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Spatial pump-meter quantum correlations in a vectorial Kerr-medium model
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We consider a vectorial Kerr-medium model including transverse spatial effects. We analyze cases in which,
immediately above the threshold of the spatial instability, the homogeneous pump wave gives rise to two tilted
waves corresponding to a stripe pattern in the near field. We analyze both the self-focusing and the self-
defocusing case and we point out the existence ofanti-correlationsbetween the quantum fluctuations of the
intensity of thepumpand the sum of the intensities of the two tilted waves creating thetransverse patternin
the near field. We also evaluate the efficiency of this scheme as a quantum nondemolition~QND! scheme
which uses the tilted waves as a ‘‘meter’’ to measure the intensity fluctuations of the pump. Our results show
the posibility of a QND measurement in the self-defocusing case. In this case, and for a linearly polarized
pump, the output pump beam~uniform in the transverse plane! and the pattern have orthogonal polarization
and could be easily separated experimentally.@S1050-2947~99!06402-1#

PACS number~s!: 42.50.Dv, 42.65.Sf, 42.50.Ct
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I. INTRODUCTION

It is well known that transverse optical patterns@1,2# are
capable of allowing noteworthy aspects linked to quant
fluctuations@2,3#. These issues have been mainly studied i
model of a cavity filled with Kerr medium and driven by
plane wave input field@3–5#, in degenerate optical parame
ric oscillators @6–17#, and in cavityless configurations fo
x (2) @15,18–23# andx (3) @24,25# media. The results of mos
of these papers are related to phenomena of quantum n
reduction or squeezing and to spatial quantum correlatio
few of them discuss Einstein-Podolsky-Rosen aspe
@13,16#. In the case of cavity systems, quantum phenom
arise both above@3,4,10,16# and below @6–9,11–15# the
threshold for spontaneous pattern formation.

The original Kerr-medium model, formulated in@26# for a
scalar electric field, has been generalized to include the
torial character of the field@27#. Assuming anx-polarized
input field, the generalized model displays a richer scen
of pattern forming instabilities that we describe below.

In the self-focusing casethe system develops an instab
ity that is formally identical to that of the scalar model@26#.
In the case of two transverse dimensions it leads to the
mation of a hexagonal pattern@4#; while in the case of one
transverse dimension, as can be obtained by imposin
waveguide configuration, it leads to the formation of a str
pattern in the near field. In the far field, this stripe patte
corresponds to a three-spot structure@1,2#, in which the cen-
tral spot arises from the axial pump beam (P), while the
other two spots arise from two beams (M1 and M2) gener-
ated by the spatial instability and propagating symmetrica
with respect to the axis of the system~Fig. 1!.

In the self-defocusing case, on the other hand, the syste
develops an instability, absent in the scalar model@26#, lead-

*URL: http://www.imedea.uib.es/PhysDept/
PRA 591050-2947/99/59~2!/1622~11!/$15.00
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ing to the formation of twoy-polarized beamsM1 and M2
@27,28#. In one or two transverse dimensions, the picture s
corresponds to that of Fig. 1, in this case, however, the o
put pump beamPout is x polarized, while the beamsM1 and
M2 arey polarized. Hence in the near field the configurati
of the output field~of frequencyv0 as the input field! is such
that they-polarized component corresponds to a stripe p
tern, whereas thex̂-polarized component is uniform in th
transverse plane exactly as the input field.

In general pattern formation processes, the spatial in
bility is associated with a definite ‘‘critical’’ wave numbe
kc , which characterizes the periodicity of the pattern th
arises immediately above the instability threshold@1,2#. Pre-
cisely, this pattern is given by a linear combination of pla
waves exp(ikW•rW) @rW[(x,y) is the position vector in the trans
verse plane, andkW[(kx ,ky) is the wave vector#, where kW

belongs to the critical circleukW u5kc . The selection of a dis-

FIG. 1. Cavity with plane mirrors 1 and 2 contains the Ke
mediumK. Pin is the monochromatic input pump field, which ha
a plane-wave configuration and frequencyv0 . The input/output
mirror 1 has a high reflectivity, while mirror 2 is completely reflec
ing. In addition to the output pump beamPout , the spatial instability
generates the two off-axial meter beamsM1 and M2 of frequency
v0 . Hence, the far field has a three-spot structure.
1622 ©1999 The American Physical Society
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PRA 59 1623SPATIAL PUMP-METER QUANTUM CORRELATIONS IN . . .
crete set of wave vectors within this ring is a nonlinear p
cess in which the correlations among the wave vectors p
the crucial role. In the case of optical systems, the nonlin
process corresponds to the simultaneous absorption
emission of a number of photons, which gives rise to cor
lations of quantum nature. This is the very origin of t
quantum aspects that characterize nonlinear optical patt
against spatial patterns in other fields.

