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Phase conjugation of multicomponent Bose-Einstein condensates
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We consider a trapped multicomponent atomic Bose-Einstein condensate, concentrating specifically on
condensates in the hyperfine ground statel, where spin exchange collisions result in a transfer of popu-
lation betweerm=0 andm= =1 internal states. Drawing an analogy with the optical situation, we show that
this system can be regarded as a matter-wave analog of optical multiwave mixing. This opens up the way to
realize matter-wave phase conjugation, whereby an incident atomic beam can be “time reversed.” In addition,
matter-wave phase conjugation also offers novel diagnostic tools to study the coherence properties of conden-
sates, as well as to measure the relative scattering lengths of hyperfine sulh16&0-294®9)03602-1

PACS numbg(s): 03.75.Fi, 05.30.Jp, 42.65.Hw

[. INTRODUCTION multimode mixing relies on the interaction of the electro-
magnetic field with a common atomic sample whose dynam-
The experimental observation of Bose-Einstein condensaes is traced over. In that case, it is the elimination of the
tion in low density atomic vapoid] has triggered a flurry of material dynamics that results in an effective field-field cou-
theoretical activity[2]. Theoretical predictions on the con- pling. This observation is the origin of nonlinear atom optics,
densate dynamics, ground-state population, and spectrum wfich is the matter-wave equivalent of nonlinear optics.
elementary excitations have been made and are in excellent A close analogy can easily be established between the
agreement with experiments. dynamics of a spin-1 condensate as realized in sodium ex-
At the same time, further experimental advances have legderiments and the situation of degenerate four-wave mixing
to the realization of multicomponent condensates, both inn optics, as we demonstrate explicitly in this paper. In par-
8Rb and in 2Na. In the first case, sympathetic cooling, ticular, for situations where then=0 state is macroscopi-
together with a fortuitous coincidence in the scatteringcally populated while then= =1 states are weakly excited,
lengths of the spin statéE=1m=1), |[F=2m=2) ledto  one can think of the first state as a “pump” or “central”
the coexistence of both components in a magnetic[BapA mode, whilem=*1 form side modes, which are coupled
multicomponent condensate was also achieved with the threga the pump, leading to the familiar effects of degenerate
hyperfine ground-state components of sodium in a far-offfour-wave mixing, including phase conjugation. This is the
resonant dipole trap4]. These results, along with further effect that we study in detail in this work. We then show how
experiments involving condensates in double well potentialsnatter-wave phase conjugation can be used as a diagnostic
[5], have now led to considerable theoretical work on thetool to study the coherence properties of Schimger fields,
static and dynamic properties of multicomponent condenas well as the relative scattering lengths of the states in-
sates, including studies of their true ground sféie analy-  volved.
ses of the elementary excitations’ spectrum, and the determi- Matter-wave phase conjugation has previously been stud-
nation of their instability regions[7]. In addition, ied, butin a situation where the coupling between the partial
multicomponent condensates open up the way to novahatter waves was induced by the near-resonant electric
schemes to launch vortices and permanent curf8fend to  dipole-dipole interactiof10]. As such, it relied explicitly on
the study of novel phenomena such as vector and quadrupol&ving a substantial population of electronically excited at-
spin wave modes, the topological and energetic instabilitie®ms, and the incoherent effects of spontaneous emission rap-
of doubly quantized singular vortic¢8], etc. The two-body idly destroyed the coherent wave coupling responsible for
interactions characteristic of spin-1 condensates can lead fghase conjugation. In contrast, the situation with a conden-
intercomponent coupling via two-body collisions. sate of dipole-trapped sodium atoms does not suffer from
In the zero-temperature limit, ajcomponent Bose- this drawback: since we are considering ground-state atoms
Einstein condensate can be thought of agraode system, in a far-off-resonant trap with hyperfine levels coupled pri-
whereby the various modes are coupled by two-b@alyd  marily via ground-state collisions, spontaneous emission is
possibly higher-order collisions which result in the ex- certainly negligible. In addition, the fact that the atoms are in
change of particles between these modes. As such, they ca-trap changes the situation somewhat from the free-space
respond to a situation quite similar to that of multiwave mix- geometry considered in our earlier work, since the atomic
ing in nonlinear optics. A main difference is of course that insample can easily be tightly confined in the transverse di-
the case of matter waves, the coupling is due to the collimensions and hence does not suffer from free-space diffrac-
sions, which find their origin in the electromagnetic interac-tion. Our main result is to demonstrate that a trapped con-
tion between the atoms. Collisions can then be thought of adensate can then be used as a phase-conjugate mirror for a
the effective atom-atom interaction resulting from the elimi-weak atomic beam, thereby effectively “time-reversing” it.
nation of the electromagnetic field from the system dynam- Section Il describes our physical model, and derives the
ics. This is to be contrasted with the optical case, whereoupled-wave equations for the three components of the con-
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densgte in t_he Hartree regime. This is appli_ed ir_l Sep. Il top,== .| f,m)(f,m| is the projection operator which projects
the discussion of matter-wave phase conjugation in twothe pair of atoms into a total hyperfiriestate, and; is the
dimensional atomic traps. We concentrate explicitly on theswave scattering length for the channel of total hyperfine

