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Entanglement and visibility at the output of a Mach-Zehnder interferometer
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We study the entanglement between the two beams exiting a Mach-Zehnder interferometer fed by a couple
of squeezed-coherent states with arbitrary squeezing parameter. The quantum correlations at the output are
functions of the internal phase shift of the interferometer, with the output state ranging from a totally disen-
tangled state to a state whose degree of entanglement is an increasing function of the input squeezing param-
eter. A couple of squeezed vacuums at the input lead to maximum entangled state at the output. The fringe
visibilities resulting from measuring the coincidence counting rate or the squared difference photocurrent are
evaluated and compared to each other. Homodynelike detection turns out to be preferable in almost all
situations, with the exception of the very-low-signal regif&1050-294{09)06102-§

PACS numbd(s): 42.50.Dv, 03.65.Bz

I INTRODUCTION we define the degree of entanglement of the statas the

. . _ normalized excess entropy6]
The notion of entanglement is an essential feature of

guantum mechanics, and is strictly connected with the non-
local character of the theory. A two-part physical system €=—< =
prepared in an entangled state is described by a nonfactoriz- S[Catnl+ S QurH]
able density matrix. This gives rise to partial or total corre- - Cn +
lation between the outcomes of measurements performed dMhereS eu]=In(1+N)+NIn(1+N"7), with N=(a'a), de-
the two parts, even though the parts may be so far apart th@Ptes the entropy of a thermal state, namely, the maximally
no effects resulting from one measurement can reach th@disordered state at fixed intensity. The useedformalizes
other part within the light cone. the idea that the stronger the correlations in the two-mode
Sources of entangled states are required for fundamentgfate, the more disordered should be the two modes taken
tests of guantum mechanics, as well as for applications sucteparately. Ifo is a pure state, we have th&=0 andS,
as quantum computation and communicatiagh and tele- =g, [18], so thate=,]/S 0.74] ranges from zero to
portation[2,3]. In recent years, entangled photon pairs hadunity. Notice that for pure staterepresents the unique mea-
been used to test nonlocality of quantum mechaes] by sure of entanglemetit.7].
Bell inequality [8]. In practice, all the available sources of  From the experimental point of view, the entanglement
two-mode entangled states are based on the process of spefan be detected by nonclassical interference effects occurring
taneous down conversion, taking place ){'ﬁz) nonlinear  in intensity-dependent measurements. In experiments involv-
crystals[9]. Recently, it has been demonstrated that a bearihg photon pairs from parametric down conversion these ef-
splitter can split an incident photon into two correlated secfects occur when coincident photons are mixed at a beam
ondary photon$10,11]. However, such process occurs at asplitter [19—21]. The probability amplitudes for pairs from
very low rate, and thus it is of no interest in practical appli-the two arms show destructive interference, leading to a sup-
cations. pression of the coincidence counting rate between detectors
In order to study quantum correlations between two radiasurveying the two armg22,23. Recently, the spatial effects
tion modes, and to compare different sources of correlategh two-beam interference have been also studied for partially
states, one needs to quantify the degree of entangldh#int  entangled photon pairf24]. In the case of more excited
A good theoretical measure of correlations has been introstates, many photons are present and the connection between
duced by means of Von Neumann entropy. The entropy of ntanglement and coincidence rate is less transparent. The

{Sea.+Sepl-Sell, ()

two-mode state is defined as issue has received attentif@5,26), though a general theory
has not been developed yet.
Sel=-Trelng} , 1) In this paper we study the generation and the detection of

entangled states at the output of a Mach-Zehnder interferom-
whereas the entropies of the two modesndb are given by eter fed by a couple of uncorrelated squeezed-coherent
. . ) . . A states. The scheme may be of interest as the output state can

Sea.l=—Tr{oalne.}t, Hepl=—Tr{opIn e} be arbitrarily high excited, instead of having two photons