In most of the analysis of quantum effects in nonline
optical patterns in the configuration shown in Fig. 1, t
interesting effects arise from the correlations between
two beamsM1 andM2 . In this paper, instead, we study th
correlation between the pump beam and the pattern be
which turn out to be anticorrelated as previously sho
within a classical framework@29#. This anticorrelation arises
from the fact that in each elementary nonlinear process
Fig. 1 two photons of the pump beam are converted in
photon of beamM1 and one photon of beamM2 . We per-
form this analysis in the framework of the vectorial Ker
medium model, above the threshold of the spatial instabi
both in the self-focusing case for one transverse dimen
and in the self-defocusing case for one or two transve
dimensions. Immediately above threshold, we can use a
plified quantum model, in which the pump beam as well
beamsM1 and M2 are described by single plane waves,
wave number 0 for the pump and wave numberkc for the
wavesM1 andM2 .

We analyze the anticorrelation using the concepts
quantum nondemolition~QND! measurements@30#. Pre-
cisely, we consider the beamsM1 andM2 asmeter beamsto
measure the quantum fluctuations of the pump beam tha
will also call thesignal beam. By thinking of the QND de-
vice as a ‘‘black box’’ with incoming and outgoing fields
QND measurements are characterized by three correla
coefficients:Cs , Cm , and Vsum relating the quantum fluc
tuations of the fields that enter or exit the black box@30,31#.

The first coefficientCs measures the correlation betwe
the incoming and the outgoing signal field that is the pu
beam in our case. Such correlation is complete only fo
perfectly nondestroying measurement for whichCs51.

The second coefficientCm measures the correlation be
tween the incoming signal and the outgoing meter, rep
sented in our case by the two tilted wavesM1 andM2 of Fig.
1. ForCm51 the correlation is complete, so that by perform
ing a direct measurement on the meter we perform an ide
accurate measurement of the incoming signal’s fluctuatio

Finally the third coefficientVsum quantifies the correlation
between the outgoing signal and the outgoing meter. M
precisely, due to its definition,Vsum represents the residua
quantum noise in the outgoing signal once all the noise c
related to the outgoing meter has been subtracted; so tha
a perfect correlation between the outgoing meter and ou
ing signal one hasVsum50. In our case we study the cond
tional variance which links the intensity of the pump wa
and the sum of the intensities of the two meter wavesM1 and
M2 . The quantum nature of the correlation becomes ma
fest when the conditional variance becomes smaller t
unity; once again this means that by measuring the inten
fluctuations of the meter beamsM1 andM2 and by introduc-
ing an appropriate feedback loop, one can reduce the fl
tuations of the pump beam below the shot-noise le
-
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@30,31#. The complete QND regime is reached when, in a
dition to Vsum,1, one hasCs1Cm.1 @30,31#.

The outline of this paper is as follows. In Sec. II w
derive the quantum-mechanical model for a Kerr medi
with the polarization degree of freedom. In Sec. III we c
culate the correlations between the quantum fluctuation
the different modes. The analysis shown in Secs. II and II
general and describes both self-focusing and self-defocu
cases. In Sec. IV we discuss our results for both cases
nally, in Sec. V we summarize the work presented here
give some concluding remarks.

II. VECTORIAL KERR-MEDIUM MODEL

In this section we derive the quantum-mechanical co
terpart of a semiclassical model@27–29# which accounts for
the polarization degree of freedom of the electric field in
optical cavity filled with an isotropicx (3) nonlinear medium.
The semiclassical equations that describe the behavior o
electric fieldEW inside the cavity are

1

k

]E6

]t
52~11 ihu0!E61 ia¹2E61E06

1 ih@auE6u21buE7u2#E6 , ~1!

whereE1 (E2) is the circularly right~left! polarized com-
ponent of the field,E06 are the components of the inpu
field, h takes the value 1~–1! for the self-focusing~self-
defocusing! case,hu0 is the cavity detuning,a is the strength
of diffraction, ¹2 is the transverse Laplacian,k is the cavity
decay rate, anda andb @32# are parameters associated wi
the nonlinear susceptibility tensorx (3). Since we are consid
ering an isotropic medium,a1b52 @33#. The scalar case
described in@3,26# can be recovered from Eq.~1! taking
E15E2 , and rescaling the electrical field amplitude.

A. Stability analysis of the homogeneous solution

The steady-state homogeneous solutions of Eq.~1! are
reference states from which transverse patterns emerg
they become unstable. We will consider anx linearly polar-
ized input field, i.e.,E015E025E0 . In this case the homo
geneous solution is alsox polarized, withEs15Es25Es ,
and is given by the implicit equation

I p5I s@11~ I s2u0!2#, ~2!

whereI p52uE0u2 and I s52uEsu2. As is well known Eq.~2!
implies bistability foru0.A3.

Basic features of the stability of the steady-state homo
neous solutions can be analyzed by considering the evolu
equations for perturbationsc6 defined by

E65Es@11c6#. ~3!

From Eqs.~1! and ~3! the linearized equations become

] t8c652@11 ih~u02I s!2 ia¹2#c6

1 ihI s@a~c61c6* !1~22a!~c71c7* !#/2, ~4!

wheret85kt is the dimensionless time.
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It is convenient to make a change of variables to the
lowing basis@27,28#:

S55
s1

s2

s3

s4

6 55
Re~c11c2!

Im~c11c2!

Re~c12c2!

