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Spontaneous spatial symmetry breaking in two-component Bose-Einstein condensates
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Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusett

Chris H. Greene
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~Received 22 June 1998!

We discuss the general features of spontaneous spatial symmetry breaking in trapped two-component alkali-
metal–atom Bose-Einstein condensates, and give qualitative guidelines for when it will occur. We further show
that the Hartree-Fock equations admit symmetry-broken solutions for as few as two trapped atoms, discussing
the particular system of one85Rb atom and one87Rb atom. It is also shown that the critical value of the
interspecies scattering length for a mixture of Na and Rb in an isotropic trap depends strongly on the number
of atoms in a manner not described by the standard Thomas-Fermi phase separation condition.
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Spontaneous symmetry breaking~SSB! has striking mani-
festations when it occurs in mean-field descriptions of
quantum many-body problem. Macroscopic implications
SSB are dramatic and immediate, as in the case of ferrom
netism. But symmetry breaking in a microscopic quant
system, a small molecule for instance@1#, is far more sur-
prising. At first glance it even seems to contradict famil
theorems of quantum mechanics on the expected natur
eigensolutions when a symmetry operatorP̂ commutes with
the Hamiltonian of the systemĤ. Of course, no true contra
diction exists when mean-field theory predicts that
ground state of a system is not an eigenstate of a commu
symmetry operatorP̂. In fact, two possible explanations ca
be invoked when this is observed:~i! if the eigenstates ofĤ
are degenerate~not normally expected for the ground state!,
they need not be eigenstates ofP̂, although it is always pos
sible to form linear combinations of the degenerate ene
eigenstates whichare simultaneous eigenstates ofP̂ and Ĥ;
or ~ii ! the symmetric mean-field ground state is simply
poor approximation to the lowest-energy eigenstate of
full many-body Hamiltonian.

The phenomenon of SSB could become important for
interpretation of current generation experiments on tw
component dilute alkali-metal–atom Bose-Einstein cond
sates~BEC’s! @2–4#. It has recently been demonstrated the
retically that, in certain regimes of the interactio
parameters, the Hartree-Fock~or Gross-Pitaevskii! ground-
state solution does not possess the symmetries of the m
netic trap used to contain the condensate@5,6#. In some cases
this symmetry breaking was made explicit, as in the work
Refs.@5,6#, whereas in other cases this effect was only in
rectly suggested by the occurrence of complex excitation
quencies in solutions of the Bogoliubov~or random-phase
approximation! equations@7#.

Here, we address spatial SSB in trapped BEC’s from
more general perspective. In particular, we point out t
spatial SSB in microscopic systems is purely a result of
independent-particle approximation, and that a ‘‘symmet
restored’’ wave function should be used for calculati
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physical observables. In addition, we present a qualita
framework within which the necessary conditions for spa
SSB can be understood. We then discuss the manne
which symmetry breaking is expected to manifest itself
the solutions of the Hartree-Fock equations for a wide ra
of trap geometries, and study the Na-Rb system in detail.
conclude with a few remarks on the observable conseque
of spatial SSB.

The occurrence of symmetry breaking is of particular
terest for dilute alkali-metal–atom BEC’s, since they lie
some sense on the border between macroscopic and m
scopic quantum systems. In fact the most common theo
cal description adopted in BEC’s is ‘‘macroscopic’’ in ou
look, in anticipation of eventually taking a thermodynam
limit. Yet the two-component BEC under discussion in th
work can be described equally well in simple Schro¨dinger
theory @8,9#, with strict conservation of particle numbe
more akin to the approach used to describe the microsc
quantum-mechanical ground state of a molecule or clus
The ground state of such a microscopic system retains
symmetries of the Hamiltonian.

