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Density operators for fermions
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The mathematical methods that have been used to analyze the statistical properties of boson fields, and in
particular the coherence of photons in quantum optics, have their counterparts for Fermi fields. The coherent
states, the displacement operators, Rrrepresentation, and the other operator expansions all possess surpris-
ingly close fermionic analogues. These methods for describing the statistical properties of fermions are based
upon a practical calculus of anticommuting variables. They are used to calculate correlation functions and
counting distributions for general systems of fermidr&1050-2947®9)07802-9

PACS numbegps): 03.75~b, 42.50.Dv, 42.50.Lc

I. INTRODUCTION Much of the work in quantum optics, we may recall, is
couched in the language of coherent states, which are eigen-
The Pauli exclusion principle plays an essential role instates of the photon annihilation operators. They contain an

describing the behavior of the particles, both simple andntrinsically indefinite number of quanta but can nonetheless
complex, that we now call fermions. It is known to play a be used as a basis for describing all states of the electromag-

key role in determining the structure of the most fundamentaj'€tic field- While pure coherent states are not physically at-
inable in bosonic systems with fixed humbers of particles,

elements of matter. These are systems like atoms, in Whiclt likewise remains useful to describe boson fields in terms of
thueitghhaiIS(he_ngfsvgg:Sflé)r/n?ifofr?i;m:t)g;,serlﬁgggr;rselgl thl': gazgééﬁitably weighted superpositions and mixtures of coherent
9 gn. y PaCCtates. The weight functions associated with these combina-

or even when they are trapped electromagnetically, theifiy,o oy pe regarded as quasiprobability densities in the
phase-space density is usually so low that the effects of th?paces of coherent-state amplitudes. The funcBan the
exclusion principle remain completely hidden. A number of coherent-state representation of the density operidd]
recent developments, however, point to the possibility ofyjays this role; other quasiprobability densities including the
achieving much higher densities of fermionic atoms both imwigner function[3,4] and theQ function[3,4] play similarly
electromagnetic traps and in free space. convenient roles in representing the density operator.

The various methods of optical cooling that have been |n the case of fermion fields, the vacuum state is the only
developed for atomic beams work as well for fermions asphysically realizable eigenstate of the annihilation operators.
they do for bosons and produce beams with temperatures @fis possible, however, to define such eigenstates in a formal
the order of 100.°K. Cooling fermions evaporatively to way and to put them to many of the same analytical uses as
still lower temperatures poses a problem that requires a lesgre made of the bosonic coherent states. Since fermion field
direct solution. Evaporative cooling becomes inefficient forvariables anticommute, their eigenvalues must, as noted by
fermions since the exclusion principle tends to suppress colSchwinger[5], be anticommuting numbers. Such numbers
lisions of identical atoms. It may be implemented nonethe-are Grassmann variables. They can be handled by means of
less by sympathetic meanf$], e.g., by cooling bosonic at- the simple rules of Grassmann algepé# which we include
oms at the same time, so that energy exchange still takésere so that the calculations may be self-contained.
place freely. It thus seems possible that the realization of Within this context we formulate ways of expressing and
degenerate Fermi gases may become an important byprodustaluating a broad range of the correlation functions that are
of Bose-Einstein condensation. measured in experiments involving the counting of fermions.

The detection methods that will be used in measurementSentral to this task is the expression of the quantum-
on beams of cold fermionic atoms will be essentially themechanical density operator in terms of Grassmann vari-
same as those now used on bosonic atoms cooled by opticables. We develop a number of ways of doing that in general
or evaporative means. The measurements on bosons can feéms and present a detailed discussion of the density opera-
most conveniently described, in fact, by mathematical methtors for chaotically excited fields. Included among the latter
ods that were introduced in the context of quantum opticss a particularly useful Gaussian representation of the grand-
[2,3]. canonical density operator for fermion fields. Having evalu-

ated the statistically averaged correlation functions, we apply
them to fermion-counting experiments and illustrate their use
*URL: http://kevin.phys.unm.edu/~kevin/. Electronic address:in determining the counting distributions.
kevin@kevin.phys.unm.edu We find throughout this work that notwithstanding great
TElectronic address: glauber@physics.harvard.edu mathematical differences, many close parallels can be estab-

1050-2947/99/5@)/153818)/$15.00 PRA 59 1538 ©1999 The American Physical Society



PRA 59 DENSITY OPERATORS FOR FERMIONS 1539

lished between the expressions evaluated for fermion fieldBecause the square of every Grassmann monomial vanishes,
and the more familiar ones for boson fields. In particular, forno nonzero Grassmann monomial can be an ordinary real,
example, we can construct a family of quasiprobability denimaginary, or complex number.

sities, as functions of the Grassmann variables, with proper-
ties parallel to those of the entire family of quasiprobability
densities for bosons, including th& Q, and Wigner func-
tions. We can then evaluate the mean values of ordered prod- A. Displacement operators
ucts of fermion creation and annihilation operators by per-
forming integrations over the Grassmann variables whil
using the appropriate quasiprobability density as a weigh
function. In both cases, we trade an inhomogeneous commu-

tation relation and an ordering rule for a homogeneous com- D(») ZGXF( > @y~ ai))- (10
mutation relation and a quasiprobability density. For boson !

fields the integrations are taken over commuting variables,

which may be treated as if they were classical variables. FoPne of the useful properties of Grassmann numbers is that
fermions, on the other hand, the integrations are over antiwhen, as in the preceding definition, they multiply fermionic
Commuting variables, which have no classical anak)gs_ Th@.nnlhllatlon or creation operators, their anticommutatiVity
weight functions for these integrations are nevertheless igancels that of the operators. Thus the opera#gtg and
one-to-one correspondence with the quasiprobability dens'ryj* a; simply commute foii # j. So we may rewrite the dis-
ties for bosons, so it seems appropriate to give them similagplacement operator as the product

names. We have followed that convention for several other

parallels as well. )
D(7)=H expa; yi— v a) (13)

Ill. COHERENT STATES FOR FERMIONS

For any sety={v,;} of Grassmann variables, let us define
he unitary displacement operatb(y) as the exponential

II. NOTATION

Let us consider a system of fermions which may be de- N . N o
scribed by the creatiom, and annihilationa,, operators :l_i[ [1tajyi—vyiait+(aa—3)y vl (12
which satisfy the familiar but ever mysterious relations

{ay,alt=8,m, (1) By the same token, tpe annihilation operagQr commutes
with all the operators y; and ya; whenn#i, and so we
{ay,an} =0, (2) ~ May compute the displaced annihilation operator by ignoring
all modes but thenth:
{ag.an}=0, 3
2,/0)=0. @ DP'wabm=1lexra-alya,

in which |0) is the vacuum state.
We shall use lower-case Greek letters to denote Grass-
mann variables. These anticommuting numbgrand their

XH exr(afyj— yj* a;)

complex conjugatey; satisfy the convenient relations = exp( ¥4 an— an¥p) @ eXpanyn— vian)
_ t T
{Vn,?’m}ZO, (5) _(1_an7n_%7’:anan7n) an
X (1+aly,—ialy,y*a
{7’: ’,}/m}:O’ (6) ( T n')’nl 2A0YnYn n) T l
* *
:(1_an7n_ 27n Yn) @n (1+an7n+ 27n Yn)
{7n¥m=0. (7)
neom :an_alynan+anal7’n:an+ Yn- (13
We shall also assume that Grassmann variables anticommute
with fermionic operators Similarly
{7n,amf=0 (8 D(p)alD(y)=al+y*. (14)

and commute with bosonic operators. In our notation a h K dorff identi
Grassmann numbeB, and its complex conjugat@; are We may use the Baker-Hausdorff identity
independent variables. We make the arbitrary choice that

Hermitian conjugation reverses the order of all fermionic ef*B=gh B e (12IAB] (19
guantities, both the operators and the anticommuting num-
bers. Thus, for instance, we have which holds whenever the commutatpA,B] commutes

b ot .t with both A andB, to write the displacement operatdl «)
(a1B82a37;) ' = v423B3 2, . (9 in forms that are normally ordered,



1540 KEVIN E. CAHILL AND ROY J. GLAUBER PRA 59

It may be worth emphasizing that in this formula the creation
operatorafr stands to thdeft of the Grassmann numbe .
Apart from these ordering considerations, this formula takes
a form closely analogous to the one that defines bosonic
coherent states.

