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Coherent disintegration and stability of vortices in trapped Bose condensates
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We consider the intrinsic stability of the vortex states of a pure Bose-Einstein condensate confined in a
harmonic potential under the effects of a coherent atom-atom interaction. We find that stable vortices can be
supported and vortex stability can be controlled by changing the interparticle interaction strength. At unstable
regimes, a vortex will spontaneously disintegrate into states with different angular momenta even without
external perturbations, with the lifetime determined by its imaginary excitation frequencies.
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I. INTRODUCTION under Thomas-Fermi limit and Dodet al. [8] obtained the
normal mode spectrum of a single quantized vortex state as a
Vortices and their motions have long been an importanfunction of the number of condensate atoms for a BEC con-
branch of fluid mechanics. With the discovery of superfluidfined in a time-averaged orbiting potential tf&). However,
helium 11, a different idea developed: that the circulation in athe important question of vortex stability was not addressed
superfluid vortex must be quantiz¢d]. The consequences by these authors. More recently, RokhE@) studied the sta-
of these quantized vortices are profound and the understan#llity properties of the trapped vortices and argued that vor-
ing of vortex dynamics plays a key role in the current under-lices are unstable due to the existence of a bound state inside
standing of superfluidity. Moreover, the detection of indi- the vortex core. However, throughout his analysis, the tran-
vidual singly quantized vortices has vividly established thesition from a vortex state to a core state requires the presence
true macroscopic quantum nature of these remarkable dege@f thermal atoms that serve as a reservoir to conserve the
erate fluids. Intimately related to the observation of the suenergy and angular momentum in the process. Hence, the
perfluid state of*He is the evidence for the concurrent for- more fundamental question concerning the intrinsic stability
mation of a Bose-Einstein condensatBEC) [2]. An of an isolated vorteXi.e., without the external influence of
important challenge is to clarify the link between these fun-thermal atomsremains unanswered.
damental and important phenomena: Bose-Einstein conden- In this paper we approach the problem by assuming that
sation, Superﬂuidity, and the formation of a macroscopica.” atoms are in the condensate such that scattering with ther-
guantum state. mal background atoms can be neglected. This allows us to
The recent observation of Bose-Einstein condensation ifcus on thentrinsic couplingwithin and between different
dilute alkali-metal-atom vapor8—5] has presented a strik- vortex states and on the effect of this coupling on vortex
ing system for investigation, that of the dilute degeneratestability. (Here we use the word “intrinsic” to emphasize
Bosegas The alkali-metal BECs differ fundamentally from coherent coupling between the condensate afowis. find
the helium BEC in several crucial ways. BECs in both bulkthat stable vortex states can in fact be supported and show
liquid helium and the dilute helium “gas” are free systems that whether a vortex state is stable or not is determined by
(the gas BEC is created by introducing helium into a poroudts angular momentum and the nonlinear interparticle inter-
glass known as Vycof6]). By contrast, the alkali-metal- action strength. Furthermore, we point out that the lifetime of
atom vapor BECs, although free of container walisd/or ~ an unstable vortex can be directly determined from the fre-
the Vycor hosy, are created within the confines of a trapping duencies of the collective excitations.
potential. There is another major difference: In the trapped The paper is organized as follows. In Sec. Il, we describe
alkali-metal condensates, samples can be prepared in whi@¥r physical model and define the stability criterion. Our
essentiallyall of the atoms are Bose condensed. By contrasthain results are presented in Sec. Ill, where the stable and
in bulk superfluid“He, although the superfluid fraction can unstable regions of trapped vortices are identified. We also
be near unity, momentum distribution measurements havBresent a physical interpretation of the meaning of the insta-
shown that the bulk condensate fraction is closer to 0.1 wittility. Finally, we give a summary and compare our work
the remainder of the particles in finite momentum states. Agvith others in Sec. IV.
researchers improve their ability to create and manipulate
these. trapped gaseous condensates, a series of important Il. PHYSICAL MODEL
guestions naturally arise. Does the gaseous BEC support su-
perflow? Is it indeed a superfluid? Are there stable vortices? Many nonlinear physical systems exhibit an instability
This last question is the subject of this paper. that leads to a self-induced modulation of the steady state.
The problem of vortex state excitations has been recentlirhis phenomenon has been studied in such diverse fields as
treated by others. SinH&] investigated the low-lying modes fluid dynamics, nonlinear optics, and plasma physitS].
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The accepted method to study the stability of such systems is 0.20
first to linearize the appropriate governing nonlinear equa- @)
. : 0.15 1
tions for the system around the stationary state and then to ﬁ
calculate the excitation frequencies corresponding to small 8 4 ;4 _
oscillations around the steady state. A universally accepted E
signature of instability is the existence of frequencies with a 0.05 || 8
nonzero imaginary part, which means that excitations in
those modes will experience exponential growth. 0.00

