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Sympathetic cooling of an atomic Fermi gas by a Bose gas is studied by solution of the coupled quantum
Boltzmann equations for the confined gas mixture. Results for equilibrium temperatures and relaxation dynam-
ics are presented, and some simple models are developed. Our study illustrates that a combination of sympa-
thetic and forced evaporative cooling enables the Fermi gas to be cooled to the degenerate regime where
guantum statistics and mean-field effects are important. The influence of mean-field effects on the equilibrium
spatial distributions is discussed qualitativel$1050-294709)03402-2

PACS numbe(s): 03.75.Fi, 05.30.Fk, 05.30.Jp, 05.20.Dd

. INTRODUCTION with Fermi temperature given bEr=kgTe=7%w(6N;)?,
which is in thermal contact with a similarly confined gas of

The magnetic trapping and forced evaporative cooling ofN, bosons with  condensation temperaturégTc
alkali-metal vapors has led to the Bose-Einstein condensa=# (Np/1.202)3. By evaporatively cooling the Bose gas
tion of a number of different atomic specifk|. As a con-  through T down to a temperature;Tc(0<7<1), the
sequence, the many-body physics of confined, weakly intef=ermi gas will equilibrate to the Fermi temperature provided
acting Bose gases are now amenable to experiment®;< 73Nc/7.212, whereNc<N, is the number of con-
investigation. To date, most experimental and theoretical redensed atoms remaining. Solution of the QBE gives both the
search on degenerate atomic gases has focused on bosemgrgy and spatial distributions of the Bose and Fermi gases.
[2]. Recently, some exotic systems have been investigatetin important limitation of our present treatment is the ne-
experimentally. These include the Bose condensation of spiglect of mean-field effects on the dynamics. These are poten-
mixtures of 8’Rb using sympathetic coolin@] and a report tially important when the Bose and Fermi gas are degenerate
of spin domains of*Na in an optical tra4]. There is now and the mean-field energy exceeds the trap frequency. In a
a growing interest in the properties of degenerate atomicecent paper, Mimer[12] used a simple mean-field model to
Fermi gased5-11 and boson-fermion mixturegl2], al-  study the spatial distributions of a Bose-Fermi gas mixture at
though to date a degenerate atomic Fermi gas has not be@=0 K. The distributions depend strongly on the relative
achieved. sign and magnitude of the boson-boson and boson-fermion

In this paper we investigate the process of sympathetigcattering lengths. A complete and numerically tractable ap-
cooling of an initially nondegenerate Fermi gas to the quanproach to quantum kinetics, which incorporates such mean-
tum degenerate regime using a Bose gas as a coolant. Syfiield effects in addition to the population dynamics, is still
pathetic cooling of a Fermi gas to degeneracy is necessary asider investigation. A qualitative discussion of the influence
a result of the suppression afwave scattering between of mean-field effects on our results is given in Sec. IV.
identical fermions in spin symmetric states. Evaporative The remainder of this paper is organized as follows. In
cooling of a pure fermion gas trapped in a single hyperfineSec. Il we discuss the equilibrium temperatures for an ini-
state, which depends on rethermalization through atomic cokially hot Fermi gas placed in thermal contact with a cold
lisions, is thus ineffective at temperatures sufficiently lowBose gas. We also derive a simple dynamical model for the
that only the lowest few partial waves contribute. The Fermithermalization using the assumption that both gases are de-
gas may instead be cooled by thermal contact with a coldcribed by a Maxwell-Boltzmann distribution at all times. In
Bose gas, which may be either already condensed befor®ec. Il we describe a theoretical model based on the QBE
thermal contact with the Fermi gas or evaporatively cooledor the Fermi-Bose mixture and the treatment of forced
in its presence. We investigate the dynamics using the quarvaporative cooling. In Sec. IV we present results of solu-
tum Boltzmann equatiofQBE) for the Bose-Fermi gas mix- tions of the QBE which provide information on the kinetic
ture. The QBE has been applied to describe the populatiotemperature and spatial distributions of the mixture. Using
dynamics for a Bose gas by a number of authors who solvegecent atomic data we also present some results for the sym-
it by direct integration[13,14], trajectory simulation[15],  pathetic cooling of the’K/3°K Fermi/Bose potassium iso-
and Bird’s simulation methoffl6]. The first two sets of au- topes. Finally, in Sec. V, we summarize our conclusions.
thors make the assumption that the distribution is ergodic at
all times [17] to simplify the numerical computation,
whereas in Bird’s method collision dynamics are constructed Il. EQUILIBRIUM PROPERTIES AND COOLING
from simulated particle trajectories. In this paper we solve WITHOUT FORCED EVAPORATION
the QBE in the ergodic approximation by direct integration
of the coupled differential equations which describe the
Fermi and Bose gas distribution functions. If two gases at different initial temperatures are brought

