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Stochastic wave-function method for non-Markovian quantum master equations
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A generalization of the stochastic wave-function method to quantum master equations which are not in
Lindblad form is developed. The proposed stochastic unraveling is based on a description of the reduced
system in a doubled Hilbert space and it is shown that this method is capable of simulating quantum master
equations with negative transition rates. Non-Markovian effects in the reduced systems dynamics can be
treated within this approach by employing the time-convolutionless projection operator technique. This ansatz
yields a systematic perturbative expansion of the reduced systems dynamics in the coupling strength. Several
examples such as the damped Jaynes-Cummings model and the spontaneous decay of a two-level system into
a photonic band gap are discussed. The power as well as the limitations of the method are demonstrated.
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I. INTRODUCTION raveling. In this approach the stochastic equation of motion
for the reduced state vector involves a multiple time integra-
The theory of open quantum systems is a fundamentdion over the system’s history conditioned on the measure-
scopic and macroscopic level in many fields of physics, sucR€en claimed recently by Déband co-worker$13,14 that
as quantum optics, and solid state physics. Besides the coff-'S.In Principle possible to construct an exact stochastic
ventional density matrix formalism, there has been an in-iggf\'g?ftrioﬁq;a:g% Vég'Chu;niﬁﬁ:'zezté%e non-Markovian
creasing interest over the last years in the stochastic Wavé— ben q y '

; X In this article we present an extension of the stochastic
function method 1-6], where the state of the open system IS\ yave-function method beyond the Born-Markov approxima-

described by an ensemble of pure states instead of a reducgd, \yhich is based on the time-convolutionless projection
density matrix. This method permits a description of the dy-yherator techniquéls,16. This ansatz yields a systematic
namics of an individual quantum system subject to a continupertyrhative expansion scheme for the stochastic dynamics
ous measuremeif7,8] and hence provides additional infor- of the reduced system which is valid in an intermediate cou-
mation about the state of the system compared to thg|ing regime where non-Markovian effects are important, but
description by a reduced density matrix. Moreover, the stog perturbative expansion is still justified. The major advan-
chastic wave-function method has been shown to be an efage of our method is that it does not rely on an enlarged
fective numerical tool for the solution of density matrix phase space and that it uses a stochastic evolution equation
equations with many degrees of freedom since a reducedhich is local in time.
density matrix hadN? degrees of freedom, whereas a sto- The paper is organized as follows. In Sec. Il we briefly
chastic wave vector only hdas component$9,10]. review three different approaches to equations of motion for
Since the stochastic wave-function method originated irthe reduced density matrix: the derivation of the Markovian
the context of quantum optics most publications on this subguantum master equatiéSec. Il A), the Nakajima-Zwanzig
ject consider the weak coupling regime and the Born-Projection operator techniqu&ec. Il B, which yields a gen-
Markov approxima‘tion seems to be inevitab'y Connecte@ra“zed master equat}on, and the tlme-_COI’lVO|UtI0n|ESS pI’O-
with this approach. On the other hand, the stochastic wavd€ction operator techniqu&Sec. 11 O, leading to a quantum
function method could also provide a useful numerical toolMaster equation which is local in time. Section IIl deals with
in other fields of physics, where the Born-Markov approxi- € stochastic unraveling of quantum master equations: in
mation is not justified. This has been shown, for example, b>§ec. A We review fche stoc_hast_lc unraveling of quantum
Imamoglu[11], who extended the stochastic wave-function Master .equat|ons which are in L'T‘db'ad form, .SUCh as the
method to the strong coupling regime by considering an enl_\/larkowan quantum master equation, vyhereas n _Sec. “l.B
larged system which contains a few fictitious bath modes thaf/® present an unraveling of ?‘rb't.rary linear density matrix
are weakly coupled to a Markovian environment. AIthoughequ""t'on.S which are local in time, .SUCh as the tl_me-
this concept is quite general, the drawback of this method igonvolutlonlefss quantum master equation. Th_ese algorithms
obvious: even if the state space of the system is small, th@"® then applied to the damped Jaynes-Cummings model and
numerical treatment of the enlarged system can become ve € spontaneous decay of_a two-levellsystem into a photonic
expensive if more than a few fictitious modes are needed t§2nd 9ap in Sec. IV. Section V contains our summary.
approximate the reduced systems dynamics. Another ap
proach to a non-Markovian stochastic wave-function method
developed by Jack, Collett, and Wall$2] is based on a We shall begin with a description of the models we want
continuous measurement interpretation of the stochastic ute examine and state the basic assumptions underlying the

il. DERIVATIONS OF QUANTUM MASTER EQUATIONS
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following sections. Throughout this article, we consider a W(t)=~p(1)® pg, (6)
guantum-mechanical systeBwhich is coupled to a reser-
voir R. The combined system is supposed to be closed and itgherep(t) refers to the variables of the reduced system and

Hamiltonian is of the form pr denotes a stationary state of the environment. Such an
approximation is justified if the coupling between the system
H=Hqo+aH,, (1) and the environment is weak. Inserting E6) into Eq. (5)

) o _we obtain the closed integro-differential equation for the re-
whereH, is the Hamiltonian of the system and the reservoirgyced density matrix

and H, the interaction Hamiltonian. The time evolution of
the combined system’s density matrix in the interaction pic- ) t
ture W(t) is determined by the Liouville—von Neumann P(t)=—a2f dsTre{[H(t),[H(s),p(s)®@prll}. (7)
equation 0
J This equation is further simplified by making the Markov
—W(t)=—ia[H,(t),W(t)]=aL(t)W(1), 2) approximation: replacing(s) by p(t) yields a closed differ-
at ential equation of motion for the reduced density matrix

