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Bose-Einstein condensation in harmonic double wells

P. Capuzzi and E. S. Herna´ndez*
Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, RA-1428 Buenos Aires, Arge

~Received 5 August 1998!

We discuss Bose-Einstein condensation in harmonic traps where the confinement has undergone a splitting
along one direction. We mostly consider three-dimensional potentials consisting of two cylindrical wells
separated a distance 2a along thez axis. For ideal gases, the thermodynamics of the confined bosons has been
investigated, performing exact numerical summations to describe the major details of the transition and com-
paring the results with the semiclassical density-of-states approximation. We find that for large particle number
and increasing well separation, the condensation temperature evolves from the thermodynamic limit value
Tc

(0)(N) to Tc
(0)(N/2). The effects of adding a repulsive interaction between atoms has been examined resorting

to the Gross-Pitaevskii-Popov procedure, and it is found that the shift of the condensation temperature exhibits
different signs according to the separation between wells. In particular, for sufficiently large splitting, the trend
opposes the well-known results for harmonic traps, since the critical temperature appears to increase with
growing repulsion strength.@S1050-2947~99!02002-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The recent observation of Bose-Einstein condensa
~BEC! of atomic alkali-metal gases subjected to magnetic
magnetooptic traps@1–3# has triggered an important amou
of related work. In fact, since the possibility of experimen
realization of BEC was put forward, sizable theoretical eff
addressed both the quantum and thermodynamical aspec
this phenomenon when confined boson systems are invol
Starting from the earliest approaches to this field@4–7#, ex-
tensive work has been devoted to the various propertie
harmonic traps@8–23#, which can account for most of th
characteristic scales of experimentally achieved BEC acc
ing to very intuitive scaling arguments based on energy b
ance@8#. The main features of BEC of ideal gases in eith
isotropic or anisotropic quadratic potential wells have be
analyzed by various authors@9,10,12–19#, paying special at-
tention to the modifications of the transition patterns due
the finite number of trapped atoms.

The nature of the transition itself has been the subjec
some controversy. Kirsten and Toms claimed that no sp
taneous symmetry breaking leading to BEC can happe
confined potentials@9,10#, as shown by the fact that th
chemical potential of the bosons does not reach the valu
the ground-state energy at a finite temperature. However,
behavior of the chemical potential does not prevent the
istence of a noticeable peak in the specific heat of the ga
a well-defined temperature, for dimensions other than un
coinciding with a sudden important rise in the ground-st
occupation number. This characteristic has been recogn
by various authors@10–12# as the signature of a phase tra
sition. Furthermore, calculation methods based on ex
summations@12–15# and Euler-MacLaurin approximatio
formulas @16,17# yield results practically identical to thos
arising from more sophisticated treatments@9,10,18#. Bose-

*Also at Consejo Nacional de Investigaciones Cientı´ficas y Téc-
nicas, Buenos Aires, Argentina.
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condensed gases in anisotropic traps have also deserve
tention, especially in view of the fact that experimental d
vices lead to the possibility that the definite stages
condensation are governed by the most binding o
dimensional~1D! forces @17,19#. In particular, it has been
clearly established that in highly anisotropic potentials,
peak in the specific heat is linked to the freezing of tho
degrees of freedom lying higher in the energy spectrum,
macroscopic occupation of the ground state of the sys
occurs at a lower temperature@19#.

The effects of two-particle interactions represented b
single parameter, the scattering length, have been exam
@6,20–23#; the solutions of the Gross-Pitaevskii~GP! equa-
tion provide information upon the condensate wave functi
and it has been shown that the transition temperature is
sitive to the sign of the interparticle forces in a way th
opposes the expected results for the free homogeneous
@22#. The variational solution to the GP equation@23# also
provides an interesting means to approach the various
tures of BEC of weakly interacting gases.

