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Density operators for fermions
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The mathematical methods that have been used to analyze the statistical properties of boson fields, and in
particular the coherence of photons in quantum optics, have their counterparts for Fermi fields. The coherent
states, the displacement operators, theP representation, and the other operator expansions all possess surpris-
ingly close fermionic analogues. These methods for describing the statistical properties of fermions are based
upon a practical calculus of anticommuting variables. They are used to calculate correlation functions and
counting distributions for general systems of fermions.@S1050-2947~99!07802-6#

PACS number~s!: 03.75.2b, 42.50.Dv, 42.50.Lc
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I. INTRODUCTION

The Pauli exclusion principle plays an essential role
describing the behavior of the particles, both simple a
complex, that we now call fermions. It is known to play
key role in determining the structure of the most fundamen
elements of matter. These are systems like atoms, in w
the phase-space density of fermions, electrons in this cas
quite high. But when fermionic atoms move freely in spa
or even when they are trapped electromagnetically, th
phase-space density is usually so low that the effects of
exclusion principle remain completely hidden. A number
recent developments, however, point to the possibility
achieving much higher densities of fermionic atoms both
electromagnetic traps and in free space.

The various methods of optical cooling that have be
developed for atomic beams work as well for fermions
they do for bosons and produce beams with temperature
the order of 100m°K. Cooling fermions evaporatively to
still lower temperatures poses a problem that requires a
direct solution. Evaporative cooling becomes inefficient
fermions since the exclusion principle tends to suppress
lisions of identical atoms. It may be implemented nonet
less by sympathetic means@1#, e.g., by cooling bosonic at
oms at the same time, so that energy exchange still ta
place freely. It thus seems possible that the realization
degenerate Fermi gases may become an important bypro
of Bose-Einstein condensation.

The detection methods that will be used in measurem
on beams of cold fermionic atoms will be essentially t
same as those now used on bosonic atoms cooled by op
or evaporative means. The measurements on bosons ca
most conveniently described, in fact, by mathematical me
ods that were introduced in the context of quantum op
@2,3#.

*URL: http://kevin.phys.unm.edu/~kevin/. Electronic addre
kevin@kevin.phys.unm.edu
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Much of the work in quantum optics, we may recall,
couched in the language of coherent states, which are ei
states of the photon annihilation operators. They contain
intrinsically indefinite number of quanta but can nonethel
be used as a basis for describing all states of the electrom
netic field. While pure coherent states are not physically
tainable in bosonic systems with fixed numbers of particl
it likewise remains useful to describe boson fields in terms
suitably weighted superpositions and mixtures of coher
states. The weight functions associated with these comb
tions may be regarded as quasiprobability densities in
spaces of coherent-state amplitudes. The functionP in the
coherent-state representation of the density operator@2,3#
plays this role; other quasiprobability densities including t
Wigner function@3,4# and theQ function @3,4# play similarly
convenient roles in representing the density operator.

In the case of fermion fields, the vacuum state is the o
physically realizable eigenstate of the annihilation operato
It is possible, however, to define such eigenstates in a for
way and to put them to many of the same analytical use
are made of the bosonic coherent states. Since fermion
variables anticommute, their eigenvalues must, as noted
Schwinger@5#, be anticommuting numbers. Such numbe
are Grassmann variables. They can be handled by mean
the simple rules of Grassmann algebra@6#, which we include
here so that the calculations may be self-contained.

Within this context we formulate ways of expressing a
evaluating a broad range of the correlation functions that
measured in experiments involving the counting of fermio
Central to this task is the expression of the quantu
mechanical density operator in terms of Grassmann v
ables. We develop a number of ways of doing that in gene
terms and present a detailed discussion of the density op
tors for chaotically excited fields. Included among the lat
is a particularly useful Gaussian representation of the gra
canonical density operator for fermion fields. Having eva
ated the statistically averaged correlation functions, we ap
them to fermion-counting experiments and illustrate their u
in determining the counting distributions.

We find throughout this work that notwithstanding gre
mathematical differences, many close parallels can be es

:
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PRA 59 1539DENSITY OPERATORS FOR FERMIONS
lished between the expressions evaluated for fermion fi
and the more familiar ones for boson fields. In particular,
example, we can construct a family of quasiprobability de
sities, as functions of the Grassmann variables, with pro
ties parallel to those of the entire family of quasiprobabil
densities for bosons, including theP, Q, and Wigner func-
tions. We can then evaluate the mean values of ordered p
ucts of fermion creation and annihilation operators by p
forming integrations over the Grassmann variables wh
using the appropriate quasiprobability density as a we
function. In both cases, we trade an inhomogeneous com
tation relation and an ordering rule for a homogeneous c
mutation relation and a quasiprobability density. For bos
fields the integrations are taken over commuting variab
which may be treated as if they were classical variables.
fermions, on the other hand, the integrations are over a
commuting variables, which have no classical analogs.
weight functions for these integrations are nevertheles
one-to-one correspondence with the quasiprobability de
ties for bosons, so it seems appropriate to give them sim
names. We have followed that convention for several ot
parallels as well.

II. NOTATION

Let us consider a system of fermions which may be
scribed by the creationan

† and annihilationam operators
which satisfy the familiar but ever mysterious relations

$an ,am
† %5dnm , ~1!

$an ,am%50, ~2!

$an
† ,am

† %50, ~3!

anu0&50, ~4!

in which u0& is the vacuum state.
We shall use lower-case Greek letters to denote Gr

mann variables. These anticommuting numbersgn and their
complex conjugatesgn* satisfy the convenient relations

$gn ,gm%50, ~5!

$gn* ,gm%50, ~6!

$gn* ,gm* %50. ~7!

We shall also assume that Grassmann variables anticom
with fermionic operators

$gn ,am%50 ~8!

and commute with bosonic operators. In our notation
Grassmann numberbn and its complex conjugatebn* are
independent variables. We make the arbitrary choice
Hermitian conjugation reverses the order of all fermion
quantities, both the operators and the anticommuting n
bers. Thus, for instance, we have

~a1b2a3
†g4* !†5g4a3b2* a1

† . ~9!
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Because the square of every Grassmann monomial vanis
no nonzero Grassmann monomial can be an ordinary r
imaginary, or complex number.

III. COHERENT STATES FOR FERMIONS

A. Displacement operators

For any setg5$g i% of Grassmann variables, let us defin
the unitary displacement operatorD(g) as the exponential

D~g!5expS (
i

~ai
†g i2g i* ai ! D . ~10!

One of the useful properties of Grassmann numbers is
when, as in the preceding definition, they multiply fermion
annihilation or creation operators, their anticommutativ
cancels that of the operators. Thus the operatorsai

†g i and
g j* aj simply commute foriÞ j . So we may rewrite the dis
placement operator as the product

D~g!5)
i

exp~ai
†g i2g i* ai ! ~11!

5)
i

@11ai
†g i2g i* ai1~ai

†ai2
1
2 !g i* g i #. ~12!

By the same token, the annihilation operatoran commutes
with all the operatorsai

†g i andg i* ai whennÞ i , and so we
may compute the displaced annihilation operator by ignor
all modes but thenth:

D†~g!anD~g!5)
i

exp~g i* ai2ai
†g i ! an

3)
j

exp~aj
†g j2g j* aj !

5exp~gn* an2an
†gn! an exp~an

†gn2gn* an!

5~12an
†gn2 1

2 gn* anan
†gn! an

3~11an
†gn2 1

2 an
†gngn* an!

5~12an
†gn2 1

2 gn* gn! an ~11an
†gn1 1

2 gn* gn!

5an2an
†gnan1anan

†gn5an1gn . ~13!

Similarly

D†~g!an
†D~g!5an

†1gn* . ~14!

We may use the Baker-Hausdorff identity

eA1B5eA eB e2~1/2![A,B] , ~15!

which holds whenever the commutator@A,B# commutes
with both A andB, to write the displacement operatorD(a)
in forms that are normally ordered,



ex
e
a

he
te

o

-

ion

kes
nic

ns
r-

1540 PRA 59KEVIN E. CAHILL AND ROY J. GLAUBER
expS (
i

ai
†g i D expS 2(

i
g i* ai D

5expS (
i

~ai
†g i2g i* ai ! De~1/2!g* •g,

~16!

