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Phase conjugation of multicomponent Bose-Einstein condensates

Elena V. Goldstein and Pierre Meystre
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

~Received 12 June 1998!

We consider a trapped multicomponent atomic Bose-Einstein condensate, concentrating specifically on
condensates in the hyperfine ground stateF51, where spin exchange collisions result in a transfer of popu-
lation betweenm50 andm561 internal states. Drawing an analogy with the optical situation, we show that
this system can be regarded as a matter-wave analog of optical multiwave mixing. This opens up the way to
realize matter-wave phase conjugation, whereby an incident atomic beam can be ‘‘time reversed.’’ In addition,
matter-wave phase conjugation also offers novel diagnostic tools to study the coherence properties of conden-
sates, as well as to measure the relative scattering lengths of hyperfine sublevels.@S1050-2947~99!03602-1#

PACS number~s!: 03.75.Fi, 05.30.Jp, 42.65.Hw
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden
tion in low density atomic vapors@1# has triggered a flurry of
theoretical activity@2#. Theoretical predictions on the con
densate dynamics, ground-state population, and spectru
elementary excitations have been made and are in exce
agreement with experiments.

At the same time, further experimental advances have
to the realization of multicomponent condensates, both
87Rb and in 23Na. In the first case, sympathetic coolin
together with a fortuitous coincidence in the scatter
lengths of the spin statesuF51,m51&, uF52,m52& led to
the coexistence of both components in a magnetic trap@3#. A
multicomponent condensate was also achieved with the t
hyperfine ground-state components of sodium in a far-
resonant dipole trap@4#. These results, along with furthe
experiments involving condensates in double well potent
@5#, have now led to considerable theoretical work on
static and dynamic properties of multicomponent cond
sates, including studies of their true ground state@6#, analy-
ses of the elementary excitations’ spectrum, and the dete
nation of their instability regions @7#. In addition,
multicomponent condensates open up the way to no
schemes to launch vortices and permanent currents@8# and to
the study of novel phenomena such as vector and quadru
spin wave modes, the topological and energetic instabili
of doubly quantized singular vortices@9#, etc. The two-body
interactions characteristic of spin-1 condensates can lea
intercomponent coupling via two-body collisions.

In the zero-temperature limit, aq-component Bose-
Einstein condensate can be thought of as aq-mode system,
whereby the various modes are coupled by two-body~and
possibly higher-order! collisions which result in the ex
change of particles between these modes. As such, they
respond to a situation quite similar to that of multiwave m
ing in nonlinear optics. A main difference is of course that
the case of matter waves, the coupling is due to the co
sions, which find their origin in the electromagnetic intera
tion between the atoms. Collisions can then be thought o
the effective atom-atom interaction resulting from the elim
nation of the electromagnetic field from the system dyna
ics. This is to be contrasted with the optical case, wh
PRA 591050-2947/99/59~2!/1509~5!/$15.00
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multimode mixing relies on the interaction of the electr
magnetic field with a common atomic sample whose dyna
ics is traced over. In that case, it is the elimination of t
material dynamics that results in an effective field-field co
pling. This observation is the origin of nonlinear atom optic
which is the matter-wave equivalent of nonlinear optics.

A close analogy can easily be established between
dynamics of a spin-1 condensate as realized in sodium
periments and the situation of degenerate four-wave mix
in optics, as we demonstrate explicitly in this paper. In p
ticular, for situations where them50 state is macroscopi
cally populated while them561 states are weakly excited
one can think of the first state as a ‘‘pump’’ or ‘‘central
mode, whilem561 form side modes, which are couple
via the pump, leading to the familiar effects of degener
four-wave mixing, including phase conjugation. This is t
effect that we study in detail in this work. We then show ho
matter-wave phase conjugation can be used as a diagn
tool to study the coherence properties of Schro¨dinger fields,
as well as the relative scattering lengths of the states
volved.