undepleted pump regime, and show how the phase-conjugaépin f. For bosonic atoms only evenstates contribute, so
signal depends explicitly on the relative scattering lengths ofhat

the hyperfine levels involved. Finally, the possible experi-
mental verification of our predictions, as well as a summary V(ri=ra)=r6(r1—r3)(92P2+9oPo)
and outlook, are given in Sec. IV.

h
=5 0(r1=ra)(Co+ CoFy - Fo). (8
Il. PHYSICAL MODEL
We consider a condensate éiNa atoms in theifF=1 In this expression,
hyperfine ground state, with three internal atomic states Co=2(go+29,)/3,
[F=1m=-1), [F=1m=0), and|F=1m=1) of degen- )
erate energies in the absence of magnetic fields. It is de- C,=2(0>—0p)/3.

i he three- cli fiel
scribed by the three-component vector Selmger field Substituting this form of V(r;—r,) into the second-

W(r,t)={¥_,(r,t),¥o(r,t),¥(r,t)}, (1)  quantized Hamiltoniai3) leads to
2
which satisfies the bosonic commutation relations H=, f drw!(r,t) ;_M+U(r) V(1,1
m
[Wi(r,), W] (r' H)]=8;8(0—r"). )

h
n tpt t gt
Accounting for the possibility of two-body collisions, its dy- * Zj dri(Cot Co)[ Wy Wy Wy Wy FW_y W Wy Wy

namics is described by the second-quantized Hamiltonian " " " M-
+2V Wo(V W1+ W_) ]+ oWV WPy

Hzf dr Wi(r,t)HoW(r,t) +2(co—C)Viw, vl ¥,

+2c,(PIwT WoW o+ H.c)) (10)

+ t 1 _
f {AryWiry, OWH(r2 OV(r =) Wiy W, b, This form of the Hamiltonian is quite familiar in quantum

3) optics, where it describes four-wave mixing between a pump
beam and two side modes, which are identified with the field

where the single-particle Hamiltonian is operators¥, and ¥ .., in the present situation. Specifically,
we observe that the three terms in the two-body Hamiltonian
Ho=p%/2M + Viap (4 which are quartic in one of the field operators only, i.e., of
o the form \Ifﬁ‘l’f“\lfﬁlfi, can be readily interpreted as self-
and the trap potential is of the general form defocusing terms, corresponding to the fact that the two-
1 body potential is, for a positive scattering length and a scalar
- _ _ field, analogous to a defocusing cubic nonlinearity in optics.
Virep™ m:2_1 U(n)[F=1m)(F=1m]|. ®  The terms involving two “modes,” i.e., of the type

WW W, conserve the individual mode populations of

Here p is the center-of-mass momentum of the atoms ofthe modes and simply lead to phase shifts. Finally, the terms
massM and U(r), the effective dipole trap potential for involving the central moda’, andboth side modes are the
atoms in thg1,m) hyperfine state, is independentroffor a  contributions of interest to us, since they correspond to a
nonmagnetic trap. redistribution of atoms between the “pump” mode, and

The general form of the two-body interactidf(r;—r,)  the side mode® ., e.g., by annihilating two atoms in the
has been discussed in detail in R¢&11]. We reproduce its  central mode and creating one atom each in the side modes.
main features for the sake of clarity. Consider situationsThis is the kind of interaction that leads to phase conjugation
where the hyperfine spiffi=1 of the individual atoms is in quantum optics, except that in that case the modes in
preserved. We label the hyperfine states of the combineguestion are modes of the Maxwell field instead of the
system of hyperfine spirfF=F;+F, by |f,m) with f Schralinger field. Note also that a similar mechanism is at

=0,1,2 andn=—f, ... f. In the shapeless approximation, the origin of amplification in the collective atom recoil laser

it can then be shown that the two-body interaction is of thlCARL) [12,13, except that in that latter case, the Schro

general form9] dinger field mode coupling is induced by optical transitions
) in the atoms.

