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Bose-Einstein condensation in harmonic double wells
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We discuss Bose-Einstein condensation in harmonic traps where the confinement has undergone a splitting
along one direction. We mostly consider three-dimensional potentials consisting of two cylindrical wells
separated a distance along thez axis. For ideal gases, the thermodynamics of the confined bosons has been
investigated, performing exact numerical summations to describe the major details of the transition and com-
paring the results with the semiclassical density-of-states approximation. We find that for large particle number
and increasing well separation, the condensation temperature evolves from the thermodynamic limit value
TEO)(N) to Tgo)(NIZ). The effects of adding a repulsive interaction between atoms has been examined resorting
to the Gross-Pitaevskii-Popov procedure, and it is found that the shift of the condensation temperature exhibits
different signs according to the separation between wells. In particular, for sufficiently large splitting, the trend
opposes the well-known results for harmonic traps, since the critical temperature appears to increase with
growing repulsion strengtfiS1050-294{©9)02002-9

PACS numbse(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION condensed gases in anisotropic traps have also deserved at-
tention, especially in view of the fact that experimental de-
The recent observation of Bose-Einstein condensatiowices lead to the possibility that the definite stages of
(BEC) of atomic alkali-metal gases subjected to magnetic occondensation are governed by the most binding one-
magnetooptic trapgl—3] has triggered an important amount dimensional(1D) forces[17,19. In particular, it has been
of related work. In fact, since the possibility of experimental clearly established that in highly anisotropic potentials, the
realization of BEC was put forward, sizable theoretical effortpeak in the specific heat is linked to the freezing of those
addressed both the quantum and thermodynamical aspectsddégrees of freedom lying higher in the energy spectrum, and
this phenomenon when confined boson systems are involvethacroscopic occupation of the ground state of the system
Starting from the earliest approaches to this figld 7], ex-  occurs at a lower temperatuf#9].
tensive work has been devoted to the various properties of The effects of two-particle interactions represented by a
harmonic trapg8-23], which can account for most of the single parameter, the scattering length, have been examined
characteristic scales of experimentally achieved BEC accord6,20-23; the solutions of the Gross-Pitaevsk®P) equa-
ing to very intuitive scaling arguments based on energy baltion provide information upon the condensate wave function,
ance[8]. The main features of BEC of ideal gases in eitherand it has been shown that the transition temperature is sen-
isotropic or anisotropic quadratic potential wells have beersitive to the sign of the interparticle forces in a way that
analyzed by various authof8,10,12—19, paying special at- opposes the expected results for the free homogeneous gas
tention to the modifications of the transition patterns due td22]. The variational solution to the GP equatifi28] also
the finite number of trapped atoms. provides an interesting means to approach the various fea-
The nature of the transition itself has been the subject ofures of BEC of weakly interacting gases.
some controversy. Kirsten and Toms claimed that no spon- More recently, double Bose condensates have become an
taneous symmetry breaking leading to BEC can happen iattractive field of research in view of the close resemblance
confined potentiald9,10], as shown by the fact that the between these systems and other bistable devices familiar in
chemical potential of the bosons does not reach the value @fuantum opticg24]. The properties of double traps have
the ground-state energy at a finite temperature. However, thiseen mostly investigated from the perspective of these analo-
behavior of the chemical potential does not prevent the exgies, keeping in mind that due to the large separations be-
istence of a noticeable peak in the specific heat of the gas aveen the experimentally split traps and the significant
a well-defined temperature, for dimensions other than unityheight of the halving barriers, the condensate wave function
coinciding with a sudden important rise in the ground-stateessentially corresponds to two nonoverlapping wells. It is our
occupation number. This characteristic has been recognizgstesent purpose to perform a detailed study of the quantum
by various author§10-12 as the signature of a phase tran- and thermodynamic aspects of these bistable traps in terms
sition. Furthermore, calculation methods based on exadif the shape of the barrier and the well separation in the
summations[12—15 and Euler-MacLaurin approximation framework of a simple description. For this sake, in Sec. Il
formulas[16,17] yield results practically identical to those we present essential formulas for the quantum mechanics
arising from more sophisticated treatmef@s10,1g. Bose- and thermodynamics of an ideal gas in a harmonic double
well, while the results of the calculation are presented in Sec.
lll. Section 1V is devoted to the weakly interacting gas de-
*Also at Consejo Nacional de Investigaciones Ciaras y Te-  scribed by means of the GAPopov formalism. The conclu-
nicas, Buenos Aires, Argentina. sions are summarized in Sec. V.
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II. HARMONIC DOUBLE WELL 1.0 T T T T