The adjoint of the coherent statg) is

exp( Z aly,

exr( —Ei: Y

o127y,

=exp( Z (alvi—vra)

(16)
Dn(9)=D(7) exp(%E 7 yi),
” i (A=(D"n=Clex 3 o a=ivi ). (23
and antinormally ordered,
and it obeys the relation
exg — 2 ¥'a exp(E a'y,
F{ ! ' (vlal=(Ar . (24)
=exp( E (aiT%— ¥ ay) e~ (127", The inner product of two coherent states is
(17)
Da(%)=D(%) exp( IR yi), <7|ﬂ>=exp(2i [y Bi—z(¥ 7i+Bi*,6’i)]> . (29
in which we have employed the concise notation so that
rer=3 v, a9 (B Gy =en) =3 (81810

an abbreviation which we shall use occasionally but not ex- . .
clusively. The identity(15) also allows one to show that the =l 11— -yHBi-vw1. (29
displacement operators form a ray representation of the ad- '

ditive group of Grassmann numbers, i
In contrast to the case of bosons, we may for fermions

L . . define for any setw={q;} of Grassmann numbers the nor-
D(a) D(B)=D(at B)exr{ EEi (B ai—ai' Bi) |. malized eigenstatin)’ of the fermion creation operatoes
(19) as the displaced state

|@)’ =D(a)|1), (27)

B. Coherent states

For any sety={y;} of Grassmann numbers, we define the\yhere|1) is the state in which every mode is filled:
normalizedcoherent stat¢y) as the displaced vacuum state

|7)=D(9)]0). (20 =11 allo). (28)

By using the displacement relatiq3), we may show that

the coherent state is an eigenstate of every annihilation OBy using the displacement relatidi4), we may show that
eratora, : the statda)’ is an eigenstate of every creation operathr

as|7)=a,D(9)/0)=D(%) D'(y)a,D(7)|0)

all@)'=alD(a)|1)=D(a) D'(a)a/D(a)|1)
:D('Y) (an+ ')’n)|0>:D('Y) 7n|0>: Yn D(')’)|O>

=D(a) (al+a})|1)=D(a) af|1)=a} D(a)|1)

= 7n| '}’>- (21 . ,
=a}|a)’. (29
By using the product formulél2) for the displacement op-
erator, we may write the coherent state in the form The adjoint relation is
|7’>:D(7’)|0>:1_i[ [1+ayi— v a+(afai—3) ¥ %1/0) (ala,=(dfa,. (30
R - An explicit formula for the eigenstatge)’ follows from its
=11 (@ +alyi—3y »lo) definition (27):

=exp(2i (@yi=3% %) |0). (22 @)’ =11 (1-afai+iaf ap|2). (31
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C. Intrinsic descriptions of fermionic states and if it is odd, it has odd parity,

The occupation-number description of states of fermions
has well-known ambiguities. Fon#m, for example, the
state|1,1,,) may be interpreted aa'a'|0) or asa/ al|0)

f(—a)=—f(a). (38

il We shall often note the evenness or oddness of the functions
=- anam|0>'_ _ _we introduce.
The creation operators themselves provide an unambigu-

ous description of fermionic states, C. Product rule

To compute the derivative of the product of two functions

_ T4t T
|'rll>_% C(N1.N2, . ..) p Ay, 'anm|0>' (32) f(@) andg(a) with respect to a particular variable , one
may explicitly move they; in g( @) throughf(a) or one may
which transfers to the coherent-state representation move the operator representing differentiation through the
functionf(«a). In either case if the functiof( @) is odd, then
one picks up a minus sign. The product rule is thus
<a|l!/>=eXF{—%§n: a:an) pi up inus sig product rule is thu
d ¢ _5f(a) 0 f J9( @)
a—m[ (a’)g(a)]—a—aig(a)ﬂf( ) f(a@) a

* * *
x{Zn} c(Ny.n,...) afay --af (33 39

without any ambiguity or extra minus signs. Because coherwhere the sigrr(f) of f(a) is —1 if f(a) is an odd function
ent states are defined in terms of bilinear forms in anticomand + 1 if f(a) is even.

muting variables, there is no need to adopt a standard order-

ing of the modes. D. Integration

V. GRASSMANN CALCULUS We define a sort of integration over the complex Grass-
' mann variables by the following rules:
A. Differentiation

Since the square of any Grassmann variable vanishes, the J’dan= Jdaﬁ =0, (40)
most general functiori(¢) of a single anticommuting vari-
able¢ is linear in¢,

d =0nm> 41
f(&)=u-+£t. (34) f “n &m™ nm 4D
We define the left derivative of the functidi{&) with re- da* ot —
spect to the Grassmann variatiles an m= Onm- (42)
df(é) This integration due to Berezif6] is exactly equivalent to
dé =t. (39 left differentiation.

We shall typically be concerned with pairs of anticom-
Note that if the variabld is anticommuting, then we may muting variablese; and o , and for such pairs we shall
also write the functiorf (&) in the form adhere to the notation

H(§)=u—t&. (36) f P = f da day 43)

Now to form the left derivative, we first movg pastt, pick-

ing up a minus sign and obtaining the forf84) and the in which the differential of the conjugated variable comes
result (35). In this case, the right derivative ist. In the first. Note that

present work, we shall use left derivatives exclusively and

shall refer to them simply as derivatives. da,da} =—da} day,. (44)

B. Even and odd functions We have been using boldface type to denote sets of Grass-

) L . mann variables; we shall extend that use to write multiple
It is useful to distinguish between functions that CommUteintegrals over such sets in the succinct form
with Grassmann variables and ones that do not. We shall say
that a functionf(a) that commutes with Grassmann vari-
ables isevenand that a functiorf(a) that anticommutes fdza_fﬂ d?e; (45)
with Grassmann variables add !
tior??(pz)o Sa?:]t?]toghee gfnilé a;gﬁ?nrgr;;t?ﬁeﬂui??ﬂgefir']r::glofrl:nCWe shall also occasionally employ the concise notation

f(a) is even, it has even parity,

f(—a)=f(a), (37 a*'BE; an Bn (46)
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for sums of simple products over all the modes of the sys- ) (9f(a/) ) g(a)
tem. a| — —|9(@)=—0o(f) | daf(e)
The simple integral formula (54)
2 —a* ag_ _ where the signr(f) is +1 if the functionf(ea) is even and
fd € F q_fd“*d““(l % it o “
=— fda: day ap ag= fda: ap dap aq F. Completeness of the coherent states
We may use our Grassmann calculus to show that the
_ Jda* S =8 5 Ong (47) coherent states are complete. Let us consider the state
|fy=(c+da")|0), (55)

provides a useful example of Grassmann integration. We
also note the general rule which for arbitrary complex numbeisandd is an arbitrary

single-mode state. Then its inner proddetf) with the co-

herent state|y) is the correct weight function for the
2 —Ini2 | 42
fd a f(ha)=[A] Jd BE(B), (48 coherent-state expansion since

in which A is an arbitrary complex number and in which
f(Aa) is an abbreviation for a function which necessarily
depends on botha@ and\* a*. This rule owes its strange
appearance to the definition of integration as differentiation.
Some further examples are the integral of the exponenti

