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We consider a vectorial Kerr-medium model including transverse spatial effects. We analyze cases in which,
immediately above the threshold of the spatial instability, the homogeneous pump wave gives rise to two tilted
waves corresponding to a stripe pattern in the near field. We analyze both the self-focusing and the self-
defocusing case and we point out the existencartf-correlationsbetween the quantum fluctuations of the
intensity of thepumpand the sum of the intensities of the two tilted waves creatingridresverse pattertn
the near field. We also evaluate the efficiency of this scheme as a quantum nondent@Iibh scheme
which uses the tilted waves as a “meter” to measure the intensity fluctuations of the pump. Our results show
the posibility of a QND measurement in the self-defocusing case. In this case, and for a linearly polarized
pump, the output pump beaftaniform in the transverse plahand the pattern have orthogonal polarization
and could be easily separated experimentf1050-2947@9)06402-1

PACS numbg(s): 42.50.Dv, 42.65.5f, 42.50.Ct

[. INTRODUCTION ing to the formation of twoy-polarized beam$1, and M,
[27,28. In one or two transverse dimensions, the picture still
It is well known that transverse optical pattefiis?] are  corresponds to that of Fig. 1, in this case, however, the out-
capable of allowing noteworthy aspects linked to quanturrput pump beanP is x polarized, while the beang; and
fluctuationg 2,3]. These issues have been mainly studied in dV, arey polarized. Hence in the near field the configuration
model of a cavity filled with Kerr medium and driven by a of the output field of frequencyw as the input fieldlis such
plane wave input field3-5], in degenerate optical paramet- that they-polarized component corresponds to a stripe pat-
ric oscillators[6-17], and in cavityless configurations for tern, whereas the-polarized component is uniform in the
x® [15,18-23 and x® [24,25 media. The results of most transverse plane exactly as the input field.
of these papers are related to phenomena of quantum noise In general pattern formation processes, the spatial insta-
reduction or squeezing and to spatial quantum correlationssility is associated with a definite “critical” wave number
few of them discuss Einstein-Podolsky-Rosen aspectg, , which characterizes the periodicity of the pattern that
[13,16. In the case of cavity systems, quantum phenomengrises immediately above the instability threshidlgP]. Pre-
arise both above3,4,10,1¢ and below[6-9,11-13 the  cisely, this pattern is given by a linear combination of plane
threshold for spontaneous pattern formation. waves exgk-r) [r=(xy) is the position vector in the trans-

The original Kerr-medium model, formulated[i26] for a | d=(k. k) is th ‘ here k
scalar electric field, has been generalized to include the ved.SIS€ plane, an =(ky.ky) is the wave vectdr where

torial character of the field27]. Assuming anx-polarized ~ Pelongs to the critical circlék|=k.. The selection of a dis-
input field, the generalized model displays a richer scenario
of pattern forming instabilities that we describe below. FAR
In the self-focusing casthe system develops an instabil- ® FIELD _ _
ity that is formally identical to that of the scalar mod&b]. M1
In the case of two transverse dimensions it leads to the for-
mation of a hexagonal pattefd]; while in the case of one Pin Pout
transverse dimension, as can be obtained by imposing a @ S S K
waveguide configuration, it leads to the formation of a stripe
pattern in the near field. In the far field, this stripe pattern /
corresponds to a three-spot struct[te?], in which the cen- M2
tral spot arises from the axial pump bear)( while the
other two spots arise from two beaml { andM,) gener-
at,ed by the spatial in;tability and prop_agating symmetrically FIG. 1. Cavity with plane mirrors 1 and 2 contains the Kerr
with respect to the axis of the syste(ffig. 1). mediumK. P, is the monochromatic input pump field, which has
In the self-defocusing casen the other hand, the system 5 plane-wave configuration and frequeney. The input/ioutput
develops an instability, absent in the scalar m¢@él, lead-  mirror 1 has a high reflectivity, while mirror 2 is completely reflect-
ing. In addition to the output pump bedry,, the spatial instability
generates the two off-axial meter beaMs and M, of frequency
*URL: http://www.imedea.uib.es/PhysDept/ wq. Hence, the far field has a three-spot structure.
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crete set of wave vectors within this ring is a nonlinear pro-[30,31]. The complete QND regime is reached when, in ad-

cess in which the correlations among the wave vectors plaglition to V<1, one haCs+C,>1 [30,31].

the crucial role. In the case of optical systems, the nonlinear The outline of this paper is as follows. In Sec. Il we

process corresponds to the simultaneous absorption artgrive the quantum-mechanical model for a Kerr medium

emission of a number of photons, which gives rise to correwith the polarization degree of freedom. In Sec. Ill we cal-

lations of quantum nature. This is the very origin of theculate the correlations between the quantum fluctuations of

quantum aspects that characterize nonlinear optical patteriie different modes. The analysis shown in Secs. Il and Il is

against spatial patterns in other fields. general and describes both self-focusing and self-defocusing
In most of the analysis of quantum effects in nonlinearcases. In Sec. IV we discuss our results for both cases. Fi-

optical patterns in the configuration shown in Fig. 1, thenally, in Sec. V we summarize the work presented here and

interesting effects arise from the correlations between th@ive some concluding remarks.