. . o . . . which contains onlyp(t), namely,
where the interaction Hamiltonian in the interaction picture

is defined ad,(t) =exp(Hqt)H,exp(—iHgt). The initial state . t
of the combined system is supposed to factorize, p(t)= —azfodsTrR{[H|(t),[H|(S),P(t)®PR]]}- tS)
W(0)=p(0)®pr, ()

The Markov approximation is based on the assumption that

where pg is some stationary state of the reservoir, i.e., theh€ correlation time of the reservoik is small compared to
system and the reservoir are initially uncorrelated. For techth® time scalers on whichp(t) changes. The final form of
nical simplicity, we further assume that odd moments ofthe quantum master equation is obtained by extending the

H,(t) with respect tgog vanish, i.e., upper limit of the integral to infinity, which is valid for times
t> 1 since the integrand is negligible fee 7.
Tre{prH,(t1)- - - H(tas1)}=0, (4) Within this derivation of the quantum master equation,

the Markov approximation appears as an additional approxi-
although this assumption is not essential for the methods wanation besides the Born approximation, and one is tempted
want to use in this articlésee Ref[15]). to believe that the generalized master equaftidnis more

Since Eq.(2) is in general a system dfnfinitely) many  accurate than the master equati@. However, as we will

differential equations, exact solutions are only known in rares€e in Secs. Il B and II C, both approximations are only valid
cases. Moreover, even if an exact solution can be found, orf@ second order in the coupling strengthand are hence
is usually not interested in the dynamics of the environmengqually accuratésee als§19,20). We will also demonstrate
but wants to calculate the time evolution of system observthis by means of a specific example in Sec. IV B.
ables. Therefore we seek an approximate equation of motion
for the reduced density matrix(t) = Trg{W(t)} of the open B. Nakajima-Zwanzig projection operator technique
system. In this section we will describe three different ap-
proaches to that goal: the Born-Markov approximation, th
Nakajima-Zwanzig projection operator technique, and th
time-convolutionless projection operator technique.

The Nakajima-Zwanzig projection operator technique

321—23] is based on a partition of the state of a system into a
felevant and an irrelevant part by defining an adequate pro-
jection operatorP which projects the state on the relevant

) ) part and a projecto@=1—"P which projects on the irrel-

A. Markovian quantum master equation evant part. For our system reservoir model we define the

In this section we sketch an intuitive derivation of the projector? in the usual way as
Markovian quantum master equation based on the Born- B B
Markov approximatior(see, e.g.[17,18). The starting point PW() =Tra{W(1)} ® pr=p(1) @ pr, ©)

is an exact equation of motion for the reduced density matrix . . . .
which can be obtained by integrating the Liouville—von Neu_wherepR is a stationary state of the reservoir. The equation

mann equatioii2) twice, differentiating with respect tip and of mption fpr the two compqnenﬂg\N(t) and QW(t) can be.
taking the trace over the reservoir. This yields the exac btained directly from the Liouville—von Neumann equation

equation of motion 2):

J
p(t)=— azftdsTrR{[H,(t),[H|(s),W(s)]]}, (5) -t PW(U) =aPLIOPW(D) +aPLHQW(), (10
0
which still contains the density matri¥/(t) of the composed i _
system. op QWD) =aQLPW(D) +aQL(HQW().  (11)

The first approximation we make is the Born approxima-
tion which consists in approximating the density matrix of Taking into account the initial condition E¢3) the formal
the composed system by a product of the form solution of Eq.(11) reads
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t which can be substituted in Eq10) to obtain the exact,
OW(t)= aJOdSQ(t,S)QL(S)PW(S), (12)  time-convolutionless equation of motion for the relevant part
of the system

whered(t,s) is defined as P
EPW(t)=K(t)P\N(t)EaPL(t)[l—E(t)]‘lp\N(t).

g(t,s)=T_ exr{ aJtds’ oL(s")]|. (13 (20

The crucial point of this construction is the existence of the
The symbolT_ indicates the chronological time ordering. generatoi (t) which relies on the existence of the operator
Substituting the expression f@W(t) into the equation of [1—3(t)] L. Since>(0)=0 and3(t) is continuous, this
motion of the relevant part of the stat&0) we obtain the operator exists for all if and only if it can be expanded in a

generalized master equation fBk¥V(t), geometric series
J to *
E'P\N(t)za’PL(t)'PVV(t)'F fods K(t,s)PW(s), (14 [1-3()] =D S)n (21
n=0
with the memory kernel This condition is always satisfied for short times or in the
5 weak coupling regime, but can be violated in the strong cou-
K(t,s)=a?PL(1)G(t,s) QL(S). (15 pling regime, as will be demonstrated explicitly in Sec. IV B.