(2 only. In addition, the degree of entanglement can be tuned by

R R R R varying the degree of squeezing of the input beams, or the

In Eq.(2) 0,=Tr,{0} ando,=Tr,{0} denote the state &t  internal phase shift of the interferometer. As regards the de-

and b, respectively, as obtained by tracing out the othertection scheme, we show that the coincidence counting rate
mode from the total density matrix. Following Ref$42—-15  between the two output arms corresponds to low fringe vis-
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a o) a G We consider the Mach-Zehnder interferometer fed by a
ﬂ BS couple of squeezed-coherent states
2 BS,
b ~ ~ ~ ~
0@ @ ) =Bal @By @&(DB(DI0. (D)

®)
D = T qa) i i -
FIG. 1. In(a), schematic diagram of a Mach-Zehnder interfer- In Eq. (7) Da(a) = explea’ —aa) is the displacement opera

ometer.BS, andBS, are symmetric beam splitters, whereaand  tor and S(¢) =exf1/2(%a" - *a%)] is the squeezing op-
b denote the input signal modes. Equal and opposite phase shifts aféator,|0) denotes the electromagnetic vacuum. There is no
imposed in each arm. Itb), an equivalent scheme for the Mach- need to consider a phase shift between the input modes, as it
Zehnder interferometer depicted (a), a single beam splitteBS, ~ can be reabsorbed into the internal phase spiftwithout
of transmissivityr=cog ¢/2 preceded and followed by rotations of 10Ss of generality, in the following we will consider a com-
m/2 performed on one of the two modéwereb). plex field amplitudex € C and a real squeezing parameter
=reR.

ibility. Therefore, we consider instead another intensity- The state exiting the interferometer is given by
dependent quantity, namely, the squared difference photo- )
current, which shows high visibility of fringes for the whole | hout) =Vmz( )| in)- (8)
range of input squeezing parameter.

In Sec. Il we study the dynamics of the interferometer,By exploiting the vacuum invariance,,(¢)|0)=|0) and
and evaluate analytically the degree of entanglement at thesing the relation
output as a function of the squeezing fraction of the input
beams and the internal phase shift of the interferometer. In ST A A T P
Sec. Il we analyze the interference effects occurring in the ®P| ~17@'aD(@)S(rexpiZa‘ar=D(—ia)S(—r),
measurement of the photon coincidence rate and of the 9
squared difference photocurrent. The evaluation of the
fringes visibility for both measurements shows that homo-we can write| /o) as
dynelike detection is preferable in almost all situations, with
the exception of the very-low-signal regime. Section IV _ LTl A E
closes thg paper with som)(/a conclgding r(gmarks. |l/lOUT>_eXp{ ! Eb b) UgDa(@)Dy

Il. ENTANGLEMENT AT THE OUTPUT OF A MACH- X (=1 030,8(NS(-NUL0), (10

ZEHNDER INTERFEROMETER ~ . .
whereU , denotes the evolution operator of the equivalent

The Mach-Zehnder interferometer we are dealing with isbeam splitterBS,. The “displacing” part of Eq.(10), to-
depicted in Fig. {a). The input signal modes are denoted by gether with the rotation on the motbe can be easily rewrit-
aandb, whereaB S, andB S, are symmetric beam splitters. ten as
We also assume that equal and opposite phase shifise

imposed in each arm of the interferometer. The evolution NN [P . Ay
operator of the whole setup can be written as exp i 5 b U Da(@)Dp(—ie)U,

~ A~ . 1T _ T A~

Viz(¢)=Ue? 2P 10T, 4 :|ja(aei(¢/2))|5b(ae(i/2)(w—¢))exp[ingb], (11)
where

whereas the “squeezing” part needs a little more algebra:
specializing a result from Ref27], we can write

0=exp‘ig(aTb+ bTa)] (5)
U4Sa(nSp(—1r) U} =exp{cose[ 5 r(a’—a?—b?+b?)]
denotes the evolution operator of a symmetric beam splitter. +sing[r(a’bT—ab)]}. (12)
After straightforward algebra, one rewrites Ed) as
It is worth noting that squeezing at the input is essential