Matter-wave phase conjugation has previously been s
ied, but in a situation where the coupling between the par
matter waves was induced by the near-resonant ele
dipole-dipole interaction@10#. As such, it relied explicitly on
having a substantial population of electronically excited
oms, and the incoherent effects of spontaneous emission
idly destroyed the coherent wave coupling responsible
phase conjugation. In contrast, the situation with a cond
sate of dipole-trapped sodium atoms does not suffer fr
this drawback: since we are considering ground-state at
in a far-off-resonant trap with hyperfine levels coupled p
marily via ground-state collisions, spontaneous emission
certainly negligible. In addition, the fact that the atoms are
a trap changes the situation somewhat from the free-sp
geometry considered in our earlier work, since the atom
sample can easily be tightly confined in the transverse
mensions and hence does not suffer from free-space diff
tion. Our main result is to demonstrate that a trapped c
densate can then be used as a phase-conjugate mirror
weak atomic beam, thereby effectively ‘‘time-reversing’’ i

Section II describes our physical model, and derives
coupled-wave equations for the three components of the c
1509 ©1999 The American Physical Society
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1510 PRA 59ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
densate in the Hartree regime. This is applied in Sec. II
the discussion of matter-wave phase conjugation in tw
dimensional atomic traps. We concentrate explicitly on
undepleted pump regime, and show how the phase-conju
signal depends explicitly on the relative scattering lengths
the hyperfine levels involved. Finally, the possible expe
mental verification of our predictions, as well as a summ
and outlook, are given in Sec. IV.

II. PHYSICAL MODEL

We consider a condensate of23Na atoms in theirF51
hyperfine ground state, with three internal atomic sta
uF51,m521&, uF51,m50&, and uF51,m51& of degen-
erate energies in the absence of magnetic fields. It is
scribed by the three-component vector Schro¨dinger field

C~r ,t !5$C21~r ,t !,C0~r ,t !,C1~r ,t !%, ~1!

which satisfies the bosonic commutation relations

@C i~r ,t !,C j
†~r 8,t !#5d i j d~r2r 8!. ~2!

Accounting for the possibility of two-body collisions, its dy
namics is described by the second-quantized Hamiltonia

H5E dr C†~r ,t !H0C~r ,t !

1E $dr%C†~r1 ,t !C†~r2 ,t !V~r12r2!C~r2 ,t !C~r1 ,t !,

~3!

where the single-particle Hamiltonian is

H05p2/2M1Vtrap ~4!

and the trap potential is of the general form

Vtrap5 (
m521

11

U~r !uF51,m&^F51,mu. ~5!

Here p is the center-of-mass momentum of the atoms
massM and U(r ), the effective dipole trap potential fo
atoms in theu1,m& hyperfine state, is independent ofm for a
nonmagnetic trap.

The general form of the two-body interactionV(r12r2)
has been discussed in detail in Refs.@9,11#. We reproduce its
main features for the sake of clarity. Consider situatio
where the hyperfine spinFi51 of the individual atoms is
preserved. We label the hyperfine states of the combi
system of hyperfine spinF5F11F2 by u f ,m& with f
50,1,2 andm52 f , . . . ,f . In the shapeless approximatio
it can then be shown that the two-body interaction is of
general form@9#

V~r12r2!5d~r12r2!(
f 50

2

\gfPf , ~6!

where

gf54p\af /M , ~7!
o
-

e
ate
f

-
y

s

e-

f

s

d

e

Pf[(mu f ,m&^ f ,mu is the projection operator which projec
the pair of atoms into a total hyperfinef state, andaf is the
s-wave scattering length for the channel of total hyperfi
spin f. For bosonic atoms only evenf states contribute, so
that

V~r12r2!5\d~r12r2!~g2P21g0P0!

5
\

2
d~r12r2!~c01c2F1•F2!. ~8!

In this expression,

c052~g012g2!/3,
~9!

c252~g22g0!/3.

Substituting this form of V(r12r2) into the second-
quantized Hamiltonian~3! leads to

H5(
m

E drCm
† ~r ,t !F p2

2M
1U~r !GCm~r ,t !