Therefore we define the intermediate coupling regime as the
It is important to note that the generalized master equatiomange of coupling parametees, where non-Markovian ef-
(14) is exact and that, hence, the explicit computation of thefects are significant, but the generakoft) exists for allt.

memory kernekK(t,s) is, in general, as complicated as the ~ Using Eq.(21) we can also write the generator of the
explicit solution of the Liouville—von Neumann equatit®).  time-convolutionless master equation as

However, Eq.(14) serves as a starting point for systematic "

approximations. Fcir example, a perturbat.lve expanspn of K= aPL)3(D" 22)
the memory kerneK(t,s) to second order in the coupling n=0

strengtha leads to the generalized quantum master equation

in the Born approximatioti7). On the other hand, although This form is the starting point for a perturbative expansion of
the computation of the memory kernel is essentially facili-K(t) in powers of the coupling strengtl. To fourth order
tated by using a perturbative expansion, the final form of thene obtains, for example,

equation of motion is still an integro-differential equation, ) A 6

the integration of which can be rather difficult. We can over- K(1)=a"Ka(t) + a"Ky(t) + O(a”), (23)
come this by using the time-convolutionless projection op-
erator technique, which will be described in the following here

section. ;

Kz(t):f dt;PL(t)L(t1)P, (29
C. Time-convolutionless projection operator technique 0

The basic idea of the time-convolutionless projection op-and
erator techniqud15,16| is to replaceW(s) in the formal
solution of the irrelevant paftl2) by t ty t
K4(t)=f dtlf dtzf dts[ PL(t)L(t)L(t2)L(ts)P
W(s)=G(t,s)(P+ Q)W(t), (16) o /0 0

: —PLOL(t)PL(to)L(t3) P
where the backward propagai6(t,s) of the composite sys-

tem is defined as —PL(H)L(tx) PL(ty)L(t3)P
t —PL(t)L(t3)PL(t)L(t)P]. (29
G(t,s)=T_, eXp< —aj ds’ L(s’)), 17
s The higher-order terms can be obtained in a way similar to

o ) ) ] ) van Kampen's cumulant expansi¢h9,24. All terms con-

ing Eq. (16) for QW(t), we find expansion, since by definiton of and L(t) we have

_ PL(t1)- - -L(toks1)P=0 [see Eq(4)]. It is important to note
QW(t) =[1 -3 ()] S () PW(1), (18 that the general structure of the time-convolutionless equa-

. tion of motion (20) of the reduced density matrix is not

with changed by the perturbative expansion, i.e., the approxima-

. tive equation of motion is also linear ip(t) and local in
E(t)=aJ dsg(t,s) OL(s)PG(t,s), (19 time, unlike t_he perturbative expansion of the generalized

0 master equatiofl4).
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1. The equation of motion to second order K 4(t) PW(1)

When we substitute the expressions for the genetatr ¢ 4 t
and the projection operat@, Eqgs.(2) and(9), respectively, :j dtlf dt, | “dt5{(02)(13)[0,[1,2]3p]
into the second-order contribution #(t) we immediately 0 0 0
obtain the time-dependent quantum master equati@n —(02(3[0,[1,2]p3]- (20)(13)[0,3p[ 1.2]]
within the Born-Markov approximatioriwithout extending
the upper limit of the time integration to infinityThus Eq. +(20)(31)[0,p3[1,2]]+(03)(12)([0,[ 3,2]p1]
(7) as well as Eq(8) are correct to the same order in the o L
coupling and the major approximation in the heuristic deri- +[0,[12,3]p]) +(30¢21)([0,1p[ 3,2]]
vation of the quantum master equation in Sec. Il A is not the A .
Markov, but the Born approximation. This seems to be +[0,p[21,3]]) —(03)(21[0,[ 1,3]p2]
somewhat counterintuitive, since after making the Born ap- Aaan
proximation the equation of motion of the reduced density —(30)(12)[0,20[ 1, 3]} (29

matrix is still a complicated integro-differential equation,
whereas the Markov approximation considerably simplifiesNote that this expression contains commutators between
the calculations. Nevertheless, it does not in general, imvarious system operators, which can immensely simplify the
prove the accuracy of a calculation to make only the Borrexplicit evaluation oK ,(t), if certain commutation relations
approximation and to omit the Markov approximation. are specified, such as bosonic commutation relations for a
harmonic oscillator, or the commutation relations for the
2. The equation of motion to fourth order pseudospin operatofsee Sec. [V A

We now compute the explicit expressitty(t) for the
fourth-order contribution to the time-convolutionless equa- . STOCHASTIC UNRAVELING
tion of motion. To this end, we decompose the interaction OF QUANTUM MASTER EQUATIONS
Hamiltonian into a sum of products in the form
A. Quantum master equations in Lindblad form

In Ref.[25] Lindblad has shown that the equation of mo-

H':Ek Fr® Q- (26 tion of a reduced density matrix has to be of the form
We further assume that the staig is not only stationary, ip(t)= —i|Hg+ E E Si(t)LiTLi p(t)
but also Gaussian, i.e., ot 29
1. 1
Tre{prQi, (D Qi (11) Qi (t2)Q; (1)} + 20 70—z LLip0O = 5p(OLL
=Tra{prQi (1) Qi (t1)} Tr{prQi,(t2) Qi (ta)} )
+Trr{prQi, (D Q1 (t2)} TrlPRQ: (1) Qi (o)} TLip(OL; ’ : (30)

+Tr i (1)Q; (t3)}Tr i (t)Qi (to) g, . . .
RIPRQIG(DQiy(ta)} TripRQ (1) Qi (t2)} if the dynamics of the reduced system is assumed to con-
27 serve positivity and to represent a quantum dynamical semi-
group. HereHg is the Hamiltonian of the system, the time-

and we introduce the short-hand notation dependent coefficien§(t) describe an energy shift induced
by the coupling to the environment, namely, the Lamb and
0,1, ... denotesFiO(t),Fil(tl), o Stark shifts, and the positive ratgqt) model the dissipative

coupling to theith decay channel.
In this case, the state of the open system can alternatively
(12), ... denotes T{prQ;i, (t1) Qi (t2)}, ... be described by a stochastic wave functipft) [1-6], the
covariance matrix of which equals the reduced density ma-

and sum over repeated indicgs In this notation we find, triX, i.e.,
for example,

PL(L)- - - L(t) PW(L) p(t>=f DyDy* [)(s|PLyt], (31)