We consider a harmonically trapped gasNof fermions  into contact, they will rethermalize to a common equilibrium

A. Equilibrium temperature
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temperature which can be obtained using conservation o 35
particle number and enerdgypverbar indicates average en-

ergy), 3t
€tor= €1(0) + €,(0) = () + (), (1) 25t

assuming that there are no losses during relaxation. For
Bose-Fermi gas mixture the equilibrium temperatlizecan

be found numerically using the Bose-Einstein and Fermi-_3
Dirac distribution functions as follows. Given the number of = [
bosonsN, and fermionsN¢, and the initial temperatures
Tp(0) andT;(0) we setT;=T, at each iteration step and !
compute the fugacitg; for the Fermi gas by solving

w 2r

05 #

Ni=2 gle)(z e/ eTr+1) %, 2
€i 0 2 4 8 8 10 12

| . T(O)/T,

with g(¢;) the degeneracy of states with enekgy We then

compute the mean energy(z;,T;) for the Fermi gas and FIG. 1. Equilibrium temperature as a function of the initial

determineTl,, andz, for the Bose gas by the following itera- Fermi gas temperature in units ® . The number of fermions is

tion: sete,= e— €;(z¢,T;) and computel,, from Ny=10" (), N;=10" (), N;=1C°(), Ny=2x10° (0), Ny=4
X10°( <), Ny=1C (+). The solid lines show the results using Eq.
(5) and Eq.(6), respectively. The number of bosondNg=10° and

- _ —1.6 /kgTp__ -1 p— _
Eb_; €i9(€)(z, eTee—1) " 3 the initial temperature is always chosen Bg0)=0.1T¢ corre-
Sponding to Tb(0)= 0019|'C y 0042|—C y OOQTC y 0131'0 y
Then compute, by solving 0.14T¢, and 0.19 .
NbZE g(ei)(zgleei /keTp— 1)1 (4) and, in agreement _vvith Ed5), _Tw /Tg does not depend on _
P the number of fermions. If we increase the number of fermi-

o ) ons or alternatively the initial Fermi gas temperature, the
and repeat this iteration untiiNy(z,,Tp) =Np]/Np<10""  Bgse gas will be heated aboife and the equilibrium tem-
and[ ey(z,,Tp) — €,)/ €,<10" . We then seT;=T, and re-  perature shows the linear dependenceg(®) as derived in
peat the procedure untilf¢—Tp)/T<10 *. Eq. (6). From our numerical studies we find that Fermi sta-

For temperature3;=0.5T¢ and T..<Tc an approximate tistics become significant only faf;=<0.5T (see alsd18]),
equation can be obtained using a classical Maxwellwhich in general can be reached with additional evaporative
Boltzmann distribution for the Fermi gas and a Bose distri-cooling of the gas mixture.
bution with z,=1 for the Bose gas. This yields

B. Thermalization of a two-component mixture
LT T5(0)  T4(0) - i i
04(1) 5+ z=—=0a(1) ——+ , (5) We consider Bose and Fermi gases brought into thermal
Te 6Tk Te 6Tk contact in a confining potential, at different initial tempera-
. ) ) ) turesT,(0) andT;(0), respectively. We are primarily inter-
with the Bose-Einstein functiog,(1)~1.082. If T.>Tc,  ested here in a regime prior to a stage of forced evaporative
we can approximate the Bose-Einstein distribution with acqoling, in which the Bose gas as well as the Fermi gas are
Maxwell-Boltzmann distribution to obtain an explicit expres- nondegenerate. The thermalization may result in a significant
sion for the temperature, alteration in the energy and spatial distribution of fermionic
atoms in the trap. A simple dynamical description of the
T .= NiT:(0)+NoTo(0) _ (6)  thermalization can be derived using the classical Boltzmann
N¢+Np equation in the ergodic approximation. The mean energy of

