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Stochastic wave-function method for non-Markovian quantum master equations

Heinz-Peter Breuer, Bernd Kappler, and Francesco Petruccione
Fakultät für Physik, Albert-Ludwigs-Universita¨t, Hermann-Herder Straße 3, D-79104 Freiburg im Breisgau,

Federal Republic of Germany
~Received 28 August 1998!

A generalization of the stochastic wave-function method to quantum master equations which are not in
Lindblad form is developed. The proposed stochastic unraveling is based on a description of the reduced
system in a doubled Hilbert space and it is shown that this method is capable of simulating quantum master
equations with negative transition rates. Non-Markovian effects in the reduced systems dynamics can be
treated within this approach by employing the time-convolutionless projection operator technique. This ansatz
yields a systematic perturbative expansion of the reduced systems dynamics in the coupling strength. Several
examples such as the damped Jaynes-Cummings model and the spontaneous decay of a two-level system into
a photonic band gap are discussed. The power as well as the limitations of the method are demonstrated.
@S1050-2947~99!08102-0#

PACS number~s!: 42.50.Lc, 02.70.Lq, 05.40.2a
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I. INTRODUCTION

The theory of open quantum systems is a fundame
approach to the understanding of dissipation on a mic
scopic and macroscopic level in many fields of physics, s
as quantum optics, and solid state physics. Besides the
ventional density matrix formalism, there has been an
creasing interest over the last years in the stochastic w
function method@1–6#, where the state of the open system
described by an ensemble of pure states instead of a red
density matrix. This method permits a description of the d
namics of an individual quantum system subject to a conti
ous measurement@7,8# and hence provides additional info
mation about the state of the system compared to
description by a reduced density matrix. Moreover, the s
chastic wave-function method has been shown to be an
fective numerical tool for the solution of density matr
equations with many degrees of freedom since a redu
density matrix hasN2 degrees of freedom, whereas a s
chastic wave vector only hasN components@9,10#.

Since the stochastic wave-function method originated
the context of quantum optics most publications on this s
ject consider the weak coupling regime and the Bo
Markov approximation seems to be inevitably connec
with this approach. On the other hand, the stochastic wa
function method could also provide a useful numerical t
in other fields of physics, where the Born-Markov appro
mation is not justified. This has been shown, for example,
Imamoglu @11#, who extended the stochastic wave-functi
method to the strong coupling regime by considering an
larged system which contains a few fictitious bath modes
are weakly coupled to a Markovian environment. Althou
this concept is quite general, the drawback of this metho
obvious: even if the state space of the system is small,
numerical treatment of the enlarged system can become
expensive if more than a few fictitious modes are neede
approximate the reduced systems dynamics. Another
proach to a non-Markovian stochastic wave-function meth
developed by Jack, Collett, and Walls@12# is based on a
continuous measurement interpretation of the stochastic
PRA 591050-2947/99/59~2!/1633~11!/$15.00
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raveling. In this approach the stochastic equation of mot
for the reduced state vector involves a multiple time integ
tion over the system’s history conditioned on the measu
ment record over a finite time interval. Furthermore, it h
been claimed recently by Dio´si and co-workers@13,14# that
it is in principle possible to construct an exact stochas
Schrödinger equation which describes the non-Markovi
time evolution of an open quantum system.

In this article we present an extension of the stocha
wave-function method beyond the Born-Markov approxim
tion which is based on the time-convolutionless project
operator technique@15,16#. This ansatz yields a systemat
perturbative expansion scheme for the stochastic dynam
of the reduced system which is valid in an intermediate c
pling regime where non-Markovian effects are important, b
a perturbative expansion is still justified. The major adva
tage of our method is that it does not rely on an enlarg
phase space and that it uses a stochastic evolution equ
which is local in time.

The paper is organized as follows. In Sec. II we brie
review three different approaches to equations of motion
the reduced density matrix: the derivation of the Markovi
quantum master equation~Sec. II A!, the Nakajima-Zwanzig
projection operator technique~Sec. II B!, which yields a gen-
eralized master equation, and the time-convolutionless p
jection operator technique~Sec. II C!, leading to a quantum
master equation which is local in time. Section III deals w
the stochastic unraveling of quantum master equations
Sec. III A we review the stochastic unraveling of quantu
master equations which are in Lindblad form, such as
Markovian quantum master equation, whereas in Sec. I
we present an unraveling of arbitrary linear density mat
equations which are local in time, such as the tim
convolutionless quantum master equation. These algorit
are then applied to the damped Jaynes-Cummings mode
the spontaneous decay of a two-level system into a phot
band gap in Sec. IV. Section V contains our summary.

II. DERIVATIONS OF QUANTUM MASTER EQUATIONS

We shall begin with a description of the models we wa
to examine and state the basic assumptions underlying
1633 ©1999 The American Physical Society
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1634 PRA 59BREUER, KAPPLER, AND PETRUCCIONE
following sections. Throughout this article, we consider
quantum-mechanical systemS which is coupled to a reser
voir R. The combined system is supposed to be closed an
Hamiltonian is of the form

H5H01aHI , ~1!

whereH0 is the Hamiltonian of the system and the reserv
and HI the interaction Hamiltonian. The time evolution o
the combined system’s density matrix in the interaction p
ture W(t) is determined by the Liouville–von Neuman
equation

]

]t
W~ t !52 ia@HI~ t !,W~ t !#[aL~ t !W~ t !, ~2!

where the interaction Hamiltonian in the interaction pictu
is defined asHI(t)5exp(iH0t)HIexp(2iH0t). The initial state
of the combined system is supposed to factorize,

W~0!5r~0! ^ rR , ~3!

whererR is some stationary state of the reservoir, i.e.,
system and the reservoir are initially uncorrelated. For te
nical simplicity, we further assume that odd moments
HI(t) with respect torR vanish, i.e.,

TrR$rRHI~ t1!•••HI~ t2k11!%50, ~4!

although this assumption is not essential for the methods
want to use in this article~see Ref.@15#!.