The spectrum of the 1D harmonic double well, with a
potential 0.8

2

V()= o (|22, @1 1

0.
can be representd@5] by the parabolic cylinder functions Cv/Nkg
D,[V2mw/#A(|z|—a)] with eigenvaluese,=#%w(v+1/2).

The quantum numbers are determined by establishing that
the eigenfunctions be either even or odd, and it is found that ;
the spectrum evolves from a purely harmonic one at separa- 0.0 T T T T
tion a=0 to a doubly degenerate harmonic one of the same
frequency, asa grows indefinitely. Furthermore, we shall
consider 2D(i.e., w,=0) and 3D traps of the form

FIG. 1. The specific heat of a 1D boson gas trapped in a double
well (in units of the Boltzmann constakt) as a function of the
V(r)= T[wz X2+ 2 y2+ w2 (|z| _ a)z]_ (2.2) r_educ_eql temperatufE/T(co) for different separations between poten-

257X y z tial minima.

A numerical computation of the energy levels of E8.1)  where the integral is to be carried within the classically al-
enables us to examine the thermodynamic properties of Bwed region. In view of the relation
confined boson gas by straightforward summation of the re-

lation defining the internal energy, e , /
po(s)=JO de’pp-1(e—&")pa(e’), 2.7

U=> Nej, 23 _

i we only need to compute the 1D density for the double well.
The 3D case is studied convolutipg with
whereN;=[e?(*i"#) — 1]~ is the boson occupation number

at temperatureT=1/8 for the level with energyse; €
=h (nyox+nywy+vw,+3/2), once the particle number Pz(s):% %Jfl 28
equation

for o= w,=w,, which yields a formula for the number of
N=E n; (2.4 particles in two dimensions that coincides with the high-
i temperature limit of the exact summatigsee the Appen-
dix). It should be noted that the semiclassical prescription of
has been solved to determine the chemical poteptifdr a  Ref. [6] only gives the first term of Eq(2.8) for the 2D
given value ofN. The specific heat is then computed, differ- density.
entiating the energy with respect to temperature.
In this W(?rk, We compare the reSUltS. of the exact numeri- IIl. SYMMETRIC DOUBLE WELL
cal calculation with those of the semiclassical method de-
rived in Ref.[6], which in the present case consists of re- We have investigated BEC of an ideal boson gas confined
placing the summation in E¢2.4) by in the trap described in Sec. Il for dimensidds-1-3, com-
paring the results of the exact summations with those of the
. kT approximate density-of-states method, in terms of the well
N=No+Ni+2 2 | dep(e)e” T, (25  gpiittinga and the number of particlés. In the 3D case, we
. also examine the anisotropic potentials, mostly related to ex-

wherep(e) is the classical extension of the density of state erimental situations; notice that in spite of the symmetry

for single particles in the well. Notice that in E@.5) we reaking along the direction, we shall consider the potential

explicitly separate the populatioh, of the ground state and © be isotropic whemw,=w,=w,, and anisotropic other-

N, of the first excited state, since as the height of the barrie[. ise. The analytical expressions for the Sem!classical densi-
Vy=mw?a?/2 increases, these two energy levels approac ies of states computed according to prescriptiaré) and

the doubly degenerate ground state of the infinitely distani e corresponding numbers of particles are summarized in

wells. The density of states is computed according to th he Appendix.
prescription given in Refl6], which for an arbitrary confin-
ing D-dimensional potential/(r) can be cast into the most
general form