two beamavi; andM,. In this paper, instead, we study the

correlation between the pump beam and the pattern beams Il. VECTORIAL KERR-MEDIUM MODEL

which turn out to be anticorrelated as previously shown . . . .
In this section we derive the quantum-mechanical coun-

within a classical framework29]. This anticorrelation arises : ) .

from the fact that in each elementary nonlinear process iferpart ofa gemwlassmal model7-29 which accounts fpr
Fig. 1 two photons of the pump beam are converted in Onéhe_polanzatlon degr_ee of freedor_n 03f the e_Iectnc f|el_d in an
photon of bearM; and one photon of bea,. We per- optical cz_iV|ty fl_IIed with an isotropig®) r_10nI|near med_lum.
form this analysis in the framework of the vectorial Kerr- The sem|cla§S|caI equations that describe the behavior of the
medium model, above the threshold of the spatial instability€lectric fieldE inside the cavity are

both in the self-focusing case for one transverse dimension

and in the self-defocusing case for one or two transverse EaE_i:_(Hi 0o)E.+iaV2E.+E

dimensions. Immediately above threshold, we can use a sim- Kk ot 7o) =0
plified quantum model, in which the pump beam as well as

beamsM, and M, are described by single plane waves, of
wave number O for the pump and wave numkgifor the
wavesM, andM,.

We analyze the anticorrelation using the concepts o
guantum nondemolition(QND) measurement$30]. Pre-
cisely, we consider the bearivs, andM, asmeter beam$o
measure the quantum fluctuations of the pump beam that

+inlalE.|*+BIEL’]E., @

whereE, (E_) is the circularly right(left) polarized com-
onent of the fieldEy. are the components of the input
ield, » takes the value 1-1) for the self-focusing(self-
defocusing case 8, is the cavity detuningg is the strength
Wof diffraction, V2 is the transverse Laplaciar,is the cavity
will also call thesignal beam By thinking of the QND de- &ecay ra_lte, and and,@’ [.32] are pasram_eters associated \.Nith
the nonlinear susceptibility tensgf®). Since we are consid-

vice as a “black box” with incoming and outgoing fields, _ . . ) ) o
; . ering an isotropic mediumg+ 8=2 [33]. The scalar case
QND measurements are characterized by three correlat|ocrin ; : )
- i . escribed in[3,26] can be recovered from Edl) taking
coefficients:Cs, Cr, andVyp relating the quantum fluc- E_.=E_, and rescaling the electrical field amplitude
tuations of the fields that enter or exit the black h88,31]. o 9 P '
The first coefficieniC; measures the correlation between
the incoming and the outgoing signal field that is the pump
beam in our case. Such correlation is complete only for a The steady-state homogeneous solutions of @jy.are
perfectly nondestroying measurement for whigh= 1. reference states from which transverse patterns emerge as
The second coefficient,, measures the correlation be- they become unstable. We will consider xafinearly polar-
tween the incoming signal and the outgoing meter, repreized input field, i.e.Eq,=Ey_=E,. In this case the homo-
sented in our case by the two tilted wads andM, of Fig.  geneous solution is alse polarized, withE,, =E._=E,,
1. ForC,=1 the correlation is complete, so that by perform-and is given by the implicit equation
ing a direct measurement on the meter we perform an ideally
accurate measurement of the incoming signal’s fluctuations. lp=1[1+(Is— 60)7], ()
Finally the third coefficien¥, quantifies the correlation _ ) B ) )
between the outgoing signal and the outgoing meter. Moré_!"he_re|p__2|E9|. and|s=2|E{*. As is well known Eq.(2)
precisely, due to its definitiorVy, represents the residual implies bistability for 6> V3.
quantum noise in the outgoing signal once all the noise cor- Basic features of the stability of the steady-state homoge-
related to the outgoing meter has been subtracted; so that fB0US solutions can be analyzed by considering the evolution
a perfect correlation between the outgoing meter and outgdtduations for perturbations.. defined by
ing signal one ha¥,,=0. In our case we study the condi- E —Ef1 3
tional variance which links the intensity of the pump wave ==EJ1+ye]. )
and the sum of the intensities of the two meter weMgsand From Egs.(1) and(3) the linearized equations become
M,. The quantum nature of the correlation becomes mani-
fest when the conditional variance becomes smaller than 1y — _[14i5(6,—15)—iaV2]y.
unity; once again this means that by measuring the intensity
fluctuations of the meter beanv; andM, and by introduc- +iglJa(.+ )+ 22— a)(p=+¢%)]112, (4)
ing an appropriate feedback loop, one can reduce the fluc-
tuations of the pump beam below the shot-noise levelvheret’ =kt is the dimensionless time.