\A/Mz(g{)):exp{izb’rb] to obtain enta_nglement at the output. In fact, for the in-
2 put state being a couple of coherent statpgy)
& =D,(a)Dy(B)|0), the output state is given byyour)
><exp{ —i 5(a*b+ b*a)] expl’ —i ngb] , = E)_a(o_z cos¢—ipBsin qb)lﬁb(fiasin ¢+acos$)|0y,  which
again is a couple of factorizedincorrelateylcoherent states

(6)  for any value of the internal phase shift of the interferometer.
Actually, the absence of output correlations is due to the
which shows that a Mach-Zehnder interferometer is equivaPoissonian statistics of the coherent states, which implies the
lent to a single beam splitteBS, of transmissivity 7  absence of intensity fluctuatiohs].
=cog ¢/2, preceded and followed by rotations 8f2 per- Let us first consider the situatiap= /2. In this case, the
formed on one of the two modégsee Fig. 1b)]. transformation in Eq(12) reduces to the two-mode squeez-



PRA 59 ENTANGLEMENT AND VISIBILITY AT THE OUTPUT ... 1617

ing operatoré(z)(r)=exp{r(aTb*—ab)}, so that the output For ¢#0,/2 it is convenient to evaluate the output state

state coincides with a displaced and rotated twin-beam sta@'d the entanglement by evolving the two-mode Wigner
function, which is defined as follows:

[our) = Da( e #2) Dy a2~
W(Xa,Ya:Xp,Yp) = J'RdﬂafRdVafRdefRdVb

a
X exp{ i bt b] | rwe), (13 .
X exp{2i (vaXa— taYat VpXp— MbYp)}
where the explicit expression of the twin-beam statgyg) XTr{Q Da(pativey)Dplmp+ivy)}.
is given by 19
2 1 < The + /2 rotations of mode d to simple rota-
— &2 _ *ar ions of modeb correspond to simple rota
[rwe) =S(N|0)= oo kgo tanfrikk). (19 tions in the soleb variables,
In order to evaluate the degree of entanglementgf;) we o'=€(mlge ("=

use the parameter introduced in Eq(3). The partial trace

o XW'(Xa,YaiXe
over a mode, sayy, is given by (Xa.Ya:Xp.Yb)

=W(Xa,Ya:Yo»—Xn),

0= Trol|Your) Yourl} ) BT, 20
* p'=e Mg el!m)=
1 R _ R _
= sy go tani?®rD (€' ™) |k)(k|DT(ae'(™¥), XW' (Xa,Ya:Xo Yp)
(15) =W(Xa,Ya; = Yb:Xp),

which is diagonal in the basis of displaced number state¥VhAerG;\aASJr the actlondof the l?gam sphtt?%;, |.e.,hg
|z/fn)=f)(aei(”’4))|n). The set of|i,)'s constitutes an or- =U40oU, corresponds to a mixing of variables of the two

thogonal basis for the Hilbert space of harmonic oscillator,mOdeS’
and, therefore, the entro®f 0,] can be evaluated as W (X4,Ya:Xp»Yb) = W(X, COSS—X,SiN 8,y ,, COSS— Y, SiN&;

X X4 SINJ+ Xy, COSB,Y, SiNd

Je.] i | ! tanif"r. (16)
-— np,, = anti"r.
Ca n=0 PaiNBns  Pn cosHr +Yp COSJ), (21)

After straightforward calculation we arrive at where we use the notatio= ¢/2. Using Eqs(20) and(21)
the Wigner function at the output results:

S o,]=In(1+ 3 +1%In

1+ %) , 17 Wour(Xa.YaiXs.Yb) = Win(Xa COSS— Y, SiNS,y, cOSS
v + Xy, Sin 8; X, COSS— Y}, SINS,X, SINS
where v?>=sint?r is the squeezing energy of each input +Yp, COSH), (22

beam. Notice thaS[o,] in Eq. (17) is equivalent to the

entropy of a thermal state with? photons. The degree of where Win(Xa,YaiXs.Ys) is @ product of two identical
entanglement is given by single-mode Gaussian Wigner functions, corresponding to

the couple of input squeezed-coherent states:
_ In(1+yN)+ yNlog(1+ (1/yN)

= , 18 4
¢ IN(1+N)+NIn(1+ 1/N) (18 W,N(xa,ya;xb,yb)z—Zexp{—2e‘2r(xa— Re «])?
a
whereN=(a'a)=|a|?+ 12 is the total energy of each input —2e?(y,— Im[a])?— 26" %
signal, andy is the squeezing fraction, namely, the percent- a
age of the total energy engaged in squeezing photohs, X (xp,— R a])?
=yN. From Eqg.(18) it is apparent that the degree of en- o )
tanglement is an increasing function of the squeezing frac- —2e”(yp—Im[a])7}. (23

tion, and that the maximum entangled state=(L) at the

) By the integration over the variables
output is reached for a couple of squeezed vacuymX) at y 9

the input.
For ¢=0, the transmissivity of the whole device is equal ~ Wout(Xa,Ya) = debeRdbeOUT(Xa!ya;Xb Yb),
to unity, and we havdyoyr)=|#n). Therefore, the en- ‘ ‘ (24)

tanglement is equal to zero, as the input state consists of a
couple of uncorrelated signals. and inserting Egs(22) and (23) in Eq. (24), we obtain
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1 (Xa—Re ay])? (2)
WOUT(Xarya): szz eXPl - ¢

(29

which represents the Wigner function of the sole mede
after partial trace over the mode The quantitiess, and=.,
in Eq. (25) are given by

32=¢e% cod 5+e ¥ sir? 5,
(26)
S7=e"? cog §+e* sin?s,

whereasa,, is given by

e EELANLE B o e o o e
ay=|al \ll-F%Sin2 o. (27 — ;:(1)8
2 7=0.6 |
In order to evaJuate entanglement, we note that any unitary _/""'—'_:/_:6—4—'__
transformationT acting on the single moda does not
change the value of the entropy25], ie., Se.] w oo i 7=0.2 i
=9Te,T]. Using this property, we displace with ampli- o
tude a4, and then squeeze with parametér=In\X, /3, - |
the Wigner function in Eq(25), thus arriving at the follow- v T
ing entropy-equivalent state: r (b) T
1 X2 +y? NI BRI T I

Wout(Xa,Ya) = wEXEyeXp{ - anzia]' (28 < 0 1 2 3 4
Remarkably, the Wigner function in EQR8) coincides with N
the Wigner function of a thermal states with thermal photons
given by FIG. 2. (a) Degree of entanglement as a function of the squeez-

ing fraction y and the internal phase shif, in the case of input
N,=1 —11= i1 Vi+siosintE2r—11. (29 beams withN=3 each; for fixedy the output s.tate ranges from a
¢ 2 [EyEX 1=z [\/ ¢ 129 totally disentangled state fap=0, to a state with a degree of en-

. . tanglement given by Eq18) for ¢= w/2. The degree of entangle-
The corresponding entropy can .be QaSIIy computed, and thl}ﬁent is an increasing function of, with ¢= /2 corresponding to
the entanglement at the output is given by

maximum value. Different values ™ do not substantially modify

the picture(b) The degree of entanglement as a function of the total

= IN(1+Ny)+NyIn(1+ 1/Ny) (30) input energyN for different values of the squeezing fractign and
IN(1+N)+NIn(1+ 1/N) for fixed value¢= /2 of the internal phase shift.