=[0,[---,[3,p] --]{0---3 . - . . o
(O [3p1---1K ) whereP[ ,t] is the probability density functional of finding

the state of the open system in the Hilbert space volume

:iOZis [Fig(O.L- - [Fij(ta).p(O] .. 1] elementD /D * at the timet [26,27.
The time evolution of the stochastic wave function is gov-
><TrR{pRQio(t)' ' 'Qis(t3)}' 28 erned by a stochastic differential equation, which might ei-

ther be diffusivd 5,6] or of the piecewise deterministic jump
and inserting the expressi@@6) into Eg. (25), we obtain type [1-4]. The latter takes the forrfv]
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Lig(t)
[Lig(0)]|

(37

¢(t))
P(t))

Formally, 6(t) can be regarded as an element of the doubled

where thed Ni(t). are the differentials of independzent PoissonHilbert spaceH{=HeaH. If P[6,t] denotes the probability
processN;(t) with mean(dN;(t)) =¥ (1)[IL;#(t)|“dt. The  density functional of the process in the doubled Hilbert space

drift generator takes the form H, we may define the reduced density matrix as

- w(t)>dNi(t), e(t):<
(32

dy(t)=—iG(y,t)ydt+ >,

1 R -
G(tﬂ,t)=H(t)¢+§Ei S(HLLiy p(t):f D 6D 6* | ) (4| P[ ,t]. (39

[ The time evolution of the state vecté(t) is then governed
- z ' o= w2
2 4 nOWLL=lLiglHy. 633 by the stochastic differential equation

For the differential of the Poisson proceHy;(t) the Ito rule do(t)=—iG(6,)dt

dN;(t)dN;(t) = 6;dN;(t) holds, that isdN;(t) can either be o)
0 or 1. If dN;(t) =0, then the system evolves continuously +2 (mJi(t)a(t)— o(t) |[dN;(t),
according to the nonlinear Scltinger-type equation : !
(39
0
I (O =G(4h), (34 wheredN;(t) is the differential of a Poisson process with
mean
whereas, ifdN;(t) =1 for somei, then the system undergoes )
an instantaneous, discontinuous transition of the form (dNi(1))= 19i (1) 1) dt (40)
] [}
ool
Li(t)
pH)— ILig(H)] (39 and the functionaGG(6,t) is defined as
. . 2
Note that the generatdB(i,t) of the continuous time evo- . 1< 3o
lution is non-Hermitian and hence the propagatosf) is G(o.n)=i| F()+ 2 Z l6t)|2 o, (41
nonunitary. However, due to the nonlinearity of the genera-
tor, the norm ofys(t) is preserved in time. with the time-dependent operators
Using the Ito calculus for the differentialdN;(t) it is

easy to check that the equation of motion of the covariance  _ . _ A(t) 1t Ci(t) 42
matrix of ¥(t) equals the usual Markovian quantum master (= 0 B())’ ()= 0 Di(t))" (42)

equation(30) in Lindblad form. Thus expectation values of
system observables can either be calculated by means of thgain, this type of stochastic evolution equation describes a
reduced density matrix or as averages over different realizapiecewise deterministic jump process, where the determinis-
tions of the stochastic proceggt) and both descriptions tic pieces are solutions of the differential equation

yield the same results. P

i—0(t)=G(6,t), (43

B. General quantum master equations at

The most general type of a quantum master equatioand the jumps induce transitions of the form
which results from the time-convolutionless projection op-
erator techniqgue—or from a perturbative approximation—is et let)| (Cid
inear i in 0~ 13500 = T3 g0
linear inp(t) and local in time(see Sec. || Cbut needs not [3;6(0)]] [3;6(0)]\ D,
to be in the Lindblad form, as we will show in an example
below (see Sec. IV € However, these equations can alwaysNote that the structure of the stochastic differential equation

) . (44

be written in the form in the doubled Hilbert spad@®9) is very similar to the struc-
ture of the stochastic differential equati@d2). In fact, the
— (1) =A(t)p(t) + p(t)BT(1)+ >, Ci(t)p(t)DI (1), unravelln_g of gene_ral quantum master equations presented in
&tp( J=AMPM)+p(HB(L) 2.: (DI this section contains as a special case the unraveling of

(36) Lindblad-type equations shown in Sec. Il A: If we set

with some time-dependent linear operata(s), B(t), C;(t), _ 1 .

andD;(t). In order to find an unraveling of this equation of A =B()=—iHs— EEK [7(D)+iSD]LiLic (45)
motion we follow a strategy which has already been success-

fully applied to the calculation of multitime correlation func- and

tions[28,29. We describe the state of the open system by a

pair of stochastic wave functions Ci(t)=D;(t)=Vy(t)L;, (46)



1638 BREUER, KAPPLER, AND PETRUCCIONE PRA 59

the equation of motio36) reduces to the Lindblad equation 4 i
()=—5S([o o .p(H)]+ (1)