Since Eq.~2! is in general a system of~infinitely! many
differential equations, exact solutions are only known in r
cases. Moreover, even if an exact solution can be found,
is usually not interested in the dynamics of the environm
but wants to calculate the time evolution of system obse
ables. Therefore we seek an approximate equation of mo
for the reduced density matrixr(t)5TrR$W(t)% of the open
system. In this section we will describe three different a
proaches to that goal: the Born-Markov approximation,
Nakajima-Zwanzig projection operator technique, and
time-convolutionless projection operator technique.

A. Markovian quantum master equation

In this section we sketch an intuitive derivation of th
Markovian quantum master equation based on the Bo
Markov approximation~see, e.g.,@17,18#!. The starting point
is an exact equation of motion for the reduced density ma
which can be obtained by integrating the Liouville–von Ne
mann equation~2! twice, differentiating with respect tot, and
taking the trace over the reservoir. This yields the ex
equation of motion

ṙ~ t !52a2E
0

t

dsTrR$†HI~ t !,@HI~s!,W~s!#‡%, ~5!

which still contains the density matrixW(t) of the composed
system.

The first approximation we make is the Born approxim
tion which consists in approximating the density matrix
the composed system by a product of the form
its
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W~ t !'r~ t ! ^ rR , ~6!

wherer(t) refers to the variables of the reduced system a
rR denotes a stationary state of the environment. Such
approximation is justified if the coupling between the syst
and the environment is weak. Inserting Eq.~6! into Eq. ~5!
we obtain the closed integro-differential equation for the
duced density matrix

ṙ~ t !52a2E
0

t

dsTrR$†HI~ t !,@HI~s!,r~s! ^ rR#‡%. ~7!

This equation is further simplified by making the Marko
approximation: replacingr(s) by r(t) yields a closed differ-
ential equation of motion for the reduced density mat
which contains onlyr(t), namely,

ṙ~ t !52a2E
0

t

dsTrR$†HI~ t !,@HI~s!,r~ t ! ^ rR#‡%. ~8!

The Markov approximation is based on the assumption
the correlation time of the reservoirtR is small compared to
the time scaletS on whichr(t) changes. The final form o
the quantum master equation is obtained by extending
upper limit of the integral to infinity, which is valid for times
t@tR since the integrand is negligible fors@tR .

Within this derivation of the quantum master equatio
the Markov approximation appears as an additional appr
mation besides the Born approximation, and one is temp
to believe that the generalized master equation~7! is more
accurate than the master equation~8!. However, as we will
see in Secs. II B and II C, both approximations are only va
to second order in the coupling strengtha and are hence
equally accurate~see also@19,20#!. We will also demonstrate
this by means of a specific example in Sec. IV B.

B. Nakajima-Zwanzig projection operator technique

The Nakajima-Zwanzig projection operator techniq
@21–23# is based on a partition of the state of a system int
relevant and an irrelevant part by defining an adequate
jection operatorP which projects the state on the releva
part and a projectorQ512P which projects on the irrel-
evant part. For our system reservoir model we define
projectorP in the usual way as

PW~ t !5TrR$W~ t !% ^ rR[r~ t ! ^ rR , ~9!

whererR is a stationary state of the reservoir. The equat
of motion for the two componentsPW(t) andQW(t) can be
obtained directly from the Liouville–von Neumann equati
~2!:

]

]t
PW~ t !5aPL~ t !PW~ t !1aPL~ t !QW~ t !, ~10!

]

]t
QW~ t !5aQL~ t !PW~ t !1aQL~ t !QW~ t !. ~11!

Taking into account the initial condition Eq.~3! the formal
solution of Eq.~11! reads
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QW~ t !5aE
0

t

dsG~ t,s!QL~s!PW~s!, ~12!

whereG(t,s) is defined as

G~ t,s!5T← expS aE
s

t

ds8QL~s8! D . ~13!

The symbolT← indicates the chronological time orderin
Substituting the expression forQW(t) into the equation of
motion of the relevant part of the state~10! we obtain the
generalized master equation forPW(t),

]

]t
PW~ t !5aPL~ t !PW~ t !1E

0

t

ds K̃~ t,s!PW~s!, ~14!

with the memory kernel

K̃~ t,s!5a2PL~ t !G~ t,s!QL~s!. ~15!

It is important to note that the generalized master equa
~14! is exact and that, hence, the explicit computation of
memory kernelK̃(t,s) is, in general, as complicated as th
explicit solution of the Liouville–von Neumann equation~2!.
However, Eq.~14! serves as a starting point for systema
approximations. For example, a perturbative expansion
the memory kernelK̃(t,s) to second order in the couplin
strengtha leads to the generalized quantum master equa
in the Born approximation~7!. On the other hand, althoug
the computation of the memory kernel is essentially fac
tated by using a perturbative expansion, the final form of
equation of motion is still an integro-differential equatio
the integration of which can be rather difficult. We can ov
come this by using the time-convolutionless projection o
erator technique, which will be described in the followin
section.

C. Time-convolutionless projection operator technique

The basic idea of the time-convolutionless projection o
erator technique@15,16# is to replaceW(s) in the formal
solution of the irrelevant part~12! by

W~s!5G~ t,s!~P1Q!W~ t !, ~16!

where the backward propagatorG(t,s) of the composite sys
tem is defined as

G~ t,s!5T→ expS 2aE
s

t

ds8 L~s8! D , ~17!

andT→ indicates the antichronological time ordering. So
ing Eq. ~16! for QW(t), we find

QW~ t !5@12S~ t !#21S~ t !PW~ t !, ~18!

with

S~ t !5aE
0

t

dsG~ t,s!QL~s!PG~ t,s!, ~19!
n
e

of

n

-
e

-
-

-

which can be substituted in Eq.~10! to obtain the exact,
time-convolutionless equation of motion for the relevant p
of the system

]

]t
PW~ t !5K~ t !PW~ t ![aPL~ t !@12S~ t !#21PW~ t !.