Jd27<7|f>|7>=Jd27(C+d7*) (1+yy* —yah)|0)
=(c+da")|0)y=|f). (56)

a+he reader may generalize this example to the multimode

function, case. The coherent states in fact are overcomplete.
fdza expB* ata* ytaa®)=expB*y), (49 G. Completeness of the displacement operators
) ) For a single mode, the identity operatand the traceless
and the Fourier transform of a Gaussian, operatorsa, a', and:—a'a form a complete set of opera-

N tors. Since by using the expressi@i®2) and our Grassmann

fdzg explad® — £a* FNEE )=\ ex;{ aa ) (50) calculus, we may write each of these operators as an integral
A over the displacement operators

where) is an arbitrary complex number. The latter integral (4
can be written in a somewhat more-general form which is no I=[d% vy D(v), (57)
longer a Fourier transform:

* = | d®y(=») D(y), (58)
szgexp(ag*—gﬁ*ﬂxgg*):)\exp:(af ) (51 J ey
a'= f d?y y* D() (59
E. Integration by parts '
Let us first observe that the integral of a derivative van-
ishes, ;—ala= fdzy D(y), (60)
, dt(a) . .
fd a—— =0, (52 it follows that the displacement operators form a complete
I

set of operators for that mode. It is easy to generalize this
proof to the multimode case. The displacement operators are

because the derivative with respect to the variahldacks
overcomplete.

the variablew; . In particular, the integral of the derivative of
the product of two functions also vanishes, and so by using

the product rulg39), we have V. OPERATORS
9 Some operators can be written as sums of products of
fdza,_[f(a) 9(a)] even numbers of creation and annihilation operators; we
[ shall call such operatomsven Operators that can be written

() ag(a) as sums of products of odd numbers of creation and annihi-
:dea[( )g(a) a(f) f(a) =0, lation operators we shall speak of add Although most
da a; operators are neither even nor odd, the operators of physical
(53) interest are either even or odd. The number opewltay for
example, is even, while the creation and annihilation opera-
which is the formula for integration by parts, tors,a’ anda, are odd.
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The operators of quantum mechanics and of quantum fielth which the sum=,|n)(n|=1 is the identity operator. The
theory do not themselves involve Grassmann variables. Thugsulting multimode trace formula is
even operators commute with Grassmann variables, while

odd ones anticommute. TrB=fdza(a|B|—a)=fd2a<—a|B|a>, 69)

A. The identity operator which holds also for odd operators, both sides vanishing. An

If we compare the integral important example is the trace of the dyadic operg®«¢ ¥/,
| alexals) 1821 [ e (el (- )= [ da(r- a)als)
= folzaexp(Ei (arai+ai*/si+aiai*+%ﬁiﬂr>)|0>, = fd2a<—ﬂa><a|ﬂ>=<—ﬂﬂ>=<ﬂ—ﬂ>,
(61) (69
with the integral formulg49) and identify8* andy in that  in which we have used the completeness relaté8). Since
formula witha' and 3 in this integral, then we have the coherent states are complete, we may replace in this for-

mula either the kelB) or the bra{ 9| with its imageF|B) or
(¥|F under the action of the arbitrary operatérand obtain

fd2a|a><a|ﬂ)=ex;<2 (aﬁﬂi+%ﬁiﬁi*)) 0)=18)- the trace formula
2 TFLB) () =T B)(HF) = I =GiFL -8

Since the coherent states form a complete set of states, as
shown by the expansiofb6), it follows that the identity

operator is given by the integral C. Physical states and operators
A state|y) is physicalif it changes at most by a phase
= fd2a|a/)(af|. (63)  when subjected to a rotation of angler Zabout any axis,
R o
The corresponding expression for the identity operator in U(n,2m)[¢)=€""|4). (71

terms of the eigenstat¢e)’ of the creation operators is  gince fermions carry half-odd-integer spin, a state of one

fermion or of any odd number of fermions changes by the

= j]—[ (—d%a;) |@)' (a]. (64) phase factor—1. States that contain no fermions or only
i even numbers of fermions are invariant under suehr@ta-
tions.
B. The trace Thus physical states are linear combinations of states with

odd numbers of fermions or linear combinations of states
with even numbers of fermions. But a state that is a linear
combination of a state that contains an odd number of fermi-
ons and another that contains an even number of fermions is
TrB:; (n|B[n), (65  excluded. For instance, the state

The trace of an arbitrary operat® is the sum of the
diagonal matrix elements @ in the n-quantum states,

which shows that the trace of an operator that is odd van- i(|0>+|1>) (72)
ishes. By inserting the preceding formud) for the iden- V2

tity operator, we have ) ) o )
is unphysical because under ar 2otation it changes into a

different state:
TrB=, Jd2a<n|a>(a|B|n>. (66)
n

" 1 1

U(n,27)—=(|0)+|1))=—=(|0)—|1
If we move the coherent-state matrix eleménta) to the (n,2m) \/§(| )+ \/§(| =11
right of the matrix element of the even operaRyrthen we
see from the formul&22) that minus signs arise that can be

1
absorbed into the argument of either of the two coherent ¢e'eﬁ(|0>+|1>)- (73

states,
We define an operator gshysical if it maps physical
TrB= 2 fdza (a|B|n)(n|—a) states onto physical states. Physical operators are either even
n or odd.
In all physical contexts that have been explored experi-
:2 d2a (- a|B[n)(n|a), (67) mentally, the number of fermiongr more generally the

n number of fermions minus the number of antifermipis
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strictly conserved. That conservation law leads to certain fur- The coherent states do undergo a simple change under
ther restrictions on the permissible states of the field. If wethis transformation,
let N=3,a]a, be the fermion number, the law requires that

any state arising from an eigenstate Mfmust remain an U(8)|a)=¢eMNa)=|e"a), (83
eigenstate ofN. This law can be derived from an assumed
U(1) invariance of all the interactions under the transforma- (a|UT(0)=(ale”'MN=(eq|, (84)

tion U(6)=exp(6dN), which changes anda' to
which leaves their scalar product invariant,

e*iBNaei BN:eiHa (74)
and (e'%alela)=(a|a). (85
—iON;T i ON_ q—if0t
€ Taer=e a. (79 VI. 6 FUNCTIONS AND FOURIER TRANSFORMS
Fermion conserving interactions involving thg and al are We can define a function

ones in which the phase factoes'? all cancel. If a system

begins in a state with a fixed number of fermions, the con-

servation law restricts the set of accessible states consider-9(§—0)= dzaexp( D [an(&E =) — (&L et]
ably more than the 2 superselection rule mentioned earlier. :