A. Stability analysis of the homogeneous solution
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It is convenient to make a change of variables to the fol-n this basis, which emphasizes the role of symmetiic (

lowing basis[27,28:

=y_) and antisymmetric, = —_) modes, Eq(4) may
be written as

01 Re(¢.+¢)
- o2| _ Im(y+ ) 5 93 =LY, (6)
03 Re(¢. — )
o Im(fry— o) where the linear matrixin Fourier spackis
|
-1 —n(ls— 6) 0 0
7(3ls— k) -1 0 0
= 3 o : %
0 0 1 n(ls— k)
0 0 n((2a—1)—6,) ~1
|
with wherea', anda;, (a. anda; ) are the creation and
B= 0+ nalk?. ®) annihilation operators of circularly riglleft) polarized pho-

L is a matrix with 2<x2 blocks in which the symmetric and

tons with wave vectok=(27/b)n, wheren=(n,) for the
self-focusing case an&z(nx,ny) for the self-defocusing

antisymmetric modes are decoupled. As a consequence ti§@se, withn,, n,=0, *1, +2,....

linear instabilities lead to the growth of either a symmetric or

an antisymmetric mode. The eigenvaluesf L are[27]

N1o=—1EV(0—3l9)(Is— 6y,
9

Naa=—1E(O+(1-2a)1 )(1s— b))

The Hamiltonian is the sum of three pakis=Hy+ Hgy
+Hjn. The free Hamiltonian is given by

Ho=h7Y, 6n(a% a;. +at a; ). (12)
n

The mode detuning 6, is given by =56,=76,

For the self-focusing case the homogeneous solution ber 472an®/b? wheren=|n|.

comes unstable fdii=1 with a critical wave number given
by ak§=2— 0. The instability comes from the;,0, box
of the linear matrixL in Eq. (7). The critical mode is there-
fore symmetric anc polarized.

In the self-defocusing case the homogeneous solution ba¥here a;. =

comes unstable fdif=1/(1— «) and the critical wave num-
ber is given byakgz 0o— a/(1— «). The instability comes
from the o3,0, box of L, so that the critical mode is an
antisymmetric mode ang polarized.

B. Quantum formulation

The approach that we follow to obtain the quantum-
mechanical version of Ed1) is described if3], where the

scalar model was studied. We assume periodic boundary

conditions in the transverse plane in a square of Bifte the
self-defocusing case or a segment of lengtfor the self-
focusing case. The master equation for the density opegsator
is

p=2

n

Nicp+S Asp—z[Hpl (10

The dot designates derivatives with respect to the dimension-

less timet’ = xt. The LiouvilliansA ;. are

N Y A . - al
Anip—[anip,aﬁ:]"'[ant 1paﬁi]’

(11)

The external Hamiltonian representing the driving field is

Hew=iha . (ad, —a0,) Tiha_(a)_—ao_), (19
Eo-/\g, g being the absolute value of the
coupling constant, defined ag=2C/(J]A|3Ny). C is the
bistability parameterA is the atomic detuning, and is the
saturation parametgB]. In our definitiong is always posi-
tive, the sign being denoted by which is +1 for self-
focusing and-1 for self-defocusing. Finally, the modes rep-

resented by the operatoél.ﬁi are coupled via the interaction
Hamiltonian,

Him=—hngb2f f dx dy

(2%

X
2

o
AT2A 2+ BATATALA +§A12A_2 ,

(14)

whereA. (x,y) is proportional to the field envelope and

As(xy)= %E aq. exp(ik;r), (15

with r=(x,y). Equation(1) can be recovered from the evo-

lution equation for the operatoA., by taking Et/\/g
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=(A.) and using the semiclassical approximatiGiB)

Apatat  sontn
=(A)(B), whereA andB are quantum operators. Heww=—7%g7| ajajaj+bjbib}

In this work we are going to consider only the case of
linearly polarized input field and we restrict ourselve_s to the +(a— 1)(5(2)5*{5J2r+6(2)5*{5£)
case 6,<+\3, where the homogeneous solution is
monostable. As described in the Introduction and in Sec. +aagbg(albl+albl)

Il A, the linear stability analysis of the semiclassical equa-
tions shows different scenarios in the self-focusing or in the A A mgnt Agnta
self-defocusing case. In the first one, when the homogeneous + ,Eq [2(a=1)aiabibj + aajbiaib)]
solution becomes unstable, a hexagonal pattern is formed in
systems with two transverse dimensions, while for systems
with one relevant transverse dimension, a stripe pattern
emerges. When the input is lineanypolarized, the linear
stability analysis shows that the pattern produced aboveross phase modulation,
threshold is alsox polarized. In the second cagself-
defocusing, a stripe pattern develops, and, if the inpuiis Hepy= — %97
polarized, the pattern is polarized in thalirection.