_ . =(b,f) is gi b
In Fig. 1 we show the equilibrium temperature as a functloncomponenk (b.7) is given by

of the initial Fermi gas temperature scaled in unitsTef. _

The Bose gas consists of 9l@toms at initial temperature fk(t):f eF(et)p(e)de, (7)
Tp(0)=0.1TL(0), whereT depends on the number of fer-

mions, which is varied between 4@nd 16. In terms of the  where F(e,t) is the ergodic distribution function for com-
BEC temperature, the initial temperature of the Bose gas lieponentk and p(e) = €%/2(A )3 is the density of states for a

in the range 0.0Bc<T,(0)<0.2T¢. The full numerical re-  harmonic trap of mean frequenay= (w,w,,)'. For sim-
sults agree well with approximation Eq5) for N plicity, we asssume that both components see the same trap-
=10% 10%, and 10 in the temperature range considered.ping potential.

This is shown by the curves at the bottom of the figure, The time dependence of the energy of the Fermi gas is
which almost overlap the approximate solution. The equilib-then obtained by integrating the Boltzmann equalti®@]
rium temperaturd ., stays below the critical temperatufe ~ over all energies,




1502 W. GEIST, L. YOU, AND T. A. B. KENNEDY PRA 59

dE; 1 1
dt 70 (hw)®

f dElJ' dEzJ' dEsf dE4EZ/2E 1 8(E 1+ Ey— Es— Eg)[ Fi(E4,t) Fo(Es,t) — Fy(Ez, 1) Fo(Eq, )],
8

where all energies written with upper caSare dimension- The analysis shows that the time scale for relaxation is ap-

less, ie., E=e/fiw, Enp=min{E; ,E;,E3,Eq}, and the  proximatelyT,7o/N;. In Fig. 2 we compare the predictions
natural time scalery is given in terms of the Bose-Fermi of this simple dynamical model, with the full dynamics of
swave collision cross section ops by 1/7g  the QBE as discussed in the following section. The solutions
=(fiw)®moy¢/ w*#3. We have dropped the term which rep- show that the time scale that describes equilibration is on the
resents collisions between fermionic atoms assuming that thgqar of - =T,7o/N;~0.043r,, as predicted by Eqg12)
p-wave contribution is neglibible at the low energies under, 4 (13). '

consideration. If forced evaporative cooling is applied to the gas mix-

To get some qualitative insight into the thermalizationy, e atoms from the hot energy tail are removed. The rate of
dynamics, we need to further simplify the model. We assume, anoration must be chosen to be much smaller than the

that the component distribution functions are Boltzmann-like,q|axation rate of the gas, as discussed above. Another way

at all imes, and parametrized by time-dependent fugacity, getermine the relaxation time is to calculate the initial
z(t) and dimensionless temperatufg(t)=kgTy(t)/%iw as  mean collision ratey using the Boltzmann collision integral.
follows: Consider the collisions of a “test” atom, with energiEs,
_ = with atoms of energ¥,, into final states with energids,
FLE, z(1), Te(H) ] =2t e &MY, (9  andE,. One sums over all initial energiés,;, and divides
y the number of particles to get the energy averaged rate per

The average energy and particle number for a trappeaarticle,

Maxwell-Boltzmann distribution are given by

= _ A —x T.N)= N
E=5Tk dxxe™X, (10 )’(T,N)—T—? dX;dX0dX30X46(X1 + Xo— X3~ Xs)
0
N :Z—“? f dxx2e X (11) xﬁ‘efxle*“: N (15
2k 2 27T

. . _ _3 p— _ p—
from ‘.Nh'Ch it follows thatz,=Ny./Tj and Ei= 3Ny T The 4, gualitative agreement with the simple model above. We
fugacity of componerk can therefore be eliminated in terms 40 however, that the relaxation rate we have discussed

of the particle number and mean energy. Another simplificapere should not be regarded as the characteristic time scale
tion which results from the approximation is that the scatteryg, condensatiofi19—21].