Transitions cannot be made, for example, between states (86)

with different even fermion numbers or between states with

different odd fermion numbers. =11 (&a—¢) (& =), (87)
n

D. Physical density operators
1which plays the role of a Diraé function in that iff(§) is

A physical density operator can be written as a sum o ny function of the set of Grassmann variables

dyadics of physical states with positive coefficients that ad

up to unity. It follows that a physical density operajois a €1.62, ...}, then
positive Hermitian operator of unit trace: for any sthfe
d2£8(E- 0 1(&)=1(D. 88
(el )=, (76 Jeee-o -t 9
p'=p, (77 The & function is doubly even: it commutes with Grassmann
numbers and(é—)=46({—¢).
Trp=1. (78) We have been using the term Fourier transform to denote

. . . . an integral of the form
Physical density operators are invariant undermardta- g

tion. Thus the one-mode operator
Tlo)= [agers o1, (89

1
p=7(0)0]+[1)(1), (79
The &-function identity(86) implies that the inverse Fourier
for example, is a physical density operator, but the dyadic transform is given by the similar formula

1 * e
5(10)+11) (0] +¢1l) (80 (0= [ daet Ta). 00

is not. In this work we shall consider only density operatorsThe identity(86) also leads to two forms of Parseval's rela-
that are physical in this sense. tion:
The dynamical problems we solve do not always begin
with a fixed number of fermions. More generally they begin _ ~
with a mixture of states with different fermion numbers, that fdza f(a)[gla)]*= szg f(€) g*(é€) (91
is, with density operators of the form

and
p=2 pnr INY(N'[, (81)
NI

f PaT(a)5(—a) f Ref(o g8, (92

where thepy are real and non-negative. Such density op-
erators are invariant under the transformatidm(6)

=exp(6N), and the fermion conservation law assures us thatvhich apply also to operator-valued functions provided that
they will always remain so, complex conjugation is replaced by Hermitian conjugation.

We may use the formulé6) for the § function to derive

TN IN= (82)  a fermionic analog of the convolution theorem:

e
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f d?ge " £ f(£)g(d) 5(5—5):Jd2a pat* —£a* gla* —ar*

= fd2,3 d?¢ gla=B)E* —&(a* —B*)f(g) = fd2a eaé* —¢a* <a|e§afe—a§*|a> (99)

2 Byt —pB* I P P in which we recognize the normally ordered fo(f®) of the
de ne 9(7) fd Bi(a=pB)9(p). displacement operator
(93

— = | 42, at* —ta*
which expresses the Fourier transform of the product of the o&=0) fd ae (a|D(D] ). (100

two functionsf (&) andg(¢) as the convolution of their Fou-
rier transformsf (a— B) andg(B).

By using the normally ordered forigi6) of the displace-
ment operator, the eigenvalue property of the coherent states,

By using the trace formulé&r0), we may write thisé func-
tion as the trace

and the preceding formulks6) for the & function we find S(E—{)= fdza e*d ~E T D (0)| a)(— 2]
fd27<7|D(a)|7>:fdzﬂyleaT“e_“*aIv) el =TMDNOEA(= )] (101
of the product of the normally ordered displacement operator
= deYev*afa* y+ (12 aa* Dy(¢) with an even operatoE,(¢) defined as the Fourier
transform
= 8(a)e " = 5(a). (94) -
EA(f)Ifdzaega o a)—a (102
The addition rulg19) for successive displacements now im-

plies that for the multimode case of the coherent-statest dyadie)( — «|. As intimated by its

subscript, the operatde (&) will turn out to be useful for
fd27<7’|D(a)D(—ﬂ)|7’>= o(a—p). (95  dealing with antinormally ordered operators.

We may now use the completends3)—(60) of the dis-
placement operators and the trace idertliy1) to expand an
arbitrary operatof= in terms of the normally ordered dis-

The precedings-function identity(95) and the complete- Placement operatofSy(¢),
ness57)—(60) of the displacement operators give us a means
of expanding an arbitrary operatbrin the form F= fd2§ f(£)Dy(— £). (103

VIl. OPERATOR EXPANSIONS

F= fd2§ f(D(—- 9. (96)  We may solve for the functiori(¢) by multiplying on the
right by the operatoE,(¢) and forming the trace:
We may solve for the weight functiof(§) by multiplying

on the right by the displacement opera®(a) and then Tr[FEA(g)]=Jdzgf(g)Tr[DN(—g)EA(g)]
taking the diagonal coherent-state matrix element in the state

|B) and integrating ovep: . fd2§f(§) SO0 104
| wssFo18)

The full expansion is thus

- [ 8 [ eto (8D~ gD(@]8
f A 8 F=fd2§Tr[FEA(§)]DN(—§)- (109
= szff(f) Na—§=f(a). 97) By using the Grassmann calculus, one may compute the
Fourier transform(102 of the coherent-state dyadier)
The full expansion is thus (— a| and find for the operatdE(&) the formulas

EA(£)=]0)(0|—(&* +a")|0)(0|(¢é+a 106
=2(3—a'a)+¢c*aa’+éa— ¢ a,
Such expansions will prove useful in the sections that follow. (107)
The formula(86) for the delta functions(¢é—¢) may be
interpreted as a trace identity. From the eigenvalue propertwith which it is easy to exhibit the completeness of the op-
of the coherent states, it follows that eratorse(é):
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1= f d2¢ 2(1+ & €) En(9), (109  xa(H=Tr p@m(—% amé exp(; &y (119
a=fd2§ (= &) Ea(d), (109 =Trip|] [1+§na§—an§:+§;§§n(alan—1)]}
n
(120
T— 2 _ ek
a= Jd £ (=€) EA(), (110 Because the density operatoris an even operator and be-
cause the displacement operators are constructed from bilin-
1t [ a2e 1 ear forms in fermionic quantities, it follows that the charac-
2-a a—jd ¢ 266" Ea(9). (113 teristic functions are doubly even in the sense that they

Since the operator§,(£) are complete, we may expand

an arbitrary operatoG in terms of them,

G= deEQ(S)EA(—S) 112

and then use the trace formyE01) and the evenness of the

displacement operators to evaluate the weight fundi@y,

THDN()G]= f 2£g(&) THDN(OEN— &)]

= f d’69(&) 8(6-9=9(0). (113
The full expansion is thus
G=fd2§Tr[GDN(§)] Ea(=9). (114

VIIl. CHARACTERISTIC FUNCTIONS

For a system described by the density operatprwe
define the characteristic functiop(§) of Grassmann argu-
ment£ (and &) as the mean value

P eX;{ En: (fna;_angz))

x(&)=Tr : (115

commute with Grassmann variables and also are of even par-
ity.

