
2me time energy density in the so-called sub-Casimir region, i.e.,
> 0(£—2L), (9)  the region far from those of the wave packgd§ It contrib-
4aLo utesm’Eg to the vacuum energy density. Thfunction

term is caused by an abrupt initial acceleration of the moving
where Eq=— m/24L3 is the static Casimir term that is mirror att=0 [6,7]. The second term on the right-hand side
present even when the mirrors are at rest and of Eq. (9) describes a coherent structure exhibited as narrow
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wave packets in the energy density. A straightforward analytytical expression for the vacuum energy density for the tra-
sis of the functiorD, ., shows that for a given value afand  jectory family g,,(t) captures all the robust and generic fea-
m=2, f,, hasm identical peaks located within the interval tures of the vacuum energy density for all possible kinds of
£e(0,2L,), representingn wave packets traveling back and resonant perturbatiorg(t).
forth inside the cavity with the speed of light, as shown in  The emergence of narrow wave packets in the energy
Fig. 2. Their heights and widths are proportionalfg, and  density implies a large concentration of energy within the
5, respectively, abr, /> 1, which means that the ampli- cavity. By the action of driving a cavity to vibrate at one of
tudes of the traveling wave packets grow while their widthsits resonance frequencies, one cajueezen initially uni-
shrink in time. This is shown clearly in Fig. 3, where the form field of energy into extremely sharp pulses, even
energy density ak=0.5_ is plotted as a function of time. though the governing equation for the cavity field is a simple
For the special case ah=1, the second term on the linear wave equation. The resulting photon production rate
right-hand side of Eq(9) vanishes because it is proportional can be easily calculated using our exact resultsRi@nd a
to (m?—1) and hence there exists no traveling wave packeformula developed by Dodonov and Klim§g]; we plan to
even thougrD,j’ﬁpl does have a maximum value within the present and discuss these elsewhere. It will be extremely
interval ¢ e (0,2) proportional tor? |, as|7, n-y/>1. A  interesting to observe this effect experimentally. We are also
staircase structure does developRq(z) and asz—, it  €xploring the possibility that this mechanism may explain
approaches a perfect staircase with a height of 2, the highetiteé phenomenon of single-bubble sonoluminescence, in
jump height of allm (note that the jump height is ). which an air bubble suspended in water driven to oscillate by
However, the combination of the derivative§, R}, and  ultrasound emits an intense light pulse in every cycle, repre-
R} in the expression of the vacuum energy density happer®€Nting an enormous energy concentrafibd).

to exactly cancel out the effect of the jumpRy, resulting In summary, we have presented a family of exact analyti-
in no traveling wave packet at all. cal solutions for the quantum vacuum field in a one-

We emphasize that the emergence ofrtheg(=2) travel- dimensional cavity vibrating in any one of its resonance fre-

ing wave packets in thenth resonant perturbation case is g guencies. We show that foall harmonic resonances,

generic and robust result. The existence of these wave pacﬁgachase structur_es cri]evelop n tge phasmi;un@tl?]nd wave
ets is insensitive to the exact form gft). However, their Packets emerge in the energy density fior 2, whose am-

absence in the fundamental resonant case=1) is not a plitudes grow while their widths shrink in time, greatly con-
generic behavior. In other words, a wave packet may emerg ent_rat_mg the energy. Outside these wave pack(_ats is the sub-
if the mirror trajectory deviates only a little from our chosen —@Simir region where the energy density equafsimes the

g,. This can be understood by noting that the cancellation O§tatic Casimir energy density. In view of the conclusion from

the jump effect ceases to be exact if some or all of the de[1umerical solutions that the long-time behavior of the system

rivatives R,, R, andR! are slightly modified. However is insensitive to the exact trajectories of the moving mirror
1> 1> 1 . ’

even a partial cancellation should greatly reduce the amplim’ our exact analytical solutions presented here contain all

tude of the wave packet fan=1 compared to other reso- the m_ain generic fea_tures _for all po_ssible kinds of resonant
nanceq7]. This point, together with the fact that the energyV'bratlorls of a one-dimensional cavity.

density in the sub-Casimir regiom’E is identical to the This work was partially supported by Hong Kong Re-
static Casimir energf.. for m= 1, reflects the reluctance of search Grants Council Grant No. CUHK 312/96P and a Chi-
the vacuum to respond to the fundamental resonant perturbaese University Direct Grar(Project No. 2060093 Y. W.
tion. In other words, the fundamental resonant perturbation isvas also partially supported by the National Science Foun-
not effective in creating photons and in enhancing the Cadation of China under Grant Nos. 69688004 and 69788002
simir force. This conclusion has previously been drawn forand the National Laboratory of MRAMP at Wuhan Institute
small-amplitude oscillations onl{3], while here we show of Physics and Mathematics, The Chinese Academy of Sci-
that it is true in general. As discussed above, our exact anances.
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