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Sympathetic cooling of an atomic Bose-Fermi gas mixture

W. Geist, L. You, and T. A. B. Kennedy
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Recieved 18 August 1998!

Sympathetic cooling of an atomic Fermi gas by a Bose gas is studied by solution of the coupled quantum
Boltzmann equations for the confined gas mixture. Results for equilibrium temperatures and relaxation dynam-
ics are presented, and some simple models are developed. Our study illustrates that a combination of sympa-
thetic and forced evaporative cooling enables the Fermi gas to be cooled to the degenerate regime where
quantum statistics and mean-field effects are important. The influence of mean-field effects on the equilibrium
spatial distributions is discussed qualitatively.@S1050-2947~99!03402-2#

PACS number~s!: 03.75.Fi, 05.30.Fk, 05.30.Jp, 05.20.Dd
o
s

te
n
r

os
at
sp

m

be

et
an
y

ry
n
iv
n
co
w
m
o
fo
le
a

-
tio
lve

c
,
te
lv
on
th

of

s

ed

the
ses.
e-
ten-
rate
In a
o
at

ve
ion

ap-
an-

till
ce

In
ini-
ld
the
de-

In
BE
ed
lu-
ic
ing
ym-

-

ht
m

I. INTRODUCTION

The magnetic trapping and forced evaporative cooling
alkali-metal vapors has led to the Bose-Einstein conden
tion of a number of different atomic species@1#. As a con-
sequence, the many-body physics of confined, weakly in
acting Bose gases are now amenable to experime
investigation. To date, most experimental and theoretical
search on degenerate atomic gases has focused on b
@2#. Recently, some exotic systems have been investig
experimentally. These include the Bose condensation of
mixtures of 87Rb using sympathetic cooling@3# and a report
of spin domains of23Na in an optical trap@4#. There is now
a growing interest in the properties of degenerate ato
Fermi gases@5–11# and boson-fermion mixtures@12#, al-
though to date a degenerate atomic Fermi gas has not
achieved.

In this paper we investigate the process of sympath
cooling of an initially nondegenerate Fermi gas to the qu
tum degenerate regime using a Bose gas as a coolant. S
pathetic cooling of a Fermi gas to degeneracy is necessa
a result of the suppression ofs-wave scattering betwee
identical fermions in spin symmetric states. Evaporat
cooling of a pure fermion gas trapped in a single hyperfi
state, which depends on rethermalization through atomic
lisions, is thus ineffective at temperatures sufficiently lo
that only the lowest few partial waves contribute. The Fer
gas may instead be cooled by thermal contact with a c
Bose gas, which may be either already condensed be
thermal contact with the Fermi gas or evaporatively coo
in its presence. We investigate the dynamics using the qu
tum Boltzmann equation~QBE! for the Bose-Fermi gas mix
ture. The QBE has been applied to describe the popula
dynamics for a Bose gas by a number of authors who so
it by direct integration@13,14#, trajectory simulation@15#,
and Bird’s simulation method@16#. The first two sets of au-
thors make the assumption that the distribution is ergodi
all times @17# to simplify the numerical computation
whereas in Bird’s method collision dynamics are construc
from simulated particle trajectories. In this paper we so
the QBE in the ergodic approximation by direct integrati
of the coupled differential equations which describe
Fermi and Bose gas distribution functions.

We consider a harmonically trapped gas ofNf fermions
PRA 591050-2947/99/59~2!/1500~9!/$15.00
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with Fermi temperature given byEF[kBTF5\v(6Nf)
1/3,

which is in thermal contact with a similarly confined gas
Nb bosons with condensation temperaturekBTC
5\v(Nb/1.202)1/3. By evaporatively cooling the Bose ga
through TC down to a temperaturehTC(0,h,1), the
Fermi gas will equilibrate to the Fermi temperature provid
Nf,h3NC/7.212, whereNC,Nb is the number of con-
densed atoms remaining. Solution of the QBE gives both
energy and spatial distributions of the Bose and Fermi ga
An important limitation of our present treatment is the n
glect of mean-field effects on the dynamics. These are po
tially important when the Bose and Fermi gas are degene
and the mean-field energy exceeds the trap frequency.
recent paper, Mo” lmer @12# used a simple mean-field model t
study the spatial distributions of a Bose-Fermi gas mixture
T50 K. The distributions depend strongly on the relati
sign and magnitude of the boson-boson and boson-ferm
scattering lengths. A complete and numerically tractable
proach to quantum kinetics, which incorporates such me
field effects in addition to the population dynamics, is s
under investigation. A qualitative discussion of the influen
of mean-field effects on our results is given in Sec. IV.