The s-ordered characteristic function

We may define a more general ordering of the annihila-
tion operatora,, and the creation operattarﬁ, much as we
did earlier for boson field operatofg]. It is an ordering
specified by a real parameterthat runs froms=—1 for
antinormal ordering tes=1 for normal ordering. For the
quadratic case, theordered product for fermions is

{ajants=ala,+ 3(s—1), (121)
to which we append the trivial definitions
{al}s: a; and {a,}s=a,. (122

We note that the definitioi122) differs by a crucial sign
from that[4] of s ordering for bosonic operatols, and bﬁ:

{blbn}ts=blb,+3(1-s). (123

In particular, the antinormally ordered prodyet'a,} _;
is —a,a,, and the symmetrically ordered proddef'a,} is
half the commutator,

{atanto=3[an.aq]. (124

We define thes-ordered characteristic functiop( §,s) as

It is thus a species of Fourier transform of the density opera-

as

x<§>=Tr[pfn[ [1+§nax—an§:+§:§n(a§an—%>]}.
(116

We may also define the normally ordered characteristic

function (&) as

Xn(&)=Tr pexp(; End) exp(—% anés, }
(117)
with the expansion
xn(&=Tr p Tn[ (1+ &qal—angh + & gnaxam}.
(118

The antinormally ordered characteristic functigr(£) is

2__ gk2__ . i
tor p. Becauseg; = ¢ “=0, we may expand the exponential Y(£8)=Tr p( exp(; (§na§—an§’,§))} }
L S

(125
=Tr PH (1+§na;_an§:+§: gn{agan}s)
) (126)
=T p Il {1+¢&.a]—an&r+ &8¢,
x[aﬁaﬁ%(s—l)]}} (127)
:Tr‘pex;{Z gnal—an§z+§§:§n)”
(128
~x(® exp@@ & gn), (129
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which, incidentally, shows it to be an even function and of The obvious generalization

even parity,

x(—&s)=x(&9). (130

8(£—- =TI D(&S)E(— ¢ —5)] (139

of the trace formuld102) then gives the trace of the product

A particularly useful example of these characteristic func-FG as

tions is the case of the antinormally ordered functioi{£€)
=x(&,—1). We see by inserting the resolutiod3) of the

identity between the exponential functions in its definition

(119 that

X(&—-1)=Tr

p exp( - % Bmf*m)

xfdzﬂlﬁ><ﬁ| exp(}n: &Bﬁﬂ, (131

in which we have replaced the annihilation and creation op-
erators by their eigenvalues in the coherent states. By using

the trace formulg69), we find

X(§,—1)=fd2ﬁ’exp(; (&B’S‘B@ﬁ)) (Blp|=B),
(132

TIF G]= fdngr[FE(g,—s)] TGD(—£&9)].
(140

We may now use the second Parseval relatfit) to cast
the expansion§l37) and(138) into forms that will prove to
be quite useful. First let us define the complete sets of op-

eratorsD(a,s) andE(a,s) as the Fourier transforms of the
operatordD (£,s) andE(&,s):

D(a,5)= fdzgexp( 2 (ané* —gna:)) D(&s),
(141

E(a,S)EJdZ&XP(; (an§§—§naﬁ)) E(&s).
(142

which expresses the antinormally ordered characteristic funqyext let us define the weight functionBg(a,—s) and
tion x(& —1) as the Fourier transform of the matrix elementG (q, —s) as the Fourier transforms of the traces

(Blp|—B).

If we define thes-ordered displacement operatof &,s)
as

D(f,s>={D<§>}s=D<§>exr{§§ gzgn), (133

then we may write the-ordered characteristic functidt29)
as the trace

x(£5)=TrpD(§s)]. (134

IX. SORDERED EXPANSIONS FOR OPERATORS

A convenient extension of the definition of the operator

Ea(§) is
s+1
E(£9)=Ea($) exp( -2 & gn), (139
from which we note that
EA(H=E(&-1). (136

This is one sense in which the operatt(£) is related to
antinormal ordering.

By using thes-ordered operatorB (¢,s) andE(¢,s), we
may generalize the expansiofl5 and (114 of the arbi-
trary operator$ andG to

F=fd2§Tr[FE(§,—s)]D(—g,s), (137

G=fd2§Tr[GD(§,—s)] E(—é&s). (138

FE(a,—S)EfdzfeXF(; (anfﬁ_fna:))

XTI FE(&—s)], (143
Gp(a,—S)= fd2§exp( ; (anék — gna:))
XTI GD(&—s)]. (144

It follows then from the Parseval relatiq@2) and from the
expansiong137) and (138 that the operator®(a,s) and

E(a,s) form complete sets of operators and afford us the
expansions

F=Jd2aFE(a,—S) D(a,s), (145

G= deaGD(a,—s) E(a,s) (146)

of the arbitrary operator§ and G. Applying the Parseval
relation (92) to the trace formuld140), we have the trace
relation

THF G]=fd2aFE(a,—s)GD(a,s). (147

The operatorE (a,s) are particularly simple whes=
+1. It follows from the definitiong135 and (102 of the

operatorsE(a,s) andE,(&), and from the formuld86) for

the & function that the operatoE(a,—1) is just the
coherent-state dyadic
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E(a,—1)=|a)(—al. 148 s (s—1)
(@~ 1)=|a)(~ o 19 (gsmen 5ot o =en] ;e g xien.
Similarly, by using the definition§135 and (102 and the (157
Fourier-transform relatiort50), one may write the operator
E(a,1) as the integral The functionW(e,s) is therefore the Fourier transform of
the product of exfj(s—t)/2]&*- & with the characteristic
- . function x(&,t),
Ea—1)= [T1 (~apy e =P g~
(149 W(a,s)= f d2§exp<; (ang:—gna:)>

By performing the integration and referring to the explicit (s—1)
formula (31), we may show that the operatB(a,1) is the Xex;{ 5 & 5) x(&1). (158

dyadic of the eigenstaté®7) of the creation operatotsy)’:

The Fourier transform of the characteristic functjp(g,t) is
W(a,t), while that of expf(s—t)/2]&* - & according to Eq.
(50) is

E(a,l)=|a)' (—a. (150

X. QUASIPROBABILITY DISTRIBUTIONS

Among the most important of the foregoing expansions isf d2geSn(nén —Enrn) gl(s—0/2)¢" ¢
the expansior{138 when the operato6 is the density op-
eratorp,

-1l

@ el2/(t=9)] vy | (159

p= f d2£TrpD(£9)] E(— £ —5), (151

The convolution theoren®3) now givesW(a,s) as

in which case the trace is treordered characteristic func- (t—s) 1
tion x(£,5), W(ae,s)sz {szﬂj
J _
_ 2 _g_
p= [ #exes g9 (152 Xexp{(t_S)Z (ai—ﬁo(ar—ﬁr)}wmw.
We may define the-ordered quasiprobability distribution (160
W(a,s) as the Fourier transform of theordered character-
istic function x(§,s), A useful example ofNV(«;,s) is the function
W(a,s)= fdzgexp( 2 (anés—&nar) | X(£5). W(a,—1)= fdzgexp( ; (anéh — §na:)) x(§-1),
n
(153 (161

It follows now from the expansiofi146) that thes-ordered ~ Which according to Eq(132) is the Fourier transform
quasiprobability distributioW(e,s) is the weight function

for the density operatgs in the expansion W(a,—1)= fdzgdzﬁex;{; [(an—Bn) € — &,

p:fdzaW(a,s)Em,—s). (154 x(a*_ﬁ*)]} (Blol- B (162

Because density operators must be physical operators, _ o . _
W(a,s) like x(£&s) is an even function of even parity, By using the §-function identity (86), we see that this ex-
pression reduces to
W(—a,s)=W(a,s). (155