~20!

The crucial point of this construction is the existence of t
generatorK(t) which relies on the existence of the operat
@12S(t)#21. SinceS(0)50 and S(t) is continuous, this
operator exists for allt if and only if it can be expanded in a
geometric series

@12S~ t !#215 (
n50

`

S~ t !n. ~21!

This condition is always satisfied for short times or in t
weak coupling regime, but can be violated in the strong c
pling regime, as will be demonstrated explicitly in Sec. IV
Therefore we define the intermediate coupling regime as
range of coupling parametersa, where non-Markovian ef-
fects are significant, but the generatorK(t) exists for allt.

Using Eq. ~21! we can also write the generator of th
time-convolutionless master equation as

K~ t !5 (
n50

`

aPL~ t !S~ t !n. ~22!

This form is the starting point for a perturbative expansion
K(t) in powers of the coupling strengtha. To fourth order
one obtains, for example,

K~ t !5a2K2~ t !1a4K4~ t !1O~a6!, ~23!

where

K2~ t !5E
0

t

dt1PL~ t !L~ t1!P, ~24!

and

K4~ t !5E
0

t

dt1E
0

t1
dt2E

0

t2
dt3@PL~ t !L~ t1!L~ t2!L~ t3!P

2PL~ t !L~ t1!PL~ t2!L~ t3!P

2PL~ t !L~ t2!PL~ t1!L~ t3!P

2PL~ t !L~ t3!PL~ t1!L~ t2!P#. ~25!

The higher-order terms can be obtained in a way similar
van Kampen’s cumulant expansion@19,24#. All terms con-
taining odd orders of the coupling strength vanish in t
expansion, since by definition ofP and L(t) we have
PL(t1)•••L(t2k11)P50 @see Eq.~4!#. It is important to note
that the general structure of the time-convolutionless eq
tion of motion ~20! of the reduced density matrix is no
changed by the perturbative expansion, i.e., the approxi
tive equation of motion is also linear inr(t) and local in
time, unlike the perturbative expansion of the generaliz
master equation~14!.



e
ri

th
be
ap
it
n,
e
im
or

a
io

een
the

r a
he

o-

on-
mi-
-
d
nd

vely

a-

me

v-
ei-
p

1636 PRA 59BREUER, KAPPLER, AND PETRUCCIONE
1. The equation of motion to second order

When we substitute the expressions for the generatorL(t)
and the projection operatorP, Eqs.~2! and~9!, respectively,
into the second-order contribution toK(t) we immediately
obtain the time-dependent quantum master equation~8!
within the Born-Markov approximation~without extending
the upper limit of the time integration to infinity!. Thus Eq.
~7! as well as Eq.~8! are correct to the same order in th
coupling and the major approximation in the heuristic de
vation of the quantum master equation in Sec. II A is not
Markov, but the Born approximation. This seems to
somewhat counterintuitive, since after making the Born
proximation the equation of motion of the reduced dens
matrix is still a complicated integro-differential equatio
whereas the Markov approximation considerably simplifi
the calculations. Nevertheless, it does not in general,
prove the accuracy of a calculation to make only the B
approximation and to omit the Markov approximation.

2. The equation of motion to fourth order

We now compute the explicit expressionK4(t) for the
fourth-order contribution to the time-convolutionless equ
tion of motion. To this end, we decompose the interact
Hamiltonian into a sum of products in the form

HI5(
k

Fk^ Qk . ~26!

We further assume that the staterR is not only stationary,
but also Gaussian, i.e.,

TrR$rRQi 0
~ t !Qi 1

~ t1!Qi 2
~ t2!Qi 3

~ t3!%

5TrR$rRQi 0
~ t !Qi 1

~ t1!%TrR$rRQi 2
~ t2!Qi 3

~ t3!%

1TrR$rRQi 0
~ t !Qi 2

~ t2!%TrR$rRQi 1
~ t1!Qi 3

~ t3!%

1TrR$rRQi 0
~ t !Qi 3

~ t3!%TrR$rRQi 1
~ t1!Qi 2

~ t2!%,

~27!

and we introduce the short-hand notation

0̂,1̂, . . . denotesFi 0
~ t !,Fi 1

~ t1!, . . .

^12&, . . . denotes TrR$rRQi 1
~ t1!Qi 2

~ t2!%, . . .

and sum over repeated indicesi k . In this notation we find,
for example,

PL~ t !•••L~ t3!PW~ t !

5@ 0̂,†•••,@ 3̂,r#•••‡#^0•••3&

5 (
i 0••• i 3

@Fi 0
~ t !,† . . . ,@Fi 3

~ t3!,r~ t !# . . . ‡#

3TrR$rRQi 0
~ t !•••Qi 3

~ t3!%, ~28!

and inserting the expression~26! into Eq. ~25!, we obtain
-
e

-
y

s
-

n

-
n

K4~ t !PW~ t !

5E
0

t

dt1E
0

t1
dt2E

0

t2
dt3$^02&^13&†0̂,@ 1̂,2̂#3̂r‡

2^02&^31&†0̂,@ 1̂,2̂#r3̂‡2^20&^13&†0̂,3̂r@ 1̂,2̂#‡

1^20&^31&†0̂,r3̂@ 1̂,2̂#‡1^03&^12&~†0̂,@ 3̂,2̂#r1̂‡

1†0̂,@ 1̂2̂,3̂#r‡!1^30&^21&~†0̂,1̂r@ 3̂,2̂#‡

1†0̂,r@ 2̂1̂,3̂#‡!2^03&^21&†0̂,@ 1̂,3̂#r2̂‡

2^30&^12&†0̂,2̂r@ 1̂,3̂#‡%. ~29!