Here we also adopt Ina{)=0 as our stability criterion 0.25 (b)
(this criterion is also used to study the vortex stability in 0.20 M 1
superfluid helium[12]). To simplify our calculations, we B o5 A ~ ™ |
consider a condensate confined in a two-dimensid2B) E’ » i / \ FA
isotropic harmonic potential with trap frequeney at zero 0.10F b i P i Vool
temperature. In current experiments, condensates are 0.05F il i i ! i
achieved in 3D traps with cylindrical symmetry. A quasi-2D 0.00 M 0 gn i i i ! i
situation can be realized when, <w,, wherew, and w, 0 2000 4000
are transverse and longitudinal trap frequencies, respectively N

[11]. In thlsf limit, one can prod_uce_ a “pancake -shaped. con- FIG. 1. (a) Imaginary part of the complex frequency of a double
densate with all the atoms lying in the lowest harmonic Os_quantized vortex stat?, as a function of interaction strenghhU
) . S 2 g
cillator state in thez direction and hence the degree of free- ./~ ' 4.~ 4 (b) Same aga) for a triple quantized vortex
dom in thez coordinate is frozen. Our treatment lies within stateu\lf3 Solid line. k. =0 andx. =6 dashed linex,=1 and
. . . . . H u v 4 u

the Hartree-Fock-Bog_ohubov appr_OX|mat|on. First, we CQI'KU:S. The frequency is in units of the trap frequenay andU in
culate the macroscopic wave functions of the condensate in gits of (1wy£2), whereé= (#/2mwg) 2 is the harmonic oscillator
vortex state. We then find the collective excitation frequencyength,
w of that state.

In the Gross-Pitaevskii treatmefit3], the energy folN

condensed bosons of massis given by the functional ward to show that if¥",(r) is given by Eq.(2), thenu,(r)

and v, (r) must have definite angular momentum composi-
E(W¥,) R R - . tions «,A and k,f, respectively, such thatu,(r)
N :J' dr(\P:T‘I’K+V|\PK| +3 NU|‘I’K| ). (D Ztlx(r)e“‘uf’, U)\(r):;)\(r)eixvé’, and k,+ k,= 2k [8].

Here
I1l. RESULTS AND INTERPRETATION

— (34 —
V=@ (e, «=0x1x2,..., (2) Equationsg(3) were transformed to an eigenvalue problem

represents the wave function of the macroscopic vortex stat}?r a f|n|te-s_|ze matrix and sol\_/ed using the FEM. Our _goal
) i s p2u2) q ere is to find mode ffequenues with a nonzero imaginary
with azimuthal angular momentuma. T=—# mand  part in order to determine the vortex stability. As in the case