1
\

2E dr$~c01c2!@C1
†C1

†C1C11C21
† C21

† C21C21

12C0
†C0~C1

†C11C21
† C21!#1c0C0

†C0
†C0C0

12~c02c2!C1
†C1C21

† C21

12c2~C1
†C21

† C0C01H.c.!%. ~10!

This form of the Hamiltonian is quite familiar in quantum
optics, where it describes four-wave mixing between a pu
beam and two side modes, which are identified with the fi
operatorsC0 andC61 in the present situation. Specifically
we observe that the three terms in the two-body Hamilton
which are quartic in one of the field operators only, i.e.,
the form C i

†C i
†C iC i , can be readily interpreted as sel

defocusing terms, corresponding to the fact that the tw
body potential is, for a positive scattering length and a sca
field, analogous to a defocusing cubic nonlinearity in opti
The terms involving two ‘‘modes,’’ i.e., of the type
C i

†C iC j
†C j , conserve the individual mode populations

the modes and simply lead to phase shifts. Finally, the te
involving the central modeC0 andboth side modes are the
contributions of interest to us, since they correspond t
redistribution of atoms between the ‘‘pump’’ modeC0 and
the side modesC61 , e.g., by annihilating two atoms in th
central mode and creating one atom each in the side mo
This is the kind of interaction that leads to phase conjugat
in quantum optics, except that in that case the modes
question are modes of the Maxwell field instead of t
Schrödinger field. Note also that a similar mechanism is
the origin of amplification in the collective atom recoil las
~CARL! @12,13#, except that in that latter case, the Schr¨-
dinger field mode coupling is induced by optical transitio
in the atoms.

In the Hartree approximation, which is well justified fo
condensates atT50, the many-body problem reduces to a
effective single-particle problem for the Hartree wave fun
tion fm(r ,t). It is easily shown that its dynamics is governe
by the system of coupled nonlinear Schro¨dinger equations
@14#
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i ḟ21~r ,t !5
1

\F p2

2M
1U~r !Gf211N$c2f0f0f1

!1@~c01c2!

3~ uf21u21uf0u2!1~c02c2!uf1u2#f21%,

i ḟ0~r ,t !5
1

\F p2

2M
1U~r !Gf01N$c0uf0u2f01~c01c2!

3~ uf21u21uf1u2!f012c2f1f21f0
!%, ~11!

i ḟ1~r ,t !5
1

\F p2

2M
1U~r !Gf11N$c2f0f0f21

!

1@~c01c2!~ uf1u21uf0u2!

1~c02c2!uf21u2#f1%.

Just as in the familiar quantum optics case, we conside
the following a situation where the central mode, describ
by the Hartree wave functionf0 , is strongly populated ini-
tially, while the side modesf61 are weakly populated. In
other words, we consider the phase conjugation of a w
atomic beam from a reasonably large condensate. In
case, it is appropriate to introduce the matter-wave op
equivalent of the undepleted pump approximation, where

ḟ0.0. ~12!

In that case, the problem reduces to a set of coupled-m
equations for the two side modesf61 , the central mode
acting as a catalyst for the coupling between them.

III. PHASE CONJUGATION IN DIPOLE TRAPS

In what follows we consider atomic samples confined i
two-dimensional harmonic trap. The trap potentialU(r ),
which is as we recall independent of the atomic internal s
m @9# for a dipole trap, is taken to be of the harmonic for

U~r !5Mv0
2~x21y2!/2 ~13!

for simplicity. That is, we assume that the dipole trap co
fines the atoms in the transverse plane (x,y), but not in the
longitudinal directionz. This geometry allows one to con
sider side modes propagating along that axis, rather t
bouncing back and forth in an elongated trap. In case of t
confinement in the transverse direction, we can assume
good approximation that the transverse structure of the c
densate is not significantly altered by many-body interacti
and is determined as the ground-state solution of the tr
verse potential.