DN~g!5D~g! expS 1
2 (

i
g i* g i D ,

and antinormally ordered,

expS 2(
i

g i* ai DexpS (
i

ai
†g i D

5expS (
i

~ai
†g i2g i* ai ! De2~1/2!g* •g,

~17!

DA~g!5D~g! expS 2 1
2 (

i
g i* g i D ,

in which we have employed the concise notation

g*•g [(
i

g i* g i , ~18!

an abbreviation which we shall use occasionally but not
clusively. The identity~15! also allows one to show that th
displacement operators form a ray representation of the
ditive group of Grassmann numbers,

D~a! D~b!5D~a1b!expS 1
2 (

i
~b i* a i2a i* b i ! D .

~19!

B. Coherent states

For any setg5$g i% of Grassmann numbers, we define t
normalizedcoherent stateug& as the displaced vacuum sta

ug&5D~g!u0&. ~20!

By using the displacement relation~13!, we may show that
the coherent state is an eigenstate of every annihilation
eratoran :

anug&5anD~g!u0&5D~g! D†~g!anD~g!u0&

5D~g! ~an1gn!u0&5D~g! gnu0&5gn D~g!u0&

5gnug&. ~21!

By using the product formula~12! for the displacement op
erator, we may write the coherent state in the form

ug&5D~g!u0&5)
i

@11ai
†g i2g i* ai1~ai

†ai2
1
2 !g i* g i #u0&

5)
i

~11ai
†g i2

1
2 g i* g i !u0&

5expS (
i

~ai
†g i2

1
2 g i* g i ! D u0&. ~22!
-

d-

p-

It may be worth emphasizing that in this formula the creat
operatorai

† stands to theleft of the Grassmann numberg i .
Apart from these ordering considerations, this formula ta
a form closely analogous to the one that defines boso
coherent states.

The adjoint of the coherent stateug& is

^gu5^0uD†~g!5^0uexpS (
i

~g i* ai2
1
2 g i* g i ! D , ~23!

and it obeys the relation

^guan
†5^gugn* . ~24!

The inner product of two coherent states is

^gub&5expS (
i

@g i* b i2
1
2 ~g i* g i1b i* b i !# D , ~25!

so that

^bug& ^gub&5expF2(
i

~b i* 2g i* !~b i2g i !G
5)

i
@12~b i* 2g i* !~b i2g i !#. ~26!

In contrast to the case of bosons, we may for fermio
define for any seta5$a i% of Grassmann numbers the no
malized eigenstateua&8 of the fermion creation operatorsai

†

as the displaced state

ua&85D~a!u1&, ~27!

whereu1& is the state in which every mode is filled:

u1&5)
n

an
†u0&. ~28!

By using the displacement relation~14!, we may show that
the stateua&8 is an eigenstate of every creation operatoran

† :

an
†ua&85an

†D~a!u1&5D~a! D†~a!an
†D~a!u1&

5D~a! ~an
†1an* !u1&5D~a! an* u1&5an* D~a!u1&

5an* ua&8. ~29!

The adjoint relation is

t^auan5t^auan . ~30!

An explicit formula for the eigenstateua&8 follows from its
definition ~27!:

ua&85)
i

~12a i* ai1
1
2 a i* a i !u1&. ~31!
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C. Intrinsic descriptions of fermionic states

The occupation-number description of states of fermio
has well-known ambiguities. FornÞm, for example, the
stateu1n1m& may be interpreted asan

†am
† u0& or asam

† an
†u0&

52an
†am

† u0&.
The creation operators themselves provide an unamb

ous description of fermionic states,

uc&5(
$n%

c~n1 ,n2 , . . . ! an1

† an2

†
•••anm

† u0&, ~32!

which transfers to the coherent-state representation

^auc&5expS 2 1
2 (

n
an* anD

3(
$n%

c~n1 ,n2 , . . . ! an1
* an2

* •••anm
* , ~33!

without any ambiguity or extra minus signs. Because coh
ent states are defined in terms of bilinear forms in antico
muting variables, there is no need to adopt a standard or
ing of the modes.

IV. GRASSMANN CALCULUS

A. Differentiation

Since the square of any Grassmann variable vanishes
most general functionf (j) of a single anticommuting vari
ablej is linear inj,

f ~j!5u1jt. ~34!

We define the left derivative of the functionf (j) with re-
spect to the Grassmann variablej as

d f~j!

dj
5t. ~35!

Note that if the variablet is anticommuting, then we ma
also write the functionf (j) in the form

f ~j!5u2tj. ~36!

Now to form the left derivative, we first movej pastt, pick-
ing up a minus sign and obtaining the form~34! and the
result ~35!. In this case, the right derivative is2t. In the
present work, we shall use left derivatives exclusively a
shall refer to them simply as derivatives.

B. Even and odd functions

It is useful to distinguish between functions that comm
with Grassmann variables and ones that do not. We shall
that a functionf (a) that commutes with Grassmann va
ables isevenand that a functionf (a) that anticommutes
with Grassmann variables isodd.

Suppose that the only anticommuting quantities in a fu
tion f (a) are those of its argumenta. Then if the function
f (a) is even, it has even parity,

f ~2a!5 f ~a!, ~37!
s
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and if it is odd, it has odd parity,

f ~2a!52 f ~a!. ~38!

We shall often note the evenness or oddness of the funct
we introduce.

C. Product rule

To compute the derivative of the product of two functio
f (a) andg(a) with respect to a particular variablea i , one
may explicitly move thea i in g(a) throughf (a) or one may
move the operator representing differentiation through
function f (a). In either case if the functionf (a) is odd, then
one picks up a minus sign. The product rule is thus

]

]a i
@ f ~a! g~a!#5

] f ~a!

]a i
g~a!1s~ f ! f ~a!

]g~a!

]a i
,

~39!

where the signs( f ) of f (a) is 21 if f (a) is an odd function
and11 if f (a) is even.

D. Integration

We define a sort of integration over the complex Gra
mann variables by the following rules:

Edan5Edan* 50, ~40!

Edan am5dnm , ~41!

Edan* am* 5dnm . ~42!

This integration due to Berezin@6# is exactly equivalent to
left differentiation.

We shall typically be concerned with pairs of anticom
muting variablesa i and a i* , and for such pairs we sha
adhere to the notation

Ed2an5Edan* dan ~43!

in which the differential of the conjugated variable com
first. Note that

dan dan* 52dan* dan . ~44!

We have been using boldface type to denote sets of Gr
mann variables; we shall extend that use to write multi
integrals over such sets in the succinct form

Ed2a[E)
i

d2a i . ~45!

We shall also occasionally employ the concise notation

a*•b [(
n

an* bn ~46!
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for sums of simple products over all the modes of the s
tem.

The simple integral formula

Ed2an e2ap* aq5Edan* dan~12ap* aq!

52Edan* dan ap* aq5Edan* ap* dan aq

5Edan* ap* dnq5dnp dnq ~47!

provides a useful example of Grassmann integration.
also note the general rule

Ed2a f ~la!5ulu2Ed2b f ~b!, ~48!

in which l is an arbitrary complex number and in whic
f (la) is an abbreviation for a function which necessar
depends on bothla and l* a* . This rule owes its strange
appearance to the definition of integration as differentiati

Some further examples are the integral of the exponen
function,

Ed2a exp~b* a1a* g1aa* !5exp~b* g!, ~49!

and the Fourier transform of a Gaussian,

Ed2j exp~aj* 2ja* 1ljj* !5l expS aa*

l D , ~50!

wherel is an arbitrary complex number. The latter integ
can be written in a somewhat more-general form which is
longer a Fourier transform:

Ed2j exp~aj* 2jb* 1ljj* !5l expS ab*

l D . ~51!

E. Integration by parts

Let us first observe that the integral of a derivative va
ishes,

Ed2a
] f ~a!