ing of two bosons does not alter the average energy of the

Bose gas. 85 . . . . .
It is convenient to write the average energy in terms of a
dimensionless temperature, thus 80k - LD
1 JR—
_ i f
dTy  Npr® Xain e e Tus |
— = X X X X4 = i
dt 3TOJd1Jd2Jd3Jd42 70} ¢ '
><X15(X1+X2—X3—X4)(e_x4e_rx3—e_x2€_rxl) 265' 13
) 51
Ny, Seob 3
= S_P(Tf ITy), (12 A
o st
AL P(T /T 13 *f s
dt 37 ( f b)’ (13 45l T \\“—- ________________
wherer=T;/T,, and the rational function 405 0005 Y oots o6z 025 .03
T
1+3r+2r2—2r3—3r4—¢5
P(r)= (14 FIG. 2. The temperature of the Bose daslid line) and of the

5
(1+r) Fermi gas(broken ling as a function of time. The dotted line de-

o — ] _ notes the temperature obtained by solving the differential equations
The equilibrium temperaturé.. is obtained fromdT;/dT,  assuming a Maxwell-Boltzmann distribution with time-dependent

= —N,/N;. Integrating fromt=0 to o, we recover Eq(6).  fugacity and temperature.
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IIl. QUANTUM BOLTZMANN EQUATION AND FORCED B. Forced evaporative cooling

EVAPORATION Evaporative cooling in magnetic traps is performed by

A. Quantum Boltzmann equation inducing transitions to untrapped states with a radio-

[15,22. The QBE for an interacting two-component Bose-

Fermi mixture in the harmonic trap can be writterr ( The latter is a given decreasing function of time in the case

of forced evaporative cooling. A particle may be scattered

=t/ro) into a state with energf; <E.,(7) by two-body scattering
dbe. of atoms in states with energids, and E,, i.e., E, E,
g(Ei)d—T':ab E 5Ei+Ej .5 9(Ei E Ex.E) —E;,Ej, in Wh|(_:h_Ej>Ecut(7-)2 so_that one particle is lost
Ej .Ex.E from the trap. Similarly a particle in energy levgé] can be
scattered out of this energy levé; ,E;—Ey,E,, resulting
X [be, be,(1+bg,)(1+Dbe) in one particle loss from the trap when eithgr>E(7) or
—bg be (1+Dbg )(1+bg)] E,>E (7). Explicitly, we have the following
P K ! (@) The gain process for energy levg,
+ 2 5Ei+Ej ,Ek+E|g(Ei ,E] ,Ek ,E|) dnEi Ej<2Ecut(T)
Ei BB 9E)—T—=a %, +e . E9I(Ei.Ej.Ex.E)
dr E>Ecd>E B |
X[bg, fe(1—fe)(1+bg)
j XNg Ng (1+Ng). (19
~bg fe (1 Te) (1 +bg)], (16
(b) The loss process for energy level,
dei dnEi
9(E) 4, = aij %,& 9, +E; £ +EI(ELE) BB 9(EN4—
X[ e fe (1~ fe) (1~ fe) B2l
: =-2a > O, +E; £.59(Ei B .Ex.E)
—fg fe(1-fg)(1-fg)] B> Eaul > &
Xng ng, (1£ng), (20
+ X ek, £ e 9(EE)EGE) o _ _
Ej BB whereng, denotes the distribution function for Fermi or Bose
X[bgfe (1—feg)(1+bg) atoms with energf; , as appropriate.
' : The kinetics of forced evaporative cooling is modeled by
—bEjfEi(l—fEk)(lJr be )1, (17  adding these terms to the QBE, Eq%6) and (17), which

include all two-body collision processes between initial and

final statesi, j, k, and | with energies E;,E;,Ey,E,
whereb, andf,, are the number of Bose and Fermi atoms in<E_ (7) conserving the total number of particles in the trap.
stateE,,. The collision matrix elements are approximately