Expressing the Hartree wave function associated with
hyperfine levelm as

fm~r ,t !5w'~x,y!wm~z,t !e2 iv0t, ~14!

we then have

\v0w'~x,y!5F2
\2

2M S ]2

]x2
1

]2

]y2D
1

Mv0
2

2
~x21y2!Gw'~x,y!. ~15!
in
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Substituting this expression into Eqs.~11! and projecting out
the transverse part of the wave function yields the coup
one-dimensional Gross-Pitaevskii~coupled-mode! equations

i ẇ21~z,t !52
\

2M

]2

]z2
w211Nh$c2w0w0w1

!1@~c01c2!

3~ uw21u21uw0u2!1~c02c2!uw1u2#w21%,

i ẇ0~z,t !52
\

2M

]2

]z2
w01Nh$c0uw0u2w01~c01c2!

3~ uw21u21uw1u2!w012c2w1w21w0
!%, ~16!

i ẇ1~z,t !52
\

2M

]2

]z2
w11Nh$c2w0w0w21

! 1@~c01c2!

3~ uw1u21uw0u2!1~c02c2!uw21u2#w1%,

where

h5

E dxdyuw'~x,y!u4

E dxdyuw'~x,y!u2
. ~17!

The physical situation we have in mind is that of a we
‘‘probe’’ in the hyperfine statem521 propagating toward a
large condensate in statem50 and at rest in the dipole trap
and generating a backward-propagating conjugate ma
wave in the hyperfine statem51 ~see Fig. 1!. Hence we
express the longitudinal component of the Hartree wa
function as

w~z,t ![S w21~z,t !

w0~z,t !

w1~z,t !
D 5S c21~z,t !eikze2 ivt

2c0 cos~kz!e2 ivt

c1~z,t !e2 ikze2 ivt
D , ~18!

where the slowly varying envelopescm of the Hartree wave
function componentsm561 satisfy the familiar inequalities

U ]2

]z2
cmU!kU ]

]z
cmU!k2ucmu ~19!

FIG. 1. Geometry of the matter-wave phase conjugation w
three-component vector fields.
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1512 PRA 59ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
and we have additionally invoked the undepleted pump
proximation~12!. Note that in this ansatz the ‘‘pump’’ wav
function w0 is described by a standing wave. This spat
structure is required in order to achieve momentum con
vation, a direct consequence of the fact that a standing w
can be viewed as a superposition of two counterpropaga
atomic waves. A state with such a periodic spatial struct
can be achieved, for instance, by interfering two condens
@15#, in a grating matter-wave interferometer@16#, or in
CARL @13#. To the first order in the probe and signal field
this geometry leads to a linearized system of two coupl
mode equations for the probe and condensate fields. In
stationary state they reduce to

i
\k

2M

]

]z
c21~z!52Nh@2~c01c2!r0c21~z!1c2c0

2c1
!~z!#,

~20!

i
\k

2M

]

]z
c1

!~z!52Nh@2~c01c2!r0c1
!~z!1c2c0

!2c21~z!#,

wherer05uc0u2.
The form of these equations is familiar from optical pha

conjugation and their solution is well known. Before givin
them explicitly, though, we note that they contain two co
tributions. For instance, the equation for the phase-conju
wavec1

! contains a term proportional to the densityr0 of the
condensate and the field itself. In the absence of the sec
term, it would simply lead to a phase shift ofc1

! . Physically,
it results from the self-interaction of the conjugate field, ca
lyzed by the condensate~pump! component. Its origin can be
traced back to the term proportional toC1

†C21
† C0C0 in the

Hamiltonian~10!. The second term, in contrast, couples t
two side modes via the condensate and is responsible
phase conjugation. Note that it is not proportional to t
condensate densityr0 , but rather toc0

2 . We return to this
point later on.

The general solution of Eqs.~20! reads@17#

c21~z!5
eiaz

cos~ ukuL !
$2 ie2 ib sin~ ukuz!c1

!~L !