— 2 —
When the density operator possesses the additional phase W(a’_l)_Jd Bé(a—P){Blp|=B)=(alp| - a).
symmetry(82), then bothy(£,s) and W(a,s) are invariant (163
under the rotation of all the variables by the same anglé, . o o .
This function is the fermionic analog of the functi@)( )
W(e'?a,s)=W(a,s) and y(e'?&s)=x(&s). ={B|p|B) which is often used to represent the density op-
(156)  eratorp in terms of the bosonic coherent staf@. It is the
weight function that gives the mean values of antinormally
The functionsW(e,s) for different values of the order ordered products of creation and annihilation operators in
parametes are intimately related to one another because théerms of integrals of the corresponding products of Grass-
characteristic functions obey the identity mann numbers.
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Xl. MEAN VALUES OF OPERATORS

" M
We shall here be concerned with computing the mean =T pH (&N a(g*)mi(l
values of the products afordered monomials, '
+&al FE
IT {ahmas, (164
. +&g{alaly)| | 70
£=0

in which the exponents; andm; take the value 0 or 1. The

ordering of the modes labeled by the indeis arbitrary but  If we recall the definitions of ordering in Eqs(121) and
fixed. We shall show that we may express the mean values ¢#22), we then find

such products of monomials as integrals of therdered

weight functionW(e,s) multiplied by the monomials in the deaH (a,i*)niaimi W(a/,S)ITI‘[p IT {@hm a:ni}s:|'
same order. By using the definitioid53) of W(a,s), we [ [

may write these integrals in the form (171

In particular, by takingh;=m; =0, we see that the weight
deaH (ai*)niaimi W(a,s)=fd2aH (ai*)niaimi fdzf function W(a,s) is normalized,
1 I

fdzaW(a,s):Trp=1. (172

XeX[{; (ajfr

Xll. P REPRESENTATION

&9 )> X(£9) (169 Of the representationd54) for the density operatqs, by

far the most important is the one fer=1 with the normally

It is now easy to write the monomial as a multiple derivative,ordered weight functiorP(@) =W(a,1). By Eq. (149 it
takes the simple form

2 *yn; M
f d al_ll (ai ) a; W(a,S) p:jdzap(a)|a><—a|, (173)

m which recalls theP representatiori2,3] for boson fields.

o
e 5" . . . .
Since the functiorP( ) is even, we may also write

oM %
— d2 d2 o &
f * fﬂ{a(—&)"ie A= g™

Xx(&:9). (166)

p= sza P(a) |—a)d. (174
On using our formuld54) for integration by parts, we have
Because Grassmann integration is differentiation, the fermi-
onic P representation is not affected by the mathematical
f dZaH (ai*)“iaimi W(a,s) limitations [2—4,7] that restricted somewhat the use of the
! bosonicP representation.
The P representation may be used directly to compute the
= J'dzgdzan[{ E (o€ —g,-a]*)> mean values of normally ordered products
J

A
A& I(E)™

Ti(p alfal) = [ oPaP(a)(alal"afa)

x11

x(§9) (167)

=fd2ap(a)a§”am. (175
in which we recognize the&-function formula(87) which
gives This extremely useful relation is just a special case of Eq.
(171 for s=1.
fd2a1_[ (ai*)nia_mi W(a,s) Since the operatoE(a,1) is the dyadic(150 of the
i ' eigenstates of the creation operators, it follows from the ex-

pansion(154) that the weight functior{163

N m;

:fd2§5(§) H (&N (p(gl*)mu X(£5) (168 Q(a/)EW(a/,—l)=<af|p|—af> (176

is the weight function in the representation
H AN oM
= . - X(£,5) (169
A& o)™ £

p=fd2aQ(a)|a>"<—a/|, 77
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which affords the simple way of computing the mean valuesz(™(x,, ... x,,y,, ..

of antinormally ordered products that corresponds to Eq
(171 for s=—1.

Another use of the weight functio®(a)=W(a,—1)
=(a|p|— a), however, is that it allows us to compute the
weight functionP(a)=W(a,1) of the P representation as
the simple convolution

P(a)zflg (—d28,)

<exd -

as follows from the general convolution formula60 with
s=1 andt=—1. Although the analogous relation for bosons
often is singulaf2-4,7), this result holds for all fermionic
density operatorg.

> (an=Ba) (et —BE) | (Blol-B),

n

(178

Xlll. CORRELATION FUNCTIONS FOR FERMIONS

A principal use of theP representation for bosonic fields
has been the evaluation of the normally ordered correlatio
functions, which play an important role in the theory of co-

herence and of the statistics of photon-counting experiments
[2]. The analogously defined correlation functions for fields
of fermionic atoms can be shown to play a similar role in the

description of atom-counting experimeni8]. If we use
(X) to denote the positive-frequency part of the Fermi field
as a function of a space-time variabiethen the first two of
these correlation functions may be defined as

G y) =T py" () g(y)],

G@(Xq,X2,Y2,¥1) =Tl pgr" (x0) 1 (x2) w(y2) h(y1) 1.
(180

(179

The nth-order correlation function is
G™(X1y . o XnoYns .- Y1)
=Trlpy"(X0) - ¢ (Xp) h(yn) - - - ()]

If we expand the positive-frequency part of the Fermi
field in terms of its mode functiong,(x) as

(182)

P(X)= 2 a0, (182
then its eigenvalue in the coherent sthi,

()| @)= o(X)| @), (183
is the Grassmann field

() =2 a0 (184

in which the annihilation operators in E(L.82) are replaced
by the Grassmann variables={«,}.

We may use th® representation to evaluate thth-order
correlation functionG(™ as the integral

ROY J. GLAUBER PRA 59

= f d?aP(a@){a]y'(x1) - ¢ (X)) P(yn) - - (y1)| @)
(186)

fdza P(a) @'(x1)- - o (X)) @(Yn) - - @(y1)-
(187

XIV. CHAOTIC STATES OF THE FERMION FIELD

The reduced density operator for a single mode of the
fermion field can be represented by &2 matrix for the
states with occupation numbers 0 and 1. If the matrix is
diagonal, it is specified completely by the mean number of
quanta(n) in the mode. The density operator for théh
mode, in other words, must take the form

pk=(1=(N)[0){0[+(nH|1)(1].

We shall speak of this density operator as representing a
chaotic state of th&th mode. A chaotic state of the entire

(188

Reld will then be represented as a direct product of such

density operators for all the modes of the field,

Pch= 1;[ Pk - (189

It is specified by the complete set of mean occupation num-
bers{(ny)}.

The total number of fermionsl,\lekalak, present in
chaotic states will in general be indefinite. Indeed it is easily
seen that in the state specified by Et89 we have

(N%)=(N)?= 2 (n)(1=(n) (190

so thatN cannot be fixed unless all tHe,) take the value 0
or 1. The indefiniteness of the number of particles present is
a feature that the chaotic states of the fermion and boson
fields have in common. For sufficiently large valuesNyf
however, the fluctuations ®§/(N) may be quite small so the
specification ofN in these relative terms may be quite pre-
cise. Fluctuations of this type in the number of particles
present are a familiar property of the grand-canonical en-
semble in statistical mechanics, and that ensemble, as we
shall see, represents a special class of chaotic states.

The single-mode density operatd88) can also be writ-
ten as

(N
1-(ny)

in which we recognize the unit operathy for the subspace
of the kth mode. Within this subspace we have

) alak

Pk:(1_<nk>)< (l0){0]+[1)(1]) (197

al ag

(ny)
1-(ny

(192

Pk:(1_<nk>)(
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This expression can be used quite directly to evaluate ththe fermionic analogs of quasiprobability densities that are

weight functionW(ea,—1)=Q(«a).
We first note that for any real number
vaTa| a>:e(1/2)aa*(1—uz)|av>' (193

so that we have

<a|vaTa| —a)= e(1/2)aa*(1—v2) (a]|— av)= eaa* (1+v).