In the two cases in which stripes are formed, the field can
be described near threshold in terms of only three transverse
modes for each polarization component of the field: the ho-

1 .o
+§(a—1)2 al?h?|+H.c., (21)
I

x|2> (alaala;+bbb >
1<j 1]

mogeneous one, and two with wave vecterk, and — K. (22
Labeling these three modes 0, 1, 2, we have and self-phase modulation
1. - A .-
A: :B(aoi +a1ielkc'r+a2re_lk(¢'r). (16) HSPM: _ hgnz (é;l'Zél2+ 6|T2EJ|2)1 (23)
i

. Since we will cons.|der.a Imegrly poIan;ed input, for defi- where we have used the relatigh=2— a.
niteness along the direction, it is convenient to use a base

where the modes are linearly polarized. We introduce the M the self-focusing caser(=1), if we setbo=Db,=b,
. . A A A =0, these Hamiltonians are independentaofand become
following change of variablesa;=(a;, +2a;_)/y2 (x po-

) PR z ) . identical to those of the scalar cas34].
larized andb,=(a;. —a;_)/\2 (y polarized. On this ba-
sis, the fieldsA, andA_ are
lll. QUANTUM FLUCTUATIONS

We are interested in the quantum correlations between the

intensity fluctuations of the pump moé@ and the fluctua-
(17) tions in the sum of the intensities of the two transverse

modes a; and a, (self-focusing or b; and b, (self-
The free Hamiltonian becomes defocusing. Due to the structure of the Hamiltonian, we ex-
pect to find strong correlations between these variables near
the threshold for the pattern formation.
The time evolution equations in the semiclassical approxi-

Aiz—b[aotbo—l—(alibl)e'kC‘r+(a2tbz)e""C'r].

V2

Ho=" 7 o(ajao+bibo)

+ al(élél+é£éz+6161+B£Bz)], (18) mation are obtained by factoring mean yalues pf products
into products of mean values. In the following we indicate by
with 3, by (i=0,12) the mean valugs;) and<6i> of the cor-
responding operatorsal , b are their complex conju-
0,= 60+ malK,2 (19 ~ 9ates

For the self-focusing case we look for stationary solutions
polarized in thex direction,b’=0. From the evolution equa-

The external Hamiltonian is tions, for the stationary solution, we obtain

Heq=ihai(ad—ao), (20 0=[2a}a,a,+as a2+ 2a,(a}a,+a’a;)lig
where, since the input field ix polarized, o, /\2=a,, —(1+ifo)agtay, (24)
=qa,_ and, for definitenessy, is assumed real. From the
definition of . and the definition of , given after Eq(2), O=[a}a3+alai+2a,(aja,+atag)]ig—(1+i6,)a,.
we havea{=1,/g. (25

The interaction Hamiltonian can be written a3,
=Hpwm+Hepwt Hspu, Where each part corresponds to the  0=[a¥a3+aja3+2a,(aa;+agag)lig—(1+i6;)a,.
following microscopic processes: four wave mixing, (26)
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Here we consider solutions such thai=|af|e'#%, with  where we took into account thataj|=1,, g|a$|=g|aj|
|aj|=|a3|, and we use, for the sake of brevity, the following = \I,. The equation forsa, is obtained by exchanging the
notation for the intensities of the homogeneous and metandexes 1 and 2 in EJ33).

modesi,=g|aj|? andl,=g|aj|?=g|a3|?. In this case, Egs. For the self-defocusing case, since the metey olar-
(25 and (26) yield ized, we look for stationary solutions such thaf
=|agle'?, aj=a5=0, b3=0, bj=|bjle'’2, and b
=|b3|e'’2, with |b3|=|b3|. We will use the same notation as
before for the homogeneous and meter stationary intensities:
lo=glaj|? and I,=g|b}|?. The stationary solution is ob-
where ¢=2¢¢— ¢1— ¢,. Taking the modulus squared of tained as in the self-focusing case and E8$) and(30) are
Eq. (27) we derive an expression fop as a function of , the same. Equation®7) and (28) now become

e“”=%[61—3ll—2I0—i], (27)