The remainder of this paper is organized as follows.
Sec. II we discuss the equilibrium temperatures for an
tially hot Fermi gas placed in thermal contact with a co
Bose gas. We also derive a simple dynamical model for
thermalization using the assumption that both gases are
scribed by a Maxwell-Boltzmann distribution at all times.
Sec. III we describe a theoretical model based on the Q
for the Fermi-Bose mixture and the treatment of forc
evaporative cooling. In Sec. IV we present results of so
tions of the QBE which provide information on the kinet
temperature and spatial distributions of the mixture. Us
recent atomic data we also present some results for the s
pathetic cooling of the40K/ 39K Fermi/Bose potassium iso
topes. Finally, in Sec. V, we summarize our conclusions.

II. EQUILIBRIUM PROPERTIES AND COOLING
WITHOUT FORCED EVAPORATION

A. Equilibrium temperature

If two gases at different initial temperatures are broug
into contact, they will rethermalize to a common equilibriu
1500 ©1999 The American Physical Society
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temperature which can be obtained using conservation
particle number and energy~overbar indicates average e
ergy!,

ē tot5 ē f~0!1 ēb~0!5 ē f~`!1 ēb~`!, ~1!

assuming that there are no losses during relaxation. F
Bose-Fermi gas mixture the equilibrium temperatureT` can
be found numerically using the Bose-Einstein and Fer
Dirac distribution functions as follows. Given the number
bosonsNb and fermionsNf , and the initial temperature
Tb(0) andTf(0) we setTf5Tb at each iteration step an
compute the fugacityzf for the Fermi gas by solving

Nf5(
e i

g~e i !~zf
21ee i /kBTf11!21, ~2!

with g(e i) the degeneracy of states with energye i . We then
compute the mean energyē f(zf ,Tf) for the Fermi gas and
determineTb andzb for the Bose gas by the following itera
tion: setēb5 ē tot2 ē f(zf ,Tf) and computeTb from

ēb5(
e i

e ig~e i !~zb
21ee i /kBTb21!21. ~3!

Then computezb by solving

Nb5(
e i

g~e i !~zb
21ee i /kBTb21!21 ~4!

and repeat this iteration until@Nb(zb ,Tb)2Nb#/Nb,1027

and@ ēb(zb ,Tb)2 ēb#/ ēb,1027. We then setTf5Tb and re-
peat the procedure until (Tf2Tb)/Tf,1024.

For temperaturesTf*0.5TF andT`,TC an approximate
equation can be obtained using a classical Maxw
Boltzmann distribution for the Fermi gas and a Bose dis
bution with zb51 for the Bose gas. This yields

g4~1!
T`

4

TF
4

1
T`

6TF
5g4~1!

Tb
4~0!

TF
4

1
Tf~0!

6TF
, ~5!

with the Bose-Einstein functiong4(1)'1.082. If T`.TC ,
we can approximate the Bose-Einstein distribution with
Maxwell-Boltzmann distribution to obtain an explicit expre
sion for the temperature,

T`5
NfTf~0!1NbTb~0!

Nf1Nb
. ~6!

In Fig. 1 we show the equilibrium temperature as a funct
of the initial Fermi gas temperature scaled in units ofTF .
The Bose gas consists of 106 atoms at initial temperature
Tb(0)50.1TF(0), whereTF depends on the number of fe
mions, which is varied between 104 and 106. In terms of the
BEC temperature, the initial temperature of the Bose gas
in the range 0.02TC,Tb(0),0.2TC . The full numerical re-
sults agree well with approximation Eq.~5! for Nf
5103, 104, and 105 in the temperature range considere
This is shown by the curves at the bottom of the figu
which almost overlap the approximate solution. The equi
rium temperatureT` stays below the critical temperatureTC
of
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and, in agreement with Eq.~5!, T` /TF does not depend on
the number of fermions. If we increase the number of ferm
ons or alternatively the initial Fermi gas temperature,
Bose gas will be heated aboveTC and the equilibrium tem-
perature shows the linear dependence onTf(0) as derived in
Eq. ~6!. From our numerical studies we find that Fermi s
tistics become significant only forTf&0.5TF ~see also@18#!,
which in general can be reached with additional evapora
cooling of the gas mixture.