Im~c12c2!
6 . ~5!
d

o

b

-

b
-

n

m

a

o

io
l-In this basis, which emphasizes the role of symmetric (c1

5c2) and antisymmetric (c152c2) modes, Eq.~4! may
be written as

] t8S5LS, ~6!

where the linear matrix~in Fourier space! is
L5S 21 2h~ I s2uk! 0 0

h~3I s2uk! 21 0 0

0 0 21 2h~ I s2uk!

0 0 h„I s~2a21!2uk… 21

D , ~7!
is

e

p-
n

-

with

uk5u01hak2. ~8!

L is a matrix with 232 blocks in which the symmetric an
antisymmetric modes are decoupled. As a consequence
linear instabilities lead to the growth of either a symmetric
an antisymmetric mode. The eigenvaluesl of L are @27#

l1,25216A~uk23I s!~ I s2uk!,
~9!

l3,45216A„uk1~122a!I s…~ I s2uk!.

For the self-focusing case the homogeneous solution
comes unstable forI s

c51 with a critical wave number given
by akc

2522u0 . The instability comes from thes1 ,s2 box
of the linear matrixL in Eq. ~7!. The critical mode is there
fore symmetric andx polarized.

In the self-defocusing case the homogeneous solution
comes unstable forI s

c51/(12a) and the critical wave num
ber is given byakc

25u02a/(12a). The instability comes
from the s3 ,s4 box of L, so that the critical mode is a
antisymmetric mode andy polarized.

B. Quantum formulation

The approach that we follow to obtain the quantu
mechanical version of Eq.~1! is described in@3#, where the
scalar model was studied. We assume periodic bound
conditions in the transverse plane in a square of sideb for the
self-defocusing case or a segment of lengthb for the self-
focusing case. The master equation for the density operatr
is

ṙ5(
nW

LnW 1r1(
nW

LnW 2r2
i

\
@H,r#. ~10!

The dot designates derivatives with respect to the dimens
less timet85kt. The LiouvilliansLnW 6 are

LnW 6r5@ ânW 6r,ânW 6

†
#1@ ânW 6 ,rânW 6

†
#, ~11!
the
r

e-

e-

-

ry

r

n-

where ânW 1

† and ânW 1 (ânW 2

† and ânW 2) are the creation and
annihilation operators of circularly right~left! polarized pho-
tons with wave vectorkW5(2p/b)nW , wherenW 5(nx) for the
self-focusing case andnW 5(nx ,ny) for the self-defocusing
case, withnx , ny50, 61, 62, . . . .

The Hamiltonian is the sum of three partsH5H01Hext
1H int . The free Hamiltonian is given by

H05\h(
nW

un~ ânW 1

†
ânW 11ânW 2

†
ânW 2!. ~12!

The mode detuning hun is given by hun5hu0

14p2an2/b2 wheren[unW u.
The external Hamiltonian representing the driving field

Hext5 i\a I1~ â01
† 2â01!1 i\a I2~ â02

† 2â02!, ~13!

where a I65E06 /Ag, g being the absolute value of th
coupling constant, defined asg52C/(uDu3Ns). C is the
bistability parameter,D is the atomic detuning, andNs is the
saturation parameter@3#. In our definitiong is always posi-
tive, the sign being denoted byh which is 11 for self-
focusing and21 for self-defocusing. Finally, the modes re
resented by the operatorsânW 6 are coupled via the interactio
Hamiltonian,

H int52\hgb2E E dx dy

3S a

2
A1

† 2A1
21bA1

† A2
† A1A21

a

2
A2

† 2A2
2D ,

~14!

whereA6(x,y) is proportional to the field envelope and

A6~x,y!5
1

b(nW
ânW 6exp~ ikWnW•rW !, ~15!

with rW[(x,y). Equation~1! can be recovered from the evo
lution equation for the operatorA6 , by taking E6 /Ag
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5^A6& and using the semiclassical approximation^AB&
5^A&^B&, whereA andB are quantum operators.

In this work we are going to consider only the case
linearly polarized input field and we restrict ourselves to
case u0,A3, where the homogeneous solution
monostable. As described in the Introduction and in S
II A, the linear stability analysis of the semiclassical equ
tions shows different scenarios in the self-focusing or in
self-defocusing case. In the first one, when the homogene
solution becomes unstable, a hexagonal pattern is forme
systems with two transverse dimensions, while for syste
with one relevant transverse dimension, a stripe pat
emerges. When the input is linearlyx polarized, the linear
stability analysis shows that the pattern produced ab
threshold is alsox polarized. In the second case~self-
defocusing!, a stripe pattern develops, and, if the input isx
polarized, the pattern is polarized in they direction.

In the two cases in which stripes are formed, the field c
be described near threshold in terms of only three transv
modes for each polarization component of the field: the
mogeneous one, and two with wave vectors1kW c and2kW c .
Labeling these three modes 0, 1, 2, we have

A65
1

b
~ â061â16eikWc•

Wr1â26e2 ikWc•rW!. ~16!