(30) and both unravelings are identical. 5P
IV. EXAMPLE: THE SPONTANEOUS DECAY 1., 1 - - +
X{—= t)— = pl(t + t
OF A TWO-LEVEL SYSTEM 37 ¢ pO=Zpo 0 +o p(o,
In this section we consider as an example of the general (52

theory the exactly solvable model of a two-level system _
spontaneously decaying into the vacuum within the rotatingvhere the time-dependent energy si8{t) and decay rate
wave approximation. The Hamiltonian of the total system is¥(t) are defined as

given by ) .
_ Cy(t) B Cy()
S(t)——Zlmlcl(t)], y(t)=-2 Re{q(t)}' (53

Ho=wso o™+, wbiby, (47)
k

Note that if the decay ratg(t) is positive for allt, then this
equation of motion is in the Lindblad forit80).
H=c'®B+o ®B" with B=2 gy, (49) The equation of motion within the Born approximation
K can be expressed in terms of the reservoir correlation func-

where wg denotes the transition frequency of the two-leveltlon' To this end, we define the real functiohgt) and¥ (1)
system, the indek labels the different field modes with fre-

guencywy, annihilation operatob,, and coupling constant . . + lodt
gy, ando™ denote the pseudospin operators. () +iIW(1) =2 Trr{B(D)B  prie™s

— i(wg— o)t
A. Exact and approximated equations of motions Zf dolJ(w)e ! (54
The exact solution and equation of motion for this model

can be obtained in the following way: Define the stdg  WNereB(t)=exp(H)Bexp(-iH,f), and we have performed

the continuum limitJ(w) is the spectral density. The equa-

bo=0)s®|0)R, tion of motion in the Born approximatiofv) then reads
- d t i
(//l |1>S®|O>Rv (49) Ep(t):_f dS{E\I’(t_S)[U+O'_,p(S)]+q)(t_S)
0
=10)s® [K)g, 1 1
X Ea'+a'_p(s)+ Ep(s)a'Jra'_—(T_p(s)a'Jr ]

where|0)g and|1)s indicate the ground and excited state of
the system, respectively, the std@ denotes the vacuum (55)
state of the reservoir, anfk)r=b(|0) denotes the state

with one photon in mode. Since the interaction Hamil-  performing the Markov approximation and extending the up-
tonian conserves the total number of particles, the flow of theyer |imit of the time integral to infinity, we obtain the usual

Schralinger equation generated bl is confined to the sub- time-independent quantum master equation
space spanned by these vectors. Hence, we may expand the

state of the total system at any time as i
(tH=- ESM[0'+0'71P(t)]+ ™

5P
$(O)=Codho+ oD+ 2 cV)r, (50 1 1
X —E(J'Jro'fp(t)—Ep(t)a'Jro'f-i-0'7p(t)0'4r ,
with some probability amplitudesy, ¢,(t), andcy(t). The (56)

time evolution of these probability amplitudes is determined
by a complicated system of OTdi”afy different_ial equa_tionswhere the Markovian Lamb shif, and the Markovian de-
which can be solved in some §|mple cases by mj[roducmg thgay ratey,, are defined as
so-called pseudomodg80]. With these probability ampli- M
tudes, the reduced density matrix takes the form " "
Ssz ds\If(s),ysz dsd(s). (57)
leq(t)]? cy(t)cy 0 0

p(t)= (59

The time-convolutionless expansion of the equation of
motion according to Sec. Il C leads to a quantum master
equation which has the same structure as the exact equation
Differentiating this expression with respect to time we getof motion, but the time-dependent energy sl§ift) and de-
the following exact equation of motion, cay ratey(t) are approximated by the quantities

ci(t)co |co|2+§ (D)2
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FIG. 1. Damped Jaynes-Cummings model on resonance. Exact sqlex@c), time-convolutionless master equation to secOraL 2)
and fourth orde(TCL 4), generalized master equation to second of@&E 2), and the Markovian quantum master equatiplarkov): (a)
Decay rate of the excited state populatigh) the population of the excited state, including a stochastic simulation of the time-
convolutionless quantum master equation witR fgalizations, andc) deviation of the approximative solutions from the exact result, for
7= 57g (moderate coupling (d) Population of the excited state fag=0.27g (strong coupling

t 1rt t t 2
S(4>(t):J dtl\I’(t—tl)Jr—f dtlj 1dt2J2dt3 J(w):iL (60)
0 2)o 0 0

X[P(A=t)P(t =) + P 1) W (1~ 1) wherewg is the transition frequency of the two-level system.
W (t—tg)D(ty—ty) + D(t—ta) U (t;—ty)] Thg parametek defines the spec?ral width.of the coupling,
which is connected to the reservoir correlation timgeby the
(58 relation r=M\"! and the time scaleg on which the state of
and the system changes is given by= 751. The exact probabil-
ity amplitudec(t) [see Eq. 5§ is readily obtained by using

t 1t t ty the method of poleg30], sinceJ(w) has simple poles ab
yA(t)= fodth)(t_tl)"_ Efodtlfo dtzfo dts =wp*+i\. One gets

X[W(t—ty)W(t;—t3)
—P(t—ty)D(t—ty) + P (t—tg)P(t;—ty)
—P(t—t3)D(t;—ty)]. (59

dt N dt
cy(t)= cl(O)e“’Z( cosh- + asmh?) , (61)

where d=A?=2y,\, which vyields the time-dependent
population of the excited state