]a i
50, ~52!

because the derivative with respect to the variablea i lacks
the variablea i . In particular, the integral of the derivative o
the product of two functions also vanishes, and so by us
the product rule~39!, we have

Ed2a
]

]a i
@ f ~a! g~a!#

5Ed2a F S ] f ~a!

]a i
D g~a!1s~ f ! f ~a!

]g~a!

]a i
G50,

~53!

which is the formula for integration by parts,
-

e

.
al

l
o

-

g

Ed2a S ] f ~a!

]a i
D g~a!52s~ f ! Ed2a f ~a!

]g~a!

]a i
,

~54!

where the signs( f ) is 11 if the function f (a) is even and
21 if it is odd.

F. Completeness of the coherent states

We may use our Grassmann calculus to show that
coherent states are complete. Let us consider the state

u f &5~c1da†!u0&, ~55!

which for arbitrary complex numbersc andd is an arbitrary
single-mode state. Then its inner product^gu f & with the co-
herent stateug& is the correct weight function for the
coherent-state expansion since

Ed2g^gu f &ug&5Ed2g~c1dg* ! ~11gg* 2ga†!u0&

5~c1da†!u0&5u f &. ~56!

The reader may generalize this example to the multim
case. The coherent states in fact are overcomplete.

G. Completeness of the displacement operators

For a single mode, the identity operatorI and the traceless
operatorsa, a†, and 1

2 2a†a form a complete set of opera
tors. Since by using the expression~12! and our Grassmann
calculus, we may write each of these operators as an inte
over the displacement operators

I 5Ed2g gg* D~g!, ~57!

a5Ed2g ~2g! D~g!, ~58!

a†5Ed2g g* D~g!, ~59!

1
2 2a†a5Ed2g D~g!, ~60!

it follows that the displacement operators form a compl
set of operators for that mode. It is easy to generalize
proof to the multimode case. The displacement operators
overcomplete.

V. OPERATORS

Some operators can be written as sums of products
even numbers of creation and annihilation operators;
shall call such operatorseven. Operators that can be writte
as sums of products of odd numbers of creation and ann
lation operators we shall speak of asodd. Although most
operators are neither even nor odd, the operators of phys
interest are either even or odd. The number operatora†a, for
example, is even, while the creation and annihilation ope
tors,a† anda, are odd.
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The operators of quantum mechanics and of quantum fi
theory do not themselves involve Grassmann variables. T
even operators commute with Grassmann variables, w
odd ones anticommute.

A. The identity operator

If we compare the integral

Ed2a ua&^aub&

5Ed2a expS (
i

~ai
†a i1a i* b i1a ia i* 1 1

2 b ib i* ! D u0&,

~61!

with the integral formula~49! and identifyb* andg in that
formula with a† andb in this integral, then we have

Ed2a ua&^aub&5expS (
i

~ai
†b i1

1
2 b ib i* ! D u0&5ub&.

~62!

Since the coherent states form a complete set of state
shown by the expansion~56!, it follows that the identity
operator is given by the integral

I 5Ed2a ua&^au. ~63!

The corresponding expression for the identity operato
terms of the eigenstatesua&8 of the creation operators is

I 5E)
i

~2d2a i ! ua&8t^au. ~64!

B. The trace

The trace of an arbitrary operatorB is the sum of the
diagonal matrix elements ofB in the n-quantum states,

Tr B5(
n

^nuBun&, ~65!

which shows that the trace of an operator that is odd v
ishes. By inserting the preceding formula~63! for the iden-
tity operator, we have

Tr B5(
n
Ed2a ^nua&^auBun&. ~66!

If we move the coherent-state matrix element^nua& to the
right of the matrix element of the even operatorB, then we
see from the formula~22! that minus signs arise that can b
absorbed into the argument of either of the two coher
states,

Tr B5(
n
Ed2a ^auBun&^nu2a&

5(
n
Ed2a ^2auBun&^nua&, ~67!
ld
us
ile

as

n

n-

t

in which the sum(nun&^nu5I is the identity operator. The
resulting multimode trace formula is

Tr B5Ed2a ^auBu2a&5Ed2a ^2auBua&, ~68!

which holds also for odd operators, both sides vanishing.
important example is the trace of the dyadic operatorub&^gu,

Trub&^gu5Ed2a ^aub&^gu2a&5Ed2a ^gu2a&^aub&

5Ed2a ^2gua&^aub&5^2gub&5^gu2b&,

~69!

in which we have used the completeness relation~63!. Since
the coherent states are complete, we may replace in this
mula either the ketub& or the brâ gu with its imageFub& or
^guF under the action of the arbitrary operatorF and obtain
the trace formula

Tr~Fub&^gu!5Tr~ ub&^guF !5^2guFub&5^guFu2b&.
~70!

C. Physical states and operators

A state uc& is physical if it changes at most by a phas
when subjected to a rotation of angle 2p about any axis,

U~ n̂,2p!uc&5eiu uc&. ~71!

Since fermions carry half-odd-integer spin, a state of o
fermion or of any odd number of fermions changes by
phase factor21. States that contain no fermions or on
even numbers of fermions are invariant under such 2p rota-
tions.

Thus physical states are linear combinations of states w
odd numbers of fermions or linear combinations of sta
with even numbers of fermions. But a state that is a lin
combination of a state that contains an odd number of fer
ons and another that contains an even number of fermion
excluded. For instance, the state

1

A2
~ u0&1u1&) ~72!

is unphysical because under a 2p rotation it changes into a
different state:

U~ n̂,2p!
1

A2
~ u0&1u1&)5

1

A2
~ u0&2u1&)

Þeiu
1

A2
~ u0&1u1&). ~73!

We define an operator asphysical if it maps physical
states onto physical states. Physical operators are either
or odd.

In all physical contexts that have been explored exp
mentally, the number of fermions~or more generally the
number of fermions minus the number of antifermions! is
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strictly conserved. That conservation law leads to certain
ther restrictions on the permissible states of the field. If
let N5(kak

†ak be the fermion number, the law requires th
any state arising from an eigenstate ofN must remain an
eigenstate ofN. This law can be derived from an assum
U(1) invariance of all the interactions under the transform
tion U(u)5exp(iuN), which changesa anda† to

e2 iuNaeiuN5eiua ~74!

and

e2 iuNa†eiuN5e2 iua†. ~75!

Fermion conserving interactions involving theak andak
† are

ones in which the phase factorse6 iu all cancel. If a system
begins in a state with a fixed number of fermions, the c
servation law restricts the set of accessible states cons
ably more than the 2p superselection rule mentioned earlie
Transitions cannot be made, for example, between st
with different even fermion numbers or between states w
different odd fermion numbers.

D. Physical density operators

A physical density operator can be written as a sum
dyadics of physical states with positive coefficients that a
up to unity. It follows that a physical density operatorr is a
positive Hermitian operator of unit trace: for any stateuc&

^curuc&>0, ~76!

r†5r, ~77!

Tr r51. ~78!

Physical density operators are invariant under a 2p rota-
tion. Thus the one-mode operator

r5
1

2
~ u0&^0u1u1&^1u!, ~79!

for example, is a physical density operator, but the dyad

1

2
~ u0&1u1&) ~^0u1^1u! ~80!

is not. In this work we shall consider only density operato
that are physical in this sense.

The dynamical problems we solve do not always be
with a fixed number of fermions. More generally they beg
with a mixture of states with different fermion numbers, th
is, with density operators of the form

r5(
N8

pN8 uN8&^N8u, ~81!

where thepN8 are real and non-negative. Such density o
erators are invariant under the transformationU(u)
5exp(iuN), and the fermion conservation law assures us t
they will always remain so,

e2 iuNreiuN5r. ~82!
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The coherent states do undergo a simple change u
this transformation,

U~u!ua&5eiuNua&5ueiua&, ~83!

^auU†~u!5^aue2 iuN5^eiuau, ~84!

which leaves their scalar product invariant,

^eiuaueiua&5^aua&. ~85!

VI. d FUNCTIONS AND FOURIER TRANSFORMS

We can define a function

d~j2z![Ed2a expS (
n

@an~jn* 2zn* !2~jn2zn!an* # D
~86!