Since we will consider a linearly polarized input, for de
niteness along thex direction, it is convenient to use a bas
where the modes are linearly polarized. We introduce
following change of variables:âi5(âi 11âi 2)/A2 (x po-
larized! and b̂i5(âi 12âi 2)/A2 (y polarized!. On this ba-
sis, the fieldsA1 andA2 are

A65
1

A2b
@ â06b̂01~ â16b̂1!eikWc•rW1~ â26b̂2!e2 ikWc•rW#.

~17!

The free Hamiltonian becomes

H05\h@u0~ â0
†â01b̂0

†b̂0!

1u1~ â1
†â11â2

†â21b̂1
†b̂11b̂2

†b̂2!#, ~18!

with

u15u01haukW cu2. ~19!

The external Hamiltonian is

Hext5 i\a I~ â0
†2â0!, ~20!

where, since the input field isx polarized, a I /A25a I 1

5a I 2 and, for definiteness,a I is assumed real. From th
definition ofa I 6 and the definition ofI p given after Eq.~2!,
we havea I

25I p /g.
The interaction Hamiltonian can be written asH int

5HFWM1HCPM1HSPM, where each part corresponds to t
following microscopic processes: four wave mixing,
f
e

c.
-
e
us
in
s

rn

e

n
se
-

e

HFWM52\ghF â0
2â1

†â2
†1b̂0

2b̂1
†b̂2

†

1~a21!~ â0
2b̂1

†b̂2
†1b̂0

2â1
†â2

†!

1aâ0b̂0~ â1
†b̂2

†1â2
†b̂1

†!

1(
i , j

@2~a21!âi â j b̂i
†b̂ j

†1aâ j
†b̂i

†âi b̂ j #

1
1

2
~a21!(

i
âi

†2b̂i
2G1H.c., ~21!

cross phase modulation,

HCPM52\gh

3F2(
i , j

~ âi
†âi â j

†â j1b̂i
†b̂i b̂ j

†b̂ j !1a(
i , j

âi
†b̂ j

†âi b̂ j G ,
~22!

and self-phase modulation,

HSPM52
\gh

2 (
i

~ âi
†2âi

21b̂i
†2b̂i

2!, ~23!

where we have used the relationb522a.
In the self-focusing case (h51), if we set b̂05b̂15b̂2

50, these Hamiltonians are independent ofa and become
identical to those of the scalar case@3,34#.

III. QUANTUM FLUCTUATIONS

We are interested in the quantum correlations between
intensity fluctuations of the pump modeâ0 and the fluctua-
tions in the sum of the intensities of the two transve
modes â1 and â2 ~self-focusing! or b̂1 and b̂2 ~self-
defocusing!. Due to the structure of the Hamiltonian, we e
pect to find strong correlations between these variables
the threshold for the pattern formation.

The time evolution equations in the semiclassical appro
mation are obtained by factoring mean values of produ
into products of mean values. In the following we indicate
ai , bi ( i 50,1,2) the mean valueŝâi& and^b̂i& of the cor-
responding operators (ai* , bi* are their complex conju-
gates!.

For the self-focusing case we look for stationary solutio
polarized in thex direction,bi

s50. From the evolution equa
tions, for the stationary solution, we obtain

05@2a0* a1a21a0* a0
212a0~a2* a21a1* a1!# ig

2~11 iu0!a01a I , ~24!

05@a2* a0
21a1* a1

212a1~a2* a21a0* a0!# ig2~11 iu1!a1 .
~25!

05@a1* a0
21a2* a2

212a2~a1* a11a0* a0!# ig2~11 iu1!a2 .
~26!
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Here we consider solutions such thatai
s5uai

sueif i, with
ua1

su5ua2
su, and we use, for the sake of brevity, the followin

notation for the intensities of the homogeneous and m
modes:I 05gua0

su2 andI 15gua1
su25gua2

su2. In this case, Eqs
~25! and ~26! yield

eif5
1

I 0
@u123I 122I 02 i #, ~27!

where f52f02f12f2 . Taking the modulus squared o
Eq. ~27! we derive an expression forI 0 as a function ofI 1 ,

I 05
2~u123I 1!2A~u123I 1!223

3
. ~28!

Using the relation~27! in Eq. ~24! we find for the pump
intensitya I

2 and the phasef0

I p5ga I
25I 0F S u02I 022

I 1

I 0
~u123I 1! D 2

1S 112
I 1

I 0
D 2G ,

~29!

eif05
AI p

AI 0@ ih„u02I 022~ I 1 /I 0!~u123I 1!…1112I 1 /I 0#
.

~30!

Finally, the amplitudes of the stationary solutionI 1 and I 0
are obtained solving simultaneously the implicit equatio
~28! and~29! for a given pumpa I . The phasesf0 andf are
given by Eqs.~30! and~27!, respectively. Note that this onl
fixes the value of the sumf11f2 , not the individual values
f1 , f2 .