The specific calculations indicate that the 1D well exhibits
a characteristic sharp increase of the occupation nuiper
around a temperaturg;; however, this is the usual pseudo-
transition that is not accompanied by a peak in the specific
c heat, as shown in Fig. 1 for various separations between
_ =D 5D/2-1,,D12 Dylna_ D/2-1 harmonic wells(hereafter indicated by the dimensionless
pole) hP am fd le=Vin] - (28 variable zo= \2mw/#a). We can appreciate the moderate
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- ) FIG. 3. Occupation numbers of the ground and first excited

FIG. 2. The exact ground-state probabilit(2)| (full lines) of  gtates for total particle numbei$= 100 (thin lineg and 10000
parFicIes in the double trap as a function of the dimensionless COlthick liney as functions oﬂ-/T(CO) for the single harmonic well and
ordlnatez/a, for well s&_aparatlonszozl (left column and z,=3 for a separation equal to unity.
(right column. Dashed lines correspond to the sum of two normal-
ized single-well wave functiongupper plot$ and the normalized heightsV,, which allow us to appreciate the significant de-
sum(lower ploty, while dotted lines indicate the individual ground crease of the transition temperature that occurs as the wells
states. split apart.

The existence of a transition becomes evident as one ana-
sensitivity of this quantity to the splitting,. We also com- lyzes the specific heat. Figures 5 and 6 correspond to the
pare the exact ground statéz) of the double well with the same parameters as Figs. 3 and 4, respectively, while lines
wave function indicate numerical results, and symbols locate the calcula-

tions performed with the semiclassical expressions listed in
_ the Appendix. We observe that the agreement between exact
W(2)=N[o(z—a)+ y(z+a)], (3.1 and approximate results is almost perfect at the lowest tem-
peratures, whereas, for high temperatures, that agreement
. holds only for large particle numbers. For such numbers the
where Yo(zxa) represents the ground state of a 5'”9'? hargemiclassical approach locates the transition to an acceptable
monic well of the same frequency centeredtzd, and.\'is accuracy, except for some slight overestimation of both the
a normalization factor. This is |_Ilustrated in Fig. 2, Wh_ere We characteristic temperature and the height of the peak: how-
plot, for z,=1 and 3(left and right columns, respectively  eyer, this departure is very noticeable for small quantities of
the functionsy(z) andy(z) by full and dashed lines, respec- atoms. In Fig. 6 we may notice the consequences of increas-
tively. In the upper plots, each single ground-state waveng the well separation: the major effect takes place for a
function iy(z+a) has been individually normalized, splitting z,=3, with only minor differences as one enlarges
whereas in the lower ones sui@®.1) has been normalized to this number.
unity. The dotted lines indicate each separate contribution to We have also performed calculations for anisotropic

¥(2). It is clear that for every well separation consideredtraps; as an illustration, in Fig. 7 we show the specific heat
here, the exact wave function resembles almost exactly the

normalized combinatio3.1) shown in the lower pictures. 1.0 ' ' '
Let us now consider a 3D isotropic trap; no substantial ose4 T T ]
qualitative differences have been observed in the 2D case. Il 0.8} 0500 Tz 4 A

Fig. 3 we exhibit the occupation numbelg and N, as
functions of the temperature in units of the critical tempera-

0498 g
T T
000 002 004 006

ture T corresponding to an infinite number of atoms, for » -0 N N

well separationg,=0 (i.e., a single harmonic weland 1,as >, i o
well as for total particle numbei=100 and 10000. We £ 044 2%, % \ 3 - e -
observe a rather sharp transition at a temperature slightly N

lower than unity for sufficiently large number of particles; [ R B
furthermore, this transition temperature decreases with grow: 0'2‘;' T
ing barrier height. On the other hand, the larger the value of i N

Zy, the closer the resemblance betwéénandN; even for 0.04== . ' B , :
temperatures substantially beld 0): this fact reflects the 0.0 05 T(N/2) 1.0 L5
quasidegeneracy of the ground state and the first excited sta -|-/-|-c<°)

for large finite values ofz,, which evolves into complete
degeneracy at infinite separation. This can be visualized in FIG. 4. Occupation numbers of the ground and first excited
Fig. 4, where we have selectét= 1000 and various barrier states for 1000 atoms and various barrier heights.
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FIG. 5. Specific heat for the same situation depicted in Fig. 3.