More recently, double Bose condensates have becom
attractive field of research in view of the close resembla
between these systems and other bistable devices famili
quantum optics@24#. The properties of double traps hav
been mostly investigated from the perspective of these an
gies, keeping in mind that due to the large separations
tween the experimentally split traps and the significa
height of the halving barriers, the condensate wave func
essentially corresponds to two nonoverlapping wells. It is
present purpose to perform a detailed study of the quan
and thermodynamic aspects of these bistable traps in te
of the shape of the barrier and the well separation in
framework of a simple description. For this sake, in Sec
we present essential formulas for the quantum mecha
and thermodynamics of an ideal gas in a harmonic dou
well, while the results of the calculation are presented in S
III. Section IV is devoted to the weakly interacting gas d
scribed by means of the GP1Popov formalism. The conclu
sions are summarized in Sec. V.
1488 ©1999 The American Physical Society
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II. HARMONIC DOUBLE WELL

The spectrum of the 1D harmonic double well, with
potential

V~z!5
mv2

2
~ uzu2a!2, ~2.1!

can be represented@25# by the parabolic cylinder function
Dn@A2mv/\(uzu2a)# with eigenvalues«n5\v(n11/2).
The quantum numbersn are determined by establishing th
the eigenfunctions be either even or odd, and it is found
the spectrum evolves from a purely harmonic one at sep
tion a50 to a doubly degenerate harmonic one of the sa
frequency, asa grows indefinitely. Furthermore, we sha
consider 2D~i.e., vy50) and 3D traps of the form

V~r !5
m

2
@vx

2 x21vy
2 y21vz

2 ~ uzu2a!2#. ~2.2!

A numerical computation of the energy levels of Eq.~2.1!
enables us to examine the thermodynamic properties
confined boson gas by straightforward summation of the
lation defining the internal energy,

U5(
i

Ni« i , ~2.3!

whereNi5@eb(« i2m)21#21 is the boson occupation numbe
at temperatureT51/b for the level with energy « i
5\ (nxvx1nyvy1nvz13/2), once the particle numbe
equation

N5(
i

ni ~2.4!

has been solved to determine the chemical potentialm for a
given value ofN. The specific heat is then computed, diffe
entiating the energy with respect to temperature.

In this work, we compare the results of the exact nume
cal calculation with those of the semiclassical method
rived in Ref. @6#, which in the present case consists of r
placing the summation in Eq.~2.4! by

N5N01N11(
j

zj E d« r~«!e2 j «/k T, ~2.5!

wherer(«) is the classical extension of the density of sta
for single particles in the well. Notice that in Eq.~2.5! we
explicitly separate the populationsN0 of the ground state and
N1 of the first excited state, since as the height of the bar
V05mv2a2/2 increases, these two energy levels appro
the doubly degenerate ground state of the infinitely dist
wells. The density of states is computed according to
prescription given in Ref.@6#, which for an arbitrary confin-
ing D-dimensional potentialV(r ) can be cast into the mos
general form

rD~«!5
CD

hD
2D/221mD/2 E dDr @«2V~r !#D/221, ~2.6!
at
a-
e

a
-

i-
-

-

s

r
h
t
e

where the integral is to be carried within the classically
lowed region. In view of the relation

rD~«!5E
0

«

d«8rD21~«2«8!r1~«8!, ~2.7!

we only need to compute the 1D density for the double w
The 3D case is studied convolutingr1 with

r2~«!5
1

\v S «

\v
11D ~2.8!

for v5vx5vy , which yields a formula for the number o
particles in two dimensions that coincides with the hig
temperature limit of the exact summation~see the Appen-
dix!. It should be noted that the semiclassical prescription
Ref. @6# only gives the first term of Eq.~2.8! for the 2D
density.

III. SYMMETRIC DOUBLE WELL

We have investigated BEC of an ideal boson gas confi
in the trap described in Sec. II for dimensionsD51 –3, com-
paring the results of the exact summations with those of
approximate density-of-states method, in terms of the w
splitting a and the number of particlesN. In the 3D case, we
also examine the anisotropic potentials, mostly related to
perimental situations; notice that in spite of the symme
breaking along thez direction, we shall consider the potenti
to be isotropic whenvx5vy5vz , and anisotropic other-
wise. The analytical expressions for the semiclassical de
ties of states computed according to prescription~2.6! and
the corresponding numbers of particles are summarize
the Appendix.

