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Coherent disintegration and stability of vortices in trapped Bose condensates
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We consider the intrinsic stability of the vortex states of a pure Bose-Einstein condensate confined in a
harmonic potential under the effects of a coherent atom-atom interaction. We find that stable vortices can be
supported and vortex stability can be controlled by changing the interparticle interaction strength. At unstable
regimes, a vortex will spontaneously disintegrate into states with different angular momenta even without
external perturbations, with the lifetime determined by its imaginary excitation frequencies.
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I. INTRODUCTION

Vortices and their motions have long been an import
branch of fluid mechanics. With the discovery of superflu
helium II, a different idea developed: that the circulation in
superfluid vortex must be quantized@1#. The consequence
of these quantized vortices are profound and the underst
ing of vortex dynamics plays a key role in the current und
standing of superfluidity. Moreover, the detection of ind
vidual singly quantized vortices has vividly established
true macroscopic quantum nature of these remarkable de
erate fluids. Intimately related to the observation of the
perfluid state of4He is the evidence for the concurrent fo
mation of a Bose-Einstein condensate~BEC! @2#. An
important challenge is to clarify the link between these fu
damental and important phenomena: Bose-Einstein con
sation, superfluidity, and the formation of a macrosco
quantum state.

The recent observation of Bose-Einstein condensatio
dilute alkali-metal-atom vapors@3–5# has presented a strik
ing system for investigation, that of the dilute degener
Bosegas. The alkali-metal BECs differ fundamentally from
the helium BEC in several crucial ways. BECs in both bu
liquid helium and the dilute helium ‘‘gas’’ are free system
~the gas BEC is created by introducing helium into a poro
glass known as Vycor@6#!. By contrast, the alkali-metal
atom vapor BECs, although free of container walls~and/or
the Vycor host!, are created within the confines of a trappi
potential. There is another major difference: In the trapp
alkali-metal condensates, samples can be prepared in w
essentiallyall of the atoms are Bose condensed. By contr
in bulk superfluid4He, although the superfluid fraction ca
be near unity, momentum distribution measurements h
shown that the bulk condensate fraction is closer to 0.1 w
the remainder of the particles in finite momentum states.
researchers improve their ability to create and manipu
these trapped gaseous condensates, a series of impo
questions naturally arise. Does the gaseous BEC suppor
perflow? Is it indeed a superfluid? Are there stable vortic
This last question is the subject of this paper.

The problem of vortex state excitations has been rece
treated by others. Sinha@7# investigated the low-lying mode
PRA 591050-2947/99/59~2!/1533~5!/$15.00
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under Thomas-Fermi limit and Doddet al. @8# obtained the
normal mode spectrum of a single quantized vortex state
function of the number of condensate atoms for a BEC c
fined in a time-averaged orbiting potential trap@3#. However,
the important question of vortex stability was not addres
by these authors. More recently, Rokhsar@9# studied the sta-
bility properties of the trapped vortices and argued that v
tices are unstable due to the existence of a bound state in
the vortex core. However, throughout his analysis, the tr
sition from a vortex state to a core state requires the prese
of thermal atoms that serve as a reservoir to conserve
energy and angular momentum in the process. Hence,
more fundamental question concerning the intrinsic stabi
of an isolated vortex~i.e., without the external influence o
thermal atoms! remains unanswered.

In this paper we approach the problem by assuming
all atoms are in the condensate such that scattering with t
mal background atoms can be neglected. This allows u
focus on theintrinsic couplingwithin and between differen
vortex states and on the effect of this coupling on vor
stability. ~Here we use the word ‘‘intrinsic’’ to emphasiz
coherent coupling between the condensate atoms.! We find
that stable vortex states can in fact be supported and s
that whether a vortex state is stable or not is determined
its angular momentum and the nonlinear interparticle int
action strength. Furthermore, we point out that the lifetime
an unstable vortex can be directly determined from the
quencies of the collective excitations.