(199
Then if we letv =(n)/(1—(ny)), we see that
(alpil — )= (1—(ny)) ex;{ %) (195
and
Q@) =W(a,~1)=11 (adpd - e
B B aay
_1'k[ (1—(ny)) exp<1_<nk>). (196)

predominantly positive for boson fields. It is worth pointing
out, therefore, that these signs result from our convention
that definesd?a asda*da. Had we chosen the differential
instead to bedada™, the signs would have been positive.

For a chaotically excited boson field, tRerepresentation
expresses the density operator as a Gaussian integral of a
diagonal coherent-state dyadic. For fermion fields the corre-
sponding expression gf, for a single mode is

pr=—{NK) Jd2ake—aka:/<nk>|ak><_ak|_ (201

According to Eq.(192), the density operatags, can also be
written as a sum over the-fermion states as

()
1—(ny)

What we have shown, in effect, is that the two expressions
are identical and that statistical averages can be evaluated by
means of Gaussian integrations for fermions as well as for
bosons. The multimode density operator is represented, of

1

p=(1-(nyY) >

mk:O

) Im(my|. (202

This product is the weight function appropriate to averagingcourse, by the product of the single-mode density operators,

antinormally ordered operator products in chaotic states.
We may find the weight functions corresponding to all the

other ordering schemes by using the convolufib&0 with

t=—1 and carrying out the required integration with suffi-

p=Iypy.

Fields in thermal equilibrium with a suitable particle res-
ervoir represent particular examples of the kind of chaotic
excitation we have been describing. If it is appropriate to

cient attention to the implicit minus signs. The result for thedescribe such fields by means of the grand-canonical en-

kth mode is

2
2 1

s+2(n)—1
(197)

semble, then their overall density operator may be written as

L e

E(B.w) ' (209

p:

and the weight function for the multimode field is simply the Where 8=1/kgT, u is the chemical potentialH is the

product

W(a,s)zl'k[ Wi (ay,S). (198

Thus the functionW,(«,,0), which is analogous to the

Wigner function for boson fields, is given by

aka[:

(nw—3

Wk(ak,0)=—(<nk>—%)exp(— ) (199

and the functionV,(«y,1), which is the analog of the func-

tion P, («ay) for boson fields, is

aay

Wi(ak,1)=Py(a)) = —(ny eXF’( - W) - (200

Hamiltonian for the systeni is the particle number, and the
normalizing factor=(3,u) is the grand partition function.
For a field with dynamically independent mode functions
labeled by the indek, we can write

H=> saja,, N=, ala, (204)
k k

whereg is the energy of a particle in tHeh mode.
Under these circumstances the equilibrium number of fer-
mions in thekth mode is

(205

(0= Bt

In this case the ratign,)/(1—{n,)) is simply the general-

The latter result is a particularly useful one since there ar&?€d Boltzmann factor
many physical contexts that call for the averaging of nor-

mally ordered products of annihilation and creation opera- (n)
tors. For chaotic fields one may calculate all such averages as
Grassmann integrals by making use of the fermiddiep-

resentation withP(«a) given by Eq.(200).

The minus signs in front of the expressio(f99 and

= eﬁ(é‘k_ﬂ).

1—(ny (200

We then find that the product of thg given by Eq.(20)) is
precisely equal to the grand-canonical density operator

(200 may be somewhat surprising since these functions ar&03),
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[ T (~tngdae o0y (- o 2= pont| [ 2000000

e BH-uN). (207) xex;{fzp(y) 7* (y)dty } (213

TEBw)

There are many examples of thermal equilibria for which theif we form the variational derivative of with respect to

P representation on the left should furnish a useful compuz(x,) from the left and with respect ta* (y,) from the

tational tool. right, subsequently setting and » to zero, then we find an
alternative expression for the first-order correlation function,

XV. CORRELATION FUNCTIONS FOR CHAOQOTIC FIELD
EXCITATIONS

S
We have introduced a succession of normally ordered cor- 5.L(X1) Sen* (1) I‘|§: 7=0
relation functionsG™(xy, ... Xn,Yn,--..y1) in Sec. Xl
and shown how they can be expressed as integrals over the =Tl py'(x) (y)]1=GP(x1,y1), (214

Grassmann variablas={«,}. For the case of chaotic fields,

the appropriate weight function is where left and right differentiation have been indicated ex-

plicitly in the subscripts.
P(a)=]] Pu(a), (209 It is evident then that one may generate all of the higher-
k order correlation functions by performing further differentia-
tions,
the product of the Gaussian functions in E200). The first-

order correlation function is thus given by G(x X0y Vi)
1y« AnsYns - Y1

GI(x,y) G é é 6
CSLL(X) o SL.L(Xn) Sr7* (YY) o Sr7* (Y1)

XT|s= p=0- (215

- [T1 (~tnocae i) (aly? ) pty) ).

(209

] + ] To evaluate the generating functiordalfor a chaotic field,
The fields¢ and ¢" may now be replaced by their Grass- \ve make use of the orthonormality of the mode functighis

mann field eigenvalues defined by Ed483) and (184.  5nd then carry out the Grassmann integration
Their product is a quadratic form in the variableg and

ag , which is easily integrated:

TZJH (— (nyd?ae ki)
60y~ [ TT (~(nodPaye ot o0) ‘
><exp(2 (B|a|*+a|7|*))
X2 af amd{(X) dn(y)

’ :l_k[ (1+<”k>5k7’:)=eXF(§k: <nk>ﬁk7’:)
=2 (N ) BLY)- (210

=exp( f {(x)GP(x,y) n*(y)d“xd“y). (216)

To find the higher-order correlation functions, we can

make use of a species of generating functional. We first de- . ) o ] o ]
fine the Grassmann fields If we begin performing the variational differentiations to find

the second-order correlation function, we may write

g(x)=; Brbi(X), (212 5
* * 1—‘|"7:0
Or7* (Y2) Sr1™ (Y1)
= 21
)= 3 Nhdy) P~ [aemiyae [ o0 yat. @1

and use them to construct the normally ordered expectation
value We then find
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) S S L . in which the symbols :: stand for normal ordering, and the
G! )(X1XZY2Y1)=W mjé(X)G( J(x,y2)d*x operatorZ is a space-time integral of the product of the
Loi71l PLeim2 positive-frequency and negative-frequency parts of the field,

e (Dor ", E() andE(7), respectively.
X[ LG X,y )d X (218 For the case of fermion fields, it can easily be shd&h
that the probability of counting fermions in a given interval
and since/(x) and (x’) anticommute, of time falls into precisely the same general form. In the
simplest instance, for detectors that respond to the density
G (X1, X2,Y2,y1) =G (X1,y1) GV (X3,5) rather than the flux of the particles, the integfalakes the
form
—GM(x1,y2) G (%2,y1).
(219 T=« fz//T(F,t)t//(F,t)d3rdt, (223

The generalization tath order is immediate. It expresses
the nth-order correlation function for chaotic fields as a sumwhere the constant is a measure of the sensitivity of the
of products of first-order correlation functions with permutedcounter and the integration is carried out over the counting-
arguments, time interval and over the volume being observed.
To obtain the expectation value of the normally ordered
n exponential function in Eq222), we may use thé repre-
GM(Xy, .o X Yny - YD) =2 (—DPI] GY(x;,ypj).  sentation for the density operatpr In that case the field
i = (220 operators)(r,t) andy'(r,t) are, in effect, always applied to
their eigenstates, coherent states suchadsand({a|. They
This expression is summed over the permutations of the ¢an then be replaced by their Grassmann-field eigenvalue
indices 1, ..,n. The factor (1)P is the parity of the per- functions defined by Eq(184 and its adjoint, so that we
mutation, and the indeRj is the index that replacgsn the ~ have
permutation.
The ex_pression of thelth-order cprrelgtion functio'n .in o) = J'dzaP(a)e*”, (224)
terms of first-order correlation functions is characteristic of
chaotic fields. Such fields are completely specified by the set
of mean occupation numberf®,), and these are already Where
contained in the first-order correlation function.