. - . . : FIG. 7. Specific heat of anisotropic t for th t ratios of
Circles and dots indicate the results of the semiclassical approximay, pecttic heat of aniSotropic fraps Tor the aspect rafios o

JILA and MIT traps, compared to an isotropic situation.

tion.

. . V2
for 1000 atoms and well separatiopg=0 and 1. The vari- Aom! — —— V() +aln(r)+2n(r 4.9
ous curves correspond to the aspect ratios of the JILA 0 2m (N+gn(r) 1} 4.2

and MIT traps [2], namely, w,/w,,=+8 and @,/w, . _
=3.2, w,/w,=1.8), respectively, and to an isotropic well yvhere we have made the usual decomposmon_ of th(_a density
with a frequencyw=0.56w, equal to the MIT geometric into condfnsate and noncondensate contributions,ni(e),
mean. We realize that the larger the anisotropy, the smaller n(r)+n(r), andn.(r)=|(r)|%. The terms involving the
the transition temperature and the lower the height of thénteraction strengtly arise from a two-body pseudopotential
peak. This also happens when one switches from the singl@d(r). In the sswave approximation, which is adequate for
to the double well, though to a less significant extent asvery dilute gases, one has=4mafi?/m, @ being the scat-
compared to the anisotropy effect. tering length.

Within the Popov approximation of the Hartree-Fock-

IV. WEAKLY INTERACT

ING GAS IN THE DOUBLE

WELL

Bogoliubov (HFB) theory, the excitations of a dilute system

of bosons at low and intermediate temperatures are given by

the coupled eigenvalue equations
The influence of weak to moderate interactions between

trapped particles can be investigated in a GP mean-field ap- Lui(r)—gn.(rvi(r)=Eui(r),
proach generalized for finite temperatures. Within this for- (4.3
malism, the condensate wave functig(r) is obtained from 2vi(r) —gnc(rui(r)=—E;(r),
the nonlinear equatiof27]
which define the quasiparticle energiesand amplitudes;;

hoy(r)=p(r), (4.9 andv;, with
with L=hy+gng(r). (4.9
104 . e Appoimae . ] The noncondensate density is related to the quasiparticle
0 o C ] properties according t{27,2§
g j o, .. 1 3
' n(r)=§i: {loi(O2+[ui(n)?+]vi(N]?IN(E))},
6- 1 (4.5
C,/Nk; 4] o [ \Pes . whereN(E;) = (effi— 1)1 is the Bose-Einstein distribution
0% ‘i’:\&_g__gas_&&;ﬁ_ oenno of the quasiparticles.
oo One must solve the coupled G#.1) and HFB(4.3) equa-
29 1 tions, using the self-consistent densitiegr) andn(r) for a
; fixed number of particledl. For this sake, we use the decou-
(1] r — T - pling procedure introduced in ReR9], and expand, in a
0.0 0.5 TMN2) 1O L5 basis of eigenfunctions of the 2D harmonic oscillator on the
T/TC‘O) (x,y) plane times a discretized basis set for the 1D double

well along thez axis. To illustrate this procedure, in Fig. 8

FIG. 6. Same as Fig. 5 for the conditions of Fig. 4. we plot the condensate fraction as a function of the tempera-
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1.0 T g - - - more degenerate spectrum and a higher density of states,
| 30 which in turn demand further cooling in order to achieve

0.8 —o— BEC. On the other hand, i, is sufficiently large(above

0 9] ——

roughly z,=2.5 in Fig. 9 the ground and first excited states
of a double well are already quasidegenerate; in this case, the
effect of the interaction, as indicated in this figure, is to raise
the whole spectrum uniformly. As a consequence, due to
level crossing, particles occupying the first excited state of
the free gas can be promoted to the interacting ground state
at no thermodynamic cost, thus giving rise to a moderate
increase of the condensation temperature.