The experimental observation of interacting BEC’s
Myatt et al. @2# ~see also Refs.@3,4#! has sparked great the
oretical interest in two-component BEC’s@5–7,9–15# . The
subject of two-component BEC’s was addressed in the p
@16#, but most relevant to the present discussion are the m
recent papers by O¨ hberg and Stenholm@5#, by Timmermans
@12#, by Gordon and Savage@6#, and by Pu and Bigelow@7#.
Öhberg and Stenholm suggested the possibility of symm
breaking based upon some numerical results in two dim
sions, and Timmermans discussed the thermodynamic p
erties of the boundary between phase separated species.
don and Savage investigated the particular case of theuF
51,MF521& and u2,1& hyperfine states of87Rb in a time-
orbiting potential trap. They demonstrated that the cylind
cal symmetry is broken, and that the conditions for symm
try breaking in this case depend upon both the numbe
atoms and the interspecies scattering lengtha12. Finally, Pu
and Bigelow investigated the ground-state configuration o
mixed Na-Rb condensate in an isotropic trap. Since
1457 ©1999 The American Physical Society
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1458 PRA 59B. D. ESRY AND CHRIS H. GREENE
Na-Rb scattering lengtha12 is not known, they considered
range of values, finding phase separation fora12 larger than
some critical value~similar results have been presented
Bashkin and Vagov@13#!. They explicitly assumed isotropi
solutions, however, and thus saw no symmetry breaking
though it is suggested by the fact that they found an ima
nary frequencyl 51 excitation.

At this point, a clear statement of the phenomenon is
order. Spontaneous symmetry breaking is said to occur if
mean-field solutions do not possess the symmetry of the
derlying many-body Hamiltonian for values of some para
eter beyond a critical value@17#. When compared to solu
tions obtained with symmetric orbitals, the symmetry-brok
states better approximate the true ground state, as judge
the variational principle. That is, the mean-field solutions c
be viewed as the result of a variational analysis in
Hartree-Fock approximation, and the total energy calcula
with the symmetry-broken state is lower than that obtain
using the symmetry-preserving state. One theoretical sig
ture of symmetry breaking~and of instabilities of the
Hartree-Fock solution in general! is the appearance of van
ishing or imaginary excitation frequencies in a random-ph
approximation or Bogoliubov quasiparticle analysis. T
zero-frequency excitation first occurs at exactly the transit
from symmetry preserving to symmetry breaking, and s
nals the Goldstone mode typically associated with SSB.

For fixed numbersN1 andN2 of two types of distinguish-
able bosonic atoms, the Hartree-Fock approximation to
ground state takes the form

C~x1 , . . . ,xN11N2
!5c1~x1!•••c1~xN1

!

3c2~xN111!•••c2~xN11N2
! ,

where the orbitalsc1 andc2 satisfy the Hartree-Fock equa
tions

@h11~N121!U11uc1u21N2U12uc2u2#c15«1c1 ,
~1!

@h21N1U21uc1u21~N221!U22uc2u2#c25«2c2 .

The one-body operatorshi in these equations include th
kinetic energy and trapping potential contributions. Note t
the interaction potentials have been approximated in th
equations by a Diracd function pseudopotential@18#. The
coefficient Ui j of the d function is 2p\2ai j /m i j , where
m i j 5mimj /(mi1mj ) is the reduced mass of atomsi and j,
with ai j their s-wave scattering length. For a large repulsi
interactiona12 between the different atoms~compared toa11
and a22), the mean-field interaction energy will clearly b
minimized if the orbitals do not overlap. This energy redu
tion is the origin of the phase separation discussed by m
authors. The critical value ofa12, beyond which separation
occurs in the Thomas-Fermi approximation, can be show
be

a12
c 5S 4m12

m11m2
a11a22D 1/2

. ~2!

In some cases, the total energy can be further lowered if
species separate in an asymmetrical manner; for this to
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pen, Eq.~2! is a necessary but not sufficient condition—
point discussed in greater detail below. In the case of a T
trap, symmetry breaking has been shown@6# to hinge on the
number of atoms, in contrast to Eq.~2!. Similarly, we show
below that, for a Na-Rb mixture, the condition for symmet
breaking has an even more interesting atom number de
dence. Thus, in accord with conventional views of SS
there is a critical value of some parameter related to
symmetry breaking. The specific dependence of this par
eter on the numbers of atoms, scattering lengths, and
frequencies is, however, nontrivial and not readily obtaina
except by direct solution of the Hartree-Fock equations.