As it is expected, one has,=0 for =0, andN,=yN for  tanglement becomes a slightly increasing functioofFor

p=ml2. highly excited states the entanglement is given by the
In Fig. 2@ we show the degree of entanglement as aasymptotic formula

function of the squeezing fractiomp and the internal phase

shift ¢, in the case of input beams with average photins N1 |

=3 each: at fixedy the output state ranges from a totally e~ 1+ _7’_ (32)

disentangled state fap=0, to a state whose degree of en- InN

tanglement is given by Edq18) for ¢= 7/2. The degree of

entanglement is an increasing function of the squeezing fracSo far we have considered the two input states having the

tion vy, with the condition¢= 7/2 corresponding to maxi- same degree of squeezing. However, a pair of input states

mum value. Different values of the intensiy/does not sub- with different squeezing fractions does not substantially

stantially modify the behavior of versusy and ¢. In Fig.  modify the picture. In this case, in fact, the entanglement still

2(b) we reporte as a function of the intensiti for different  oscillates frome=0 to a maximum value as a function of the

values of the squeezing fractiop, and for fixed valueg internal phase shift of the interferometer. On the other hand,

= 7r/2 of the internal phase shift: Foy=1, one hase=1  this maximum value is now a function of both the squeezing

independently orN, whereas fory<1 the degree of en- fractions, and maximally entangled states at the output can-
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L L '_'1 6 put signals. Therefore, the visibility of the interference
A —T2= Y o fringes provides a measure of entanglement, and comparing
- - a .72=0.5 the visibility of different measurement schemes provides a
R o T ;_72=0.3 N way to compare their ability in monitoring the variations of
| T i guantum correlations between the output signals.
S // - -72=0.1 As already mentioned, we consider the measurement of
R P 1 the coincidence counting rate
w L(). . 7 -~ -
o\, 7 7,=0.0
[ i K(#)=(yourla’ab™|yoyr)
-/ -
: - = (Vi $)aTaboVy(#) ), (32)
o Ve vy and of the squared difference photocurrent
0 0.5 1

H(¢)=(¢ourl(a’a—b'b)?| oy
71 = (| Yz $)(aTa—bTb)2V ()| ). (33)

FIG. 3. Output entanglement for input signals with different
degree of squeezing. The maximum entanglement at the offigput LA e e e
¢=l2) is reported as a function of the squeezing fractign®f
one of the beams for different values of the squeezing fractjoof
the other beam. Both input beams have an average number of pho-
tons equal tdN= 3. The output entanglement is an increasing func-
tion of both the two squeezing fractions. The extreme case in which
one of the input signals is not squeezed at all corresponds to a value
of e always lower than 50%.

not be achieved if one of the input signals is only partially
squeezed. In Fig. 3 we report the maximum entanglement at
the output(obtained for¢= 7/2) as a function of the squeez-
ing fractionsy; of one of the beams for different values of T
the squeezing fractioty, of the other beam. The plots refer ©

to a situation in which both input beams have an average 0 1 2 3 4
number of photons equal t8=3. As it is apparent from the

plots, the output entanglement is an increasing function of N

both the two squeezing fractions. The extreme case in which

one of the input signals is not squeezed at all corresponds to —
a value ofe always lower than 50%.

IIl. ENTANGLEMENT AND FRINGE VISIBILITY

In this section, we study the visibility of the interference
fringes that are observed, by varying the internal phase shift
¢, in intensity measurements at the output of the interferom-
eter. In analogy with experiments involving correlated pho-
ton pairs, we consider the detection of the coincidence count- 5 g
ing rate at the output, namely, of the fourth-order correlation i (b)
function(yoyr/atab’| ¥oyur). However, as we will show in
the following, this corresponds to low fringe visibility, and
thus we sought for a more sensitive kind of measurement.
The homodynelike detection of the output difference photo-
current (ourlata—b'b|yoyr) is widely used in interfer- N
ometry [29-31, and general!y results In a very sen'smve FIG. 4. Fringe visibility as a function of the intensity for
measurement scheme. Startlng from this ConSIderat;on, Witferent values of the input squeezing fractignin (a) the visibil-
suggest the squared difference photocurretbyr(a'a iy of K measurement, , and in(b) the visibility of H measure-
—b'b)?[¢our) as a suitable fourth-order quantity to be mea-mentv,,. In both plots we report the visibility versus for five
sured at the output of the interferometer. values of the input squeezing fraction. From bottom to top we have