B. Thermalization of a two-component mixture

We consider Bose and Fermi gases brought into ther
contact in a confining potential, at different initial temper
turesTb(0) andTf(0), respectively. We are primarily inter
ested here in a regime prior to a stage of forced evapora
cooling, in which the Bose gas as well as the Fermi gas
nondegenerate. The thermalization may result in a signific
alteration in the energy and spatial distribution of fermion
atoms in the trap. A simple dynamical description of t
thermalization can be derived using the classical Boltzm
equation in the ergodic approximation. The mean energy
componentk5(b, f ) is given by

ēk~ t !5E eFk~e,t !r~e!de, ~7!

whereFk(e,t) is the ergodic distribution function for com
ponentk andr(e)5e2/2(\v)3 is the density of states for a
harmonic trap of mean frequencyv5(vxvyvz)

1/3. For sim-
plicity, we asssume that both components see the same
ping potential.

The time dependence of the energy of the Fermi ga
then obtained by integrating the Boltzmann equation@13#
over all energies,

FIG. 1. Equilibrium temperature as a function of the initi
Fermi gas temperature in units ofTF . The number of fermions is
Nf5103 ~–!, Nf5104 ~:!, Nf5105(•), Nf523105 ~o!, Nf54
3105(L), Nf5106 ~1!. The solid lines show the results using E
~5! and Eq.~6!, respectively. The number of bosons isNb5106 and

the initial temperature is always chosen asT̄b(0)50.1T̄F corre-

sponding to T̄b(0)50.019T̄C , 0.042T̄C , 0.09T̄C , 0.13T̄C ,

0.142T̄C , and 0.19T̄C .
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dĒf

dt
5

1

t0

1

~\v!5E dE1E dE2E dE3E dE4Emin
2 /2E1d~E11E22E32E4!@Ff~E4 ,t !Fb~E3 ,t !2Ff~E2 ,t !Fb~E1 ,t !#,

~8!
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where all energies written with upper caseE are dimension-
less, i.e., E[e/\v, Emin[min$E1 ,E2 ,E3 ,E4%, and the
natural time scalet0 is given in terms of the Bose-Ferm
s-wave collision cross section sb f by 1/t0
[(\v)2msb f /p2\3. We have dropped the term which re
resents collisions between fermionic atoms assuming tha
p-wave contribution is neglibible at the low energies und
consideration.

To get some qualitative insight into the thermalizati
dynamics, we need to further simplify the model. We assu
that the component distribution functions are Boltzmann-l
at all times, and parametrized by time-dependent fuga
zk(t) and dimensionless temperatureT̄k(t)[kBTk(t)/\v as
follows:

F@E,zk~ t !,T̄k~ t !#5zk~ t !e2E/T̄k~ t !. ~9!

The average energy and particle number for a trap
Maxwell-Boltzmann distribution are given by

Ēk5
zk

2
T̄k

4E dxx3e2x, ~10!

Nk5
zk

2
T̄k

3E dxx2e2x ~11!

from which it follows thatzk5Nk /T̄k
3 and Ēk53NkT̄k . The

fugacity of componentk can therefore be eliminated in term
of the particle number and mean energy. Another simplifi
tion which results from the approximation is that the scatt
ing of two bosons does not alter the average energy of
Bose gas.

It is convenient to write the average energy in terms o
dimensionless temperature, thus

dT̄f

dt
5

Nbr 3

3t0
E dx1E dx2E dx3E dx4

xmin
2

2

3x1d~x11x22x32x4!~e2x4e2rx32e2x2e2rx1!

5
Nb

3t0
P~Tf /Tb!, ~12!

dT̄b

dt
52

Nf

3t0
P~Tf /Tb!, ~13!

wherer[T̄f /T̄b , and the rational function

P~r !5
113r 12r 222r 323r 42r 5

~11r !5
. ~14!