The paper is organized as follows. In Sec. II, we descr
our physical model and define the stability criterion. O
main results are presented in Sec. III, where the stable
unstable regions of trapped vortices are identified. We a
present a physical interpretation of the meaning of the in
bility. Finally, we give a summary and compare our wo
with others in Sec. IV.

II. PHYSICAL MODEL

Many nonlinear physical systems exhibit an instabil
that leads to a self-induced modulation of the steady st
This phenomenon has been studied in such diverse field
fluid dynamics, nonlinear optics, and plasma physics@10#.
1533 ©1999 The American Physical Society
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The accepted method to study the stability of such system
first to linearize the appropriate governing nonlinear eq
tions for the system around the stationary state and the
calculate the excitation frequencies corresponding to sm
oscillations around the steady state. A universally accep
signature of instability is the existence of frequencies wit
nonzero imaginary part, which means that excitations
those modes will experience exponential growth.

Here we also adopt Im(v)50 as our stability criterion
~this criterion is also used to study the vortex stability
superfluid helium@12#!. To simplify our calculations, we
consider a condensate confined in a two-dimensional~2D!
isotropic harmonic potential with trap frequencyv0 at zero
temperature. In current experiments, condensates
achieved in 3D traps with cylindrical symmetry. A quasi-2
situation can be realized whenv'!vz , wherev' and vz
are transverse and longitudinal trap frequencies, respecti
@11#. In this limit, one can produce a ‘‘pancake’’-shaped co
densate with all the atoms lying in the lowest harmonic
cillator state in thez direction and hence the degree of fre
dom in thez coordinate is frozen. Our treatment lies with
the Hartree-Fock-Bogoliubov approximation. First, we c
culate the macroscopic wave functions of the condensate
vortex state. We then find the collective excitation frequen
v of that state.

In the Gross-Pitaevskii treatment@13#, the energy forN
condensed bosons of massm is given by the functional

E~Ck!

N
5E dr ~Ck* T̂Ck1V̂uCku21 1

2 NUuCku4!. ~1!

Here

Ck~r !5Fk~r !eiku, k50,61,62, . . . , ~2!

represents the wave function of the macroscopic vortex s
with azimuthal angular momentumk\. T̂52\2¹2/2m and
V̂5mv0

2r 2/2 are the kinetic- and potential-energy operato
respectively, and the coupling constantU describes the inter
actions between condensate atoms. In the quasi-2D situa
considered here, the coupling constant takes the formU
54Ap\vzjza @14#, where jz5A\/2mvz is the harmonic
oscillator length inz dimension. In our analysis, the solutio
that minimizes Eq.~1! is found iteratively using a finite ele
ment method~FEM! @15,16#. In our calculations, we nor
mally used 20 elements, with two nodes and three degree
freedom for each element. This numerical method is v
efficient and it typically took no more than a few minutes
find the wave functionCk on a Cray-YMP2E/232 supercom
puter.

With the solution ofCk at our disposal, we can now
calculate collective excitation frequencies by solving Bog
liubov equations@8#

~L2\vl2mk!ul~r !1NU@Ck~r !#2vl* ~r !50, ~3a!

NU@Ck* ~r !#2ul~r !1~L1\vl2mk!vl* ~r !50, ~3b!

where mk is the chemical potential for the stateCk(r ),
ul(r ), andvl(r ) are normal mode functions with mode fre
quencyvl , andL5T̂1V̂12NUuCk(r )u2. It is straightfor-
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ward to show that ifCk(r ) is given by Eq.~2!, thenul(r )
and vl(r ) must have definite angular momentum compo
tions ku\ and kv\, respectively, such thatul(r )
5ũl(r )eikuu, vl(r )5 ṽl(r )eikvu, andku1kv52k @8#.

III. RESULTS AND INTERPRETATION

Equations~3! were transformed to an eigenvalue proble
for a finite-size matrix and solved using the FEM. Our go
here is to find mode frequencies with a nonzero imagin
part in order to determine the vortex stability. As in the ca
of the ground state, the vortex stability properties for a co
densate with a repulsive interparticle interaction are dra
cally different from that for a condensate with attractive i
teraction. We will discuss these two cases separately.