given by IV. RESULTS AND DISCUSSION

In this section we illustrate the dynamics of sympathetic
cooling of Bose-Fermi gas mixtures, through their energy,
state, and spatial distribution functions. The spatial distribu-
with g(E,) the degeneracy of energy levg},, andE,,is  tions of confined degenerate Bose and Fermi atomic gases
the minimum energy of all four energies involved in the are quite different. An ideal Bose condensate has a size de-
scattering process, as defined earlier. Although this approxtermined by the quantum width of the trap ground state
mation is not quantitatively accurate for the lowest severaF JA/2M w, whereas the size of a Fermi gas is governed by
states of the trap, it is sufficient to illustrate the main quali-the Fermi width Rg=(Er/2M 0?)*2, which scales asRp
tative features of sympathetic cooling. In an isotropic trap~Nf1’GI, as a result of the Pauli exclusion principle. For an
the degeneracy of the energy statg=#fw(n—1),n interacting Bose gas, with positive scattering length, the con-
=1,2,..., is g(Ey)=n(n+1)/2. The coefficients ay, densate is larger thdnand for strongly condensed gases its
=oppl/ops andas= o/ o give the ratios of the cross sec- size can be estimated using mean-field theory in the Thomas-
tions for boson-boson and fermion-fermion scattering, refFermi approximatiori23]. Mean-field effects, which can be
spectively, to the boson-fermion cross section. Exchangsignificant well below the condensation temperature, are not
symmetry leads te; =0 since thes-wave cross section van- included in our model. These may be important in the final
ishes for identical fermions. Of course, this is the reason wetages of cooling if the Bose gas is already strongly con-
must employ sympathetic cooling with a Bose gas refriger-densed at this stage. Our illustrations of the spatial distribu-
ant. tions of both Fermi and Bose gas employ the universal scal-

9(Ei . Ej ,Ex,E)=09(Emin), (18)



1504 W. GEIST, L. YOU, AND T. A. B. KENNEDY PRA 59

5 -

4 - B
3 003 B
) = <
EZ mih. "-'

1 o001 \

0 FIG. 3. The Fermisolid line) and Bosgdot-

0 200 400 600 800 1000 0 1 2 3 4 ted line distribution functions at timesr
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af  ~ the number of atoms as a function of energy and
a3 I/ \ ?0_03 the graphs on th(_e.right show the spatial distribu-
%2 \\ £ tion. Initial conditions areN,(0)=10°, N;(0)
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ing described by Butts and Rokhsdi8], who showed that  gas alters considerably over a time scaf&; /N, [Eq. (12)].
for a harmonically trapped ideal Fermi gasTat 0, Initially a hot tail of atoms extends to the trap extremities
) and during the early stages of equilibration the Fermi gas
n(r)= & E[l—(L) 1) distribution deviates significantly from a Fermi-Dirac distri-
RE 2 Re bution which fits the average energy and particle number.
The gas then equilibrates to a nondegenerate state as can be
It should be remembered that with evaporative cooling theseen from inspection of the peak of the spatial distribution
number of fermionic and bosonic atoms is a time-dependerfunction, n¢(r =0)<1 [18]. The Bose gas has one hundred
variable, and therefore so Rg. In the figures we always times more particles than the Fermi gas, and completely en-
scale with respect to the instantaneous valu®gof velops the Fermi gas at all times. Figure 2 compares the
In Figs. 2 and 3 we present the rethermalization of a nonsimple model of thermalization discussed in the preceding
degenerate Fermi gas immediately after it is placed in thersection with the QBE. The model is very good in the early
mal contact with a Bose gas which is initially at the Bosestages, but the agreement deteriorates in the intermediate re-
condensation temperatufie.. The calculation is performed gime before steady state is achieved.
by numerical integration of the QBE without any forced In Figs. 4 and 5 we consider the forced evaporative cool-
evaporative cooling. In Fig. 3 the temperature of the Ferming of both gases. In contrast to Figs. 2 and 3, there ate 10