0.6

No/N 0.4

0.2 1

0.0 I——— V. DISCUSSION AND SUMMARY
0.0 0.2 0.4 0.6 0.8 1.0

o In this work we have discussed the characteristics of
/T, Bose-Einstein condensation in harmonic wells where the
confinement has undergone some splitting along one of the
FIG. 8. Ground-state occupation number of a 3D double wellihree directions. We mostly consider 3D potentials consist-
includiqg w_eak two-body interactions, computed in the4GRpov ing of two cylindrical wells separated a distan@aong the
approximation. z axis. For ideal gases, the thermodynamics of the confined
bosons has been investigated, performing exact numerical
ture for 100 particles at various barrier heights and positivesummations for the particle number, which enables us to
interaction strengths=« ymw,/fi. We observe that, in all determine the chemical potential, and for the total energy,
cases, the system reaches BEC at temperatures below ther which we derive the specific heat by means of a nu-
transition temperature for a single well with no interactions.merical differentiation with respect to temperature. This pro-
However, depending on the valuezy, two different behav- cedure allows us to describe the major details of the transi-
iors occur. Wherg, is small, the condensation temperaturetion and to compare the results with the approximation
decreases the stronger the interaction, in agreement with th@rresponding to replacement of exact summations by inte-
well-known result for the harmonic trdj$,22]. Conversely, grals weighted by a semiclassical density of states.
if zo is high enough, an increase ®¥ields a higher critical The general results can be summarized as follows. We
temperature. This feature can be interpreted if we considefind that the semiclassical approach is capable of locating the
the single-particle spectrum in the mean field, whose groundransition, i.e., the peak in the specific heat, with higher ac-
and first excited states are depicted in Fig. 9 for a temperazuracy the larger the amount of trapped atoms. The overes-
tureT=0.26I'§°) andN=100. The overall trend is similar at timation in both the precise value of the transition tempera-
any temperature, and this choice is a convenient one in viewre and the height of the peak is rather pronounced for small
of the displayed scale. We realize that these levels also exsystems, and becomes progressively less important as the
hibit two tendencies: for small well separations, as the intersystem approaches the thermodynamic limit. It becomes
action is enlarged the energy levels become closer, giving elear that the effect of halving the population is to lower the
transition temperature; for a large particle number, the trend
— T T of this temperature as the well separation grows from zero to
infinity is clearly to sweep the path between critical tempera-
turesT.(N) andT,(N/2). This general behavior is indepen-
dent of the dimensionality of the system; however, just as in
the single-well problenf12,14], no strict phase transition
takes place in the 1D potential. In fact, in this case one finds
that in spite of the important rise in the slope of the occupa-
tion numberN, observed at a rather well-defined tempera-
ture, the specific heat increases monotonically toward the
classical limit.
The effects of adding a repulsive interaction between at-
oms has been examined, resorting to the -6PPopov pro-
L cedure which yields the condensate and noncondensate den-
o ' ' ' ' sities together with the single-particle spectrum. It is found
that the shift of the condensation temperature exhibits differ-
ent signs according to the size of the separation between

FIG. 9. Energies of the ground and first excited stéfettand ~ Wells on thez axis; in particular, for sufficiently large split-
dotted lines, respectivelyof interacting particles in an isotropic ting, the trend opposes the well-known results for harmonic
double well, as functions of the separatizy) for various interac-  traps, since the critical temperature appears to increase with
tion strengths froms=0 up to s=10"2 (bottom to top in steps  growing repulsion strength. This unexpected feature can be
As=10"3. The dashed line indicates the barrier heiglgt Ener-  explained by examining the spectrum of the atoms in the
gies are given in units di . mean field as a function of the well separation. One can
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realize that in the interacting system, not only the position of