Besides being originated by interference effects, the variathe curves fory=0.2,0.4,0.6,0.8,and 1.0. As it is apparevi, is
tions in the quantities measured at the output also reflect thiarger thanVy in almost all situations, with the exception of the
variations in the quantum correlations between the two outvery-low-signal regime.

O IIIIIIIIIIIIIIIIIII
0 1 2 3 4
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After some algebra, we arrive at the explicit expressions irbelow 1/2. For nonunit squeezing fraction, and moderate in-

terms of the input fields put intensitiedN<10, the behavior o¥/ looks qualitatively
. R . similar to that of the degree of entanglemgcompare Figs.
K(¢)=Viz(¢)a'a b'bVy(¢) 4(b) and 2b)], whereas agail rapidly decreases. Remark-

ably, for highly excited stateBl>10, the visibility V,; has

— i 12,52 t2K2 t2K2 t2,52
=sin’ §cos’ o[a’?a’+ b *b?+a’*b?+b'%a’] the same asymptotic dependence of the degree of entangle-

+(sir? 6—co€ 8)2a’ab’b mente, in formula

+isinscos s ab™b+a?ab—a’bb?—a’a’b’] NELA(y)

+i sin scoss[ataZo’ +a'b'b?—at?ab—ab'2p], c=1tnN (37)
(34)

where the proportionality constaAi y)=1/5Iny is roughly
A () =Vl (#)(aTa—bb)2Vy(d) = — 2K () proportional to that appearing in E(1).
+[(a%a)?+ (b'b)?](sin* 5+ cog 8) IV. CONCLUSIONS

—2sirf §cog da’b?+bt%a’—a’a—b'b] The generation and the detection of optical entangled
o states are important issues, both required for fundamentals
+2isingcos’ la’'a’h’—a?ab+a'b™?~ab™b]  tests of quantum mechanics, as well as for possible applica-
i ai t2p _ athTh2 tions. In this paper we have studied the entanglement be-
+2isin’ scosdlab*b—a'b'b tween the two beams exiting a Mach-Zehnder interferometer
+a'?ab—a'a’b’], (35) fed by a couple of squeezed-coherent states with arbitrary
squeezing parameter. The degree of entanglement at the out-
where again we used the notatidor ¢/2. Using Eqs(34)  put has been analytically evaluated, as a function of the input
and(35) we are able to evaluate the fringes visibility of both intensity and squeezing fraction, and of the internal phase
detection schemes shift of the interferometer. Our results indicate that entangled
states of arbitrary large intensity can be produced by varying
(= = . (36) the input energy, whereas the degree of entanglement can be
K maxt Kmin’ H max™ Hmin tuned by varying the input squeezing fraction, and the inter-
. ) i . nal phase shift.
In Fig. 4 we reportvc andVy, as a function of the intensity A experimental characterization of the output entangle-
N for different vane_s p_f the-lnput squeezmg.fracthmThe ment can be obtained through the measurement of the
H-measurement visibility'y, is larger thanV in almost all  gqyared difference photocurrent between the output modes.
situations, with the exception of the very-low-signal regime,tne interference fringes that are observed by varying the
where very few photons are present. The behavior of fringg,iernal phase shifep show, in fact, high visibility for the

visibility versus intensityN also confirms thaV, represents \\hole range of input squeezing parameter.
a good measure of the entanglement at the output. As it

happens for the degree of _entanglement, in fact, a_couple _of ACKNOWLEDGMENTS
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