Here we present a qualitative framework in which t
conditions for symmetry breaking can be understood. O
serve first that phase separation adds, in effect, a bounda
the unseparated density distributions, and places all atom
one species on one side of the boundary and all atoms o
other species on the other side. Moreover, near the crit
value the total number density is roughly the same for b
separated and unseparated systems. The interspecies in
tion energy of the separated state is clearly lower, but
loss is partially offset by the kinetic energy gained in form
ing the interphase boundary and the energy gained from
intraspecies interactions. The impact of the additional kine
energy is largest for small numbers of atoms, however, si
the interaction energies contain an additional factor of p
ticle number~s! relative to the kinetic energy. These sam
energy considerations hold for SSB as well. To achieve
even lower total energy than the phase-separated state
symmetry-broken state seeks a simpler interphase bound
For example, in an isotropic trap with equal numbers of
oms of each species that differ only in their respective sc
tering lengths, the symmetry-preserving, phase-separ
state has a spherical interphase boundary with one spe
forming a spherical shell around the other. The symme
broken state acquires a roughly planar boundary between
two hemispheres of each species. The kinetic energy ass
ated with the boundary curvature is reduced, as is the in
face volume.

We illustrate these points with a two-body example. Tw
atoms in the ground state of a trap do not constitute a c
densate, but the above development—i.e., Eq.~1!—holds
equally well for two atoms as for two million. A two-body
system is also physically intuitive and ‘‘exactly solvable
For one 85Rb atom and one87Rb atom in a trap with fre-
quencies nr54nz51 MHz, Eq. ~1! indeed yields a
symmetry-breaking solution with a total energy of 2.49
\vr compared to 2.5676\vr for the symmetry-preserving
solution. The relevant symmetry operatorPz represents re-
flection through thez50 plane. The symmetry-preservin
solution is partially phase separated due to a repulsive s
tering length—a125210 a.u. for au3,3& 85Rb atom colliding
with a u2,2& 87Rb atom @19#—with interphase boundarie
above and below thexy plane and parallel to it.~There are
two boundaries in order to preserve the symmetry.! The
symmetry-broken solution has only one boundary atz50;
based on the above energy considerations, it has lower
ergy since it has one fewer interphase boundary. The e
two-body ground-state wave function has a definite symm
try with respect to reflections aboutz50, and can be approxi
mated as a linear combination of the degenerate symme
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broken Hartree-Fock statesC(x1 ,x2) and PzC(x1 ,x2).
Specifically, the symmetry-restored states
6Pz)C(x1 ,x2) are eigenstates ofPz , with energy expecta-
tions 2.4750\v (1) and 2.5256\v (2). The first of these
gives a clear improvement over the simple product solutio
both symmetry preserving and symmetry broken. It is
best ‘‘independent-particle’’ ground state of this system
the various possibilities considered here. Note that these
ear combinations of Hartree-Fock states are not themse
solutions of Eq.~1! and cannot be represented as a sim
product of single-particle states. This two-body example
lustrates the general fact that spatial SSB in a microsco
quantum system is purely a result of the Hartree-Fock
proximation.

When a system is in the symmetry-breaking regime,
solution of the Hartree-Fock equations will break the sy
metry in the direction corresponding to the weakest trap
quency. For a cylindrically symmetric trap in which th
stronger trapping frequency is in the axial direction, the
tational symmetryLz will be broken. The solution, however
retains a plane of symmetry that includes thez axis, but
whose orientation is random. In a cigarlike cylindrical
symmetric trap, thez-parity symmetry is broken. In a com
pletely anisotropic trap, the parity in the weakest trap dir
tion will be broken. The rotational symmetryL2 in an iso-
tropic trap can also be broken, but the system will retain
axis of symmetry whose orientation is random. When a c
tinuous symmetry is broken, constructing a many-body s
with the correct symmetry is more complicated than in
discrete case considered in the two-atom example ab
Nevertheless, a general prescription for constructing
symmetry-restored many-body state is simply to project
symmetry-broken state onto an eigenstate of the des
symmetry@17#. Equivalently, the Hamiltonian can be diag
nalized in the subspace of degenerate states related b
symmetry transformation under consideration.

To gain further insight into the nature of spatial SSB
double-condensate systems, we investigate a particular
ample: a mixture of Na and Rb in an isotropic trap. Th
system was studied by Pu and Bigelow in a series of pa
@7# in which they focused on its stability and on a predict