It is important to note that the explicit expressions for dt dt\2
S™)(t) and y*)(t) only involve ordinary integrations over pn(t)an(O)e_“<COSh—+ —sinh—) . (682
the reservoir correlation functions, which can be done ana- 2 d 2

Iytically in simple cases or numerically. Using Eq.(53) we therefore obtain a vanishing Lamb shift,

. S(t)=0, and the time-dependent decay rate
B. Damped Jaynes-Cummings model on resonance

The damped Jaynes-Cummings model describes the cou- B 27\ sinh(dt/2)
pling of a two-level atom to a single cavity mode which in 7= d cosidt/2) + \ sinh(dt/2)
turn is coupled to a reservoir consisting of harmonic oscilla-
tors in the vacuum state. If we restrict ourselves to the cask Fig. 1(a) we illustrate this time-dependent decay raf{e)
of a single excitation in the atom-cavity system, the cavity(“exact”) together with the Markovian decay raig,= vq
mode can be eliminated in favor of an effective spectral den¢“Markov” ) for 7s=57x. Note that for short times, i.e., for
sity of the form times of the order of, the exact decay rate grows linearly

(63
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in t, which leads to the quantum-mechanically correct shortdifferentiating y(t) with respect toy,. Figure 1a) clearly

time behavior of the transition probability. In the long-time shows thaty(?)(t) as well asy¥)(t) approximate the exact

limit the decay rate saturates at a value larger than the Madecay rate very well for short times, and*)(t) is also a

kovian decay rate, which represents corrections to the goldegood approximation in the long-time limit.

rule. The population of the excited state is depicted in Fig. The time evolution of the population of the excited state

1(b): for short times, the exact population decreases quadratgan be obtained by integrating the raté)(t) with respect to

cally and is larger than the Markovian population, which ist, This yields

simply given byp4(0)exp( yqt), whereas in the long-time

limit the exact population is slightly less than the Markovian @) _ t @)

population. p11()=p11(0)expg — fodsy (s)]. (70)
Next, we want to determine the solution of the general-

ized quantum master equation in the Born approximation. Tqn order to compare the quality of the different approxima-
this end, we insert the spectral density of the couplingjon schemes, we show the difference between the approxi-
strength(60) into Eq. (54) to obtain¥(t)=0 and mated populations and the exact population in Fig).1Be-
sides the analytical solutions of the generalized master
O (1) = yoh eXp(—At). 64 equation(55) anél/ the time-convolutionleséJ master equations,
we have also performed a stochastic simulation of the time-
convolutionless quantum master equations with rfaliza-
tions. Since the approximated ratg$*#(t) are positive for
all t, the corresponding master equations are in Lindblad
; . 1 form, and we can use the stochastic simulation algorithm
p(t)=—Ap(t)+ Vo?\[— §0+07P(t) described in Sec. lll A as an unraveling. Figur@)lshows
that the stochastic simulation is in very good agreement with
the corresponding analytical solutions. Moreover, we see that
. (65) the difference between the solution of the time-
convolutionless master equation to fourth order and the exact
Due to the exponential memory kernel, this equation of momaster equation is smalsee also Fig. (b)], whereas the
tion is an ordinary differential equation which is local in errors of the generalized and the time-convolutionless master
time, and contains only(t), p(t), and p(t). Solving this equa_\tion_to second order which correspon_d to the_ Born ap-
system of differential equations f@(t), we obtain the time ~Proximation and the Born-Markov approximatidwithout

evolution of the population of the upper level extending the integral respectively, are larger and of the
same order of magnitude. In fact, the Markov approximation

even leads to a slight improvement of the accuracy, com-
, (66 pared to the Born approximation, which is surprising if we
consider the heuristic derivation of the quantum master equa-

The solution of the generalized master equatig® can be
found in the following way. We differentiate E@55) with
respect ta and obtain

1
— Ep(t)O'JrOﬁ +o p(t)o™"

- d't A d't
pyy(t)= pll(O)e_wz( cosh—-+ ;sinhT

o . i tion in Sec. Il A.
whered’ = yA“—4yo\. From this expression, we can deter-  aq e pointed out in Sec. Il the approximation schemes

mine the time-dependent decay rate used in this article are perturbative and hence rely on the
. , , assumption that the coupling is not too strong. But what

()= pu(t) _ 27yoA Sin(d't/2) 67y  happens, if the system approaches the strong coupling re-
p11(t)  d’ cosid’'t/2)+\ sinh(d't/2) gime? We will investigate this question by means of the

damped Jaynes-Cummings model on resonance, where the
the structure of which is similar to the exact decay (8®.  explicit expressions of the quantities of interest are known.
Note, however, the difference between the parametensd First, let us take a look at the exact expression for the
d" which can also be seen in Fig(al where we have also population of the excited sta{@?2): In the strong coupling

plotted the decay rate(t) (“GME 2" ): For short times, the regime, i.e., fory,>\/2 or 7s<27g, the parameted is
decay ratey(t) is in good agreement with(t), but in the  purely imaginary. Definingl= —id we can write the exact
long-time limit, (t) is too large. population as

Finally, the time-convolutionless decay rate can be deter-

~ ~\ 2
i i dt N dt
mined from Eq.(59), and to second and fourth order in the Pll(t)zpll(o)e“( COS— -+ wsin—> , (71)

coupling we obtain 2 d 2
Y2(t)=yo(1—e™M), (68 which is an oscillating function that has discrete zeros at
e t= 2 t d 72
= g —arc arK . (72

YD) = yol 1—e M+ %[sinh(m—m]e—M . (69)