The equilibrium temperatureT̄` is obtained fromdT̄f /dT̄b
52Nb /Nf . Integrating fromt50 to `, we recover Eq.~6!.
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The analysis shows that the time scale for relaxation is
proximatelyT̄bt0 /Nf . In Fig. 2 we compare the prediction
of this simple dynamical model, with the full dynamics o
the QBE as discussed in the following section. The solutio
show that the time scale that describes equilibration is on
order of t r[T̄bt0 /Nf'0.043t0 , as predicted by Eqs.~12!
and ~13!.

If forced evaporative cooling is applied to the gas m
ture, atoms from the hot energy tail are removed. The rat
evaporation must be chosen to be much smaller than
relaxation rate of the gas, as discussed above. Another
to determine the relaxation time is to calculate the init
mean collision rateg using the Boltzmann collision integra
Consider the collisions of a ‘‘test’’ atom, with energiesE1 ,
with atoms of energyE2 , into final states with energiesE3
andE4 . One sums over all initial energiesE1 , and divides
by the number of particles to get the energy averaged rate
particle,

g~ T̄,N!5
1

t0

N

T̄
E dx1dx2dx3dx4d~x11x22x32x5!

3
xmin

2

2
e2x1e2x25

N

2t0T̄
, ~15!

in qualitative agreement with the simple model above. W
note, however, that the relaxation rate we have discus
here should not be regarded as the characteristic time s
for condensation@19–21#.

FIG. 2. The temperature of the Bose gas~solid line! and of the
Fermi gas~broken line! as a function of time. The dotted line de
notes the temperature obtained by solving the differential equat
assuming a Maxwell-Boltzmann distribution with time-depende
fugacity and temperature.
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III. QUANTUM BOLTZMANN EQUATION AND FORCED
EVAPORATION

A. Quantum Boltzmann equation

The QBE for a harmonically confined Bose gas has b
discussed elsewhere within the ergodic approximat
@15,22#. The QBE for an interacting two-component Bos
Fermi mixture in the harmonic trap can be writtent
5t/t0)

g~Ei !
dbEi

dt
5ab (

Ej ,Ek ,El

dEi1Ej ,Ek ,El
g~Ei ,Ej ,Ek ,El !

3@bEk
bEl

~11bEj
!~11bEi

!

2bEi
bEj

~11bEk
!~11bEl

!#

1 (
Ej ,Ek ,El

dEi1Ej ,Ek1El
g~Ei ,Ej ,Ek ,El !

3@bEk
f El

~12 f Ej
!~11bEi

!

2bEi
f Ej

~12 f El
!~11bEl

!#, ~16!

g~Ei !
d fEi

dt
5a f (

Ej ,Ek ,El

dEi1Ej ,Ek1El
g~Ei ,Ej ,Ek ,El !

3@ f Ek
f El

~12 f Ej
!~12 f Ei

!

2 f Ei
f Ej

~12 f Ek
!~12 f El

!#

1 (
Ej ,Ek ,El

dEi1Ej ,Ek1El
g~Ei ,Ej ,Ek ,El !

3@bEl
f Ek

~12 f Ei
!~11bEj

!

2bEj
f Ei

~12 f Ek
!~11bEl

!#, ~17!

wherebn and f n are the number of Bose and Fermi atoms
stateEn . The collision matrix elements are approximate
given by

g~Ei ,Ej ,Ek ,El !5g~Emin!, ~18!

with g(En) the degeneracy of energy levelEn , andEmin is
the minimum energy of all four energies involved in th
scattering process, as defined earlier. Although this appr
mation is not quantitatively accurate for the lowest seve
states of the trap, it is sufficient to illustrate the main qua
tative features of sympathetic cooling. In an isotropic tr
the degeneracy of the energy stateen5\v(n21), n
51,2, . . . , is g(En)5n(n11)/2. The coefficients ab
5sbb /sb f anda f5s f f /sb f give the ratios of the cross sec
tions for boson-boson and fermion-fermion scattering,
spectively, to the boson-fermion cross section. Excha
symmetry leads toa f50 since thes-wave cross section van
ishes for identical fermions. Of course, this is the reason
must employ sympathetic cooling with a Bose gas refrig
ant.
n
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e
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B. Forced evaporative cooling