The specific calculations indicate that the 1D well exhib
a characteristic sharp increase of the occupation numbeN0
around a temperatureTc ; however, this is the usual pseudo
transition that is not accompanied by a peak in the spec
heat, as shown in Fig. 1 for various separations betw
harmonic wells~hereafter indicated by the dimensionle
variable z05A2mv/\a). We can appreciate the modera

FIG. 1. The specific heat of a 1D boson gas trapped in a dou
well ~in units of the Boltzmann constantkB) as a function of the
reduced temperatureT/Tc

(0) for different separations between pote
tial minima.
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1490 PRA 59P. CAPUZZI AND E. S. HERNA´ NDEZ
sensitivity of this quantity to the splittingz0. We also com-
pare the exact ground statec(z) of the double well with the
wave function

c̃~z!5N @c0~z2a!1c0~z1a!#, ~3.1!

wherec0(z6a) represents the ground state of a single h
monic well of the same frequency centered at6a, andN is
a normalization factor. This is illustrated in Fig. 2, where w
plot, for z051 and 3~left and right columns, respectively!,
the functionsc(z) andc̃(z) by full and dashed lines, respec
tively. In the upper plots, each single ground-state wa
function c0(z6a) has been individually normalized
whereas in the lower ones sum~3.1! has been normalized t
unity. The dotted lines indicate each separate contributio
c̃(z). It is clear that for every well separation consider
here, the exact wave function resembles almost exactly
normalized combination~3.1! shown in the lower pictures.

Let us now consider a 3D isotropic trap; no substan
qualitative differences have been observed in the 2D cas
Fig. 3 we exhibit the occupation numbersN0 and N1 as
functions of the temperature in units of the critical tempe
ture Tc

(0) corresponding to an infinite number of atoms, f
well separationsz050 ~i.e., a single harmonic well! and 1, as
well as for total particle numbersN5100 and 10 000. We
observe a rather sharp transition at a temperature slig
lower than unity for sufficiently large number of particle
furthermore, this transition temperature decreases with gr
ing barrier height. On the other hand, the larger the value
z0, the closer the resemblance betweenN0 andN1 even for
temperatures substantially belowTc

(0) ; this fact reflects the
quasidegeneracy of the ground state and the first excited
for large finite values ofz0, which evolves into complete
degeneracy at infinite separation. This can be visualize
Fig. 4, where we have selectedN51000 and various barrie

FIG. 2. The exact ground-state probabilityuc(z)u2 ~full lines! of
particles in the double trap as a function of the dimensionless
ordinatez/a, for well separationsz051 ~left column! and z053
~right column!. Dashed lines correspond to the sum of two norm
ized single-well wave functions~upper plots! and the normalized
sum~lower plots!, while dotted lines indicate the individual groun
states.
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heightsV0 , which allow us to appreciate the significant d
crease of the transition temperature that occurs as the w
split apart.

The existence of a transition becomes evident as one
lyzes the specific heat. Figures 5 and 6 correspond to
same parameters as Figs. 3 and 4, respectively, while l
indicate numerical results, and symbols locate the calc
tions performed with the semiclassical expressions listed
the Appendix. We observe that the agreement between e
and approximate results is almost perfect at the lowest t
peratures, whereas, for high temperatures, that agreem
holds only for large particle numbers. For such numbers
semiclassical approach locates the transition to an accep
accuracy, except for some slight overestimation of both
characteristic temperature and the height of the peak; h
ever, this departure is very noticeable for small quantities
atoms. In Fig. 6 we may notice the consequences of incr
ing the well separation: the major effect takes place fo
splitting z053, with only minor differences as one enlarg
this number.