5)
n

~jn2zn! ~jn* 2zn* !, ~87!

which plays the role of a Diracd function in that if f (j) is
any function of the set j of Grassmann variable
$j1 ,j2 , . . . %, then

Ed2j d~j2z! f ~j!5 f ~z!. ~88!

Thed function is doubly even: it commutes with Grassma
numbers andd(j2z)5d(z2j).

We have been using the term Fourier transform to den
an integral of the form

f̃ ~a!5Ed2j eaj* 2ja* f ~j!. ~89!

The d-function identity~86! implies that the inverse Fourie
transform is given by the similar formula

f ~j!5Ed2a eja* 2aj* f̃ ~a!. ~90!

The identity~86! also leads to two forms of Parseval’s rel
tion:

Ed2a f̃ ~a! @ g̃~a!#* 5Ed2j f ~j! g* ~j! ~91!

and

Ed2a f̃ ~a! g̃~2a!5Ed2j f ~j! g~j!, ~92!

which apply also to operator-valued functions provided t
complex conjugation is replaced by Hermitian conjugatio

We may use the formula~86! for thed function to derive
a fermionic analog of the convolution theorem:
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E d2j eaj* 2ja* f ~j!g~j!

5Ed2b d2j e~a2b!j* 2j~a* 2b* ! f ~j!

3Ed2hebh* 2hb* g~h!5Ed2b f̃ ~a2b! g̃~b!,

~93!

which expresses the Fourier transform of the product of
two functionsf (j) andg(j) as the convolution of their Fou
rier transformsf̃ (a2b) and g̃(b).

By using the normally ordered form~16! of the displace-
ment operator, the eigenvalue property of the coherent st
and the preceding formula~86! for the d function we find

Ed2g ^guD~a!ug&5Ed2g ^guea†a e2a* aug& e~1/2!aa*

5Ed2g eg* a2a* g1~1/2!aa*

5d~a!e~1/2!aa* 5d~a!. ~94!

The addition rule~19! for successive displacements now im
plies that for the multimode case

Ed2g ^guD~a!D~2b!ug&5d~a2b!. ~95!

VII. OPERATOR EXPANSIONS

The precedingd-function identity~95! and the complete-
ness~57!–~60! of the displacement operators give us a me
of expanding an arbitrary operatorF in the form

F5Ed2j f ~j!D~2j!. ~96!

We may solve for the weight functionf (j) by multiplying
on the right by the displacement operatorD(a) and then
taking the diagonal coherent-state matrix element in the s
ub& and integrating overb:

E d2b ^buFD~a!ub&

5Ed2b Ed2jf ~j! ^buD~2j!D~a!ub&

5Ed2jf ~j! d~a2j!5 f ~a!. ~97!

The full expansion is thus

F5Ed2j Ed2b ^buFD~j!ub& D~2j!. ~98!

Such expansions will prove useful in the sections that follo
The formula~86! for the delta functiond(j2z) may be

interpreted as a trace identity. From the eigenvalue prop
of the coherent states, it follows that
e

es,

s

te

.

ty

d~j2z!5Ed2a eaj* 2ja* eza* 2az*

5Ed2a eaj* 2ja* ^aueza†
e2az* ua& ~99!

in which we recognize the normally ordered form~16! of the
displacement operator

d~j2z!5Ed2a eaj* 2ja* ^auDN~z!ua&. ~100!

By using the trace formula~70!, we may write thisd func-
tion as the trace

d~j2z!5Ed2a eaj* 2ja* Tr@DN~z!ua&^2au#

5Tr@DN~z!EA~2j!# ~101!

of the product of the normally ordered displacement opera
DN(z) with an even operatorEA(j) defined as the Fourie
transform

EA~j!5Ed2a eja* 2aj* ua&^2au ~102!

of the coherent-statest dyadicua&^2au. As intimated by its
subscript, the operatorEA(j) will turn out to be useful for
dealing with antinormally ordered operators.

We may now use the completeness~57!–~60! of the dis-
placement operators and the trace identity~101! to expand an
arbitrary operatorF in terms of the normally ordered dis
placement operatorsDN(j),

F5Ed2j f ~j!DN~2j!. ~103!

We may solve for the functionf (j) by multiplying on the
right by the operatorEA(z) and forming the trace:

Tr@FEA~z!#5Ed2j f ~j!Tr@DN~2j!EA~z!#

5Ed2j f ~j!d~z2j!5 f ~z!. ~104!

The full expansion is thus

F5Ed2j Tr@FEA~j!# DN~2j!. ~105!

By using the Grassmann calculus, one may compute
Fourier transform~102! of the coherent-state dyadicua&
^2au and find for the operatorEA(j) the formulas

EA~j!5u0&^0u2~j* 1a†!u0&^0u~j1a! ~106!

52~ 1
2 2a†a!1jj* aa†1ja†2j* a,

~107!

with which it is easy to exhibit the completeness of the o
eratorsEA(j):
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I 5Ed2j 2~11j* j! EA~j!, ~108!

a5Ed2j ~2j! EA~j!, ~109!

a†5Ed2j ~2j* ! EA~j!, ~110!

1
2 2a†a5Ed2j 1

2 jj* EA~j!. ~111!

Since the operatorsEA(j) are complete, we may expan
an arbitrary operatorG in terms of them,

G5Ed2j g~j!EA~2j! ~112!

and then use the trace formula~101! and the evenness of th
displacement operators to evaluate the weight functiong(j),

Tr@DN~z!G#5Ed2j g~j! Tr@DN~z!EA~2j!#

5Ed2j g~j! d~j2z!5g~z!. ~113!

The full expansion is thus

G5Ed2j Tr@GDN~j!# EA~2j!. ~114!

VIII. CHARACTERISTIC FUNCTIONS

For a system described by the density operatorr, we
define the characteristic functionx(j) of Grassmann argu
mentj ~andj* ) as the mean value

x~j!5TrFr expS (
n

~jnan
†2anjn* ! D G . ~115!

It is thus a species of Fourier transform of the density ope
tor r. Becausej i

25j i*
250, we may expand the exponenti

as

x~j!5TrFr )
n

@11jnan
†2anjn* 1jn* jn~an

†an2 1
2 !#G .

~116!

We may also define the normally ordered characteri
function xN(j) as

xN~j!5TrFr expS (
n

jnan
†D expS 2(

m
amjm* D G ,

~117!

with the expansion

xN~j!5TrFr )
n

~11jnan
†2anjn* 1jn* jnan

†an!G .
~118!

The antinormally ordered characteristic functionxA(j) is
-

ic

xA~j!5TrFr expS 2(
m

amjm* D expS (
n

jnan
†D G ~119!

5TrFr )
n

@11jnan
†2anjn* 1jn* jn~an

†an21!#G .
~120!

Because the density operatorr is an even operator and be
cause the displacement operators are constructed from b
ear forms in fermionic quantities, it follows that the chara
teristic functions are doubly even in the sense that th
commute with Grassmann variables and also are of even
ity.

The s-ordered characteristic function

We may define a more general ordering of the annih
tion operatoran and the creation operatoran

† , much as we
did earlier for boson field operators@4#. It is an ordering
specified by a real parameters that runs froms521 for
antinormal ordering tos51 for normal ordering. For the
quadratic case, thes-ordered product for fermions is

$an
†an%s5an

†an1 1
2 ~s21!, ~121!

to which we append the trivial definitions

$an
†%s5an

† and $an%s5an . ~122!

We note that the definition~121! differs by a crucial sign
from that@4# of s ordering for bosonic operatorsbn andbn

† :

$bn
†bn%s5bn

†bn1 1
2 ~12s!. ~123!

In particular, the antinormally ordered product$an
†an%21

is 2anan
† , and the symmetrically ordered product$an

†an%0 is
half the commutator,

$an
†an%05 1

2 @an ,an
†#. ~124!

We define thes-ordered characteristic functionx(j,s) as

x~j,s!5TrFr H expS (
n

~jnan
†2anjn* ! D J

s
G ~125!

5TrFr )
n

~11jnan
†2anjn* 1jn* jn $an

†an%s!G
~126!