In order to deal with intensity and phase fluctuations, i
convenient to introduce the variablesāi5ai exp(2ifi) (i
50,1,2), wheref i are the stationary values of the phas
(f1 and f2 are chosen arbitrarily with the link thatf1
1f2 has the correct value!. For simplicity, we drop the ba
in the rest of the paper. We now separate the mean value
the fluctuations as

ai~ t !5ai
s1dai5AI i /g1dai ~31!

for i 50,1,2 andI 25I 1 . Linearizing with respect to the fluc
tuations, one sees that the terms containingbi and bi* ( i
50,1,2) do not contribute in the linearized approximati
~becausebi

s50) and the equations for the fluctuationsdai

read

dȧ052~11 iu0!da012i ~ I 012I 1!da0

1 i ~ I 012I 1e2 if!da0*

12iAI 0I 1~11e2 if!~da11da2!

12iAI 0I 1~da1* 1da2* !, ~32!

dȧ152~11 iu1!da112i ~2I 11I 0!da11 i I 1da1*

12iAI 0I 1~11eif!da012iAI 0I 1da0* 12i I 1da2

1 i ~2I 11I 0eif!da2* , ~33!
er

s

s

s

nd

where we took into account thatgua0
su5AI 0, gua1

su5gua2
su

5AI 1. The equation fordȧ2 is obtained by exchanging th
indexes 1 and 2 in Eq.~33!.

For the self-defocusing case, since the meter isy polar-
ized, we look for stationary solutions such thata0

s

5ua0
sueif0, a1

s5a2
s50, b0

s50, b1
s5ub1

sueic1, and b2
s

5ub2
sueic2, with ub1

su5ub2
su. We will use the same notation a

before for the homogeneous and meter stationary intensi
I 05gua0

su2 and I 15gub1
su2. The stationary solution is ob

tained as in the self-focusing case and Eqs.~29! and~30! are
the same. Equations~27! and ~28! now become

eif5
1

~a21!I 0
@u123I 12aI 01 i #, ~34!

I 05
a~u123I 1!2A~a21!2~u123I 1!21122a

~2a21!
, ~35!

where nowf is defined asf52f02c12c2 .
As we did before, we introduce the variablesā0

5ai exp(2if0), b̄i5bi exp(2ici) (i51,2), and we drop the
bar in the rest of the paper, for simplicity. We then set

a0~ t !5AI 0 /g1da0~ t !,

b1~ t !5AI 1 /g1db1~ t !, ~36!

b2~ t !5AI 1 /g1db2~ t !.

Linearizing with respect to the fluctuations, we obtain in th
case a closed set of equations forda0 , db1 , anddb2 which
reads

dȧ052~12 iu0!da022i ~ I 01aI 1!da0

2 i @ I 012~a21!I 1e2 if#da0*

2 i @a12~a21!e2 if#AI 0I 1~da11da2!

2 iaAI 0I 1~da1* 1da2* !, ~37!

dḃ152~12 iu1!db12 i ~4I 11aI 0!db12 i I 1db1*

2 i @a12~a21!eif#AI 0I 1da02 iaAI 0I 1da0*

22i I 1db22 i @2I 11~a21!I 0eif#db2* . ~38!

The equation fordḃ2 is obtained exchanging the indexes
and 2 in Eq.~38!.

We now define the quadratures of the pump mode and
the sum and difference of the transverse modes as

dX0 , dY0 ,

dX15
dX11dX2

A2
, dY15

dY11dY2

A2
, ~39!

dX25
dX12dX2

A2
, dY25

dY12dY2

A2
,
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where, for the self-focusing case,dXj5daj1daj* and dYj

52 idaj1 idaj* for j 50,1,2. For the self-defocusing cas
the meter modes arey polarized and we havedXj5dbj

1dbj* , dYj52 idbj1 idbj* , for j 51,2. The reason for the
denominatorA2 in Eqs.~39! is to have the shot noise of th
new variables normalized to one.

Using the linearized equations, we calculate the drift m
trix A and the diffusion matrixD for the classical-looking
Fokker-Planck equation in theP representation, using th
indexes 1, . . . ,6 for the components of the vectorgW

5(da0 ,da0* ,da1 ,da1* ,da2 ,da2* ) for the self-focusing case

or gW 5(da0 ,da0* ,db1 ,db1* ,db2 ,db2* ) for the self-
defocusing case. The elements of matricesA andD are given
in the Appendix.

It is then straightforward to calculate the spectral mat
M @35#:

M ~v!5~A1 ivI !21D~AT2 ivI !21, ~40!

and the response matrixR @36#:

R~v!5~A1 ivI !21C, ~41!

where C is the matrix of the equal time commutatorsCi , j

5^@ ĝ i ,ĝ j #&. From matricesM and R all quantum correla-
tions can be obtained.

We are interested in the intensity fluctuations of the th
relevant modes. In the linearized regime, instead of inten
fluctuations one can equivalently consider the fluctuation
the quadrature components which correspond to the am
tudes. Since there is no input~apart from vacuum noise! for
modes 1 and 2, the output phase coincides with the intra
ity phasesf1 andf2 for these modes, so that the amplitu
quadrature components areX1 andX2 , in the sense that the
fluctuationsdI i are equal to 2AgIidXi ( i 51,2, I 15I 2). So,
the fluctuations in the sumI 11I 2 correspond to the noise i
the quadrature componentX1

out, defined in the self-focusing
case as X1

out5(a11a1* 1a21a2* )/A2 and in the self-
defocusing case asX1

out5(b11b1* 1b21b2* )/A2. For the
pump mode 0, instead, there is a nonvanishing input fi
and therefore the output phase is different from the intrac
ity phasef0 . The intensity fluctuations correspond to th
noise in the quadrature component

X0
out5a0e2 iQ0

out
1a0

†eiQ0
out

, ~42!

whereQ0
out is the output phase of the modea0 . The calcu-

lation of the phaseQ0
out is done using the input-output rela

tion

a0
out52a02a0

in . ~43!