We have also performed calculations for anisotro
traps; as an illustration, in Fig. 7 we show the specific h

o-

-

FIG. 3. Occupation numbers of the ground and first exci
states for total particle numbersN5100 ~thin lines! and 10 000
~thick lines! as functions ofT/Tc

(0) for the single harmonic well and
for a separation equal to unity.

FIG. 4. Occupation numbers of the ground and first exci
states for 1000 atoms and various barrier heights.
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for 1000 atoms and well separationsz050 and 1. The vari-
ous curves correspond to the aspect ratios of the JILA@1#
and MIT traps @2#, namely, vz /vx,y5A8 and (vz /vx
53.2, vz /vy51.8), respectively, and to an isotropic we
with a frequencyv50.56vz equal to the MIT geometric
mean. We realize that the larger the anisotropy, the sma
the transition temperature and the lower the height of
peak. This also happens when one switches from the si
to the double well, though to a less significant extent
compared to the anisotropy effect.

IV. WEAKLY INTERACTING GAS IN THE DOUBLE
WELL

The influence of weak to moderate interactions betw
trapped particles can be investigated in a GP mean-field
proach generalized for finite temperatures. Within this f
malism, the condensate wave functionc(r ) is obtained from
the nonlinear equation@27#

ĥ0c~r !5mc~r !, ~4.1!

with

FIG. 5. Specific heat for the same situation depicted in Fig
Circles and dots indicate the results of the semiclassical approx
tion.

FIG. 6. Same as Fig. 5 for the conditions of Fig. 4.
er
e
le
s

n
p-
-

ĥ05H 2
¹2

2 m
1V~r !1g @nc~r !12ñ~r !#J , ~4.2!

where we have made the usual decomposition of the den
into condensate and noncondensate contributions, i.e.,n(r )
5nc(r )1ñ(r ), andnc(r )5uc(r )u2. The terms involving the
interaction strengthg arise from a two-body pseudopotenti
gd(r ). In the s-wave approximation, which is adequate f
very dilute gases, one hasg54pa\2/m, a being the scat-
tering length.

Within the Popov approximation of the Hartree-Foc
Bogoliubov~HFB! theory, the excitations of a dilute syste
of bosons at low and intermediate temperatures are given
the coupled eigenvalue equations

L̂ ui~r !2gnc~r !v i~r !5Eiui~r !,
~4.3!

L̂ v i~r !2gnc~r !ui~r !52Eiv i~r !,

which define the quasiparticle energiesEi and amplitudesui
andv i , with

L̂[ĥ01gnc~r !. ~4.4!

The noncondensate density is related to the quasipar
properties according to@27,28#

ñ~r !5(
i

$uv i~r !u21@ uui~r !u21uv i~r !u2# N~Ei !%,

~4.5!

whereN(Ei)5(ebEi21)21 is the Bose-Einstein distribution
of the quasiparticles.

One must solve the coupled GP~4.1! and HFB~4.3! equa-
tions, using the self-consistent densitiesnc(r ) andñ(r ) for a
fixed number of particlesN. For this sake, we use the deco
pling procedure introduced in Ref.@29#, and expandh̃0 in a
basis of eigenfunctions of the 2D harmonic oscillator on
(x,y) plane times a discretized basis set for the 1D dou
well along thez axis. To illustrate this procedure, in Fig.
we plot the condensate fraction as a function of the temp

FIG. 7. Specific heat of anisotropic traps for the aspect ratios
the JILA and MIT traps, compared to an isotropic situation.

.
a-
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1492 PRA 59P. CAPUZZI AND E. S. HERNA´ NDEZ
ture for 100 particles at various barrier heights and posi
interaction strengthss5a Amvz/\. We observe that, in al
cases, the system reaches BEC at temperatures below
transition temperature for a single well with no interaction
However, depending on the value ofz0 , two different behav-
iors occur. Whenz0 is small, the condensation temperatu
decreases the stronger the interaction, in agreement with
well-known result for the harmonic trap@6,22#. Conversely,
if z0 is high enough, an increase ofs yields a higher critical
temperature. This feature can be interpreted if we cons
the single-particle spectrum in the mean field, whose gro
and first excited states are depicted in Fig. 9 for a temp
tureT50.26Tc

(0) andN5100. The overall trend is similar a
any temperature, and this choice is a convenient one in v
of the displayed scale. We realize that these levels also
hibit two tendencies: for small well separations, as the in
action is enlarged the energy levels become closer, givin

FIG. 8. Ground-state occupation number of a 3D double w
including weak two-body interactions, computed in the GP1Popov
approximation.