Hence, the rate/(t) diverges at these poinfsee Eq.(53)].
respectively, which corresponds to a Taylor expansion of th®bviously, y(t) can only be an analytical function far
exact decay ratg(t) in powers ofy,, as can be checked by e[0tg[, wheret, is the smallest positive zero of;4(t).
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and thus the function®(t) and¥ (t) are given by
d(t)=yohe McogAt), (74

T (t)= yohe Msin(At). (75)

p11(t)

With these functions, the time-dependent Lamb shift and de-
cay rate to fourth order in the coupling{*)(t) and y*)(t),
respectively, can be calculated using E§®8) and(59). The

0.5 . ‘ . integrals can be evaluated exactly and lead to the expressions
0 5 10t 15 20
Y0
_ S (t)= vohd {1—e M[cog At)+(N/A)sin(At)]}

FIG. 2. Damped Jaynes-Cummings model on resonance. Exact N2+ A2
population for the three different initial conditiops;(0)= 1.0, 0.5, 22 st
0.0 in the strong coupling regimerd=0.27g). -

g coupling regimer¢=0.2rg) _ YA\A%e ([1-3(:/A)?]
2(N2+A2)3

On the other hand, as we have seen in Sec. IV B, the
time-convolutionless quantum master equation corresponds X[eM—e Mcog 2At)]
basically to a Taylor expansion of(t) in powers ofy,, and _or1_ 4 ; 2
the radius of convergence of this series is given by the region 2[1=(MATIALSIAD +4[1+ (M A)]
of analyticity of y(t). For yo<\/2, this is the whole positive XAt cog At)— (AMA)[3— (N A)2]e Msin(2At)}
real axis, but fory,>\/2 the perturbative expansion only (76)
converges fot<t,. This behavior can be clearly seen in Fig.
1(d), where we have depicted;,(t) and p{¥(t) for 7s  and
= 7gr/5, i.e., for a strong coupling: the perturbative expansion
converges tgq,(t) for t=<ty~6.3/y,, but fails to converge Yor?
for t>t,. Y ()= ———{1-e Mcog At)— (A/N)sin(At)]}

The solution of the generalized master equation to second AT+A
order shows a quite distinct behavior, but also fails in the 2) 50—\t
strong coupling regime: for,>\/4 the populationp4(t) %—{[1—3(A/)\)2]
starts to oscillate and even takes negative values, which is 2(\2+A?)3

unphysicallsee Fig. 1d)].

At o— At
The “failure” of the time-convolutionless master equa- X[e*—e Ycog2At)]

tion att=t, can also be understood from a more intuitive —2[1—(A/N)*]Nt cog At)
point of view. The time-convolutionless equation of motion _
(20) states that the time evolution @ft) only depends on +4[ 1+ (A/N)?]At sin(At) +(A/N)

the actual value of(t) and on the generatdt(t). However,
att=t, the time evolution also depends i(0). This fact
can be seen in Fig. 2, where we have plotteg(t) for three
different initial conditions, namelyy,,(0)=1.0, 0.5, 0.0. At
t=t,, the corresponding density matrices coincide, regard
less of the initial condition. However, the future time evolu-
tion for t>t is different for these trajectories. It is therefore
intuitively clear that a time-convolutionless form of the
equation of motion which is local in time ceases to exist for

X[3—=(A/N)2]e Msin(2At)}. (77)

In Fig. 3(@) we have depicted(*)(t) together with the exact
decay rate, which can be calculated using the methods of
poles[30] for A=8\ and\ =0.3y,. Note that the spontane-
ous decay rate is severely suppressed compared to the spon-
taneous decay on resonance. This can also be seen by com-
puting the Markovian decay ratg, which is given by

t>t,. The formal reason for this fact is that &tty the YN
operator -3 (t) (see Sec. Il €is not invertible and hence M= 20 5~0.015y,. (78
the generatoK(t) does not exist at this point. A+A

However, this strong suppression is most effective in the
C. Damped Jaynes-Cummings model with detuning long-time limit. For short timesy(t) oscillates with a large
In this section we treat the damped Jaynes-CummingamP“tUde gnd can even takg nggatlve values, wh|ch leads to
model with detuning, i.e., the same setup as in Sec. IV B buim increasing population. This is due to photons which have
e ; ) : een emitted by the atom and reabsorbed at a later time.
the center frequency .Of the cav@o IS dgt'uned by an Hence, the exact quantum master equation as well as its
amountA = ws— w, against the atomic transition frequency. y 0 conyolutionless approximation are not in the Lindblad
In this case the spectral density of the coupling Strengtl?orm (30), but conserve the positivity of the reduced density
reads matrix. This is, of course, not a contradiction to the Lindblad
1 2 theorem, since a basic assumption of the Lindblad theorem is
Jw)==— Yo ' (73)  that the reduced system dynamics constitutes a one-
27 (wg— A—w)?+\? parameter dynamical semigroup. However, in our example
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0.15 ' ' 1.00-
— exact S --- Markov
0.10 - TCL4 ] R — TCL4
. - Markov — exact
£ 005 /\ \ 1 =
~ A //\\ S = 090" 1
+ / i o
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FIG. 3. Damped Jaynes-Cummings model with detuning. Exact sol(gixec}, time-convolutionless master equation to fourth order
(TCL 4), and the Markovian quantum master equatibtarkovian: (a) Decay rate of the excited state population, @ndhe population of
the excited state, including a stochastic simulation of the time-convolutionless quantum master equatior? wethlizétions, for\
=0.3y, andA=8\.

this is not the case, since the initial preparation singles oution which clearly underestimates the decay for short times
the specific timé¢=0 and the domain of the operati€ft) is  and does not show oscillations.
shrinking for increasing.