2(6,—311)—(6,—31,)*~3 . 1
o= . 28 ib—___ ~  rg.—13[.— i
0 3 (28) e (a—1)|0[‘91 3l,—alg+i], (34
_Using_thezrelation(27) in Eq. (24) we find for the pump a(0,—31)—(a—1)%(0,—31)%+1—2a
intensity &; and the phase, lo= , (35
(2a—1)
2 Il 2 Il 2 . .
lp=gai=ly 90—|0—2|—(91—3|1) + 1+2|— , where nowe is defined asp=2¢q— i1 — if5. o
0 0 (29) As we did _before, we introduce the variables,
=a;exp(—igy), bi=bjexp(=i%) (i=1,2), and we drop the
" \/E bar in the rest of the paper, for simplicity. We then set
e'?o= . .
\/ED 77(00_ | 0o 2(' 1/'0)( 01_3| l))+ 1+2I l/| (()]30) ao(t): /I O/g+ 5a0(t),
Finally, the amplitudes of the stationary solutibpand I, by (t)=VI1/g+dby(1), (36)
are obtained solving simultaneously the implicit equations
(28) and(29) for a given pumpy, . The phaseg, and ¢ are ba(t) = V11 /g+ dby(1).

given by Eqs(30) and(27), respectively. Note that this only
fixes the value of the surp;+ ¢,, not the individual values Linearizing with respect to the fluctuations, we obtain in this
b1, Os. case a closed set of equations &a,, &b,;, andésb, which

In order to deal with intensity and phase fluctuations, it isreads

convenient to introduce the variables=a; exp(—ig) (i

=0,1,2), whereg, are the stationary values of the phases d93p=—(1-16p)da0—2i(lo+aly)dag

(¢1 and ¢, are chosen arbitrarily with the link thap, —i[lg+2(a—1)1,e7 %] 5a%
+ ¢, has the correct valyeFor simplicity, we drop the bar ‘
in the rest of the paper. We now separate the mean value and —i[a+2(a—1)e " ?]VIyl 1(Sa,+ Say)

the fluctuations as e s+ oa%), @7
aj(t)=a’+ sa;= \I;/g+ da (31) .
Sby=—(1—i6,) by —i(4l,+ aly) sy —il ;5b*
fori=0,1,2 and,=1. Linearizing with respect to the fluc- _
tuations, one sees that the terms contairtingand b* (i —i[a+2(a—1)e""]Igl dag—ialgl dad
=0,1,2) do not contribute in the linearized approximation . . i *
(becauseb’=0) and the equations for the fluctuations; ~ 211100, -i[213+ (a— 1)l o€/ *]5b3 . (38)

read The equation for5b2 is obtained exchanging the indexes 1
Sag=—(1+i6) dag+2i(1g+21,)5a and 2 in Eq.(38).

0 ( o) O_ (o 1) We now define the quadratures of the pump mode and of
+i(lg+21,e7 ') sad the sum and difference of the transverse modes as
+2ilol(1+e ') (Sa,+ day) 8Xg, Yy,
+2i/lgl1(5af + da3), 32

ol (6 + 035 ) 32 SX 1+ 8%, SY,+6Y,
: . . . += ’ 1) += —, (39)
da,=—(1+i6;)da,+2i(21,+1,) da, +il ;5% V2 V2

. Id) . * .

+2iVlol1(1+€'?) Sag+2i Vgl dag + 2il y 5a, . e . Yy 5Y,

+i(21,+14€'%) sas, (33 2

V2
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where, for the self-focusing caséX;= da;+ sa and §Y;  where 13"=glad Equation (44) is valid for the self-

= —i5aj+i5aj* for j=0,1,2. For the self-defocusing case focusing and self-defocusing case.

the meter modes arg polarized and we havesX;= éb; The expressions for the squeezing spectra of the ampli-
+0b¥ , 8Y;=—idb;+idb¥, for j=1,2. The reason for the tudesXg" andX. are[36]

denominator/2 in Egs.(39) is to have the shot noise of the
new variables normalized to one.

Using the linearized equations, we calculate the drift ma-
trix A and the diffusion matrixD for the classical-looking
Fokker-Planck equation in thB representation, using the
indexes 1...,6 for the components of the vector;/
=(dag,daf ,da,,0a] ,da,,8a3) for the self-focusing case
or y=(day,das,oby,6b% 6b,,0b5) for the self-
defocusing case. The elements of matridendD are given
in the Appendix.

It is then straightforward to calculate the spectral matrix

ut| 2.

Sxau=(8X5"6X5")
=1+ 2(Mypt Moyt Myge™ 205"+ M ,e205,
(45)
Sxout=( SXL6X) ;= 1+ Mzt Myt Mg+ Mg+ Msg
+Mgst+ Mgst+ Mgt Mast+ Magt Myt Mgt Ms3

+Mss+ Mgzt Megy. (46)

M [35]: The notation( ),, means Fourier transform of the symme-
trized correlation, and it is defined, for some generic vari-
M(w)=(A+iwl) ID(AT—iwl) 1, (40)  ablesW andz, as
d th triX [36)]: * e
and the response matriX[36] (WZM:L (W(D)Z(0)) gy tdt. (47)
R(w)=(A+iwl) 'C, (41)

We are interested in the conditional varianceXgfgiven

where C is the matrix of the equal time commutato@s;  the result of a measurement an. [31]:

=([:,1). From matricesM and R all quantum correla-
tions can be obtained.