Note that this expression contains commutators betw
various system operators, which can immensely simplify
explicit evaluation ofK4(t), if certain commutation relations
are specified, such as bosonic commutation relations fo
harmonic oscillator, or the commutation relations for t
pseudospin operators~see Sec. IV A!.

III. STOCHASTIC UNRAVELING
OF QUANTUM MASTER EQUATIONS

A. Quantum master equations in Lindblad form

In Ref. @25# Lindblad has shown that the equation of m
tion of a reduced density matrix has to be of the form

]

]t
r~ t !52 i FHS1

1

2 (
i

Si~ t !Li
†Li ,r~ t !G

1(
i

g i~ t !H 2
1

2
Li

†Lir~ t !2
1

2
r~ t !Li

†Li

1Lir~ t !Li
†J , ~30!

if the dynamics of the reduced system is assumed to c
serve positivity and to represent a quantum dynamical se
group. Here,HS is the Hamiltonian of the system, the time
dependent coefficientsSi(t) describe an energy shift induce
by the coupling to the environment, namely, the Lamb a
Stark shifts, and the positive ratesg i(t) model the dissipative
coupling to theith decay channel.

In this case, the state of the open system can alternati
be described by a stochastic wave functionc(t) @1–6#, the
covariance matrix of which equals the reduced density m
trix, i.e.,

r~ t !5E DcDc* uc&^cuP@c,t#, ~31!

whereP@c,t# is the probability density functional of finding
the state of the open system in the Hilbert space volu
elementDcDc* at the timet @26,27#.

The time evolution of the stochastic wave function is go
erned by a stochastic differential equation, which might
ther be diffusive@5,6# or of the piecewise deterministic jum
type @1–4#. The latter takes the form@7#
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dc~ t !52 iG~c,t !dt1(
i

S Lic~ t !

iLic~ t !i 2c~ t ! DdNi~ t !,

~32!

where thedNi(t) are the differentials of independent Poiss
processNi(t) with mean^dNi(t)&5g i(t)iLic(t)i2dt. The
drift generator takes the form

G~c,t !5H~ t !c1
1

2 (
i

Si~ t !Li
†Lic

2
i

2 (
i

g i~ t !~Li
†Li2iLici2!c. ~33!

For the differential of the Poisson processdNi(t) the Ito rule
dNi(t)dNj (t)5d i j dNi(t) holds, that is,dNi(t) can either be
0 or 1. If dNi(t)50, then the system evolves continuous
according to the nonlinear Schro¨dinger-type equation

i
]

]t
c~ t !5G~c,t !, ~34!

whereas, ifdNi(t)51 for somei , then the system undergoe
an instantaneous, discontinuous transition of the form

c~ t !→
Lic~ t !

iLic~ t !i . ~35!

Note that the generatorG(c,t) of the continuous time evo
lution is non-Hermitian and hence the propagator ofc(t) is
nonunitary. However, due to the nonlinearity of the gene
tor, the norm ofc(t) is preserved in time.

Using the Ito calculus for the differentialsdNi(t) it is
easy to check that the equation of motion of the covaria
matrix of c(t) equals the usual Markovian quantum mas
equation~30! in Lindblad form. Thus expectation values o
system observables can either be calculated by means o
reduced density matrix or as averages over different rea
tions of the stochastic processc(t) and both descriptions
yield the same results.

B. General quantum master equations

The most general type of a quantum master equa
which results from the time-convolutionless projection o
erator technique—or from a perturbative approximation—
linear in r(t) and local in time~see Sec. II C! but needs not
to be in the Lindblad form, as we will show in an examp
below ~see Sec. IV C!. However, these equations can alwa
be written in the form

]

]t
r~ t !5A~ t !r~ t !1r~ t !B†~ t !1(

i
Ci~ t !r~ t !Di

†~ t !,

~36!

with some time-dependent linear operatorsA(t), B(t), Ci(t),
andDi(t). In order to find an unraveling of this equation
motion we follow a strategy which has already been succ
fully applied to the calculation of multitime correlation func
tions @28,29#. We describe the state of the open system b
pair of stochastic wave functions
-

e
r

the
a-

n
-
s

s-

a

u~ t !5S f~ t !

c~ t !
D . ~37!

Formally,u(t) can be regarded as an element of the doub
Hilbert spaceH̃5H%H. If P̃@u,t# denotes the probability
density functional of the process in the doubled Hilbert sp
H̃, we may define the reduced density matrix as

r~ t !5E DuDu* uf&^cuP̃@u,t#. ~38!

The time evolution of the state vectoru(t) is then governed
by the stochastic differential equation

du~ t !52 iG~u,t !dt

1(
i

S iu~ t !i
iJi~ t !u~ t !i Ji~ t !u~ t !2u~ t ! DdNi~ t !,

~39!

where dNi(t) is the differential of a Poisson process wi
mean

^dNi~ t !&5
iJi~ t !u~ t !i2

iu~ t !i2
dt, ~40!

and the functionalG(u,t) is defined as

G~u,t !5 i S F~ t !1
1

2 (
i

iJi~ t !u~ t !i2

iu~ t !i2 D u~ t !, ~41!

with the time-dependent operators

F~ t !5S A~ t ! 0

0 B~ t !
D , Ji~ t !5S Ci~ t ! 0

0 Di~ t !
D . ~42!

Again, this type of stochastic evolution equation describe
piecewise deterministic jump process, where the determi
tic pieces are solutions of the differential equation

i
]

]t
u~ t !5G~u,t !, ~43!

and the jumps induce transitions of the form

u~ t !→
iu~ t !i

iJiu~ t !i Jiu~ t !5
iu~ t !i

iJiu~ t !i S Cif

Dic
D . ~44!