FIG. 9. Energies of the ground and first excited states~full and
dotted lines, respectively! of interacting particles in an isotropi
double well, as functions of the separationz0, for various interac-
tion strengths froms50 up to s51022 ~bottom to top! in steps
Ds51023. The dashed line indicates the barrier heightV0 . Ener-
gies are given in units of\v.
e

the
.

he

er
d
a-

w
x-
r-
a

more degenerate spectrum and a higher density of sta
which in turn demand further cooling in order to achie
BEC. On the other hand, ifz0 is sufficiently large~above
roughly z052.5 in Fig. 9! the ground and first excited state
of a double well are already quasidegenerate; in this case
effect of the interaction, as indicated in this figure, is to ra
the whole spectrum uniformly. As a consequence, due
level crossing, particles occupying the first excited state
the free gas can be promoted to the interacting ground s
at no thermodynamic cost, thus giving rise to a moder
increase of the condensation temperature.

V. DISCUSSION AND SUMMARY

In this work we have discussed the characteristics
Bose-Einstein condensation in harmonic wells where
confinement has undergone some splitting along one of
three directions. We mostly consider 3D potentials cons
ing of two cylindrical wells separated a distance 2a along the
z axis. For ideal gases, the thermodynamics of the confi
bosons has been investigated, performing exact nume
summations for the particle number, which enables us
determine the chemical potential, and for the total ener
after which we derive the specific heat by means of a
merical differentiation with respect to temperature. This p
cedure allows us to describe the major details of the tra
tion and to compare the results with the approximat
corresponding to replacement of exact summations by i
grals weighted by a semiclassical density of states.

The general results can be summarized as follows.
find that the semiclassical approach is capable of locating
transition, i.e., the peak in the specific heat, with higher
curacy the larger the amount of trapped atoms. The ove
timation in both the precise value of the transition tempe
ture and the height of the peak is rather pronounced for sm
systems, and becomes progressively less important as
system approaches the thermodynamic limit. It becom
clear that the effect of halving the population is to lower t
transition temperature; for a large particle number, the tre
of this temperature as the well separation grows from zer
infinity is clearly to sweep the path between critical tempe
turesTc(N) andTc(N/2). This general behavior is indepen
dent of the dimensionality of the system; however, just as
the single-well problem@12,14#, no strict phase transition
takes place in the 1D potential. In fact, in this case one fi
that in spite of the important rise in the slope of the occu
tion numberN0 observed at a rather well-defined tempe
ture, the specific heat increases monotonically toward
classical limit.

The effects of adding a repulsive interaction between
oms has been examined, resorting to the GP1 Popov pro-
cedure which yields the condensate and noncondensate
sities together with the single-particle spectrum. It is fou
that the shift of the condensation temperature exhibits dif
ent signs according to the size of the separation betw
wells on thez axis; in particular, for sufficiently large split
ting, the trend opposes the well-known results for harmo
traps, since the critical temperature appears to increase
growing repulsion strength. This unexpected feature can
explained by examining the spectrum of the atoms in
mean field as a function of the well separation. One c

ll
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PRA 59 1493BOSE-EINSTEIN CONDENSATION IN HARMONIC . . .
realize that in the interacting system, not only the position
the energy levels, but the size of the gap between the gro
and the first excited state, change substantially when
wells split apart. The level crossing that occurs for lar
separations causes atoms in the excited state to move int
new ground state, with a consequent increase in the con
sation temperature.