5TrFr )
n

$11jnan
†2anjn* 1jn* jn

3@an
†an1 1

2 ~s21!#%G ~127!

5TrH r expF(
n

S jnan
†2anjn* 1

s

2
jn* jnD G J

~128!

5x~j! expS s

2 (
n

jn* jnD , ~129!
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which, incidentally, shows it to be an even function and
even parity,

x~2j,s!5x~j,s!. ~130!

A particularly useful example of these characteristic fun
tions is the case of the antinormally ordered functionxA(j)
5x(j,21). We see by inserting the resolution~63! of the
identity between the exponential functions in its definiti
~119! that

x~j,21!5TrFr expS 2(
m

bmjm* D
3Ed2b ub&^bu expS (

n
jnbn* D G , ~131!

in which we have replaced the annihilation and creation
erators by their eigenvalues in the coherent states. By u
the trace formula~69!, we find

x~j,21!5Ed2b expS (
n

~jnbn* 2bnjn* ! D ^buru2b&,

~132!

which expresses the antinormally ordered characteristic fu
tion x(j,21) as the Fourier transform of the matrix eleme
^buru2b&.

If we define thes-ordered displacement operatorD(j,s)
as

D~j,s!5$D~j!%s5D~j!expS s

2(n
jn* jnD , ~133!

then we may write thes-ordered characteristic function~129!
as the trace

x~j,s!5Tr@r D~j,s!#. ~134!

IX. S-ORDERED EXPANSIONS FOR OPERATORS

A convenient extension of the definition of the opera
EA(j) is

E~j,s![EA~j! expS s11

2 (
n

jn* jnD , ~135!

from which we note that

EA~j!5E~j,21!. ~136!

This is one sense in which the operatorEA(j) is related to
antinormal ordering.

By using thes-ordered operatorsD(j,s) andE(j,s), we
may generalize the expansions~105! and ~114! of the arbi-
trary operatorsF andG to

F5Ed2j Tr@FE~j,2s!# D~2j,s!, ~137!

G5Ed2j Tr@GD~j,2s!# E~2j,s!. ~138!
f
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The obvious generalization

d~j2z!5Tr@D~j,s!E~2z,2s!# ~139!

of the trace formula~101! then gives the trace of the produ
FG as

Tr@F G#5Ed2j Tr@FE~j,2s!# Tr@GD~2j,s!#.

~140!

We may now use the second Parseval relation~92! to cast
the expansions~137! and~138! into forms that will prove to
be quite useful. First let us define the complete sets of
eratorsD̃(a,s) and Ẽ(a,s) as the Fourier transforms of th
operatorsD(j,s) andE(j,s):

D̃~a,s![Ed2j expS (
n

~anjn* 2jnan* ! D D~j,s!,

~141!

Ẽ~a,s![Ed2j expS (
n

~anjn* 2jnan* ! D E~j,s!.

~142!

Next let us define the weight functionsFE(a,2s) and
GD(a,2s) as the Fourier transforms of the traces

FE~a,2s![Ed2j expS (
n

~anjn* 2jnan* ! D
3Tr@FE~j,2s!#, ~143!

GD~a,2s![Ed2j expS (
n

~anjn* 2jnan* ! D
3Tr@GD~j,2s!#. ~144!

It follows then from the Parseval relation~92! and from the
expansions~137! and ~138! that the operatorsD̃(a,s) and
Ẽ(a,s) form complete sets of operators and afford us
expansions

F5Ed2a FE~a,2s! D̃~a,s!, ~145!

G5Ed2a GD~a,2s! Ẽ~a,s! ~146!

of the arbitrary operatorsF and G. Applying the Parseval
relation ~92! to the trace formula~140!, we have the trace
relation

Tr@F G#5Ed2a FE~a,2s! GD~a,s!. ~147!

The operatorsẼ(a,s) are particularly simple whens5
61. It follows from the definitions~135! and ~102! of the
operatorsẼ(a,s) andEA(j), and from the formula~86! for
the d function that the operatorẼ(a,21) is just the
coherent-state dyadic
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Ẽ~a,21!5ua&^2au. ~148!

Similarly, by using the definitions~135! and ~102! and the
Fourier-transform relation~50!, one may write the operato
Ẽ(a,1) as the integral

Ẽ~a,21!5E)
i

~2d2b i ! e2~a2b!•~a*2b* ! ub&^2bu.

~149!

By performing the integration and referring to the expli
formula ~31!, we may show that the operatorẼ(a,1) is the
dyadic of the eigenstates~27! of the creation operatorsua&8:

Ẽ~a,1!5ua&8 t^2au. ~150!

X. QUASIPROBABILITY DISTRIBUTIONS

Among the most important of the foregoing expansions
the expansion~138! when the operatorG is the density op-
eratorr,

r5Ed2j Tr@rD~j,s!# E~2j,2s!, ~151!

in which case the trace is thes-ordered characteristic func
tion x(j,s),

r5Ed2j x~j,s! E~2j,2s!. ~152!

We may define thes-ordered quasiprobability distributio
W(a,s) as the Fourier transform of thes-ordered character
istic functionx(j,s),

W~a,s!5Ed2j expS (
n

~anjn* 2jnan* ! D x~j,s!.

~153!

It follows now from the expansion~146! that thes-ordered
quasiprobability distributionW(a,s) is the weight function
for the density operatorr in the expansion

r5Ed2a W~a,s! Ẽ~a,2s!. ~154!

Because density operators must be physical opera
W(a,s) like x(j,s) is an even function of even parity,

W~2a,s!5W~a,s!. ~155!

When the density operator possesses the additional p
symmetry~82!, then bothx(j,s) and W(a,s) are invariant
under the rotation of all the variablesa i by the same angleu,

W~eiua,s!5W~a,s! and x~eiuj,s!5x~j,s!.
~156!

The functionsW(a,s) for different values of the orde
parameters are intimately related to one another because
characteristic functions obey the identity
s

rs,

se

e

x~j,s!5expS s

2
j*•jDx~j!5expS ~s2t !

2
j*•jDx~j,t !.

~157!

The functionW(a,s) is therefore the Fourier transform o
the product of exp$@(s2t)/2#j*•j% with the characteristic
function x(j,t),

W~a,s!5Ed2j expS (
n

~anjn* 2jnan* ! D
3expS ~s2t !

2
j*•jD x~j,t !. ~158!

The Fourier transform of the characteristic functionx(j,t) is
W(a,t), while that of exp(@(s2t)/2#j*•j) according to Eq.
~50! is

E d2j e(n~gnjn* 2jngn* ! e[ ~s2t !/2]j* •j

5)
n

F ~ t2s!

2
e[2/~ t2s!]gngn* G . ~159!

The convolution theorem~93! now givesW(a,s) as

W~a,s!5E)
j

F ~ t2s!

2
d2b j G

3expF 2

~ t2s!(i
~a i2b i !~a i* 2b i* !GW~b,t !.

~160!

A useful example ofW(a,s) is the function

W~a,21!5Ed2j expS (
n

~anjn* 2jnan* ! D x~j,21!,

~161!

which according to Eq.~132! is the Fourier transform

W~a,21!5Ed2j d2b expF(
n

@~an2bn!jn* 2jn

3~an* 2bn* !#G ^buru2b&. ~162!

By using thed-function identity ~86!, we see that this ex-
pression reduces to

W~a,21!5Ed2b d~a2b! ^buru2b&5^auru2a&.

~163!

This function is the fermionic analog of the functionQ(b)
5^burub& which is often used to represent the density o
eratorr in terms of the bosonic coherent statesub&. It is the
weight function that gives the mean values of antinorma
ordered products of creation and annihilation operators
terms of integrals of the corresponding products of Gra
mann numbers.
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XI. MEAN VALUES OF OPERATORS

We shall here be concerned with computing the me
values of the products ofs-ordered monomials,

)
i

$~ai
†!ni ai

mi%s , ~164!

in which the exponentsni andmi take the value 0 or 1. The
ordering of the modes labeled by the indexi is arbitrary but
fixed. We shall show that we may express the mean value
such products of monomials as integrals of thes-ordered
weight functionW(a,s) multiplied by the monomials in the
same order. By using the definition~153! of W(a,s), we
may write these integrals in the form

Ed2a )
i

~a i* !nia i
mi W~a,s!5Ed2a )

i
~a i* !nia i

mi Ed2j

3expS (
j

~a jj j*

2j ja j* ! D x~j,s!. ~165!