We are interested in the intensity fluctuations of the three
relevant modes. In the linearized regime, instead of intensity
fluctuations one can equivalently consider the fluctuations ofyith
the quadrature components which correspond to the ampli-
tudes. Since there is no inp(dgpart from vacuum noigdor
modes 1 and 2, the output phase coincides with the intracav-
ity phasesp, and ¢, for these modes, so that the amplitude
guadrature components axg andX,, in the sense that the
fluctuationssl; are equal to g1, 8X; (i=1,2, 1,=1,). So,  With these definitions, the shot noise is normalized to 1. For
the fluctuations in the sury +1, correspond to the noise in a QND measurement one requires that the information
the quadrature componeﬁﬁ“t, defined in the self-focusing gained by the measurement is sufficient to reduce the fluc-
case asX=(a;+a¥+a,+a3)/y2 and in the self- tuation of the signal beartpumping below the shot-noise
defocusing case aX®'=(b,+b? +b,+b%)/y2. For the level, corresponding tWya[ X 1X3)<1.
pump mode 0, instead, there is a nonvanishing input field Additionally, we study how the fluctuations are trans-
and therefore the output phase is different from the intracavierred from the signal input to the signal outpihe non-

ity phase,. The intensity fluctuations correspond to the demolition character of the measuremeand from the sig-
noise in the quadrature component nal input to the meter output or pattern modascuracy of

the measurementWe consider the normalized correlations,
first introduced iN31], defined as

[(5Xx,

\V; XOU XOUt — | 1—
s\m[ 0]1 + ng“( ngutsxiut

) . (48

(OXQUSX™ = = V2[ (M1 M43+ Mg+ Mgy) e 190"

+(M gzt Mot Mgyt Mgp)e©5].  (49)

L pout . pout
X3"=ase % +ale®o (42

(X5 6X5") ol?

where®3" is the output phase of the modg. The calcu- R o (50
lation of the phas@® " is done using the input-output rela- (6X5 6Xg)u( 8X5"0X5),,
tion .
|(6Xg X I? 53
a3"=2ao-ay. (43 T (OXGOXG) o OXTIBXS),,
By definition ay=11o/g and af=a,e %= ,/ge %0  where
with «, real, we then obtain from Eq$30) and(43) _ , Ceut in
(SXEX3™ .= —cogO"—OF) —Ry,e (@0 %)
. /1 | | L @out, gin L @out_ gin
ks %{l_zl_l_i”( 00_'0_2|_l(t91_3|1)”’ + Ry (%0 " 90V + Ry 7% = O0)
0 0 0 . ooout_ qin
(44) —Ry€! 500, (52)
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FIG. 2. Steady state in the self-focusing caseIntensity ofl
as a function of the driving field intensitl, . (b) Intensity of I,
=glaj|® as a function of ,. Parametersgy=1.3, 6;=2.

FIG. 3. Squeezing spectra in the self-focusing caseaxis:
scaled frequencyw. Y axis: (a) squeezing spectrurﬁxgm, (b)

squeezing spectru;ﬁxim. Parametersfy,=1.3, 6,=2, 1,=0.04.

(X5 OX%") ,=[(Ras+ Ry + Re1+Rs)e 0 =gay’=1.1. We take a value for the pump=gaf=1.3
(oin which is close to the threshold and for whith=0.04. In
—(Razt Rgpt Rez+ Rep)e! 0]/2. Fig. 3 we plot the squeezing specBgou and Syou for these

(53)  values off, andl,. As shown in the figure, the squeezing
spectrumeclut never goes below the shot-noise IevSLciut

SXg'= 6aoe*‘®g1+ 5a$ei®'t? denotes the fluctuations of the =1), so there is no squeezing in the fluctuations of the sum
coherent input pump in the quadrature component correef the tilted modes. Fluctuations in the the homogeneous
sponding to the input intensity; sina)=ae”'%, ©f=  mode go slightly below shot-noise level for frequendie$
—¢g- >1.2. Note that as we have scaled the time withw is a

Since the input beam is in a coherent state, the fluctuadimensionless frequency. The actual frequency would be
tions correspond to the shot-noise level ap#KgoXgy),  ko.
=1. The condition for achieving QND performancesds Figure 4 shows the result for the correlation between the
+Cp>1. outgoing signal and the outgoing metég|m[X8“t|Xi“t], be-
tween the incoming and the outgoing sigal, and between
the incoming signal and outgoing metéy,. We find that
Vg X51X3"] lies in the QND domain for frequenci¢s|