100
- v 0.1
. - 0.4 .
@ sof D £ o3 : 005 FIG. 4. The Fermisolid line) and Bosgdot-
b ‘é 02 . ted ling distribution functions at times=0, 0.9,
0.1 T and 2.0. The graphs on the left show the number
o o 20 3% 400"'-500 05 ; 2"- p y 5 of atoms as a function of energy, the graphs on
the right show the spatial distribution, and the
180r T inset shows the number of fermions per energy
10o:.."'n. = 04 L os divided by the degeneracy. Initial conditions
g [ Z 03 R are Np(0)=10°, N¢(0)=10%, T,(0)=Tc=43.7,
S sl 2 02 - T;(0)=5T-=186. From r=0 until 7=0.04 the
0.1 Y % m o cutoff_ for the Bose gas i&.,~=500 and for the
o = o0 pros 00 0, ; > s . Fermi gfiSEcut: 1000. After.r:0.04 the cutoff
energy is ramped down with a rate=1.0 for
200 N ; both gases starting atEqy=500. [Ec(7)
150} = : =e ""Eq.] The fit to the Fermi distribution is
@[l £ 05 also drawn as a broken line. The temperatures
W00 - — il
I . ﬂé* from top to bottom are T;(7)=5Tg,
%o . of S 0.6T¢,0.14T and Ty(7)=Tc,0.5T¢,0.1T¢..
% 1 20 80 40 &0 2 3 4
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12000 11
10000 10
9
8000
z =8
6000
7
4000 6
2000 5 FIG. 5. Upper graph: the number of bosons
0 v, 8 8 0 v,z 8 and fermions remaining in the trap. Lower graph:

the temperature of the gases as a function of time.
The dotted lines show the critical temperature for
the Bose gas and the Fermi temperature.

bosons and 10fermions, initially. The forced cooling begins unit occupancy for low-lying levels. It is interesting to note
after the initial equilibration stage during which the bosonthat evaporative cooling of the Fermi gas still proceeds at
temperature increasébig. 5), following thermal contact of later times when the spatial overlap between fermions and
the two gases. The evaporative cooling time scale is choséfosons is mainly in a small region at the center of the trap
to be 7y, which is much longer than both the relaxation time where the condensate is located. The collisions which result
scale of the one-component Bose ¢&s. (15)] and the re- in cooling involve orbits of hot fermions through the trap
laxation time scale of the Fermi gas with the Bose §&s.  center where they collide with cold condensed bosons. At
(12)]. The Bose gas energy distribution shows the formatiorthis stage evaporation mainly results in depletion of fermions
of the condensate and the corresponding spatial distributioas can be seen in Fig. 5. We also simulate the case when the
contracts to that of the condensate with a small thermal comevaporative cooling involves only the loss of Bose atoms
ponent. The degenerate Fermi gas is then exposed and fi®m the trap. In Figs. 6 and 7 we consider the same initial
spatial distribution is close to the zero-temperature Il6§.  conditions as for Figs. 4 and 5, but only ramp down the
(21)], which has a maximum density at the trap centercutoff energy for the bosons. The results are qualitatively the
nf(O)Rﬁle=8/w2~0.81. The inset shows the state occu-same as in the former case where both Bose and Fermi gas
pancy for the Fermi distribution with the characteristic particles evaporate, except that we end up with more par-
smearing of the Fermi surface at finite temperature, and nedicles left in the Fermi gas. As mentioned earlier, we have

100

- B ". 0.1
- M _. 04 .
@ sof g o3 B 005 FIG. 6. The Fermisolid line) and Bose(dot-
€ °§* 0.2 ted ling distribution functions at times=0, 0.9,
0.1 O and 2.2. The graphs on the left show the number
0 LT 0 2 of atoms as a function of energy, the graphs on
0 100 200 300 400 500 0 1 2 3 4 5

the right show the spatial distribution, and the

150 -

1002

inset shows the number of fermions per energy
divided by the degeneracy. Initial conditions

@ ; areN,(0)=10°, N¢(0)=10*, T,(0)=T;=43.7,
= ol s T:{(0)=5T=186. Fromr=0 until 7=0.04 the
N cutoff for the Bose gas i&,. =500 and for the
s = ""150 Fermi gasE;,= 1000. After 7=0.04, the cutoff
energy is ramped down with a rate=1.0 only
5001, for the Bose gas starting d&y=500. [E(7)
4007 = =e ""Eq.] The fit to the Fermi distribution is
@ 300F ; also drawn as a broken line. Tﬁe temperatures
< 200 \ e from top to bottom are T¢(7)=5Tg,
1007 \ 0.5T¢,0.14T¢ and Ty(7)=Tc,0.5T¢,0.14T¢ .