Evaporative cooling in magnetic traps is performed
inducing transitions to untrapped states with a rad
frequency field. This is modeled here by the following pr
cedure. Particles that are scattered into states with en
larger than the time-varying cutoff energyEcut(t) are lost.
The latter is a given decreasing function of time in the ca
of forced evaporative cooling. A particle may be scatter
into a state with energyEi,Ecut(t) by two-body scattering
of atoms in states with energiesEk and El , i.e., Ek ,El
→Ei ,Ej , in which Ej.Ecut(t), so that one particle is los
from the trap. Similarly a particle in energy levelEi can be
scattered out of this energy level,Ei ,Ej→Ek ,El , resulting
in one particle loss from the trap when eitherEk.Ecut(t) or
El.Ecut(t). Explicitly, we have the following

~a! The gain process for energy levelEi ,

g~Ei !
dnEi

dt
5a (

Ej .Ecut~t!.Ek ,El

Ej ,2Ecut~t!

dEi1Ej ,Ek ,El
g~Ei ,Ej ,Ek ,El !

3nEk
nEl

~16nEi
!. ~19!

~b! The loss process for energy levelEi ,

g~Ei !
dnEi

dt

522a (
Ek.Ecut~t!.Ej ,El

Ek,2Ecut~t!

dEi1Ej ,Ek ,El
g~Ei ,Ej ,Ek ,El !

3nEi
nEj

~16nEl
!, ~20!

wherenEi
denotes the distribution function for Fermi or Bos

atoms with energyEi , as appropriate.
The kinetics of forced evaporative cooling is modeled

adding these terms to the QBE, Eqs.~16! and ~17!, which
include all two-body collision processes between initial a
final states i , j , k, and l with energies Ei ,Ej ,Ek ,El
,Ecut(t) conserving the total number of particles in the tra

IV. RESULTS AND DISCUSSION

In this section we illustrate the dynamics of sympathe
cooling of Bose-Fermi gas mixtures, through their ener
state, and spatial distribution functions. The spatial distri
tions of confined degenerate Bose and Fermi atomic ga
are quite different. An ideal Bose condensate has a size
termined by the quantum width of the trap ground statl
5A\/2Mv, whereas the size of a Fermi gas is governed
the Fermi widthRF5(EF/2Mv2)1/2, which scales asRF

;Nf
1/6l , as a result of the Pauli exclusion principle. For

interacting Bose gas, with positive scattering length, the c
densate is larger thanl, and for strongly condensed gases
size can be estimated using mean-field theory in the Thom
Fermi approximation@23#. Mean-field effects, which can b
significant well below the condensation temperature, are
included in our model. These may be important in the fin
stages of cooling if the Bose gas is already strongly c
densed at this stage. Our illustrations of the spatial distri
tions of both Fermi and Bose gas employ the universal s
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FIG. 3. The Fermi~solid line! and Bose~dot-
ted line! distribution functions at timest
50,0.003 and 0.016. The graphs on the left sh
the number of atoms as a function of energy a
the graphs on the right show the spatial distrib
tion. Initial conditions areNb(0)5105, Nf(0)

5103, T̄b(0)5T̄C543.7, and T̄f(0)55T̄F

581.8. Both gases are in contact att50 and then

relax to the equilibrium temperatureT̄`544. The
broken lines denote the fit to the Fermi distrib
tion and coincide with full lines att50 and t
50.016.
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ing described by Butts and Rokhsar@18#, who showed that
for a harmonically trapped ideal Fermi gas atT50,

nf~r !5
Nf

RF
3

8

p2F12S r

RF
D 2G3/2

. ~21!

It should be remembered that with evaporative cooling
number of fermionic and bosonic atoms is a time-depend
variable, and therefore so isRF . In the figures we always
scale with respect to the instantaneous value ofRF .