1cos@ uku~z2L !#c21~0!%, ~21!

c1~z!5
eiaz

cos~ ukuL !
$cos~ ukuz!c1~L !

1 ie2 ib sin@ uku~z2L !#c21
! ~0!%,

where

a52Nh~c01c2!r0 , ~22!

k5
Nhc2c0

2

\k/2M
, ~23!

and

eib5k/uku. ~24!

For the probec21(0) incident atz50 and no incoming
conjugate signalc1(L)50, the conjugate wave in the inpu
planez50 becomes
-

l
r-
ve
ng
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-
te

nd

-

or
e

c1~0!52 ie2 ib tan~ ukuL !c21
! ~0!, ~25!

which demonstrates that the interaction of the probe and
condensate results in the generation of a counterpropaga
phase-conjugated signal. Note that the intensity of the c
jugate wave exceeds that of the incoming wave forp/4
,ukuL,3p/4 and phase conjugation oscillations~PCO! @17#
can occur forukuL5p/2, the so-called oscillation condition

IV. EXPERIMENTAL FEASIBILITY AND OUTLOOK

In order to determine the feasibility of matter-wave pha
conjugation in state of the art experiments, we briefly disc
the values of the oscillation parameterukuL that can be
achieved in current23Na Bose-Einstein condensation~BEC!
experiments.

From the definition~23! we have

ukuL;Nh
a22a0

3k
, ~26!

where we have taken that due to normalizationc0
2L.r0L

;1 and that@9#

c254p\~a22a0!/3M , ~27!

with a0 and a2 being the singlet and triplet state scatteri
lengths, respectively. For sodium, these scattering leng
are estimated as@9# (a22a0)/3;0.04a2;10210 m. In the
MIT optical confinement experiments@4# the number of
trapped atoms is of the order of 53106 to 107 and the trans-
verse dipole trap frequencyv0 is of the order of 104 sec21,
so that the transverse ground-state size of the condensaa'

should be determined from the Thomas-Fermi@18# rather
than from the single-particle approximation, see Eq.~15!.
This gives @18# a'5aho(15Na0 /aho)

1/5;10aho , where
aho[A\/mv0;0.5 mm is the single-particle ground-stat
size in a harmonic trap. Consequently,h;a'

22;1010 m22

and the oscillation parameter isukuL;107/k wherek is as
we recall the wave number of the pump side mode, see
~18!. In case the condensate side modes are obtained by
fraction on a standing light wave@16#, we havek52p/l
;107 m21 and thusukuL;1. This means that the oscillatio
condition ukuL5p/2 can be met in current BEC exper
ments.

The characteristic time scale over which the population
the conjugate side mode builds up can be estimated from
~21!: The characteristic length over which the populati
transfer between modes takes place is 2pk21, correspond-
ing to a characteristic timetc52p/kv for atoms of velocity
v5\k/M;2.531022 m/sec. In typical current BEC experi
ments the longitudinal size of the condensates is ab
;300 mm so thattc;2pL/v;1021 sec forukuL;1. This
time is well below the lifetime of optically trapped spin-1 N
condensates.

In addition to its interest from a nonlinear atom opti
point of view, matter-wave phase-conjugation could also
used as a diagnostic tool for Bose-Einstein condensates
instance, we noted that the parameterukuL is proportional to
the difference in scattering lengths between the singlet
triplet states. Hence, this quantity could in principle be
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ferred from phase conjugation measurements. In addition
recall that the phase conjugate signal is not determined
the condensate densityr0 , but rather byc0

2 . While the dis-
tinction between the two is expected to be minimal for lar
condensates, and is essentially ignored in the Hartree
undepleted pump approach of the present paper, this wil
longer be the case for smaller condensates. In such s
tions, phase conjugation provides one with a probe of
coherence properties of the condensate. Future work
analyze these aspects of the problem, as well as the ro
an
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higher-order correlation functions in the atom statistics of
phase-conjugate mode.
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