the energy levels, but the size of the gap between the ground

and the first excited state, change substantially when the

el
=D hw
wells split apart. The level crossing that occurs for large
separations causes atoms in the excited state to move into th&,ereas the exact summations give, in the high-temperature
new ground state, with a consequent increase in the condepmit # w<k T
sation temperature.
An experimental realization of the double well is the MIT
trap [2], characterized by a large separation between wells
and by a tunable barrier height. One might then wonder to  N=Ng+
what an extent the results presented here might be sensitive
to independent choices of the locatigra of the minima and
the barrier magnitud&/,, and intend to develop more de-
tailed models for the specific MIT double trap. Among the |, this |imit one can take advantage of the property of the
simplest choices, one could qudi¢ a combination of two  gyge special functiong;(z),
symmetric harmonic wells smoothly joined &t +a,, by a
quadratic barrier, andii) the double well of the previous

95 (2)

Op-1

(D+1)gp+1(2)—D (2)|, (A3)

=~ O

kT\P 2
ﬁ_) 2 (_)n+lgn[ze—(n—D/2)hw/kT]_
W/ n=1
(A4)

sections deformed by a central constant cutoff with a value wt Su Su gi—1(2)

V, for |z|<a,,. We have performed calculations similar to gl e 7 |79 @Dt T (A5)

those presented in Sec. Il for the above potentials, employ-

ing standard magnitudes of the original MIT trgp]. We

have found that the thermodynamics of the ideal gas remaing, p=2, and write

identical to the previously analyzed double-well case; in

other words, the transition temperature and the overall shape

of the occupation numbers and specific h@ags. 3—6 are kT\P D kT gp_1(2)

not sensitive to the decoupling between the location of the N=No+ h_) (D) +5 7 ,  (AB)
- A o » 0 Z

minima and the barrier size, within the range of values of

interest.

To summarize, we remark that the statistical mechanics ofom where the transition temperature is obtained specifying
a bistable system can be examined on grounds identical tQ, = 0 together withz=1. For the isotropic potential with
those for the case of a single equilibrium state, with an adihe gouble well on the direction, we have the following
ditional parameter, namely, the separation between wells, gg5e5.
the agent of the evolution from a given number of trapped  pimensionD=1: The density of states takes the form
atoms up to the point where one exactly halves the popula-
tion in the infinite separation limit.
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APPENDIX and the number of particles is
Here we collect various useful formulas concerning the
thermodynamics of ideal gases in harmonic traps. We dis-
play the semiclassical results obtained from the density-of- o pip(e)
states method of Ref[6] [Eq. (2.5] for the isotropic N=No+N,+ L+d8m
D-dimensional oscillator: '
particle number . 1 n 1= 2n
1-z 1-zp pho (1-z))2
kT\P
N=No+ %) 9o(2), (A1) 2 1 (- nﬁ
+——J’ de arcsim\/—N(e), (A8)
mho Jg €

internal energy

U=Dhow (—) D+lg (2) (A2) with z=expBu), zi=exp{B(u—e1)}, Znm=expB(u—emw},
Lo D+1VE/ and e,=maxe;,Vo}. The total energy can be expressed,
similarly to Eq.(A8), as a summation including an integral.
and specific heat DimensionD=2: We obtain
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&

2 , &<V
(ho2' T
pap(€)= (A9)
1 2
TPE e+e—arcsinyVole) +— \/—\/a Vo|, &=V,
w
and
Nl Y 2 Jd Vel i1 A10
=1t (Bﬁw)z[ 92(21) = 92(Zm) 1+ = Bha)? earcsin \/ | IN[1—exp(— B(e—w))], (A10)
whereg,(z) is the usual Bose functiof26]
DimensionD = 3: The corresponding expressions are
e <V
() (hw)?' €5 Vo At
p3ple)=
1 2 AR INA
2, — .2 H - _ — _
2hw)? € +778 arcsw( s)+3 - Ve—V,(5e—2V,) |, &=V,
and
N= o 2 L o hw[2
T 1_Zl+(,8ﬁw)3{ 93(z1) —93(zm) + Bhw[ 295(21) — 92(Zm) 1}
2 fd \/V° h A12
+WW & arcsi = | [92(Ze) + Bhw01(Z,)]. (Al12)
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