40
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11 "

10

09 5 FIG. 7. Upper graph: The number of bosons
0 . . and fermions remaining in the trap. Lower graph:
the temperature of the gases as a function of time.
The dashed lines show the critical temperature

for the Bose gas and the Fermi temperature.

not included the effect of the bosonic mean-field which carfile of an ideal Bose gas is almost Gaussian and the mean
alter the spatial distributions of each component dependingensity of the ground state beconmes=Ny/7¥43. The ra-

on the mean field strength, the ratio of the scattering lengthsjo of the mean-field strength to the trap energy is then
and the particle numbers of both compondriiz].

A possible experimental scenario for sympathetic cooling Emean \F ay, .
of a Bose-Fermi mixture involves two isotopes of potassium. Y= 7o~ V77 No=1.72<10No. (22)
Recent calculations predict tleewave scattering length for
the bosonic isotope®K to be a(**K)=a,=4.3 (hm) with
corresponding cross sectio:mbb=8772a§ and the swave
scattering length betweetiK and the fermionic isotop€’k  example of evaporative cooling for a spin-polariz&%
to be a(*K—*K)=a,;=2.5 (nm) with cross sectionoys  —3% mixture of 16 bosons and Fofermions at initial tem-
=4m’ap; [24]. Using M(*K)=6.6x10 > kg and ®  peraturesT,=Tc=0.3(K) and T;=7.2Tr=1.8(xK) and
=400 (Hz) sets the time scaley=1254 (s}~20 (min).  cutoff energyE.,(0)=1000. We estimate the boson scatter-
Mean-field effects become important when the mean-fieldng rate using Eq(15), which yields~5x 10°/ 7. From 7
strengthE ea=[ 4 7% 2a, /M (*%K) In, is of the order of the =0 until 7=0.04 the cutoff energy remains Bt,,=1000.
level spacingi w [25]. At the onset of BEC the density pro- During the thermalization the Bose distribution completely

Further discussions of the influence of mean-field effects on
our results is given below. In Figs. 8 and 9 we present an

0.04 - _ . .
200 < = FIG. 8. Sympathetic cooling of the fermionic

iy = potassium isotope’®K by the bosonic isotope

£ 100 »ﬁx 3%. The Fermi(solid line and Bose(dotted

‘a.
3

line) distribution functions at timesr=0,
3.6x1074 4.7<1072, and 6.x10°2 The

150 - graphs on the left show the number of atoms as a
5100 PR S E function of energy, the graphs on the right show
L g . ,ﬁ the spatial distribution, and the inset shows the

= number of fermions per energy divided by
% 200 400 600 800 1000 the degeneracy. Initial conditions ard,(0)
100 _ =10°, N¢(0)=10°, T,(0)=Tc = 94.1, T+(0)
- £ =7.2Tr=590.4. From7=0 until 7=0.04 the
E200 =, o cutoff for both gases, = 1000. After r=0.04
0 . = the cutoff energy is ramped down with a rage
() 200 400 600 =100.0. The broken line denotes the fit to the
T 5 . Fermi distribution. The Fermi gas temperatures
- 1000f; = from top to bottom are T(7)=7.2
< s00[+ viu Te,1.62T¢,0.67T, and 0.1 . The Bose tem-
olilene.. N perature is Tp(7)=T¢, 1.02Tc, 0.63T¢, and
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0.17T¢.