Repulsive interaction, i.e., U.0. When we calculate the
collective excitation frequencies of a single quantizedk
51) vortex stateC1 , we find that all the excitation frequen
cies are real, which means thatC1 is always stable. Next we
consider a double quantized (k52) vortex stateC2 . Here
we find that complex frequencies exist only forku50 and
kv54. ~Without loss of generality, we assume thatk.0 and
kv.k.ku .) We find that for any other pairs of (ku ,kv),
the excitation frequencies are all real. Furthermore, for v
ues ofNU for which the vortex is unstable, we find that the
exists at most one complex frequency. Figure 1~a! shows the
imaginary part of the complex frequency as a function of
interaction strengthNU. As we can see, in this particula
channel@i.e., choice of (ku ,kv)], the parameter space ofNU
is divided into alternating stable and unstable regions. In
unstable regions, the inverse of Im(v) determines the life-
time of the unstable vortex. For the parameter range
scribed in Fig. 1, the most unstable vortex state will dec
after several periods of the harmonic trapping potential.
stress that the details of how the condensate will evolve

FIG. 1. ~a! Imaginary part of the complex frequency of a doub
quantized vortex stateC2 as a function of interaction strengthNU
for ku50 andkv54. ~b! Same as~a! for a triple quantized vortex
stateC3 . Solid line, ku50 and kv56; dashed line,ku51 and
kv55. The frequency is in units of the trap frequencyv0 andU in
units of (\v0j2), wherej5(\/2mv0)1/2 is the harmonic oscillator
length.
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der these instabilities are beyond the capability of the me
field treatment and requires further investigation.

For a general stateCk , our numerical calculations show
that there arek21 unstable channels that possess comp
excitation frequencies, those withku50,1,. . . ,k22 and
kv52k2ku . Figure 1~b! shows the imaginary part of th
complex frequency for a triple quantized vortex stateC3 .
We can see a similar pattern to Fig. 1~a!, but here there are
two unstable channels. Each channel shows its own qua
eriodic behavior as a function ofNU. The two channels have
quite different ‘‘periods’’ and the characteristic width of un
stable regions. At first look, this may appear rather un
pected. To interpret this behavior we will show that ea
unstable region inNU space represents a decay channe
which two atoms from the given vortex state scatter into t
new states, with angular momentaku\ and kv\, respec-
tively, thus inducing instability in that initial vortex stat
Ck .

First, let us define a boson field operator asĈ(r )
[ANCk(r )1ĉ(r ), where thec numberCk(r ) denotes the
one-body wave function for the condensate andĉ(r ) is the
field operator for the fluctuation part@17#. The second quan
tized Bogoliubov Hamiltonian reads

K̂B5E dr ĉ†~r !@L2mk#ĉ~r !

1F1

2
NUE dr ĉ†~r !ĉ†~r !CkCk1H.c.G ,

where thec-number part independent ofĉ(r ) has been ne-
glected. We can further decomposeĉ(r ) as ĉ(r )
5(n,aan,afn,a(r ), where an,a is an annihilation operato
associated with a single-particle statefn,a . The set of states
$fn,a% is defined as the eigenvectors ofL with eigenvalues
en,a , i.e.,Lfn,a5en,afn,a , with subscripts (n,a) labeling
the radial and angular quantum numbers, respectively.
Hamiltonian K̂B may then be rewritten asK̂B5Ĥ01ĤI ,
where

Ĥ05(
n,a

~en,a2mk!an,a
† an,a ,

ĤI5 (
nu ,ku

(
nv ,kv

L~nu ,ku ;nv ,kv!anu ,ku

† anv ,kv

† 1H.c.,

and

L~nu ,ku ;nv ,kv!5
1

2
NUE dr

3fnu ,ku
* ~r !fnv ,kv

* ~r !Ck~r !Ck~r !.

~4!

In the interaction picture,an,a
† (t)5an,a

† ei (en,a2mk)t and the
Hamiltonian is given by
n-

x

ip-

-
h
n
o

e

ĤI~ t !5 (
nu ,ku

(
nv ,kv

L~nu ,ku ;nv ,kv!