By definition a05AI 0 /g and a0
in5a Ie

2 if05AI p /ge2 if0

with a I real, we then obtain from Eqs.~30! and ~43!

eiQ0
out

5A I 0

I 0
outF122

I 1

I 0
2 ihS u02I 022

I 1

I 0
~u123I 1! D G ,

~44!
-

e
ty
f

li-

v-

ld
v-

where I 0
out5gua0

outu2. Equation ~44! is valid for the self-
focusing and self-defocusing case.

The expressions for the squeezing spectra of the am
tudesX0

out andX1 are @36#

SX
0
out5^dX0

outdX0
out&v

5112~M121M211M11e
2 i2Q0

out
1M22e

i2Q0
out

!,

~45!

SX
1
out5^dX1

outdX1
out&v511M341M431M331M441M56

1M651M551M661M351M361M451M461M53

1M541M631M64. ~46!

The notation^ &v means Fourier transform of the symm
trized correlation, and it is defined, for some generic va
ablesW andZ, as

^WZ&v5E
2`

`

^W~ t !Z~0!&symme2 ivtdt. ~47!

We are interested in the conditional variance ofX0 given
the result of a measurement onX1 @31#:

Vsum@X0
outuX1

out#5SX
0
outS 12

u^dX0
outdX1

out&vu2

SX
0
outSX

1
out

D , ~48!

with

^dX0
outdX1

out&v52A2@~M311M411M511M61!e
2 iQ0

out

1~M321M421M521M62!e
iQ0

out
#. ~49!

With these definitions, the shot noise is normalized to 1.
a QND measurement one requires that the informat
gained by the measurement is sufficient to reduce the fl
tuation of the signal beam~pumping! below the shot-noise
level, corresponding toVsum@X0

outuX1
out#,1.

Additionally, we study how the fluctuations are tran
ferred from the signal input to the signal output~the non-
demolition character of the measurement!, and from the sig-
nal input to the meter output or pattern modes~accuracy of
the measurement!. We consider the normalized correlation
first introduced in@31#, defined as

Cs5
u^dX0

indX0
out&vu2

^dX0
indX0

in&v^dX0
outdX0

out&v

, ~50!

Cm5
u^dX0

indX1
out&vu2

^dX0
indX0

in&v^dX1
outdX1

out&v

, ~51!

where

^dX0
indX0

out&v52cos~Q0
out2Q0

in!2R11e
2 i ~Q0

out
1Q0

in
!

1R22e
i ~Q0

out
1Q0

in
!1R12e

2 i ~Q0
out

2Q0
in

!

2R21e
i ~Q0

out
2Q0

in
!, ~52!
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^dX0
indX1

out&v5@~R411R311R611R51!e
2 iQ0

in

2~R421R321R621R52!e
iQ0

in
#/A2.

~53!

dX0
in5da0e2 iQ0

in
1da0

†eiQ0
in

denotes the fluctuations of th
coherent input pump in the quadrature component co
sponding to the input intensity; sincea0

in5a Ie
2 if0, Q0

in5
2f0 .

Since the input beam is in a coherent state, the fluc
tions correspond to the shot-noise level and^dX0

indX0
in&v

51. The condition for achieving QND performances isCs
1Cm.1.

IV. RESULTS

We present first the results concerning the self-focus
case (h51). From the stability analysis of the continuou
semiclassical model@26# we know that the first modes tha
become unstable are characterized by a critical wave num
kc5A(22u0)/a. So, from Eq.~19! we obtain that the de
tuning of the critical modes isu152. For h51 the Hamil-
tonians~18!–~23! are independent ofa so that in the self-
focusing case we are left with only one free parameteru0 ,
which can be adjusted to optimize the results. However,
value cannot exceed 41/30 for the pattern formation bifur
tion to be supercritical@26#, which guarantees that the am
plitude of the pattern modes is small close to threshold.

We show an example of the three-mode steady-state
lution in Fig. 2 for u051.3. As shown in the figure, the
instability threshold for pattern formation takes place atI p

th

FIG. 2. Steady state in the self-focusing case.~a! Intensity ofI 0

as a function of the driving field intensityI p . ~b! Intensity of I 1

5gua1
su2 as a function ofI p . Parameters:u051.3, u152.
e-

a-

g

er

ts
-

o-

5ga I th
251.1. We take a value for the pumpI p5ga I

251.3
which is close to the threshold and for whichI 150.04. In
Fig. 3 we plot the squeezing spectraSX

0
out andSX

1
out for these

values ofu0 and I 1 . As shown in the figure, the squeezin
spectrumSX

1
out never goes below the shot-noise level (SX

1
out

51), so there is no squeezing in the fluctuations of the s
of the tilted modes. Fluctuations in the the homogene
mode go slightly below shot-noise level for frequenciesuvu
.1.2. Note that as we have scaled the time withk, v is a
dimensionless frequency. The actual frequency would
kv.