PRA 59 SYMPATHETIC COOLING OF AN ATOMIC BOSE-FERM. .. 1507

x10 x 10

10 1

9 10

8 9

z z°

7 8

6 7

5 6 FIG. 9. Upper graph: the number of bosons
0 002 004 0.06 0 002 004 0.0 and fermions remaining in the trap. Lower graph:

the temperature of the gases as a function of time.
The dashed lines show the critical temperature
for the Bose gas and the Fermi temperature.
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envelops the Fermi distribution, which deviates significantlyfermion-boson scattering length the stationary distributions
from its equilibrium distribution. As one can see from Fig. 9, may be unstable and dynamically change as a result. In the
the number of fermions almost remains the same whereaslatter case, mean-field effects qualitatively change the nature
large number of bosons are evaporated. After0.04, the of the problem, and thus our results will not apply.
cutoff energy is ramped down exponentially with ratg,,, In our simulations the number of bosons is always much
=100/r, until 7=0.064=80.25(s). At the early stages of the larger than the number of fermions. In this case we can ne-
forced evaporation the number of bosons decreases unfilect to first order the influence of the fermions on the boson
most of the bosons are in the condensate and evaporati@patial distribution. The boson density is then given by the
mainly leads to depletion of fermions. The simulation showsThomas-Fermi approximation
that the Fermi gas can be cooled to a temperaflire . R
~0.1T with more than % 10 fermions left in the trap. Np(1) =[x —Vex(r)l/ap, (23
In practice there are some additional issues that must be R
considered. The isotopes have different mass and magnetiéhereVe(r)=M w?r?/2 denotes the harmonic trapping po-
moment, which means that in general the clouds will be distential and the chemical potentialis fixed through the con-
placed with respect to one another due to the combined etiition fdrn,(r)=N,. Explicitly, this yields
fects of gravity and the magnetic trapping fof@&. Sympa- o 3o
thetic cooling can only proceed efficiently if good overlap | [ Mo 15
between the gases is maintaij€6,27] and effects of super- =57 gy b
fluidity can be ignored28]. Even if we assume this has been
achieved, the difference in magnetic moments will cause thédhe bosonic mean field produces the well known broadening
trap frequencies to be different for the Bose and Fermi gasf_)f the boson density distribution relative to the ground-state
For example, if the bosonic®K(1=7/2, where |, is the size of the trap. The corresponding spatial distribution of
nuclear spin is polarized in the statfF=2, Mg=2), and fermions can be found from the equatift?]
the fermion isotope’K (1 =4) is polarized in the statgF )
=7/2,Mg=—7/2), the trap frequencies would be in the ra- —[6w2nf(F)]2’3+
tio of 7:9. In our calculation we assume the trap frequencies 2M
and masses to be identical. (25
For degenerate Bose and Fermi gases, mean-field effects ) ) IR o
can strongly influence the spatial distributions. Here we disWhere Er is determined byfdrn(r)=N;. Explicitly the
cuss how these effects qualitatively change the stationar§€nsity is given by
distributions presented above, using the zero-temperature 21302
model discussed by Mmer[12]. If the number of bosons is _ & E[l Aps M L) } (26)
much larger than the number of fermions, thenags in- Rf_l 2 Re
creases relative tay(ays, a,>0), the fermion distribution
is displaced further and further outside of the central core ofvhich may be compared with Ed21) for an ideal gas.
the trap occupied by the bosons. When the particle numbeiGlearly the mean-field effects cause a broadening in the spa-
are similar, the bosons are displaced outside the fermion reial distribution of the fermion cloud foay;<a,. If ap;
gion in the same limit. On the other hand, for large negative>a,,, the fermions experience an inverted harmonic-
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Ved 1)+ ~1n=E¢,
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oscillator potential near the origin which repells them fromcoupled QBE equations for the Bose-Fermi mixture were
this region. In our results presented above, and in particulgpresented. These include investigations of the use of forced
for the example of the potassium isotopes, we always havevaporative cooling to enhance the degeneracy of the Fermi
api<ay/2. As a result, mean-field effects will result in a gas. While the QBE does not include mean-field effects,
broadening of both Bose and Fermi gas spatial distributionsihich are potentially important in the quantum degenerate

but not a relative displacement of the clouds. regime, we have discussed their qualitative effects on the
results presented, whea,>a,:>0. In this instance, mean
V. CONCLUSION fields lead to a broadening of both the Bose and Fermi spatial

. ) ) distributions, but not a relative displacement of the clouds.
We have discussed the cooling of a confined nondegener-

ate Fermi gas to quantum degeneracy using an ultracold ACKNOWLEDGEMENTS
Bose gas coolant and evaporative cooling. Results for the
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