In Figs. 2 and 3 we present the rethermalization of a n
degenerate Fermi gas immediately after it is placed in th
mal contact with a Bose gas which is initially at the Bo
condensation temperatureTC . The calculation is performed
by numerical integration of the QBE without any force
evaporative cooling. In Fig. 3 the temperature of the Fe
e
nt

-
r-

i

gas alters considerably over a time scalet0T̄f /Nb @Eq. ~12!#.
Initially a hot tail of atoms extends to the trap extremiti
and during the early stages of equilibration the Fermi
distribution deviates significantly from a Fermi-Dirac dist
bution which fits the average energy and particle numb
The gas then equilibrates to a nondegenerate state as c
seen from inspection of the peak of the spatial distribut
function, nf(r 50)!1 @18#. The Bose gas has one hundr
times more particles than the Fermi gas, and completely
velops the Fermi gas at all times. Figure 2 compares
simple model of thermalization discussed in the preced
section with the QBE. The model is very good in the ea
stages, but the agreement deteriorates in the intermedia
gime before steady state is achieved.

In Figs. 4 and 5 we consider the forced evaporative co
ing of both gases. In contrast to Figs. 2 and 3, there are5
er
on
e
gy
s

res
FIG. 4. The Fermi~solid line! and Bose~dot-
ted line! distribution functions at timest50, 0.9,
and 2.0. The graphs on the left show the numb
of atoms as a function of energy, the graphs
the right show the spatial distribution, and th
inset shows the number of fermions per ener
divided by the degeneracy. Initial condition

are Nb(0)5105, Nf(0)5104, T̄b(0)5T̄C543.7,

T̄f(0)55T̄F5186. From t50 until t50.04 the
cutoff for the Bose gas isEcut5500 and for the
Fermi gasEcut51000. After t50.04 the cutoff
energy is ramped down with a rateg51.0 for
both gases starting atE05500. @Ecut(t)
5e2gtE0 .# The fit to the Fermi distribution is
also drawn as a broken line. The temperatu

from top to bottom are T̄f(t)55T̄F ,

0.6T̄F ,0.14T̄F and T̄b(t)5T̄C ,0.5T̄C ,0.1T̄C .
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FIG. 5. Upper graph: the number of boson
and fermions remaining in the trap. Lower grap
the temperature of the gases as a function of tim
The dotted lines show the critical temperature f
the Bose gas and the Fermi temperature.
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bosons and 104 fermions, initially. The forced cooling begin
after the initial equilibration stage during which the bos
temperature increases~Fig. 5!, following thermal contact of
the two gases. The evaporative cooling time scale is cho
to bet0 , which is much longer than both the relaxation tim
scale of the one-component Bose gas@Eq. ~15!# and the re-
laxation time scale of the Fermi gas with the Bose gas@Eq.
~12!#. The Bose gas energy distribution shows the format
of the condensate and the corresponding spatial distribu
contracts to that of the condensate with a small thermal c
ponent. The degenerate Fermi gas is then exposed an
spatial distribution is close to the zero-temperature limit@Eq.
~21!#, which has a maximum density at the trap cen
nf(0)RF

3/Nf58/p2'0.81. The inset shows the state occ
pancy for the Fermi distribution with the characteris
smearing of the Fermi surface at finite temperature, and n
en

n
n
-
its

r
-

ar

unit occupancy for low-lying levels. It is interesting to no
that evaporative cooling of the Fermi gas still proceeds
later times when the spatial overlap between fermions
bosons is mainly in a small region at the center of the t
where the condensate is located. The collisions which re
in cooling involve orbits of hot fermions through the tra
center where they collide with cold condensed bosons.
this stage evaporation mainly results in depletion of fermio
as can be seen in Fig. 5. We also simulate the case whe
evaporative cooling involves only the loss of Bose ato
from the trap. In Figs. 6 and 7 we consider the same ini
conditions as for Figs. 4 and 5, but only ramp down t
cutoff energy for the bosons. The results are qualitatively
same as in the former case where both Bose and Fermi
particles evaporate, except that we end up with more p
ticles left in the Fermi gas. As mentioned earlier, we ha
er
on
e
gy
s

res
FIG. 6. The Fermi~solid line! and Bose~dot-
ted line! distribution functions at timest50, 0.9,
and 2.2. The graphs on the left show the numb
of atoms as a function of energy, the graphs
the right show the spatial distribution, and th
inset shows the number of fermions per ener
divided by the degeneracy. Initial condition