Note that the structure of the stochastic differential equat
in the doubled Hilbert space~39! is very similar to the struc-
ture of the stochastic differential equation~32!. In fact, the
unraveling of general quantum master equations presente
this section contains as a special case the unraveling
Lindblad-type equations shown in Sec. III A: If we set

A~ t !5B~ t !52 iH S2
1

2(k
@gk~ t !1 iSk~ t !#Lk

†Lk ~45!

and

Ci~ t !5Di~ t !5Ag~ t !Li , ~46!
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the equation of motion~36! reduces to the Lindblad equatio
~30! and both unravelings are identical.

IV. EXAMPLE: THE SPONTANEOUS DECAY
OF A TWO-LEVEL SYSTEM

In this section we consider as an example of the gen
theory the exactly solvable model of a two-level syste
spontaneously decaying into the vacuum within the rotat
wave approximation. The Hamiltonian of the total system
given by

H05vSs1s21(
k

vkbk
†bk , ~47!

HI5s1
^ B1s2

^ B† with B5(
k

gkbk , ~48!

wherevS denotes the transition frequency of the two-lev
system, the indexk labels the different field modes with fre
quencyvk , annihilation operatorbk , and coupling constan
gk , ands6 denote the pseudospin operators.

A. Exact and approximated equations of motions

The exact solution and equation of motion for this mod
can be obtained in the following way: Define the states@30#

c05u0&S^ u0&R ,

c15u1&S^ u0&R , ~49!

ck5u0&S^ uk&R ,

whereu0&S and u1&S indicate the ground and excited state
the system, respectively, the stateu0&R denotes the vacuum
state of the reservoir, anduk&R5bk

†u0&R denotes the state
with one photon in modek. Since the interaction Hamil
tonian conserves the total number of particles, the flow of
Schrödinger equation generated byHI is confined to the sub
space spanned by these vectors. Hence, we may expan
state of the total system at any time as

f~ t !5c0c01c1~ t !c11(
k

ck~ t !ck , ~50!

with some probability amplitudesc0, c1(t), andck(t). The
time evolution of these probability amplitudes is determin
by a complicated system of ordinary differential equatio
which can be solved in some simple cases by introducing
so-called pseudomodes@30#. With these probability ampli-
tudes, the reduced density matrix takes the form

r~ t !5S uc1~ t !u2 c1~ t !c0*

c1* ~ t !c0 uc0u21(
k

uck~ t !u2D . ~51!

Differentiating this expression with respect to time we g
the following exact equation of motion,
al

g
s

l

l

e

the

d
,
e

t

]

]t
r~ t !52

i

2
S~ t !@s1s2,r~ t !#1g~ t !

3H 2
1

2
s1s2r~ t !2

1

2
r~ t !s1s21s2r~ t !s1J ,

~52!

where the time-dependent energy shiftS(t) and decay rate
g(t) are defined as

S~ t !522 ImH ċ1~ t !

c1~ t !J , g~ t !522 ReH ċ1~ t !

c1~ t !J . ~53!

Note that if the decay rateg(t) is positive for allt, then this
equation of motion is in the Lindblad form~30!.

The equation of motion within the Born approximatio
can be expressed in terms of the reservoir correlation fu
tion. To this end, we define the real functionsF(t) andC(t)
as

F~ t !1 iC~ t !52 TrR$B~ t !B†rR%eivSt

52E dvJ~v!ei ~vS2v!t, ~54!

whereB(t)5exp(iH0t)Bexp(2iH0t), and we have performed
the continuum limit.J(v) is the spectral density. The equa
tion of motion in the Born approximation~7! then reads

]

]t
r~ t !52E

0

t

ds H i

2
C~ t2s!@s1s2,r~s!#1F~ t2s!

3F1

2
s1s2r~s!1

1

2
r~s!s1s22s2r~s!s1G J .

~55!

Performing the Markov approximation and extending the u
per limit of the time integral to infinity, we obtain the usu
time-independent quantum master equation

]

]t
r~ t !52

i

2
SM@s1s2,r~ t !#1gM

3H 2
1

2
s1s2r~ t !2

1

2
r~ t !s1s21s2r~ t !s1J ,

~56!

where the Markovian Lamb shiftSM and the Markovian de-
cay rategM are defined as

SM5E
0

`

dsC~s!,gM5E
0

`

dsF~s!. ~57!

The time-convolutionless expansion of the equation
motion according to Sec. II C leads to a quantum mas
equation which has the same structure as the exact equ
of motion, but the time-dependent energy shiftS(t) and de-
cay rateg(t) are approximated by the quantities
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FIG. 1. Damped Jaynes-Cummings model on resonance. Exact solution~exact!, time-convolutionless master equation to second~TCL 2!
and fourth order~TCL 4!, generalized master equation to second order~GME 2!, and the Markovian quantum master equation~Markov!: ~a!
Decay rate of the excited state population,~b! the population of the excited state, including a stochastic simulation of the t
convolutionless quantum master equation with 105 realizations, and~c! deviation of the approximative solutions from the exact result,
tS55tR ~moderate coupling!. ~d! Population of the excited state fortS50.2tR ~strong coupling!.
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S~4!~ t !5E
0

t

dt1C~ t2t1!1
1

2E0

t

dt1E
0

t1
dt2E

0

t2
dt3

3@C~ t2t2!F~ t12t3!1F~ t2t2!C~ t12t3!

1C~ t2t3!F~ t12t2!1F~ t2t3!C~ t12t2!#

~58!

and

g~4!~ t !5E
0

t

dt1F~ t2t1!1
1

2E0

t

dt1E
0

t1
dt2E

0

t2
dt3

3@C~ t2t2!C~ t12t3!

2F~ t2t2!F~ t12t3!1C~ t2t3!C~ t12t2!

2F~ t2t3!F~ t12t2!#. ~59!

It is important to note that the explicit expressions f
S(4)(t) and g (4)(t) only involve ordinary integrations ove
the reservoir correlation functions, which can be done a
lytically in simple cases or numerically.