An experimental realization of the double well is the M
trap @2#, characterized by a large separation between w
and by a tunable barrier height. One might then wonde
what an extent the results presented here might be sens
to independent choices of the location6a of the minima and
the barrier magnitudeV0 , and intend to develop more de
tailed models for the specific MIT double trap. Among t
simplest choices, one could quote~i! a combination of two
symmetric harmonic wells smoothly joined atz56am by a
quadratic barrier, and~ii ! the double well of the previous
sections deformed by a central constant cutoff with a va
V0 for uzu<am . We have performed calculations similar
those presented in Sec. III for the above potentials, emp
ing standard magnitudes of the original MIT trap@2#. We
have found that the thermodynamics of the ideal gas rem
identical to the previously analyzed double-well case;
other words, the transition temperature and the overall sh
of the occupation numbers and specific heat~Figs. 3–6! are
not sensitive to the decoupling between the location of
minima and the barrier size, within the range of values
interest.

To summarize, we remark that the statistical mechanic
a bistable system can be examined on grounds identica
those for the case of a single equilibrium state, with an
ditional parameter, namely, the separation between wells
the agent of the evolution from a given number of trapp
atoms up to the point where one exactly halves the pop
tion in the infinite separation limit.
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APPENDIX

Here we collect various useful formulas concerning
thermodynamics of ideal gases in harmonic traps. We
play the semiclassical results obtained from the density
states method of Ref.@6# @Eq. ~2.5!# for the isotropic
D-dimensional oscillator:

particle number

N5N01S kT

\v D D

gD~z!, ~A1!

internal energy

U5D\v S kT

\v D D11

gD11~z!, ~A2!

and specific heat
f
nd
e

e
the
n-

ls
o
ive

e

y-

ns

pe

e
f

of
to
-

as
d
a-

5

-

e
s-
f-

C

k
5D S kT

\v D D F ~D11!gD11~z!2D
gD

2 ~z!

gD21
~z!G , ~A3!

whereas the exact summations give, in the high-tempera
limit \v!k T

N5N01S kT

\v D D

(
n51

D

~2 !n11gn@ze2~n2D/2!\v/kT#.

~A4!

In this limit one can take advantage of the property of t
Bose special functionsgi(z),

gi S e
m1dm

kT D'gi~z!1
dm

kT

gi 21~z!

z
, ~A5!

for D>2, and write

N5N01S kT

\v D D FgD~z!1
D

2

kT

\v

gD21~z!

z G , ~A6!

from where the transition temperature is obtained specify
N0 5 0 together withz51. For the isotropic potential with
the double well on thez direction, we have the following
cases.

DimensionD51: The density of states takes the form

r1D~«!55
2

\v
, «,Vo

1

\v
1

2

p

1

\v
arcsinSAVo

« D , «>Vo ,

~A7!

and the number of particles is

N5N01N11E
«1

1

`

d«
r1D~«!

eb~«2m!21

5
z

12z
1

z1

12z1
1

1

b\v
ln

12zm

~12z1!2

1
2

p

1

\v E
«m

`

d« arcsinAVo

«
N~«!, ~A8!

with z5exp(bm), z15exp$b(m2«1)%, zm5exp$b(m2«m)%,
and «m5max$«1,Vo%. The total energy can be expresse
similarly to Eq.~A8!, as a summation including an integra

DimensionD52: We obtain
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r2D~«!55 2
«

~\v!2
, «,Vo

1

~\v!2F«1«
2

p
arcsin~AVo /«!1

4

p
AVo A«2VoG , «>Vo

~A9!

and

N5
z

12z
1

z1

12z1
1

1

~b\v!2
@2g2~z1!2g2~zm!#1

2

p

1

b~\v!2 E«m

`

d« arcsinSAVo

e D ln@12exp„2b~e2m!…#, ~A10!

wheregn(z) is the usual Bose function@26#
DimensionD53: The corresponding expressions are

r3D~«!55
«2

~\v!3
, «,Vo

1

2~\v!3 F«21
2

p
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