Figure 4 shows the result for the correlation between
outgoing signal and the outgoing meterVsum@X0

outuX1
out#, be-

tween the incoming and the outgoing signalCs , and between
the incoming signal and outgoing meterCm . We find that
Vsum@X0

outuX1
out# lies in the QND domain for frequenciesuvu

.0.2, although it never reaches values smaller than 0
Still the fact that it is below shot-noise level indicates tha
self-focusing Kerr medium can be used for quantum st
preparation of the homogeneous output mode by acting
the quantum state of the meter modes. On the other hand
conditionCs1Cm.1 is not fulfilled, indicating a poor cor-
relation between the incoming and outgoing signal a
meter. This fact precludes the possibility of a QND measu
ment of the fluctuations of the input pump beam by using
fluctuations of the output tilted modes as meter. Similar
worse results are obtained for other values of the detuningu0
within the rangeu0,41/30.

The results for the correlationVsum improve significantly
if we consider the correlation betweenX1

out and the quadra-
ture componentX0 instead ofX0

out, whereX05a01a0
† cor-

FIG. 3. Squeezing spectra in the self-focusing case.X axis:
scaled frequencyv. Y axis: ~a! squeezing spectrumSX

0
out, ~b!

squeezing spectrumSX
1
out. Parameters:u051.3, u152, I 150.04.
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responds to the amplitude quadrature inside the cavity.X0
can be described as a linear combination of the amplit
and phase quadratures of the field outside the cavity. Th
fore it can be observed using a local oscillator instead
performing a direct intensity detection. The conditional va
anceVsum@X0uX1

out# exhibits, for zero frequency, a minimum
much more pronounced than that ofVsum@X0

outuX1
out#, with

values smaller than 0.3 for the same values of the detun
and pump used before.

For the self-defocusing vector case (h521), the linear
stability analysis of the semiclassical equations@27,28#
shows that the first transverse modes that become uns
have a wave numberkc5A@u02a/(12a)#/a, and u1
5a/(12a). In this case we therefore have two free para
eters,a andu0 . We need to keepu0,A3, to avoid bistabil-
ity of the homogeneous solution, andu0.u1 , in order to
have a nonzero critical wave number. We first consider
casea51/4, which is a typical value for a liquid Kerr me
dium, so thatb57/4 and u151/3. Figure 5 displays the
steady-state value forI 1 andI 0 as functions of the input field
I p for u051.7. In this case the threshold for pattern form
tion is located atI p

th51.51. Figure 6 shows the squeezin
spectra close to threshold,I p51.76, so thatI 150.06. The
spectrum of fluctuations for the sum of they-polarized tilted
modes is very similar to the one obtained in the self-focus
case and it does not go below the shot-noise level. The s
trum of fluctuations for the output homogeneousx-polarized
mode does in fact go below shot-noise level for frequenc
uvu.0.8, reaching a minimum value ofSX

0
out50.4.

Figure 7 shows the correlationsVsum@X0
outuX1

out#, Cs , and
Cm for the self-defocusing case. Particularly interesting
that despite the fact that there is no squeezing forX0 at v

FIG. 4. Self-focusing case. ~a! Conditional variance
Vsum@X0

outuX1
out#. ~b! CoefficientsCs ~dotted line!, Cm ~solid line!,

andCs1Cm ~dashed line!. Same parameters as in Fig. 3.
e
e-
f

-

g

ble

-

e

-

g
c-

s

s

FIG. 5. Steady state in the self-defocusing case.~a! Intensity of
I 0 as a function of the driving field intensityI p . ~b! Intensity of
I 15gua1

su2 as a function ofI p . Parameters:u051.7, u151/3, a
50.25.

FIG. 6. Squeezing spectra in the self-defocusing case.X axis:
scaled frequencyv/k. Y axis: ~a! squeezing spectrumSX

0
out, ~b!

squeezing spectrumSX
1
out. Parameters: u051.7, u151/3, a

50.25, I 150.06.
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50, the correlation between the outgoing signal and the o
going meter is clearly below the shot-noise level. The
strong correlations are the quantum counterpart of the o
found classically in the far field between the fluctuations
the x-polarized pump beam and the fluctuations in t
y-polarized modes with wave vectors6kW c @29#. The result
for Vsum@X0

outuX1
out# implies that we can use a vectorial se

defocusing Kerr medium to prepare a state of the homo
neous output mode with known fluctuations. Compared w
the self-focusing case, the advantage is that now the cor
tions are much stronger (Vsum@X0

outuX1
out# reaches a minimum

value of 0.13). What is more important is that now the c
efficientsCs andCm satisfy the conditionCs1Cm.1 for the
range of frequenciesuvu,0.4. In this range of frequencies
QND measurement of thex-polarized input fluctuations ca
be done using they-polarized pattern modes as meter.