It is now easy to write the monomial as a multiple derivativ

E d2a )
i

~a i* !nia i
mi W~a,s!

5Ed2a d2j )
i

F ]ni

]~2j i !
ni

e2j ia i*
]mi

]~2j i* !mi
e2j i* a iG

3x~j,s!. ~166!

On using our formula~54! for integration by parts, we hav

E d2a )
i

~a i* !nia i
mi W~a,s!

5Ed2j d2a expS (
j

~a jj j* 2j ja j* ! D
3)

i
F ]ni

]~j i !
ni

]mi

]~j i* !mi
Gx~j,s! ~167!

in which we recognize thed-function formula ~87! which
gives

Ed2a )
i

~a i* !nia i
mi W~a,s!

5Ed2j d~j! )
i

]ni

]~j i !
ni

]mi

]~j i* !mi
x~j,s! ~168!

5)
i

]ni

]~j i !
ni

]mi

]~j i* !mi
x~j,s!U

j50

~169!
n

of

,

5TrF r )
i

]ni

]~j i !
ni

]mi

]~j i* !mi
~1

1j iai
†1j i* ai

1j i* j i $ai
†ai%s!U

j50
G . ~170!

If we recall the definitions ofs ordering in Eqs.~121! and
~122!, we then find

Ed2a )
i

~a i* !nia i
mi W~a,s!5TrFr )

i
$~ai

†!ni ai
mi%sG .

~171!

In particular, by takingni5mi50, we see that the weigh
function W(a,s) is normalized,

Ed2a W~a,s!5Tr r51. ~172!

XII. P REPRESENTATION

Of the representations~154! for the density operatorr, by
far the most important is the one fors51 with the normally
ordered weight functionP(a)5W(a,1). By Eq. ~148! it
takes the simple form

r5Ed2a P~a! ua&^2au, ~173!

which recalls theP representation@2,3# for boson fields.
Since the functionP(a) is even, we may also write

r5Ed2a P~a! u2a&^au. ~174!

Because Grassmann integration is differentiation, the fer
onic P representation is not affected by the mathemati
limitations @2–4,7# that restricted somewhat the use of t
bosonicP representation.

TheP representation may be used directly to compute
mean values of normally ordered products

Tr~r ak
†nal

m!5Ed2aP~a!^auak
†nal

mua&

5Ed2aP~a!ak*
na l

m . ~175!

This extremely useful relation is just a special case of E
~171! for s51.

Since the operatorẼ(a,1) is the dyadic~150! of the
eigenstates of the creation operators, it follows from the
pansion~154! that the weight function~163!

Q~a![W~a,21!5^auru2a& ~176!

is the weight function in the representation

r5Ed2a Q~a! ua&8 t^2au, ~177!
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which affords the simple way of computing the mean valu
of antinormally ordered products that corresponds to
~171! for s521.

Another use of the weight functionQ(a)5W(a,21)
5^auru2a&, however, is that it allows us to compute th
weight functionP(a)5W(a,1) of the P representation as
the simple convolution

P~a!5E)
m

~2d2bm!

3expF2(
n

~an2bn!~an* 2bn* !G ^buru2b&,

~178!

as follows from the general convolution formula~160! with
s51 andt521. Although the analogous relation for boso
often is singular@2–4,7#, this result holds for all fermionic
density operatorsr.

XIII. CORRELATION FUNCTIONS FOR FERMIONS

A principal use of theP representation for bosonic field
has been the evaluation of the normally ordered correla
functions, which play an important role in the theory of c
herence and of the statistics of photon-counting experim
@2#. The analogously defined correlation functions for fie
of fermionic atoms can be shown to play a similar role in t
description of atom-counting experiments@8#. If we use
c(x) to denote the positive-frequency part of the Fermi fie
as a function of a space-time variablex, then the first two of
these correlation functions may be defined as

G~1!~x,y!5Tr@rc†~x!c~y!#, ~179!

G~2!~x1 ,x2 ,y2 ,y1!5Tr@rc†~x1!c†~x2!c~y2!c~y1!#.
~180!

The nth-order correlation function is

G~n!~x1 , . . . ,xn ,yn , . . . ,y1!

5Tr@rc†~x1!•••c†~xn!c~yn!•••c~y1!#. ~181!

If we expand the positive-frequency part of the Fer
field in terms of its mode functionsfk(x) as

c~x!5(
k

akfk~x!, ~182!

then its eigenvalue in the coherent stateua&,

c~x!ua&5w~x!ua&, ~183!

is the Grassmann field

w~x!5(
k

akfk~x! ~184!

in which the annihilation operators in Eq.~182! are replaced
by the Grassmann variablesa5$ak%.

We may use theP representation to evaluate thenth-order
correlation functionG(n) as the integral
s
.

n

ts
s

i

G~n!~x1 , . . . ,xn ,yn , . . . ,y1! ~185!

5Ed2a P~a!^auc†~x1!•••c†~xn!c~yn!•••c~y1!ua&

~186!

5Ed2a P~a! w†~x1!•••w†~xn!w~yn!•••w~y1!.

~187!

XIV. CHAOTIC STATES OF THE FERMION FIELD

The reduced density operator for a single mode of
fermion field can be represented by a 232 matrix for the
states with occupation numbers 0 and 1. If the matrix
diagonal, it is specified completely by the mean number
quanta^n& in the mode. The density operator for thekth
mode, in other words, must take the form

rk5~12^nk&!u0&^0u1^nk&u1&^1u. ~188!

We shall speak of this density operator as representin
chaotic state of thekth mode. A chaotic state of the entir
field will then be represented as a direct product of su
density operators for all the modes of the field,

rch5)
k

rk . ~189!

It is specified by the complete set of mean occupation nu
bers$^nk&%.

The total number of fermions,N5(kak
†ak , present in

chaotic states will in general be indefinite. Indeed it is eas
seen that in the state specified by Eq.~189! we have

^N2&2^N&25(
k

^nk&~12^nk&! ~190!

so thatN cannot be fixed unless all the^nk& take the value 0
or 1. The indefiniteness of the number of particles presen
a feature that the chaotic states of the fermion and bo
fields have in common. For sufficiently large values ofN,
however, the fluctuations ofN/^N& may be quite small so the
specification ofN in these relative terms may be quite pr
cise. Fluctuations of this type in the number of particl
present are a familiar property of the grand-canonical
semble in statistical mechanics, and that ensemble, as
shall see, represents a special class of chaotic states.

The single-mode density operator~188! can also be writ-
ten as

rk5~12^nk&! S ^nk&
12^nk&

D ak
†ak

~ u0&^0u1u1&^1u! ~191!

in which we recognize the unit operatorI k for the subspace
of the kth mode. Within this subspace we have

rk5~12^nk&! S ^nk&
12^nk&

D ak
†ak

. ~192!
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This expression can be used quite directly to evaluate
weight functionW(a,21)5Q(a).

We first note that for any real numberv

va†aua&5e~1/2!aa* ~12v2!uav&, ~193!

so that we have

^auva†au2a&5e~1/2!aa* ~12v2! ^au2av&5eaa* ~11v !.
~194!

Then if we letv5^nk&/(12^nk&), we see that

^akurku2ak&5~12^nk&! expS akak*

12^nk&
D ~195!

and

Q~a!5W~a,21!5)
k

^akurku2ak&

5)
k

~12^nk&! expS akak*

12^nk&
D . ~196!

This product is the weight function appropriate to averag
antinormally ordered operator products in chaotic states.

We may find the weight functions corresponding to all t
other ordering schemes by using the convolution~160! with
t521 and carrying out the required integration with suf
cient attention to the implicit minus signs. The result for t
kth mode is

Wk~ak ,s!52
s12^nk&21

2
expS 2

2akak*

s12^nk&21D ,

~197!

and the weight function for the multimode field is simply th
product

W~a,s!5)
k

Wk~ak ,s!. ~198!