3ei ~enu ,ku
1env ,kv

22mk!tanu ,ku

† anv ,kv

† 1H.c. ~5!

L(nu ,ku ;nv ,kv) is nonzero only whenku1kv52k, which
is a direct consequence of the conservation of angular
mentum. The interaction described by the Hamiltonian~5! is
analogous to parametric processes in quantum optics w
instability can occur under certain conditions. For examp
one can build up large numbers of photon pairs~signal and
idle! from the vacuum via parametric down-conversion if t
field frequencies satisfy a parametric resonance condition
our case, the fluctuation in mode pair (fnu ,ku

,fnv ,kv
) grows

exponentially when

uenu ,ku
1env ,kv

22mku,L~nu ,ku ;nv ,kv! ~6!

and hence the vortex is unstable under such a resonance
dition. We emphasize that the instability implied in this pi
ture is purely quantum mechanical. The atoms in the vor
canspontaneously disintegrateinto fnu ,ku

andfnv ,kv
states

without the need of external~classical! perturbations, such a
the interaction with the thermal background gases or per
bation of the trap.

For a k51 vortex, our numerical calculations show th
there existsno particle states that satisfy the resonance c
dition ~6!, in support of our prediction that a single quantiz
vortex state is always stable forU.0. For ak52 vortex, we
find that a pair of particle states (f0,0,f0,4) indeed satisfy
the inequality~6!. In the weak coupling limit, we can calcu
late the decay rate of the double quantized vortex stateC2
using the Hamiltonian~5! by neglecting all the nonresonan
terms~i.e., keeping only terms withnu5nv50, ku50, and
kv54). The results are shown in Fig. 2 along with th
imaginary part of the complex excitation frequencies of t
vortex stateC2 . We can see a clear qualitative agreeme
between the two results. The agreement can be significa
improved if the contribution from states (f1,0,f1,4) is also
included in calculating the decay rate~see Fig. 2!. We re-
mark that although useful for interpreting our vortex stabil
predictions, the parametric resonance picture is valid only
the weak-interaction regime. This is because a strong in

FIG. 2. Solid line, imaginary part of the complex frequency o
double quantized vortex stateC2 as a function of interaction
strengthNU for ku50 andkv54; dashed line, decay rate of th
vortex stateC2 as a function ofNU calculated using the Hamil-
tonian ~4! @only contributions from the resonant states (f0,0,f0,4)
are included#; dot-dashed line, same as dashed line, but includ
contributions from two more states (f1,0,f1,4).
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action can drastically change the frequencies of the osc
tors and introduce mixing among different particle stat
Further work would be necessary in order to understand
aspects of the complex structure shown in Fig. 1, particula
for largeNU.

Attractive interaction, i.e., U,0. A condensate with a
strong attractive interparticle interaction is known to be s
ject to collapse. However, a metastable condensate wi
small number of atoms can still exist@4,18#. Figure 3 shows
the imaginary part of the complex excitation frequency fo
single and a double quantized vortex state as function
NU. Figure 3~a! shows thatC1 is stable for a sufficiently
small attractive interaction, but unstable for a larger inter
tion strength. ForC2 , as we can see from Fig. 3~b!, the
channel (ku50,kv54) possesses complex frequency for
negative values ofNU instead of showing a quasiperiod
pattern as in the case of the repulsive interaction. Furth
more, we find that, similar toC1 , other channels that ar
stable for NU.0 become consistently unstable for suf
ciently largeuNUu @we only show two such channels in Fig
3~b!#. Our calculations show that forU,0, stable vortices
exist only for a single quantized vortex state in the we
interaction regime@see Fig. 3~a!#; a multiple quantized vor-
tex state~i.e., k.1) is always unstable. It has been spec
lated that the existence of vortices may help stabilize a c
densate with negative scattering length@19#. However, as we
show here, although such vortices may seem to be m
stable against the collapse when compared to the gro
state, they remain fundamentally unstable and small fluc
tions will eventually destroy such vortices.