B. Damped Jaynes-Cummings model on resonance

The damped Jaynes-Cummings model describes the
pling of a two-level atom to a single cavity mode which
turn is coupled to a reservoir consisting of harmonic osci
tors in the vacuum state. If we restrict ourselves to the c
of a single excitation in the atom-cavity system, the cav
mode can be eliminated in favor of an effective spectral d
sity of the form
a-

u-

-
se
y
-

J~v!5
1

2p

g0l2

~vS2v!21l2
, ~60!

wherevS is the transition frequency of the two-level system
The parameterl defines the spectral width of the coupling
which is connected to the reservoir correlation timetR by the
relationtR5l21 and the time scaletS on which the state of
the system changes is given bytS5g0

21. The exact probabil-
ity amplitudec1(t) @see Eq. 50!# is readily obtained by using
the method of poles@30#, sinceJ(v) has simple poles atv
5v06 il. One gets

c1~ t !5c1~0!e2lt/2S cosh
dt

2
1

l

d
sinh

dt

2 D , ~61!

where d5Al222g0l, which yields the time-dependen
population of the excited state

r11~ t !5r11~0!e2ltS cosh
dt

2
1

l

d
sinh

dt

2 D 2

. ~62!

Using Eq.~53! we therefore obtain a vanishing Lamb shif
S(t)[0, and the time-dependent decay rate

g~ t !5
2g0l sinh~dt/2!

d cosh~dt/2!1l sinh~dt/2!
. ~63!

In Fig. 1~a! we illustrate this time-dependent decay rateg(t)
~‘‘exact’’ ! together with the Markovian decay rategM5g0
~‘‘Markov’’ ! for tS55tR . Note that for short times, i.e., for
times of the order oftR , the exact decay rate grows linearl
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in t, which leads to the quantum-mechanically correct sh
time behavior of the transition probability. In the long-tim
limit the decay rate saturates at a value larger than the M
kovian decay rate, which represents corrections to the go
rule. The population of the excited state is depicted in F
1~b!: for short times, the exact population decreases quad
cally and is larger than the Markovian population, which
simply given byr11(0)exp(2g0t), whereas in the long-time
limit the exact population is slightly less than the Markovi
population.

Next, we want to determine the solution of the gener
ized quantum master equation in the Born approximation.
this end, we insert the spectral density of the coupl
strength~60! into Eq. ~54! to obtainC(t)[0 and

F~ t !5g0l exp~2lt !. ~64!

The solution of the generalized master equation~55! can be
found in the following way. We differentiate Eq.~55! with
respect tot and obtain

r̈~ t !52lṙ~ t !1g0lF2
1

2
s1s2r~ t !

2
1

2
r~ t !s1s21s2r~ t !s1G . ~65!

Due to the exponential memory kernel, this equation of m
tion is an ordinary differential equation which is local
time, and contains onlyr(t), ṙ(t), and r̈(t). Solving this
system of differential equations forr(t), we obtain the time
evolution of the population of the upper level

r̃11~ t !5r11~0!e2lt/2S cosh
d8t

2
1

l

d8
sinh

d8t

2 D , ~66!

whered85Al224g0l. From this expression, we can dete
mine the time-dependent decay rate

g̃~ t !5
ṙ11~ t !

r11~ t !
5

2g0l sinh~d8t/2!

d8 cosh~d8t/2!1l sinh~d8t/2!
, ~67!

the structure of which is similar to the exact decay rate~63!.
Note, however, the difference between the parametersd and
d8 which can also be seen in Fig. 1~a! where we have also
plotted the decay rateg̃(t) ~‘‘GME 2’’ !: For short times, the
decay rateg̃(t) is in good agreement withg(t), but in the
long-time limit, g̃(t) is too large.

Finally, the time-convolutionless decay rate can be de
mined from Eq.~59!, and to second and fourth order in th
coupling we obtain

g~2!~ t !5g0~12e2lt!, ~68!

and

g~4!~ t !5g0H 12e2lt1
g0

l
@sinh~lt !2lt#e2ltJ , ~69!

respectively, which corresponds to a Taylor expansion of
exact decay rateg(t) in powers ofg0, as can be checked b
t-

r-
en
.
ti-

l-
o
g

-

r-

e

differentiating g(t) with respect tog0. Figure 1~a! clearly
shows thatg (2)(t) as well asg (4)(t) approximate the exac
decay rate very well for short times, andg (4)(t) is also a
good approximation in the long-time limit.

The time evolution of the population of the excited sta
can be obtained by integrating the rateg (4)(t) with respect to
t. This yields

r11
~4!~ t !5r11~0!expS 2E

0

t

dsg~4!~s! D . ~70!

In order to compare the quality of the different approxim
tion schemes, we show the difference between the appr
mated populations and the exact population in Fig. 1~c!. Be-
sides the analytical solutions of the generalized ma
equation~55! and the time-convolutionless master equatio
we have also performed a stochastic simulation of the tim
convolutionless quantum master equations with 105 realiza-
tions. Since the approximated ratesg (2,4)(t) are positive for
all t, the corresponding master equations are in Lindb
form, and we can use the stochastic simulation algorit
described in Sec. III A as an unraveling. Figure 1~c! shows
that the stochastic simulation is in very good agreement w
the corresponding analytical solutions. Moreover, we see
the difference between the solution of the tim
convolutionless master equation to fourth order and the e
master equation is small@see also Fig. 1~b!#, whereas the
errors of the generalized and the time-convolutionless ma
equation to second order which correspond to the Born
proximation and the Born-Markov approximation~without
extending the integral!, respectively, are larger and of th
same order of magnitude. In fact, the Markov approximat
even leads to a slight improvement of the accuracy, co
pared to the Born approximation, which is surprising if w
consider the heuristic derivation of the quantum master eq
tion in Sec. II A.