Thus the functionWk(ak ,0), which is analogous to the
Wigner function for boson fields, is given by

Wk~ak ,0!52~^nk&2 1
2 ! expS 2

akak*

^nk&2 1
2
D , ~199!

and the functionWk(ak ,1), which is the analog of the func
tion Pk(ak) for boson fields, is

Wk~ak ,1![Pk~ak!52^nk& expS 2
akak*

^nk&
D . ~200!

The latter result is a particularly useful one since there
many physical contexts that call for the averaging of n
mally ordered products of annihilation and creation ope
tors. For chaotic fields one may calculate all such average
Grassmann integrals by making use of the fermionicP rep-
resentation withP(a) given by Eq.~200!.

The minus signs in front of the expressions~199! and
~200! may be somewhat surprising since these functions
e

g

re
-
-
as

re

the fermionic analogs of quasiprobability densities that
predominantly positive for boson fields. It is worth pointin
out, therefore, that these signs result from our conven
that definesd2a asda* da. Had we chosen the differentia
instead to bedada* , the signs would have been positive.

For a chaotically excited boson field, theP representation
expresses the density operator as a Gaussian integral
diagonal coherent-state dyadic. For fermion fields the co
sponding expression ofrk for a single mode is

rk52^nk& Ed2ak e2akak* /^nk& uak&^2aku. ~201!

According to Eq.~191!, the density operatorrk can also be
written as a sum over them-fermion states as

rk5~12^nk&! (
mk50

1 S ^nk&
12^nk&

D mk

umk&^mku. ~202!

What we have shown, in effect, is that the two expressi
are identical and that statistical averages can be evaluate
means of Gaussian integrations for fermions as well as
bosons. The multimode density operator is represented
course, by the product of the single-mode density operat
r5)krk .

Fields in thermal equilibrium with a suitable particle re
ervoir represent particular examples of the kind of chao
excitation we have been describing. If it is appropriate
describe such fields by means of the grand-canonical
semble, then their overall density operator may be written

r5
1

J~b,m!
e2b~H2mN!, ~203!

where b51/kBT, m is the chemical potential,H is the
Hamiltonian for the system,N is the particle number, and th
normalizing factorJ(b,m) is the grand partition function
For a field with dynamically independent mode functio
labeled by the indexk, we can write

H5(
k

«kak
†ak , N5(

k
ak

†ak , ~204!

where«k is the energy of a particle in thekth mode.
Under these circumstances the equilibrium number of

mions in thekth mode is

^nk&5
1

eb~«k2m!11
. ~205!

In this case the ratiônk&/(12^nk&) is simply the general-
ized Boltzmann factor

^nk&
12^nk&

5eb~«k2m!. ~206!

We then find that the product of therk given by Eq.~201! is
precisely equal to the grand-canonical density opera
~203!,
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E )
k

~2^nk&d
2ake

2akak* /^nk&! ua&^2au

5
1

J~b,m!
e2b~H2mN!. ~207!

There are many examples of thermal equilibria for which
P representation on the left should furnish a useful com
tational tool.

XV. CORRELATION FUNCTIONS FOR CHAOTIC FIELD
EXCITATIONS

We have introduced a succession of normally ordered
relation functionsG(n)(x1 , . . . ,xn ,yn , . . . ,y1) in Sec. XIII
and shown how they can be expressed as integrals ove
Grassmann variablesa5$ak%. For the case of chaotic fields
the appropriate weight function is

P~a!5)
k

Pk~ak!, ~208!

the product of the Gaussian functions in Eq.~200!. The first-
order correlation function is thus given by

G~1!~x,y!

5E)
k

~2^nk&d
2ake

2akak* /^nk&! ^auc†~x!c~y!ua&.

~209!

The fieldsc and c† may now be replaced by their Gras
mann field eigenvalues defined by Eqs.~183! and ~184!.
Their product is a quadratic form in the variablesak and
ak* , which is easily integrated:

G~1!~x,y!5E)
k

~2^nk&d
2ake

2akak* /^nk&!

3(
l ,m

a l* amf l
†~x!fm~y!

5(
k

^nk& fk
†~x!fk~y!. ~210!

To find the higher-order correlation functions, we c
make use of a species of generating functional. We first
fine the Grassmann fields

z~x!5(
k

bkfk~x!, ~211!

h~y!5(
k

gkfk~y! ~212!

and use them to construct the normally ordered expecta
value
e
-

r-

the

e-

on

G@z,h#[TrFrexpS E z~x!c†~x!d4xD
3expS Ec~y!h* ~y!d4yD G . ~213!

If we form the variational derivative ofG with respect to
z(x1) from the left and with respect toh* (y1) from the
right, subsequently settingz andh to zero, then we find an
alternative expression for the first-order correlation functio

d

dLz~x1!

d

dRh* ~y1!
Guz5h50

5Tr@rc†~x1!c~y1!#5G~1!~x1 ,y1!, ~214!

where left and right differentiation have been indicated e
plicitly in the subscripts.

It is evident then that one may generate all of the high
order correlation functions by performing further differenti
tions,

G~n!~x1 , . . . ,xn ,yn , . . . ,y1!

5
d

dLz~x1!
•••

d

dLz~xn!

d

dRh* ~yn!
•••

d

dRh* ~y1!

3Guz5h50 . ~215!

To evaluate the generating functionalG for a chaotic field,
we make use of the orthonormality of the mode functionsfk
and then carry out the Grassmann integration

G5E)
k

~2^nk&d
2ake

2akak* /^nk&!

3expS (
l

~b la l* 1a lg l* ! D
5)

k
~11^nk&bkgk* !5expS (

k
^nk&bkgk* D

5expS E z~x!G~1!~x,y!h* ~y!d4xd4yD . ~216!

If we begin performing the variational differentiations to fin
the second-order correlation function, we may write

d

dRh* ~y2!

d

dRh* ~y1!
Guh50

5E z~x!G~1!~x,y2!d4x E z~x8!G~1!~x8,y1!d4x8. ~217!

We then find
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G~2!~x1x2y2y1!5
d

dLz~x1!

d

dLz~x2!
E z~x!G~1!~x,y2!d4x

3E z~x8!G~1!~x8,y1!d4x8 ~218!

and sincez(x) andz(x8) anticommute,

G~2!~x1 ,x2 ,y2 ,y1!5G~1!~x1 ,y1!G~1!~x2 ,y2!

2G~1!~x1 ,y2!G~1!~x2 ,y1!.

~219!

The generalization tonth order is immediate. It expresse
thenth-order correlation function for chaotic fields as a su
of products of first-order correlation functions with permut
arguments,

G~n!~x1 , . . . ,xn ,yn , . . . ,y1!5(
P

~21!P)
j 51

n

G~1!~xj ,yP j!.

~220!

This expression is summed over then! permutations of the
indices 1,. . . ,n. The factor (21)P is the parity of the per-
mutation, and the indexP j is the index that replacesj in the
permutation.

The expression of thenth-order correlation function in
terms of first-order correlation functions is characteristic
chaotic fields. Such fields are completely specified by the
of mean occupation numberŝnk&, and these are alread
contained in the first-order correlation function.

XVI. FERMION-COUNTING EXPERIMENTS

The use of photon-counting techniques has for ma
years been the most direct means of investigating the st
tical properties of light beams. Experiments of this type b
gan with that of Hanbury Brown and Twiss@9# in 1956 and
expanded greatly in scope with the development of the la
The theory@3# underlying these experiments is based on
evaluation of quantum-mechanical expectation values of n
mally ordered products of electromagnetic field operato
The coherent states of the field@2# thus play a special role in
the formulation of that theory. The application of the theo
furthermore, extends to boson fields of much more gen
sorts, including, for example, beams of heavy atoms@8#.

In the case of the electromagnetic field, it has been sho
@3# that the probability of detectingn photons in a given
interval of time can be expressed as thenth derivative with
respect to a parameterl of a certain generating functio
Q(l),

p~n!5
~21!n

n!

dn

dln
Q~l!ul51 . ~221!