IV. SUMMARY AND DISCUSSION

In summary, we have calculated the collective excitat
frequencies of a Bose-Einstein condensate in a vortex s
and have established intrinsic stability regions for these v
tices. We have shown that, even without any perturbation

FIG. 3. Imaginary part of the complex frequency of~a! a single
and~b! a double quantized vortex state as a function of interac
strengthNU, with NU,0.
a-
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unstable vortex can still decay spontaneously. For a repul
interparticle interaction, we found that single quantized v
tices are always stable, while imaginary excitation mod
divide the interaction energy axis (NU) of multiple quan-
tized vortices (k.1) into alternating stable and unstable r
gions. Hence one can control the vortex stability by varyi
the value of interaction strength, which in turn can
achieved by changing the scattering length@20,21#, particle
number, or trap frequency. This provides us with the pos
bility of studying condensate evolution under the effect
imaginary modes.

In the unstable regime, the mean-field equations may
come inapplicable to describe the long-term evolution of
system due to the exponential growth of the fluctuation. N
ertheless, the mean-field theory is able to predict when
system becomes unstable and the magnitude of the im
nary frequency provides an estimation for how fast the v
tex will break down. This information is particularly useful
one wants to create a vortex state from the ground stat
the condensate@26#. A familiar behavior of the systems with
modulation instability is that the steady state will disintegra
into filaments, wave packets, or solitons@10#. Instability has
also been studied in the context of a two-species Bo
Einstein condensate@22#. Gordon and Savage showed th
imaginary excitation modes may break the spatial symme
of the ground state of the two-species condensate@23#. Here
we show that an unstable vortex state will disintegrate i
states with different angular momenta.

For a condensate in the vortex state, there may exist q
siparticle states with negative frequencies. One such nega
frequency state was identified by Doddet al. in Ref. @8#. The
presence of negative frequencies implies that there e
states with lower energy. However, this does not necessa
mean that the condensate is unstable if no mechanism e
to drive the system to these lower-energy states@24#. In Ref.
@9# Rokhsar considered the instability arising from the inc
herent interactions between condensate and thermal at
which induce the transition to the negative frequency c
state. In contrast, in the present paper we study theintrinsic
stability of vortices in a pure condensate, excluding such
incoherent processes while focusing on the coherent inte
tions within the condensate. In our work the disintegration
an unstable vortex occurs as acoherent process. We found
that stable vorticescan be supported in harmonic traps a
long as the temperature is low enough such that the effec
thermal atoms are insignificant. At temperatures when th
mal atoms cannot be neglected, both coherent and incohe
processes will be present and each will have its effect
vortex stability. It remains to be seen which process will
dominant. Further investigations should also include the p
sible influence of trap anisotropy and the dynamics of
disintegration processes.

Our analysis concerns the case of a 2D system; howe
we believe that the qualitative stability characters of a
condensate in a vortex state will not be very different fro
its 2D counterpart. To support this, we note that our cal
lation shows that the excitation spectrum of a 2D system
essentially identical to that of a 3D system@11#. However,
the presence of the third dimension may change the re
nance condition and hence shift the stable/unstable reg
Recently, vortex stability in 2D harmonic trap was studi
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by Caradoc-Davieset al. through a direct numerical simula
tion @25#. In that study, a blue detuned laser beam is app
to perturb the condensate in a vortex state. They found
the single quantized vortex is indeed stable, while a dou
quantized vortex can disintegrate into unit vortices under
ternal perturbation. These results are consistent with o
presented in this paper.

Finally, as an example, let us consider a23Na condensate
~scattering lengtha'3 nm! in a harmonic trap withv'

52p310 Hz andvz52p3200 Hz, in units of\v'j'
2 ,

U'0.02. The plotted range ofNU from 0 to 4000 in Fig. 1
corresponds to a particle number ranging from 0 to
3105, well within the capability of current experiments. R
D
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cently, several methods on how to generate vortex state
alkali-metal atomic BECs have been proposed@26#. With
current technology and fast progress on this field, our st
on vortex stability should be experimentally testable in t
near future.
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