V=mewr?/2 are the kinetic- and potential-energy operators of the ground state, the vortex stability properties for a con-
respectively, and the coupling constahtlescribes the inter- densate with a repulsive interparticle interaction are drasti-
actions between condensate atoms. In the quasi-2D situati@ally different from that for a condensate with attractive in-
considered here, the coupling constant takes the fokrm teraction. We will discuss these two cases separately.
=4 \rhw,ta [14], where ¢,=\#/2mw, is the harmonic Repulsive interaction, i.e., 30. When we calculate the
oscillator length inz dimension. In our analysis, the solution collective excitation frequencies of a single quantized (
that minimizes Eq(1) is found iteratively using a finite ele- =1) vortex statel,, we find that all the excitation frequen-
ment method(FEM) [15,16. In our calculations, we nor- cies are real, which means th#t, is always stableNext we
mally used 20 elements, with two nodes and three degrees gbnsider a double quantizea £ 2) vortex state¥,. Here
freedom for each element. This numerical method is verywve find that complex frequencies exist only feg=0 and
efficient and it typically took no more than a few minutes to «, = 4. (Without loss of generality, we assume that 0 and
find the wave function?, on a Cray-YMP2E/232 supercom- > x> k,.) We find that for any other pairs of«(,,«,),
puter. the excitation frequencies are all real. Furthermore, for val-
With the solution of ¥, at our disposal, we can now ues ofNU for which the vortex is unstable, we find that there
calculate collective excitation frequencies by solving Bogo-exists at most one complex frequency. Figufa shows the
liubov equationg 8] imaginary part of the complex frequency as a function of the
interaction strengtiNU. As we can see, in this particular
(L=fioy—p)Un(N+NU[P (1)]?0X(1)=0, (38  channeli.e., choice of k,,«,)], the parameter space NfU
is divided into alternating stable and unstable regions. In the
NU[W (1) J2uy(r) +(L+Awy—m,)ux(1)=0, (3b)  unstable regions, the inverse of lw) determines the life-

) _ ) time of the unstable vortex. For the parameter range de-
where u, is the chemical potential for the sta®,(r),  scribed in Fig. 1, the most unstable vortex state will decay
ux(r), andv,(r) are normal mode functions with mode fre- after several periods of the harmonic trapping potential. We
quencyw, , and£=T+V+2NU|¥,(r)|%. Itis straightfor-  stress that the details of how the condensate will evolve un-
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der these instabilities are beyond the capability of the mean- 0.15[ 7T =
field treatment and requires further investigation. 2T TN

For a general stat#,, our numerical calculations show 3 010 N |
that there arec—1 unstable channels that possess complex = /oo \

. : o _ g R R, S e
excitation frequencies, those witk,=0,1,...,x—2 and = % RN

; : ; 0.05 f ' N

k,=2k— k. Figure Ib) shows the imaginary part of the \
complex frequency for a triple quantized vortex stdtg. 5 00 1 N
We can see a similar pattern to Figal, but here there are _ Y0 20 40 60 80 1oo 1z0
two unstable channels. Each channel shows its own quasip- NU

eriodic behavior as a function 6fU. The two channels have

quite different “periods” and the characteristic width of un-  FIG. 2. Solid line, imaginary part of the complex frequency of a
stable regions. At first look, this may appear rather unexdouble quantized vortex stat#’, as a function of interaction
pected. To interpret this behavior we will show that eachstrengthNU for «,=0 and«,=4; dashed line, decay rate of the
unstable region iflNU space represents a decay channel irvortex state¥, as a function ofNU calculated using the Hamil-
which two atoms from the given vortex state scatter into twotonian (4) [only contributions from the resonant statef . ¢o.4)
new states, with angular momenia# and « %, respec- are ipcludeﬂt dot-dashed line, same as dashed line, but including
tively, thus inducing instability in that initial vortex state contributions from two more stateg( o, ¢1.4)-

\4

First, let us define a boson field operator ﬁ's(r)
=NV (r)+ #(r), where thec number¥, (r) denotes the
one-body wave function for the condensate ar(d) is the

field operator for the fluctuation pdri7]. The second quan-
tized Bogoliubov Hamiltonian reads

A= >

Ny.ky N

2 A(nuaKu;nU!KU)
v 1Ky
X ei(enu T en, ,KU_ZMK)taT aT

nu Ky nv Ky

+H.c. (5
A(ny,xy;N,,k,) is nonzero only whem ,+ x,= 2k, which

is a direct consequence of the conservation of angular mo-
mentum. The interaction described by the Hamiltor({@nis
analogous to parametric processes in quantum optics where
instability can occur under certain conditions. For example,
one can build up large numbers of photon pdsignal and

idle) from the vacuum via parametric down-conversion if the
field frequencies satisfy a parametric resonance condition. In
our case, the fluctuation in mode pa&;brgv,(u,zﬁnv 1'<U) grows