We present first the results concerning the self-focusing>0.2, although it never reaches values smaller than 0.75.
case (p=1). From the stability analysis of the continuous Still the fact that it is below shot-noise level indicates that a
semiclassical moddR6] we know that the first modes that self-focusing Kerr medium can be used for quantum state
become unstable are characterized by a critical wave numbg@reparation of the homogeneous output mode by acting on
ke=V(2—6p)/a. So, from Eq.(19) we obtain that the de- the quantum state of the meter modes. On the other hand, the
tuning of the critical modes i®,=2. For =1 the Hamil-  conditionC¢+C,,>1 is not fulfilled, indicating a poor cor-
tonians(18)—(23) are independent of so that in the self- relation between the incoming and outgoing signal and
focusing case we are left with only one free parametgr ~ meter. This fact precludes the possibility of a QND measure-
which can be adjusted to optimize the results. However, itgnent of the fluctuations of the input pump beam by using the
value cannot exceed 41/30 for the pattern formation bifurcafluctuations of the output tilted modes as meter. Similar or
tion to be supercritical26], which guarantees that the am- worse results are obtained for other values of the detuéing
plitude of the pattern modes is small close to threshold.  within the rangef,<<41/30.

We show an example of the three-mode steady-state so- The results for the correlatio¥,, improve significantly
lution in Fig. 2 for 6,=1.3. As shown in the figure, the if we consider the correlation betweet}" and the quadra-

instability threshold for pattern formation takes place git ture componenk, instead ofX5", whereXo=aq+ ag cor-

IV. RESULTS
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FIG. 5. Steady state in the self-defocusing caaglntensity of
lo as a function of the driving field intensitl, . (b) Intensity of
I,=glaj|? as a function ofl ,. Parametersgy=1.7, 6;=1/3,
=0.25.

FIG. 4. Self-focusing case.(a) Conditional variance
Vm[ X511X2"]. (b) CoefficientsCs (dotted ling, Cy, (solid line),
andC+C,, (dashed ling Same parameters as in Fig. 3.

responds to the amplitude quadrature inside the ca¥Xigy.

can be described as a linear combination of the amplitude

and phase quadratures of the field outside the cavity. There-

fore it can be observed using a local oscillator instead of

performing a direct intensity detection. The conditional vari- 4
anceVS|m[X0|Xi”t] exhibits, for zero frequency, a minimum
much more pronounced than that ;[ X5"1X%"], with
values smaller than 0.3 for the same values of the detuning
and pump used before.

For the self-defocusing vector case= —1), the linear
stability analysis of the semiclassical equatiof7,2§
shows that the first transverse modes that become unstable
have a wave numbek.=\[6,—a/(1—a)]/a, and 6,
=al(1—a). In this case we therefore have two free param-
eters,a andd,. We need to keego< /3, to avoid bistabil-
ity of the homogeneous solution, ar@d> 6, in order to
have a nonzero critical wave number. We first consider the
casea=1/4, which is a typical value for a liquid Kerr me-
dium, so thatB=7/4 and 6,=1/3. Figure 5 displays the
steady-state value fdy andl, as functions of the input field
I, for 6,=1.7. In this case the threshold for pattern forma-
tion is located aﬂg‘zl.Sl. Figure 6 shows the squeezing
spectra close to thresholtl,=1.76, so thati;=0.06. The
spectrum of fluctuations for the sum of thigolarized tilted
modes is very similar to the one obtained in the self-focusing
case and it does not go below the shot-noise level. The spec-
trum of fluctuations for the output homogeneosgolarized
mode does in fact go below shot-noise level for frequencies

|@|>0.8, reaching a minimum value Gfxgmz 0.4. FIG. 6. Squeezing spectra in the self-defocusing cXsaxis:

Figure 7 shows the correlatioNg [ X"|X2"], Cs, and  scaled frequency/x. Y axis: (a) squeezing spectruiSiou, (b)
Cy, for the self-defocusing case. Particularly interesting issqueezing spectrumSyouw.  Parameters: 6p=1.7, 6,=1/3, a
that despite the fact that there is no squeezingXgrat o =0.25, 1;=0.06.
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FIG. 7. Self-defocusing case(a) Conditional variance FIG. 8. Self-defocusing case(a) Conditional variance
Ve X3U1X91. (b) CoefficientsCs (dotted ling, Cp, (solid ling),  Vgm[ X5"1X$"]. (b) CoefficientsCs (dotted ling, Cp, (solid line),
andC+C,, (dashed ling Same parameters as in Fig. 6 andC;+ C,, (dashed ling Same parameters as in Fig. 6 except the