Decreasing the value of the detuningu0 , the results for
Vsum@X0

outuX1
out#, Cs , and Cm become worse. However, fo

pumping levels close to the pattern formation instabil
threshold, the conditions for a QND measurement are
filled in the rangeA3>u0.1.6. On the other hand, the re
sults for the correlationsV, Cs , andCm can be improved if
we consider different values of the nonlinear coefficienta.
For example, fora50.15 and detuningu051.7, the pattern
formation instability threshold takes place atI p

th51.50. For
pump intensityI p51.73, so thatI 150.06, we have almos
perfect QND conditions, that is,Vsum@X0

outuX1
out# is close to 0

andCs1Cm close to 2 atv50 ~see Fig. 8!.

V. SUMMARY AND CONCLUSIONS

We have studied the quantum correlation between
fluctuations of the pump and the fluctuations of the tra

FIG. 7. Self-defocusing case.~a! Conditional variance
Vsum@X0

outuX1
out#. ~b! CoefficientsCs ~dotted line!, Cm ~solid line!,

andCs1Cm ~dashed line!. Same parameters as in Fig. 6
t-
e
es

e-
h
la-

-

l-

e
-

verse modes above the threshold for spatial instability i
Kerr medium, including also the polarization degree of fre
dom. We have considered two cases in which a stripe pat
is formed when the system is pumped with a linea
x-polarized input field. In the first case we consider a tra
verse one dimensional self-focusing Kerr medium and
stripe pattern is also linearlyx polarized. In this case the
polarization degree of freedom plays no role~scalar case!. In
the second case~vectorial case! we consider a transvers
bidimensional self-defocusing Kerr medium and the str
pattern is orthogonally polarized to the pump. In both ca
our theoretical description is reduced to a three-mode mo
a homogeneous mode corresponding to the pump and
modes associated with the transverse pattern.

While in both cases we found anticorrelations between
quantum fluctuations of the pump intensity and the sum
the intensities of the stripe pattern, they turn out to be mu
stronger in the vectorial case. We have analyzed the po
bility of using the system as a QND device taking the bea
associated with transverse stripe pattern as meter beam
measure the fluctuations of the pump beam. We have ca
lated the three correlation coefficients that measure corr
tions between incoming and outgoing signal~pump!, be-
tween incoming signal and outgoing meter, and betwe
outgoing signal and outgoing meter. We have shown tha
the conditions for a QND measurement are satisfied in
vectorial case within a range of parameters. The best res
were obtained for detunings close to bistability.

Our results confirm the possibility of a QND measur
ment in a quantum structure@37# where the cause of the
pattern formation is a polarization instability and whe
quantum correlations between pump and meter can be ph

FIG. 8. Self-defocusing case.~a! Conditional variance
Vsum@X0

outuX1
out#. ~b! CoefficientsCs ~dotted line!, Cm ~solid line!,

andCs1Cm ~dashed line!. Same parameters as in Fig. 6 except t
nonlinear coefficienta. Here we takea50.15.
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cally described as polarization anticorrelations.
For the range of parameters that we have explored,

quantum nature of the anticorrelation between signal
meter is also manifested for the scalar case. This can be
for quantum state preparation of the homogeneous com
nent of the output field by acting on the meter modes. Ho
ever, the fact that the QND conditions for correlations b
tween the incoming and outgoing fluctuations of the sig
and between the incoming signal fluctuations and outgo
meter fluctuations are not satisfied precludes the possib
of a QND measurement in this case.
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APPENDIX

Since Eqs.~32! and~33! are similar to Eqs.~37! and~38!,
we obtain similar drift and diffusion matrices, and we c
present them in a unified form as follows~we only show the
nonzero components ofA andD):

A1,15A2,2* 512 i ~2hI 014hI 12hu022uI114I 1!,

A1,25A2,1* 5
2I 12 ih~ I 0

212u1I 122uI0I 126I 1
2!

I 0
,

A
s

us

ef

.

,

e
d
ed
o-
-
-
l
g
ty

n

.
-

.

A1,35A1,55A2,4* 5A2,6* 52A3,1* 52A5,1* 52A4,252A6,2

5AI 1

I 0
@21 ih~uI022u116I 1!#,

A1,45A1,652A4,152A6,152A2,352A2,55A3,25A5,2

52 ihuAI 0I 1, ~A1!

A3,35A5,55A4,4* 5A6,6*

512 i ~2hI 014hI 12hu12uI012I 0!,

A3,45A5,652A4,352A6,552 ihI 1 ,

A3,55A5,352A4,652A6,4522ihI 1 ,

A3,65A4,5* 5A5,45A6,3* 5211 ih~uI02u11I 1!,

D1,15D2,2* 5
22I 11 ih~ I 0

212u1I 122uI0I 126I 1
2!

I 0
,

D1,35D1,55D3,15D5,152D2,452D2,652D4,2

52D6,25 ihuAI 0I 1, ~A2!

D3,35D4,4* 5D5,55D6,6* 5 ihI 1 ,

D3,55D5,35D4,6* 5D6,4* 512 ih~uI02u11I 1!,

where the constantu takes different values depending on th
case: for self-focusing it isu52 and for self-defocusingu
5a.
i,

ef,

h,

-

ev.
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