FIG. 1. ‘‘Phase diagram’’ for the Na-Rb condensate. In t
shaded region, the symmetry-breaking solution is the lowest-en
Hartree-Fock state, while the symmetry-preserving solution has
lowest energy elsewhere. The thick solid line and circles denote
calculateda12

c ; the dotted line represents the Thomas-Fermi criti
value ofa12 from Eq. ~2!. The triangles and labels refer to Fig. 2
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metastable state stabilized by the phase separation. In
work, the solutions of Eq.~1! were constrained to be isotro
pic. Here we allow for symmetry-broken solutions and foc
on the criteria for symmetry breaking. Specifically, we sol
the Hartree-Fock equations for the isotropic trap in cylind
cal coordinates, thus choosing the axis of symmetrya priori.
The solution, however, is not forced to be either symme
broken or symmetry preserving. Rather, the numeri
method forces the solution to converge to the lowest-ene
solution regardless of its symmetry. This is accomplished
propagating Eq.~1! as a diffusion equation witht5i t , while
constraining the orbitalsc i to be normalized to unity. Start
ing from random initial orbitals,c1 andc2 will converge to
the state of lowest energy in the limit oft→` whether it is
symmetry breaking or preserving. The symmetry-preserv
solution is readily found by imposing an additional symm
try constraint.

Choosing the Rb parameters as a reference, we write
Hartree-Fock equations using\v1 as the energy unit and
A\/m1v1 as the length unit. In order to match previous stu
ies, we use trap frequenciesn15160 Hz for the Rb atoms
and n25310 Hz for the Na atoms. The effective trappin
frequencies are thus 1 andm2v2 /m1v1 '0.5 for the Rb and
Na atoms, respectively. The difference in trapping frequ
cies causes the Na atoms to form a spherical shell around
Rb atoms in the phase-separated regime, as suggeste
Refs. @7,13#. While the intraspecies scattering lengthsa11
anda22 are relatively well known, the interspecies scatteri
length a12 is not. We use the slightly inaccurate values
a115113.38 a.u.~6 nm! and a22556.692 a.u.~3 nm!, how-
ever, in order to match Ref.@7#. There remain three param
eters in the problem:a12, N1, andN2. SettingN15N25N,
we solved the Hartree-Fock equations as a function ofN and
a12.

Figure 1 summarizes the results for the Na-Rb mixtu
The critical value ofa12 is just the curve separating the tw
regions, and it depends strongly on the number of atoms.
small N1, a12

c is roughly proportional toN21, reflecting the
ratio of kinetic to mean-field energy. For largeN, the N
dependence ofa12

c is a result of the relatively large differenc
in effective trapping frequencies each species experien
combined with the disparity betweena11 and a22. These

gy
e

he
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FIG. 2. The number densities in they50 plane corresponding to
the triangles in Fig. 1,N15N25N anda125105 a.u.:~a! N5500,
~b! N52000, ~c! N510 000, and~d! N520 000. The dotted lines
mark the contours of Rb and the solid lines those of Na.
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1460 PRA 59B. D. ESRY AND CHRIS H. GREENE
differences lead to a shell-filling effect for the Na atom
where the shell is the spatial region between the mean
of the Rb atoms in the tighter trap and the weaker trap
perienced by the Na atoms.

At a fixed interspecies scattering length greater than ab
80 a.u., the system starts in a symmetric configuration
smallN. since the kinetic energy barrier of forming an inte
phase boundary is too high@see Fig. 2~a!#. As N is increased,
the symmetry-broken state becomes energetically favor
when the energy lost in the mean-field interaction ene
offsets the kinetic-energy gain@see Fig. 2~b!#. With N in-
creased further~but still within the symmetry-broken regime!
the Na atoms wrap further around the Rb core@see Fig. 2~c!#.
The Rb core is pushed slightly off center, but the trap is
tight to make large displacements energetically favora
The number of atoms eventually grows large enough that
Na atoms wrap all of the way around the Rb core, filling t
spatial shell available to them. Thus, the symmetric confi
ration is again reached@see Fig. 2~d!#.

We conclude with the remark that it is difficult to envisio
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an experimental realization of the conditions necessary to
spontaneous spatial symmetry breaking. Any stray field
fluctuation in trapping fields that favors a direction in spa
will likely destroy the symmetry of the trap in a mann
catastrophic for the effect. Should such technical difficult
be overcome, however, the symmetry properties of
ground state should be reflected in measurable observa
For instance, in thez-parity symmetry-breaking case,
straightforward species specific absorption image, or, e.g
light diffraction experiment, can quickly distinguish
symmetry-broken state from either the symmetry-preserv
or the symmetry-restored state. The latter two types of st
could then be differentiated in an experiment that measu
the two-body correlation function.
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