) ) ) nonlinear coefficiente. Here we takex=0.15.
=0, the correlation between the outgoing signal and the out-

going meter is clearly below the shot-noise level. These/erse modes above the threshold for spatial instability in a
strong correlations are the quantum counterpart of the onggerr medium, including also the polarization degree of free-
found CIaSS.ica”y in the far field between the flu_Ctuati_Ons indom_ We have considered two cases in which a Stripe pattern
the x-polarized pump beam and the fluctuations in thejs formed when the system is pumped with a linearly
y-polarized modes with wave vectorsk. [29]. The result  x-polarized input field. In the first case we consider a trans-
for Vgm[ X§"1X3"] implies that we can use a vectorial self- verse one dimensional self-focusing Kerr medium and the
defocusing Kerr medium to prepare a state of the homogestripe pattern is also linearly polarized. In this case the
neous output mode with known fluctuations. Compared withpolarization degree of freedom plays no rédealar case In
the self-focusing case, the advantage is that now the correléhe second casévectorial casge we consider a transverse
tions are much Stfonge"/§|m[x8m1xi”t] reaches a minimum bidimensional self-defocusing Kerr medium and the stripe
value of 0.13). What is more important is that now the co-pattern is orthogonally polarized to the pump. In both cases
efficientsC4 andC,, satisfy the conditiolC+ C,,>1 forthe  our theoretical description is reduced to a three-mode model:
range of frequencielss|<0.4. In this range of frequencies a @ homogeneous mode corresponding to the pump and two
QND measurement of thepolarized input fluctuations can modes associated with the transverse pattern.
be done using thg.po|arized pattern modes as meter. While in both cases we found anticorrelations between the
Decreasing the value of the detunig, the results for quantum fluctuations of the pump intensity and the sum of
Vs‘m[XSU[IXi“‘], C., andC,, become worse. However, for the intensities of the stripe pattern, they turn out to be much_
pumping levels close to the pattern formation instabilityStronger in the vectorial case. We have analyzed the possi-
threshold, the conditions for a QND measurement are fulPility of using the system as a QND device taking the beams
filled in the rangey3= 6,>1.6. On the other hand, the re- associated with transverse stripe pattern as meter beams to
sults for the correlation¥, Cg, andC,, can be improved if Mmeasure the fluctuations of the pump beam. We have calcu-
we consider different values of the nonlinear coefficiant lated the three correlation coefficients that measure correla-
For example, fore=0.15 and detuning,= 1.7, the pattern tions bgtwee_n incpming and outgping sigrigump, be-
formation instability threshold takes place I%T=1.50. For tween_ |nc<_)m|nlg s:jgnal af‘d outgom\g/;v mk(]ater, e;]nd be;[]weelr;
pump intensityl ,=1.73, so that ;=0.06, we have almost outgoing signal and outgoing meter. We have shown that a

o : OUtlnrOUt : the conditions for a QND measurement are satisfied in the
gﬁgECt+QCNDcfoosld[[gogsétzhfto'%gi)Ii?g|>;+ ]is close to 0 vectorial case within a range of parameters. The best results
S m - "

were obtained for detunings close to bistability.
Our results confirm the possibility of a QND measure-
ment in a quantum structurg7] where the cause of the
We have studied the guantum correlation between thgattern formation is a polarization instability and where
fluctuations of the pump and the fluctuations of the transquantum correlations between pump and meter can be physi-

V. SUMMARY AND CONCLUSIONS
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cally described as polarization anticorrelations. ALg=ALs=AS =AS = — AL = — AL =—A,,=—Ag,
For the range of parameters that we have explored, the ' ' ’ ’ ’ ’

guantum nature of the anticorrelation between signal and \/E i

meter is also manifested for the scalar case. This can be used ~ E[ZJF' n(Ulo—26,+61)],

for quantum state preparation of the homogeneous compo-
nent of the output field by acting on the meter modes. How- A, ,=A, ;= —A, ;= —Ag1= — Ay 3= — A, c==A3z,=Ac,
ever, the fact that the QND conditions for correlations be- ' ' ' ' ' ' ' ’

tween the incoming and outgoing fluctuations of the signal =—inuylglyq, (A2)
and between the incoming signal fluctuations and outgoing
meter fluctuations are not satisfied precludes the possibility Az3=Ass=Aj = Age

of a QND measurement in this case. .
=1-i(2ylg+4nl1—7nbo;—uly+2ly),
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APPENDIX D13=D15=D31=Ds53=—D34=—Djys=—Dyp
Since Egs(32) and(33) are similar to Eqs(37) and(38), =—Dgo=iquylgly, (A2)
we obtain similar drift and diffusion matrices, and we can '
present them in a unified form as folloiwe only show the Dys=D%,=Dss=Di=inl,,

nonzero components @& andD):

— —D* —D* —1_ _
Ay =A% ,=1—1(29lo+ 47l — nly—2uly+4l,), D35=Ds3=D;¢=Dg4=1—in(ulg—0;+14),
2 B a2 where the constant takes different values depending on the
21, —ip(12+26,1,—2ulol,— 612) case: for self-focusing it isi=2 and for self-defocusing
lo ’ =a.
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