exponentially when

Ro= [ ar (01— 0

+

1 S
5Nuf dr ¢"(n) T (r)¥ ¥, +H.c.l,

where thec-number part independent @f(r) has been ne-

glected. We can further decomposé(r) as (r)
=2n.48n.aPn (r), wherea, , is an annihilation operator
associated with a single-particle statg ,. The set of states
{#n.o} is defined as the eigenvectors £fwith eigenvalues and hence the vortex is unstable under such a resonance con-
€na, €., Ly =€y 4P ., With subscripts G, @) labeling  dition. We emphasize that the instability implied in this pic-
the radial and angular quantum numbers, respectively. Theire is purely quantum mechanical. The atoms in the vortex
Hamiltonian Kg may then be rewritten a&g=Hy+H,, canspontaneously disintegrateto ¢, . andé, . states
where without the need of externétlassical perturbations, such as

the interaction with the thermal background gases or pertur-
bation of the trap.

For ak=1 vortex, our humerical calculations show that
there existao particle states that satisfy the resonance con-
dition (6), in support of our prediction that a single quantized
vortex state is always stable for>0. For ax=2 vortex, we

(6)

|€”u"‘u+ €n, ,KU_ZMK|<A(nu Ky Ny, Ky)

HO: 2 (En,a_ Mk)al,aan,ai

n,a

oo . T t
H|—nEK nEK A(ny, kg3, 1Kv)anu,;<uanu ,KU+H-C-: find that a pair of particle statespq,o4) indeed satisfy
g ey the inequality(6). In the weak coupling limit, we can calcu-
q late the decay rate of the double quantized vortex siate
an

using the Hamiltoniar{5) by neglecting all the nonresonant
terms(i.e., keeping only terms witlm,=n,=0, «,=0, and
k,=4). The results are shown in Fig. 2 along with the
imaginary part of the complex excitation frequencies of the
vortex state¥,. We can see a clear qualitative agreement
between the two results. The agreement can be significantly
improved if the contribution from statesp{ o, ¢, 4 is also
included in calculating the decay ratsee Fig. 2 We re-
mark that although useful for interpreting our vortex stability
predictions, the parametric resonance picture is valid only for
the weak-interaction regime. This is because a strong inter-

1
A(nU1Ku;nv1Ky):§NUJ’ dr

XBh (DB (DWW ().
(4

In the interaction picturea; ,(t)=a/ ,e(na”#Jt and the
Hamiltonian is given by
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unstable vortex can still decay spontaneously. For a repulsive
interparticle interaction, we found that single quantized vor-
tices are always stable, while imaginary excitation modes
divide the interaction energy axisNU) of multiple quan-
tized vortices (>1) into alternating stable and unstable re-
gions. Hence one can control the vortex stability by varying
the value of interaction strength, which in turn can be
achieved by changing the scattering lenf20,21], particle
number, or trap frequency. This provides us with the possi-
bility of studying condensate evolution under the effect of
imaginary modes.

In the unstable regime, the mean-field equations may be-
come inapplicable to describe the long-term evolution of the
system due to the exponential growth of the fluctuation. Nev-
ertheless, the mean-field theory is able to predict when the
system becomes unstable and the magnitude of the imagi-
nary frequency provides an estimation for how fast the vor-
tex will break down. This information is particularly useful if
one wants to create a vortex state from the ground state of
the condensatg26]. A familiar behavior of the systems with

FIG. 3. Imaginary part of the complex frequency(ef a single modulation |nStab|l|ty is that the Steady state will diSintegI’ate
and(b) a double quantized vortex state as a function of interactiornto filaments, wave packets, or solitofi]. Instability has
strengthNU, with NU<O. also been studied in the context of a two-species Bose-

Einstein condensatf22]. Gordon and Savage showed that
action can drastically change the frequencies of the oscillaimaginary excitation modes may break the spatial symmetry
tors and introduce mixing among different particle statesof the ground state of the two-species condengz@¢ Here
Further work would be necessary in order to understand allve show that an unstable vortex state will disintegrate into
aspects of the complex structure shown in Fig. 1, particulariystates with different angular momenta.
for largeNU. For a condensate in the vortex state, there may exist qua-

Attractive interaction, i.e., &0. A condensate with a siparticle states with negative frequencies. One such negative
strong attractive interparticle interaction is known to be sub{frequency state was identified by Dodtlal.in Ref.[8]. The
ject to collapse. However, a metastable condensate with presence of negative frequencies implies that there exist
small number of atoms can still exist,18]. Figure 3 shows states with lower energy. However, this does not necessarily
the imaginary part of the complex excitation frequency for amean that the condensate is unstable if no mechanism exists
single and a double quantized vortex state as functions db drive the system to these lower-energy stg28. In Ref.