are Nb(0)5105, Nf(0)5104, T̄b(0)5T̄C543.7,

T̄f(0)55T̄F5186. Fromt50 until t50.04 the
cutoff for the Bose gas isEbcut5500 and for the
Fermi gasEf cut51000. Aftert50.04, the cutoff
energy is ramped down with a rateg51.0 only
for the Bose gas starting atE05500. @Ecut(t)
5e2gtE0 .# The fit to the Fermi distribution is
also drawn as a broken line. The temperatu

from top to bottom are T̄f(t)55T̄F ,

0.5T̄F ,0.14T̄F and T̄b(t)5T̄C ,0.5T̄C ,0.14T̄C .
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FIG. 7. Upper graph: The number of boson
and fermions remaining in the trap. Lower grap
the temperature of the gases as a function of tim
The dashed lines show the critical temperatu
for the Bose gas and the Fermi temperature.
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not included the effect of the bosonic mean-field which c
alter the spatial distributions of each component depend
on the mean field strength, the ratio of the scattering leng
and the particle numbers of both components@12#.

A possible experimental scenario for sympathetic cool
of a Bose-Fermi mixture involves two isotopes of potassiu
Recent calculations predict thes-wave scattering length fo
the bosonic isotope39K to be a(39K)[ab54.3 ~nm! with
corresponding cross sectionsbb58p2ab

2 and the s-wave
scattering length between39K and the fermionic isotope40K
to be a(40K239K)[ab f52.5 ~nm! with cross sectionsb f

54p2ab f
2 @24#. Using M (40K) 56.6310226 kg and v

5400 ~Hz! sets the time scalet051254 (s)'20 ~min!.
Mean-field effects become important when the mean-fi
strengthEmean5@4p\2ab /M (40K) #n̄0 is of the order of the
level spacing\v @25#. At the onset of BEC the density pro
n
g
s,

g
.

d

file of an ideal Bose gas is almost Gaussian and the m
density of the ground state becomesn̄05N0 /p3/2l 3. The ra-
tio of the mean-field strength to the trap energy is then

g5
Emean

\v
5A1

p

ab

l
N051.7231023N0 . ~22!

Further discussions of the influence of mean-field effects
our results is given below. In Figs. 8 and 9 we present
example of evaporative cooling for a spin-polarized40K
239K mixture of 106 bosons and 105 fermions at initial tem-
peraturesTb5TC[0.3(mK) and Tf57.2TF[1.8(mK) and
cutoff energyEcut(0)51000. We estimate the boson scatte
ing rate using Eq.~15!, which yields'53103/t0 . From t
50 until t50.04 the cutoff energy remains atEcut51000.
During the thermalization the Bose distribution complete
c

s a
w
he
y

e
es
FIG. 8. Sympathetic cooling of the fermioni
potassium isotope40K by the bosonic isotope
39K. The Fermi ~solid line! and Bose~dotted
line! distribution functions at timest50,
3.631024, 4.731022, and 6.131022. The
graphs on the left show the number of atoms a
function of energy, the graphs on the right sho
the spatial distribution, and the inset shows t
number of fermions per energy divided b
the degeneracy. Initial conditions areNb(0)

5106, Nf(0)5105, T̄b(0)5T̄C 5 94.1, T̄f(0)

57.2T̄F5590.4. Fromt50 until t50.04 the
cutoff for both gasesEcut51000. After t50.04
the cutoff energy is ramped down with a rateg
5100.0. The broken line denotes the fit to th
Fermi distribution. The Fermi gas temperatur

from top to bottom are T̄f(t)57.2

T̄F ,1.62T̄F ,0.67T̄F , and 0.14T̄F . The Bose tem-

perature is T̄b(t)5T̄C , 1.02T̄C , 0.63T̄C , and

0.12T̄C .
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FIG. 9. Upper graph: the number of boson
and fermions remaining in the trap. Lower grap
the temperature of the gases as a function of tim
The dashed lines show the critical temperatu
for the Bose gas and the Fermi temperature.
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envelops the Fermi distribution, which deviates significan
from its equilibrium distribution. As one can see from Fig.
the number of fermions almost remains the same where
large number of bosons are evaporated. Aftert50.04, the
cutoff energy is ramped down exponentially with rategevap
5100/t0 until t50.064>80.25~s!. At the early stages of the
forced evaporation the number of bosons decreases
most of the bosons are in the condensate and evapor
mainly leads to depletion of fermions. The simulation sho
that the Fermi gas can be cooled to a temperatureTf
'0.1TF with more than 23104 fermions left in the trap.