In the Hartree approximation, which is well justified for

V(ri—ry)= 5(r1—r2)f20 hgiPr, ©®) condensates at=0, the many-body problem reduces to an

effective single-particle problem for the Hartree wave func-

where tion ¢, (r,t). Itis easily shown that its dynamics is governed

by the system of coupled nonlinear Sctlimger equations
gi=4mha; /M, (7 [14]
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1[ p? . I-1>
ip_q(r,t)=+ _+U(") b1+ N{Capodop1+[(CotCp) o
— (
X (|- 1|>+ [ ol?) +(Co—C2) | 1|21}, 11>
1 p2 FIG. 1. Geometr - j i i
.1 y of the matter-wave phase conjugation with
i po(r,t)= om FUM) ot N{col ¢pol*¢po+ (Co+C2) three-component vector fields.
X(|p_1|?+|p1|?) do+2 gy, (11 . o
([6-al"+1dal*) pot 2c2¢100-160},  (11) Substituting this expression into Eq4.1) and projecting out
1] p? the transverse part of the wave function yields the coupled
|¢1(f t)=— —+U (r) | p1+N{Crpodod” 1 one-dimensional Gross-Pitaevskiioupled-modgequations
+[(CO+C2)(|¢1|2+|¢0|2) ' P
+(co—Cp)|b_1|21b1}. lp_1(z,t)=— M 2% 1+N7{Co0opoe1 +[(CotC2)
Just as in the familiar quantum optics case, we consider in X (|e_1]?+|@ol?) + (co—C2)| e1]?To_1},

the following a situation where the central mode, described

by the Hartree wave functiogh,, is strongly populated ini-

tially, while the side modesgb., are weakly populated. In ) b 92

other words, we consider the phase conjugation of a weak i¢o(z,t)=— M —2¢0+N7I{Co|@00|2€0o+(00+ Co)

atomic beam from a reasonably large condensate. In that Jz

case, it is appropriate to introduce the matter-wave optics > 2, 2) ot 2¢ * 16

equivalent of the undepleted pump approximation, whereby (-1l +ledD o 2¢10-1¢0} (16
$o=0. (12 .

ip(z,t)=— =— — ¢, +N7yfc * +l(cotc
In that case, the problem reduces to a set of coupled-mode er(z) 2M 572 1t N7iCe0p0e™ 1 [ (CotCo)

equations for the two side modes.,, the central mode 5 5 5
acting as a catalyst for the coupling between them. X (| @a]“+|@ol®) +(Co—c2)| @11},

Ill. PHASE CONJUGATION IN DIPOLE TRAPS where

In what follows we consider atomic samples confined in a
two-dimensional harmonic trap. The trap potentia(r),
which is as we recall independent of the atomic internal state f dxdyle, (x,y)|*
m [9] for a dipole trap, is taken to be of the harmonic form

(17
U(r)=Mwd(x?+y?)/2 (13) fdxdylsm (x y)l2

for simplicity. That is, we assume that the dipole trap con-

fines the atoms in the transverse plamey§, but not in the The physical situation we have in mind is that of a weak
longitudinal directionz. This geometry allows one to con- “probe” in the hyperfine staten= —1 propagating toward a
sider side modes propagating along that axis, rather thalarge condensate in state=0 and at rest in the dipole trap,
bouncing back and forth in an elongated trap. In case of tightnd generating a backward-propagating conjugate matter
confinement in the transverse direction, we can assume towgave in the hyperfine statm=1 (see Fig. 1L Hence we
good approximation that the transverse structure of the corexpress the longitudinal component of the Hartree wave
densate is not significantly altered by many-body interactiongunction as

and is determined as the ground-state solution of the trans-

verse potential.

Expressing the Hartree wave function associated with the ¢-1(z1) Y_q(z,t)e'kze Tt
hyperfine leveim as wzt=| ezt | =| 200c08ke ¥ | (19
Pm(r,t)= (PL(XaY)(Pm(Z,'[)efiwot, (14 ¢@1(z,1) zpl(zf[)e*'kze*'wt

we then have .
where the slowly varying envelopefs, of the Hartree wave

w2 5 92 function componentm= *+ 1 satisfy the familiar inequalities
ﬁwO@L(X:y): _m y‘i‘o"—yz)
Mg - <k‘ o] <Kl (19
w _ el — .
+ 00y gL xy). (9 P P
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and we have additionally invoked the undepleted pump ap- Yy(0)= —ie‘iﬁtar(|K|L)¢*_1(0), (25)
proximation(12). Note that in this ansatz the “pump” wave
function ¢, is described by a standing wave. This spatialwhich demonstrates that the interaction of the probe and the
structure is required in order to achieve momentum consefcondensate results in the generation of a counterpropagating
vation, a direct consequence of the fact that a standing wavghase-conjugated signal. Note that the intensity of the con-
can be viewed as a superposition of two counterpropagatingigate wave exceeds that of the incoming wave foé
atomic waves. A state with such a periodic spatial structure<|x|L <3#/4 and phase conjugation oscillatiof®CO) [17]
can be achieved, for instance, by interfering two condensatesan occur fof k|L = 7/2, the so-called oscillation condition.
[15], in a grating matter-wave interferometgt6], or in
CARL [13]. To the first order in the probe and signal fields,
this geometry leads to a linearized system of two coupled-
mode equations for the probe and condensate fields. In the In order to determine the feasibility of matter-wave phase
stationary state they reduce to conjugation in state of the art experiments, we briefly discuss
the values of the oscillation parametpt|L that can be