As we pointed out in Sec. II, the approximation schem
used in this article are perturbative and hence rely on
assumption that the coupling is not too strong. But wh
happens, if the system approaches the strong coupling
gime? We will investigate this question by means of t
damped Jaynes-Cummings model on resonance, where
explicit expressions of the quantities of interest are know

First, let us take a look at the exact expression for
population of the excited state~62!: In the strong coupling
regime, i.e., forg0.l/2 or tS,2tR , the parameterd is
purely imaginary. Definingd̂52 id we can write the exac
population as

r11~ t !5r11~0!e2ltS cos
d̂t

2
1

l

d̂
sin

d̂t

2 D 2

, ~71!

which is an oscillating function that has discrete zeros at

t5
2

d̂
S p2arctan

d̂

l
D . ~72!

Hence, the rateg(t) diverges at these points@see Eq.~53!#.
Obviously, g(t) can only be an analytical function fort
P@0,t0@ , wheret0 is the smallest positive zero ofr11(t).



th
n

io

ly
g.

io

on
th

h

a-
ve
n

rd
u-
re
e
fo

ng
b

y.
gt

de-

ions

t
s of
-
pon-
com-

the

s to
ave
ime.

its
ad
ity
ad
m is
ne-
ple

xa

PRA 59 1641STOCHASTIC WAVE-FUNCTION METHOD FOR NON- . . .
On the other hand, as we have seen in Sec. IV B,
time-convolutionless quantum master equation correspo
basically to a Taylor expansion ofg(t) in powers ofg0, and
the radius of convergence of this series is given by the reg
of analyticity ofg(t). Forg0,l/2, this is the whole positive
real axis, but forg0.l/2 the perturbative expansion on
converges fort,t0. This behavior can be clearly seen in Fi
1~d!, where we have depictedr11(t) and r11

(4)(t) for tS

5tR/5, i.e., for a strong coupling: the perturbative expans
converges tor11(t) for t&t0'6.3/g0, but fails to converge
for t.t0.

The solution of the generalized master equation to sec
order shows a quite distinct behavior, but also fails in
strong coupling regime: forg0.l/4 the populationr11(t)
starts to oscillate and even takes negative values, whic
unphysical@see Fig. 1~d!#.

The ‘‘failure’’ of the time-convolutionless master equ
tion at t5t0 can also be understood from a more intuiti
point of view. The time-convolutionless equation of motio
~20! states that the time evolution ofr(t) only depends on
the actual value ofr(t) and on the generatorK(t). However,
at t5t0 the time evolution also depends onr(0). This fact
can be seen in Fig. 2, where we have plottedr11(t) for three
different initial conditions, namely,r11(0)51.0, 0.5, 0.0. At
t5t0, the corresponding density matrices coincide, rega
less of the initial condition. However, the future time evol
tion for t.t0 is different for these trajectories. It is therefo
intuitively clear that a time-convolutionless form of th
equation of motion which is local in time ceases to exist
t.t0. The formal reason for this fact is that att5t0 the
operator 12S(t) ~see Sec. II C! is not invertible and hence
the generatorK(t) does not exist at this point.

C. Damped Jaynes-Cummings model with detuning

In this section we treat the damped Jaynes-Cummi
model with detuning, i.e., the same setup as in Sec. IV B
the center frequency of the cavityv0 is detuned by an
amountD5vS2v0 against the atomic transition frequenc
In this case the spectral density of the coupling stren
reads

J~v!5
1

2p

g0l2

~vS2D2v!21l2
, ~73!

FIG. 2. Damped Jaynes-Cummings model on resonance. E
population for the three different initial conditionsr11(0)51.0, 0.5,
0.0 in the strong coupling regime (tS50.2tR).
e
ds

n

n

d
e

is

-

r

s
ut

h

and thus the functionsF(t) andC(t) are given by

F~ t !5g0le2lt cos~Dt !, ~74!

C~ t !5g0le2lt sin~Dt !. ~75!

With these functions, the time-dependent Lamb shift and
cay rate to fourth order in the coupling,S(4)(t) andg (4)(t),
respectively, can be calculated using Eqs.~58! and~59!. The
integrals can be evaluated exactly and lead to the express

S~4!~ t !5
g0lD

l21D2
$12e2lt@cos~Dt !1~l/D!sin~Dt !#%

2
g0

2l2D3e2lt

2~l21D2!3
$@123~l/D!2#

3@elt2e2ltcos~2Dt !#

22@12~l/D!4#Dt sin~Dt !14@11~l/D!2#

3lt cos~Dt !2~l/D!@32~l/D!2#e2lt sin~2Dt !%

~76!

and

g~4!~ t !5
g0l2

l21D2
$12e2lt@cos~Dt !2~D/l!sin~Dt !#%

1
g0

2l5e2lt

2~l21D2!3
$@123~D/l!2#

3@elt2e2ltcos~2Dt !#

22@12~D/l!4#lt cos~Dt !

14@11~D/l!2#Dt sin~Dt !1~D/l!

3@32~D/l!2#e2lt sin~2Dt !%. ~77!

In Fig. 3~a! we have depictedg (4)(t) together with the exac
decay rate, which can be calculated using the method
poles@30# for D58l andl50.3g0. Note that the spontane
ous decay rate is severely suppressed compared to the s
taneous decay on resonance. This can also be seen by
puting the Markovian decay rategM which is given by

gM5
g0l2

l21D2
'0.015g0 . ~78!