J=k f¢*(F,t)¢(F,t)d3rdt. (225
XVI. FERMION-COUNTING EXPERIMENTS

The use of photon-counting techniques has for manyrhe expressior/ is a quadratic form that we can write as
years been the most direct means of investigating the statis-
tical properties of light beams. Experiments of this type be- .
gan with that of Hanbury Brown and Twi$8] in 1956 and J= 2 ay By agr (226)
expanded greatly in scope with the development of the laser. kk
The thepry[3] underlying these'experlments_ Is based on theso the evaluation of the generating functi@@\) reduces to
evaluation of quantum-mechanical expectation values of nor; : .

e the calculation of the integral

mally ordered products of electromagnetic field operators.
The coherent states of the fidl@] thus play a special role in
the formulation of that theory. Th_e application of the theory, O\ = deap(a) expg —\> afBueayw |, (227
furthermore, extends to boson fields of much more general Kk’
sorts, including, for example, beams of heavy at¢8ls

In the case of the electromagnetic field, it has been showin which the normal ordering symbols are no longer neces-
[3] that the probability of detecting photons in a given sary because of the simple anticommutation properties of the
interval of time can be expressed as tith derivative with  Grassmann variables, .

respect to a parameter of a certain generating function For the case of the chaotic fields defined in Sec. XIV, this

Q(N), integral takes the form
(_1)n d" _f _ 2 — apay I(ny)
(M) == - QM- (221) Q)= [ L1 (= (ngdaye i)
The generating functio®@(\) for the electromagnetic field Xexp( —)\E ag Bkk,ak,). (228
is the expectation value of a normally ordered exponential K,k

function of the form
If we define a new set of variablgg = o, /V{n,), we find
ON)=Tr(p:e M), (222 according to the rul¢48) that the integral can be written as
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2a- o
(1-9)

o= [II (—d?Byexp 2 Bi (S —AMy) Bir |, W(a,S)ZE(l—S)eX . (238
K 2

k,k’
(229

o B. A physical two-mode density operator
where the matriXM is phy y op

Let us consider the most general physical two-mode fer-
M ir = V(N Bir VN1 ). (230  mionic density operator

A unitary linear transformation on the variablgg can then ~ p=r[00){00[+u[10)(10[+v [01){01|+w[10)(01|

be used to diagonalize the quadratic form in brackets. If the " *
eigenvalues of the matrix-1\M arey,, then the integral is W [01)(10]+x[00)(11]+x* [11){00| + t[11)(11]

easily seen, according to the formyE0) for «=0, to be (239

in which|10)=al|00), |11)=a}a}|00), etc., and the Latin
Q()\)ZH m=de(1—AM). (23D |ettersr, t, u, andv represent non-negative real numbers that
sum to unity, whilex and w may be complex. The mean
This result may be used directly to find the various probabili-values of thes-ordered products are
ties given by Eq(221). It contrasts quite interestingly with

the generating function for boson-counting distributions, Trp=r+utvtt=1, (240
\[/g]uch with closely corresponding definitions takes the form Trp {aIal}s: Utt+i(s—1), (241)
Trp{aja,}s=v+t+i(s—1), (242
Qp(N) =g (232
de(1+AM) Trp {a£a1}5=w, (243
XVII. SOME ELEMENTARY EXAMPLES Trp {a{az}s=w* , (244
A. The vacuum state Trp {alaz}s:X*: (245
For the density operator -
Trpl{a;a,}s=—X, 246
p=|00><00|, (233 piaazts (246)

Trp{ajal aja,}s=st+3(s—1)(u+v)+31(s—1)2
(247)
If the fermion numbeN commutes with the density operator

p, thenx=x*=0.
The normally ordered characteristic functigR(£€) is

which represents the multimode vacuum state, the normally
ordered characteristic functiopy(£) is

pex;{z £al exp(—z an?

x(&n=Tr

S

—1. (234

exp<_2 an§:)|0~~0> XEN=Tp(1+E1a] -2 £] + €] érajay)
" X(1+&a)—ayes + & alay)]
=1+WE HAWHE L+ (UHDE &+ (v +HD)EE
X &bt XY GE L G E. (248

P(a)= Jd2§exl{z (aigi*—giai*)) =6(a). (235 Because the density operatpris physical, yy(£) is even.
[ But unlessx=0, the phase transformatio&, —e'’¢;,¢&,

—e'?, changesyn(£).
The mean values of the normally ordered products of cre- By its definition Eq.(153), the weight functionV(a,s) is

ation and annihilation operators all vanish, the Fourier transform of the-ordered characteristic function

x(£:5)=exf3(s—1)&* &) xn(4),

The weight function of thd® representation is then

Tl’[p IT @Hma™

:fdzaH ()™ M 8(e) =0,
(236 W(a,S)=fd2§1d2§z[l+%(S— D(E €+ E &)

t for the t
except for The face iDL S LIt e +alh

THp]= f e d(a)=1. (237) ol g £)(L+ aplh + b byt o} anlh £)

X[L+w T E+wWr E &+ (utt) €5 &
The general weight functiow(«,s) of the vacuum is given . . .
by T(v+1) G &t X E &+ X" EE+1E16E5 8],
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and after following the rule$40)—(42), we find
W(a,s)=st+3(s—1)(u+v)+3(s—1)2+wayaf
+W*agas +[v+t+3(s—1)]ata;
+lu+t+3(s—1)]as ar+X aja,+x* asaf

(249

* *
+aj aya;s ;.

We may now use this weight function to compute the mean
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jdzaldzaz af a; W(a,s)=Tr p{a1a2}3= w*,
(254)
fdzaldzaz a1y W( a,S) = Tr p{a1a2}5= X* y
(259
fdzaldzaz af a5 W(a,s)=Tr p{a{aZ}sz —X,
(256)
J d?a,d%a; af af ara, W(a,s)
=Trp{alal a;a,}
=st+i(s—1)(u+v)+i(s—1)% (257

which agree with the results E(R40)—(247).

With P(a)=W(a,1) as given by Eq(249 with s=1,

we may write the density operat¢239 in the form of the

fermionic P representation

values
szaldzaz W(a,s)=Trp=1, (250
fdzaldzaz a¥ a; W(a,s)=Trp{ala;}s
=u+t+3(1-s), (251
szaldzaz ay ay W(a,s)=Tr p{ajay}s
=v+t+3(1-s), (252
fdzaldzaz al ay W(a,8)=Trp{ala;}s=w, (253

p=fd2aP(a/) |—a><a|=fdzdp(a’) |a)(—af.
(259
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