Since the transition ratg(*)(t) also takes negative values, D. Spontaneous decay into a photonic band gap
we cannot use the stochastic simulation algorithm presented
in Sec. IllA for a stochastic unraveling of the time-
convolutionless quantum master equation, but have to u
the simulation algorithm in the doubled Hilbert spasee
Sec. Il B). The dynamics of the stochastic wave function
6(t) = (p(t),y(t))", which is an element of the doubled Hil-

As our final example, we treat a simple model for the
spontaneous decay of a two-level system in a photonic band
Sé;p which was introduced by Garrawf@84]. To this end, we
consider a spectral density of the coupling strength of the
form

bert spacé{="H®H, is governed by the stochastic differen- ()= Q_(z) Wil B Wol',
tial equation(39), where the operators andJ are given by 27\ (w—wg)?+(I'1/2)%  (w—wg)?+(T',/2)?)
1 oto™ 0 (83
F:_§7(4)(t)( 0 U+U> (79 where 02 describes the overall coupling strengih, the

bandwidth of the “flat” background continuuml’, the
and width of the gap, andV, andW, the relative strength of the
background and the gap, respectively. Again, the function
sgn(y'Y)o~ J(w) has a small number of poles, and hence the exact so-
J= \/|3’(4)|( 0 o | (80)  |ution can be determined by using pseudomd@ds. In Fig.
4(a) we show the excited state’s decay raig) for the same
The deterministic part of the time evolution is governed byParameters as in Ref31], i.e,, I';/Q0=10, I';/Q0=1,
the nonlinear Scﬁdjnger_type equa‘[ion Wj_:l.l, andW2=O.1. For short tlmeS’,}’(t) increases lin-
early on a time scale of ; * and then takes a maximum,

J 1 [36(1)||? which stems from transitions into the "flat’ background con-
S 0=CG0.H)=|F+5 o2 6(t), (81  tinuum. For longer times, i.et>T", %, the transitions into the
background are suppressed, and the decay rate becomes
gmaller and smaller until it reaches its final value. Thus the
population of the excited state decreases rapidly for times of
the orderT", %, and slowly in the long-time limi{see Fig.
(4) 4(b)].
soy )|O>S) (82 The time-dependent Lamb sh8{*)(t) and the decay rate
10)s y™)(t) of the time-convolutionless quantum master equation
If the ratey(*)(t) is positive then this type of transition leads to fourth order can be computed by inserting the spectral
to a positive contribution to the ground state population

density of the coupling strength(w) into Eq. (54). This
poo(t), whereas a negative rate leads to a decreaggof

which results in a continuous drift, whereas the jumps induc
instantaneous transitions of the form

16l

yields ¥ (t)=0 and

In Fig. 3(b), we show the results of a stochastic simulation D (t)=203(W,e 12— W,e~T212), (84)
for 10° realizations, together with the analytical solution of
the time-convolutionless quantum master equation and thehich can be inserted into Eq&8) and (59). Since W (t)
exact solution. Obviously, the agreement of all three curves=0 the Lamb shiftS)(t) vanishes; the time-dependent de-
is good and the stochastic simulation algorithm works exceleay ratey!*)(t) can be computed explicitly, and is in good
lently even for negative decay rates. In addition, we alscagreement with the exact decay rate for our choice of param-
show the solution of the Markovian quantum master equaeters[see Figs. &) and 4b)].
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FIG. 4. Spontaneous decay in a photonic band gap: Exact soletac}, and time-convolutionless master equation to fourth of@eiL
4): (a) Decay rate of the excited state population, ghfthe population of the excited state, including a stochastic simulation of the
time-convolutionless quantum master equation with relizations, foW;=1.1, W,=0.1,T;/Q,=10, andl’,/Qy=1.

V. SUMMARY can be approximated by a perturbative expansion. This per-
In this article we have presented a generalization of théurbat_ive expansion leads in ge_nergl (0 a guantum master
stochastic wave-function method to quantum master equae_quatlon, WhICh needs not o be in Ll|nQbIad form but can.be
. , A ; o unraveled with our method. The basic idea of this unraveling
tions which are not in Lindblad form. This generalization—

together with the use of the time-convolutionless projectio is the introduction of stochastic processes in a doubled Hil-

operator technigue—makes it possible to extend the range g rt space, which has already been successfully used for the
perat que P ; 9 computation of matrix elements of operators in the Heisen-
potential applications of the stochastic wave-function

method beyond the weak coupling regime, where the Bornperg picture and multitime correlation functions.

Markov approximation is valid, without enlarging the sys-
tem. This generalization is capable of treating systems in the
intermediate coupling regime, i.e., systems for which the
generator of the time-convolutionless quantum master equa- H.P.B. would like to thank the Istituto Italiano per gli
tion exists for allt and is analytic in the coupling strength ~ Studi Filosofici in Napleg(Italy), and B.K. would like to
In the examples we investigated in this article, this range wathank the DFG Graduiertenkolledlichtlineare Differen-
limited by 7s=75. The dynamics of this class of systems is tialgleichungenat the Albert-Ludwigs-UniversitaFreiburg,
governed by an equation of motion which is local in time andfor financial support of the research project.
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