IV. EXPERIMENTAL FEASIBILITY AND OUTLOOK

ak o ; i 3 ; ; ;
; 7 — 2 % achieved in current®Na Bose-Einstein condensatiéBEC)
'5M 7z - 1(2)==Nn[2(Co+Cr)poty—1(2) +Cathb1(2)], experiments.
(20) From the definition(23) we have
Rk 9 | . .
507 25 ViD=~ N7l 2(Co+ C2)pothi (2) + Cotss " ¥-1(2)], 2, a
|<[L~N7p—5—, (26)

wherepo= 40|

The form of these equations is familiar from optical phasewhere we have taken that due to normalizat'mﬁL:poL
conjugation and their solution is well known. Before giving ~1 and thaf9]
them explicitly, though, we note that they contain two con-
tributions. For instance, the equation for the phase-conjugate Co,=4mh(a,—ay)/3M, (27
wavey; contains a term proportional to the dengityof the
condensate and the field itself. In the absence of the secomdth a; anda, being the singlet and triplet state scattering
term, it would simply lead to a phase shift ¢ . Physically, lengths, respectively. For sodium, these scattering lengths
it results from the self-interaction of the conjugate field, cata-are estimated af9] (a,—ag)/3~0.048,~10 1% m. In the
lyzed by the condensatpump component. Its origin can be MIT optical confinement experimentg}] the number of
traced back to the term proportional ¥6{¥ ', W W, in the  trapped atoms is of the order 0&L0° to 10’ and the trans-
Hamiltonian(10). The second term, in contrast, couples theverse dipole trap frequenay, is of the order of 16 sec*,
two side modes via the condensate and is responsible f&o that the transverse ground-state size of the condeasate
phase conjugation. Note that it is not proportional to theshould be determined from the Thomas-Fefi8] rather
condensate density,, but rather toy2. We return to this than from the single-particle approximation, see ELp).

point later on. This gives [18] a, =ap,(15Nag/an)"*~10a,,, where
The general solution of Eq$20) reads[17] ano=+VhA/mwy~0.5 um is the single-particle ground-state

size in a harmonic trap. Consequently;-a; >~10° m~2
and the oscillation parameter g|L~10"/k wherek is as
we recall the wave number of the pump side mode, see Eq.
(18). In case the condensate side modes are obtained by dif-
+cog|«|(z—L)]y-1(0)}, (21)  fraction on a standing light wavgL6], we havek=2m/\
~10" m~!and thug|L~ 1. This means that the oscillation
condition |k|L= /2 can be met in current BEC experi-
ments.
. _ig . N The characteristic time scale over which the population of
+ie” P sin| | (z— L)1y 1 (0)}, the conjugate side mode builds up can be estimated from Eq.
(21): The characteristic length over which the population
transfer between modes takes place isx2 !, correspond-
a=2N75(Cy+Cy)po, (22)  ing to a characteristic timg =27/ xv for atoms of velocity
v="nhkIM~2.5x10 2 m/sec. In typical current BEC experi-
N 7C, 42 ments the longitudinal size of the condensates is _about
= 1AM (23)  ~300 um so thatt,~27L/v~10"1 sec for|x|L~1. This
time is well below the lifetime of optically trapped spin-1 Na
and condensates.
In addition to its interest from a nonlinear atom optics
e'f=xl|«|. (24)  point of view, matter-wave phase-conjugation could also be
used as a diagnostic tool for Bose-Einstein condensates. For
For the probey_,(0) incident atz=0 and no incoming instance, we noted that the parameteli. is proportional to
conjugate signal;(L)=0, the conjugate wave in the input the difference in scattering lengths between the singlet and
planez=0 becomes triplet states. Hence, this quantity could in principle be in-

iaz

lﬂfl(Z)Zm{—iefi%imﬂz)ﬁ(l—)

iaz

lﬂl(z)zm{coﬂﬂz)%(u

where

K
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ferred from phase conjugation measurements. In addition, wkigher-order correlation functions in the atom statistics of the
recall that the phase conjugate signal is not determined bghase-conjugate mode.

the condensate densipy, but rather byy3. While the dis-
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