In practice there are some additional issues that mus
considered. The isotopes have different mass and mag
moment, which means that in general the clouds will be d
placed with respect to one another due to the combined
fects of gravity and the magnetic trapping force@3#. Sympa-
thetic cooling can only proceed efficiently if good overla
between the gases is maintained@26,27# and effects of super
fluidity can be ignored@28#. Even if we assume this has bee
achieved, the difference in magnetic moments will cause
trap frequencies to be different for the Bose and Fermi g
For example, if the bosonic39K( I 57/2, where I, is the
nuclear spin! is polarized in the stateuF52, MF52&, and
the fermion isotope40K( I 54) is polarized in the stateuF
57/2,MF527/2&, the trap frequencies would be in the r
tio of 7:9. In our calculation we assume the trap frequenc
and masses to be identical.

For degenerate Bose and Fermi gases, mean-field ef
can strongly influence the spatial distributions. Here we d
cuss how these effects qualitatively change the station
distributions presented above, using the zero-tempera
model discussed by Mo” lmer @12#. If the number of bosons is
much larger than the number of fermions, then asab f in-
creases relative toab(ab f , ab.0), the fermion distribution
is displaced further and further outside of the central core
the trap occupied by the bosons. When the particle num
are similar, the bosons are displaced outside the fermion
gion in the same limit. On the other hand, for large negat
y
,
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-
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cts
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fermion-boson scattering length the stationary distributio
may be unstable and dynamically change as a result. In
latter case, mean-field effects qualitatively change the na
of the problem, and thus our results will not apply.

In our simulations the number of bosons is always mu
larger than the number of fermions. In this case we can
glect to first order the influence of the fermions on the bos
spatial distribution. The boson density is then given by
Thomas-Fermi approximation

nb~rW !5@m2Vext~rW !#/ab , ~23!

whereVext(rW)5Mv2r 2/2 denotes the harmonic trapping p
tential and the chemical potentialm is fixed through the con-
dition *drWnb(rW)5Nb . Explicitly, this yields

m5F S mv2

2 D 3/2 15

8p
NbabG2/5

. ~24!

The bosonic mean field produces the well known broaden
of the boson density distribution relative to the ground-st
size of the trap. The corresponding spatial distribution
fermions can be found from the equation@12#

\2

2M
@6p2nf~rW !#2/31S 12

ab f

ab
DVext~rW !1

ab f

ab
m5EF ,

~25!

where EF is determined by*drWnf(rW)5Nf . Explicitly the
density is given by

nf~r !5
Nf

RF
3

8

p2F12
ab f

ab

m

EF
2S 12

ab f

ab
D S r

RF
D 2G3/2

~26!

which may be compared with Eq.~21! for an ideal gas.
Clearly the mean-field effects cause a broadening in the
tial distribution of the fermion cloud forab f,ab . If ab f
.ab , the fermions experience an inverted harmon
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oscillator potential near the origin which repells them fro
this region. In our results presented above, and in partic
for the example of the potassium isotopes, we always h
ab f,ab/2. As a result, mean-field effects will result in
broadening of both Bose and Fermi gas spatial distributio
but not a relative displacement of the clouds.

V. CONCLUSION

We have discussed the cooling of a confined nondege
ate Fermi gas to quantum degeneracy using an ultra
Bose gas coolant and evaporative cooling. Results for
stationary distributions and dynamics based on solution
an

e

G.

EC
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or

A

,

et,
.

.
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d

Dr
ar
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of

coupled QBE equations for the Bose-Fermi mixture we
presented. These include investigations of the use of for
evaporative cooling to enhance the degeneracy of the Fe
gas. While the QBE does not include mean-field effec
which are potentially important in the quantum degener
regime, we have discussed their qualitative effects on
results presented, whenab.ab f.0. In this instance, mean
fields lead to a broadening of both the Bose and Fermi spa
distributions, but not a relative displacement of the cloud
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