However, this strong suppression is most effective in
long-time limit. For short times,g(t) oscillates with a large
amplitude and can even take negative values, which lead
an increasing population. This is due to photons which h
been emitted by the atom and reabsorbed at a later t
Hence, the exact quantum master equation as well as
time-convolutionless approximation are not in the Lindbl
form ~30!, but conserve the positivity of the reduced dens
matrix. This is, of course, not a contradiction to the Lindbl
theorem, since a basic assumption of the Lindblad theore
that the reduced system dynamics constitutes a o
parameter dynamical semigroup. However, in our exam

ct
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FIG. 3. Damped Jaynes-Cummings model with detuning. Exact solution~exact!, time-convolutionless master equation to fourth ord
~TCL 4!, and the Markovian quantum master equation~Markovian!: ~a! Decay rate of the excited state population, and~b! the population of
the excited state, including a stochastic simulation of the time-convolutionless quantum master equation with 105 realizations, forl
50.3g0 andD58l.
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this is not the case, since the initial preparation singles
the specific timet50 and the domain of the operatorK(t) is
shrinking for increasingt.

Since the transition rateg (4)(t) also takes negative value
we cannot use the stochastic simulation algorithm prese
in Sec. III A for a stochastic unraveling of the time
convolutionless quantum master equation, but have to
the simulation algorithm in the doubled Hilbert space~see
Sec. III B!. The dynamics of the stochastic wave functi
u(t)5„f(t),c(t)…T, which is an element of the doubled Hi
bert spaceH̃5H%H, is governed by the stochastic differe
tial equation~39!, where the operatorsF andJ are given by

F52
1

2
g~4!~ t !S s1s2 0

0 s1s2D ~79!

and

J5Aug~4!uS sgn~g~4!!s2 0

0 s2D . ~80!

The deterministic part of the time evolution is governed
the nonlinear Schro¨dinger-type equation

]

]t
u~ t !5G~u,t !5S F1

1

2

iJu~ t !i2

iu~ t !i2 D u~ t !, ~81!

which results in a continuous drift, whereas the jumps ind
instantaneous transitions of the form

u~ t !→
iu~ t !i

iJu~ t !i Ju~ t !;S sgn~g~4!!u0&S

u0&S
D . ~82!

If the rateg (4)(t) is positive then this type of transition lead
to a positive contribution to the ground state populat
r00(t), whereas a negative rate leads to a decrease ofr00.

In Fig. 3~b!, we show the results of a stochastic simulati
for 105 realizations, together with the analytical solution
the time-convolutionless quantum master equation and
exact solution. Obviously, the agreement of all three cur
is good and the stochastic simulation algorithm works exc
lently even for negative decay rates. In addition, we a
show the solution of the Markovian quantum master eq
ut

ed

se

e

e
s
l-
o
-

tion which clearly underestimates the decay for short tim
and does not show oscillations.

D. Spontaneous decay into a photonic band gap

As our final example, we treat a simple model for t
spontaneous decay of a two-level system in a photonic b
gap which was introduced by Garraway@31#. To this end, we
consider a spectral density of the coupling strength of
form

J~v!5
V0

2

2pS W1G1

~v2vS!21~G1/2!2
2

W2G2

~v2vS!21~G2/2!2D ,

~83!

where V0
2 describes the overall coupling strength,G1 the

bandwidth of the ‘‘flat’’ background continuum,G2 the
width of the gap, andW1 andW2 the relative strength of the
background and the gap, respectively. Again, the funct
J(v) has a small number of poles, and hence the exact
lution can be determined by using pseudomodes@31#. In Fig.
4~a! we show the excited state’s decay rateg(t) for the same
parameters as in Ref.@31#, i.e., G1 /V0510, G2 /V051,
W151.1, andW250.1. For short times,g(t) increases lin-
early on a time scale ofG1

21 and then takes a maximum
which stems from transitions into the ’flat’ background co
tinuum. For longer times, i.e.,t@G2

21, the transitions into the
background are suppressed, and the decay rate bec
smaller and smaller until it reaches its final value. Thus
population of the excited state decreases rapidly for time
the orderG2

21, and slowly in the long-time limit@see Fig.
4~b!#.

The time-dependent Lamb shiftS(4)(t) and the decay rate
g (4)(t) of the time-convolutionless quantum master equat
to fourth order can be computed by inserting the spec
density of the coupling strengthJ(v) into Eq. ~54!. This
yields C(t)[0 and

F~ t !52V0
2~W1e2G1t/22W2e2G2t/2!, ~84!

which can be inserted into Eqs.~58! and ~59!. SinceC(t)
[0 the Lamb shiftS(4)(t) vanishes; the time-dependent d
cay rateg (4)(t) can be computed explicitly, and is in goo
agreement with the exact decay rate for our choice of par
eters@see Figs. 4~a! and 4~b!#.
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FIG. 4. Spontaneous decay in a photonic band gap: Exact solution~exact!, and time-convolutionless master equation to fourth order~TCL
4!: ~a! Decay rate of the excited state population, and~b! the population of the excited state, including a stochastic simulation of
time-convolutionless quantum master equation with 105 realizations, forW151.1, W250.1, G1 /V0510, andG2 /V051.
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V. SUMMARY

In this article we have presented a generalization of
stochastic wave-function method to quantum master eq
tions which are not in Lindblad form. This generalization
together with the use of the time-convolutionless project
operator technique—makes it possible to extend the rang
potential applications of the stochastic wave-functi
method beyond the weak coupling regime, where the Bo
Markov approximation is valid, without enlarging the sy
tem. This generalization is capable of treating systems in
intermediate coupling regime, i.e., systems for which
generator of the time-convolutionless quantum master eq
tion exists for allt and is analytic in the coupling strengtha.
In the examples we investigated in this article, this range w
limited by tS*tR . The dynamics of this class of systems
governed by an equation of motion which is local in time a
p
.

ys

y

t

e
a-

n
of

-

e
e
a-

s

can be approximated by a perturbative expansion. This
turbative expansion leads in general to a quantum ma
equation, which needs not to be in Lindblad form but can
unraveled with our method. The basic idea of this unravel
is the introduction of stochastic processes in a doubled
bert space, which has already been successfully used fo
computation of matrix elements of operators in the Heis
berg picture and multitime correlation functions.
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