The generating functionQ(l) for the electromagnetic field
is the expectation value of a normally ordered exponen
function of the form

Q~l!5Tr~r:e2lI:!, ~222!
f
et

y
is-
-

r.
e
r-
s.

,
al

n

l

in which the symbols : : stand for normal ordering, and t
operatorI is a space-time integral of the product of th
positive-frequency and negative-frequency parts of the fie
E(1) andE(2), respectively.

For the case of fermion fields, it can easily be shown@8#
that the probability of countingn fermions in a given interval
of time falls into precisely the same general form. In t
simplest instance, for detectors that respond to the den
rather than the flux of the particles, the integralI takes the
form

I5k Ec†~rW,t !c~rW,t !d3rdt, ~223!

where the constantk is a measure of the sensitivity of th
counter and the integration is carried out over the counti
time interval and over the volume being observed.

To obtain the expectation value of the normally order
exponential function in Eq.~222!, we may use theP repre-
sentation for the density operatorr. In that case the field
operatorsc(rW,t) andc†(rW,t) are, in effect, always applied to
their eigenstates, coherent states such asua& and ^au. They
can then be replaced by their Grassmann-field eigenv
functions defined by Eq.~184! and its adjoint, so that we
have

Q~l!5Ed2aP~a!e2lJ, ~224!

where

J5k Ew* ~rW,t !w~rW,t !d3rdt. ~225!

The expressionJ is a quadratic form that we can write as

J5(
k,k8

ak* Bkk8ak8 , ~226!

so the evaluation of the generating functionQ(l) reduces to
the calculation of the integral

Q~l!5Ed2aP~a! expS 2l(
k,k8

ak* Bkk8ak8D , ~227!

in which the normal ordering symbols are no longer nec
sary because of the simple anticommutation properties of
Grassmann variablesak .

For the case of the chaotic fields defined in Sec. XIV, t
integral takes the form

Q~l!5E)
k

~2^nk&d
2ake

2akak* /^nk&!

3expS 2l(
k,k8

ak* Bkk8ak8D . ~228!

If we define a new set of variablesbk5ak /A^nk&, we find
according to the rule~48! that the integral can be written a



th

ili

s
rm

a

re

fer-

at
n

r

n

1554 PRA 59KEVIN E. CAHILL AND ROY J. GLAUBER
Q~l!5E)
k

~2d2bk! expS (
k,k8

bk* ~dkk82lMkk8!bk8D ,

~229!

where the matrixM is

Mkk85A^nk&Bkk8A^nk8&. ~230!

A unitary linear transformation on the variablesbk can then
be used to diagonalize the quadratic form in brackets. If
eigenvalues of the matrix 12lM arem l , then the integral is
easily seen, according to the formula~50! for a50, to be

Q~l!5)
l

m l5det~12lM !. ~231!

This result may be used directly to find the various probab
ties given by Eq.~221!. It contrasts quite interestingly with
the generating function for boson-counting distribution
which with closely corresponding definitions takes the fo
@3#

QB~l!5
1

det~11lM !
. ~232!

XVII. SOME ELEMENTARY EXAMPLES

A. The vacuum state

For the density operator

r5u0•••0&^0•••0u, ~233!

which represents the multimode vacuum state, the norm
ordered characteristic functionxN(j) is

x~j!N5TrFr expS (
n

jnan
†D expS 2(

n
anjn* D G

5^0•••0uexpS (
n

jnan
†D expS 2(

n
anjn* D u0•••0&

51. ~234!

The weight function of theP representation is then

P~a!5Ed2j expS (
i

~a ij i* 2j ia i* ! D 5d~a!. ~235!

The mean values of the normally ordered products of c
ation and annihilation operators all vanish,

TrFr )
i

~ai
†!ni ai

miG5Ed2a )
i

~a i* !ni a i
mi d~a!50,

~236!

except for the trace

Tr@r#5Ed2a d~a!51. ~237!

The general weight functionW(a,s) of the vacuum is given
by
e

-

,

lly

-

W~a,s!5
1

2
~12s!expS 2a•a*

~12s! D . ~238!

B. A physical two-mode density operator

Let us consider the most general physical two-mode
mionic density operator

r5r u00&^00u1u u10&^10u1v u01&^01u1w u10&^01u

1w* u01&^10u1x u00&^11u1x* u11&^00u1t u11&^11u

~239!

in which u10&5a1
†u00&, u11&5a2

†a1
†u00&, etc., and the Latin

lettersr, t, u, andv represent non-negative real numbers th
sum to unity, whilex and w may be complex. The mea
values of thes-ordered products are

Tr r5r 1u1v1t51, ~240!

Tr r $a1
†a1%s5u1t1 1

2 ~s21!, ~241!

Tr r $a2
†a2%s5v1t1 1

2 ~s21!, ~242!

Tr r $a2
†a1%s5w, ~243!

Tr r $a1
†a2%s5w* , ~244!

Tr r $a1a2%s5x* , ~245!

Tr r $a1
†a2

†%s52x, ~246!

Tr r $a2
†a1

† a1a2%s5st1 1
2 ~s21!~u1v !1 1

4 ~s21!2.
~247!

If the fermion numberN commutes with the density operato
r, thenx5x* 50.

The normally ordered characteristic functionxN(j) is

x~j!N5Tr@r~11j1a1
†2a1j1* 1j1* j1a1

†a1!

3~11j2a2
†2a2j2* 1j2* j2a2

†a2!#

511wj1* j21w* j2* j11~u1t !j1* j11~v1t !j2* j2

1x j1j21x* j2* j1* 1t j1* j1j2* j2 . ~248!

Because the density operatorr is physical,xN(j) is even.
But unlessx50, the phase transformationj1→eiuj1 ,j2
→eiuj2 changesxN(j).

By its definition Eq.~153!, the weight functionW(a,s) is
the Fourier transform of thes-ordered characteristic functio

x(j,s)5exp@ 1
2(s21)j*j# xN(j),

W~a,s!5Ed2j1d2j2@11 1
2 ~s21!~j1* j11j2* j2!

1 1
4 ~s21!2j1* j1 j2* j2#~11a1j1* 1a1* j1

1a1* a1j1* j1!~11a2j2* 1a2* j21a2* a2j2* j2!

3@11w j1* j21w* j2* j11~u1t ! j1* j1

1~v1t ! j2* j21x j1j21x* j2* j1* 1t j1* j1j2* j2#,
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and after following the rules~40!–~42!, we find

W~a,s!5st1 1
2 ~s21!~u1v !1 1

4 ~s21!21wa2a1*

1w* a1a2* 1@v1t1 1
2 ~s21!#a1* a1

1@u1t1 1
2 ~s21!#a2* a21x a1a21x* a2* a1*

1a1* a1a2* a2 . ~249!

We may now use this weight function to compute the me
values

Ed2a1d2a2 W~a,s!5Tr r51, ~250!

Ed2a1d2a2 a1* a1 W~a,s!5Tr r$a1
†a1%s

5u1t1 1
2 ~12s!, ~251!

Ed2a1d2a2 a2* a2 W~a,s!5Tr r$a2
†a2%s

5v1t1 1
2 ~12s!, ~252!

Ed2a1d2a2 a2* a1 W~a,s!5Tr r$a2
†a1%s5w, ~253!
t,

tio
a
-

n

Ed2a1d2a2 a1* a2 W~a,s!5Tr r$a1
†a2%s5w* ,

~254!

Ed2a1d2a2 a1a2 W~a,s!5Tr r$a1a2%s5x* ,

~255!

Ed2a1d2a2 a1* a2* W~a,s!5Tr r$a1
†a2

†%s52x,

~256!

E d2a1d2a2 a2* a1* a1a2 W~a,s!

5Tr r$a2
†a1

† a1a2%s

5st1 1
2 ~s21!~u1v !1 1

4 ~s21!2, ~257!

which agree with the results Eq.~240!–~247!.
With P(a)5W(a,1) as given by Eq.~249! with s51,

we may write the density operator~239! in the form of the
fermionic P representation

r5Ed2a P~a! u2a&^au5Ed2a P~a! ua&^2au.

~258!
-
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