NU. Figure 3a) shows that¥, is stable for a sufficiently [9] Rokhsar considered the instability arising from the inco-
small attractive interaction, but unstable for a larger interacherent interactions between condensate and thermal atoms,
tion strength. For¥,, as we can see from Fig.(l3, the  which induce the transition to the negative frequency core
channel ,=0,x,=4) possesses complex frequency for all state. In contrast, in the present paper we studyirttiésic
negative values oNU instead of showing a quasiperiodic Stability of vortices in a pure condensatexcluding such
pattern as in the case of the repulsive interaction. Furtherincoherent processes while focusing on the coherent interac-
more, we find that, similar toF,, other channels that are tions within the condensate. In our work the disintegration of
stable forNU>0 become consistently unstable for suffi- an unstable vortex occurs ascaherent processie found
ciently large|NU| [we only show two such channels in Fig. that stable vorticegan be supported in harmonic traps as
3(b)]. Our calculations show that fdd <0, stable vortices long as the temperature is low enough such that the effects of
exist only for a single quantized vortex state in the weakthermal atoms are insignificant. At temperatures when ther-
interaction regimdsee Fig. 8a)]; a multiple quantized vor- mal atoms cannot be neglected, both coherent and incoherent
tex state(i.e., k>1) is always unstable. It has been specu-Processes will be present and each will have its effect on
lated that the existence of vortices may help stabilize a convortex stability. It remains to be seen which process will be
densate with negative scattering lenft8]. However, as we dominant. Further investigations should also include the pos-
show here, although such vortices may seem to be morg@ble influence of trap anisotropy and the dynamics of the
stable against the collapse when compared to the grour@sintegration processes.

state, they remain fundamentally unstable and small fluctua- Our analysis concerns the case of a 2D system; however,
tions will eventually destroy such vortices. we believe that the qualitative stability characters of a 3D

condensate in a vortex state will not be very different from
its 2D counterpart. To support this, we note that our calcu-
lation shows that the excitation spectrum of a 2D system is
In summary, we have calculated the collective excitationessentially identical to that of a 3D systdiil]. However,
frequencies of a Bose-Einstein condensate in a vortex statee presence of the third dimension may change the reso-
and have established intrinsic stability regions for these vornance condition and hence shift the stable/unstable region.
tices. We have shown that, even without any perturbation, aRecently, vortex stability in 2D harmonic trap was studied

Im(w)

-100 —-80 —-60 —40 -—-20 0]

IV. SUMMARY AND DISCUSSION
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by Caradoc-Daviest al. through a direct numerical simula- cently, several methods on how to generate vortex states in
tion [25]. In that study, a blue detuned laser beam is appliedlkali-metal atomic BECs have been propogeé]. With
to perturb the condensate in a vortex state. They found thaturrent technology and fast progress on this field, our study
the single quantized vortex is indeed stable, while a doublen vortex stability should be experimentally testable in the
guantized vortex can disintegrate into unit vortices under exnear future.
ternal perturbation. These results are consistent with ours
presented in this paper.

Finally, as an example, let us considef®la condensate
(scattering lengtha~3 nm) in a harmonic trap withe, This research was supported by NSF Grants Nos. PHY-
=27X10 Hz andw,=27X200 Hz, in units ofﬁwlff , 9415583 and PHY-9457897 and the David and Lucile Pack-
U=0.02. The plotted range U from 0 to 4000 in Fig. 1 ard Foundation. N.P.B. thanks Professor D. S. Rokhsar for
corresponds to a particle number ranging from O to 2comments regarding Rdf9] and Professor Gora Schlyapni-
x 10°, well within the capability of current experiments. Re- kov for useful discussions.
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