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Spontaneous spatial symmetry breaking in two-component Bose-Einstein condensates
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We discuss the general features of spontaneous spatial symmetry breaking in trapped two-component alkali-
metal—atom Bose-Einstein condensates, and give qualitative guidelines for when it will occur. We further show
that the Hartree-Fock equations admit symmetry-broken solutions for as few as two trapped atoms, discussing
the particular system of on&Rb atom and oné’Rb atom. It is also shown that the critical value of the
interspecies scattering length for a mixture of Na and Rb in an isotropic trap depends strongly on the number
of atoms in a manner not described by the standard Thomas-Fermi phase separation condition.
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Spontaneous symmetry breaki(®SB has striking mani-  physical observables. In addition, we present a qualitative
festations when it occurs in mean-field descriptions of theframework within which the necessary conditions for spatial
quantum many-body problem. Macroscopic implications ofSSB can be understood. We then discuss the manner in
SSB are dramatic and immediate, as in the case of ferromagvhich symmetry breaking is expected to manifest itself in
netism. But symmetry breaking in a microscopic quantunthe solutions of the Hartree-Fock equations for a wide range
system, a small molecule for instanfH, is far more sur-  of trap geometries, and study the Na-Rb system in detail. We
prising. At first glance it even seems to contradict familiarconclude with a few remarks on the observable consequences
theorems of quantum mechanics on the expected nature ef spatial SSB.
eigensolutions when a symmetry opera@bcommutes with The occurrence of symmetry breaking is of particular in-
the Hamiltonian of the systerid. Of course, no true contra- terest for dilute alkali-metal-atom BEC's, since they lie in
diction exists when mean-field theory predicts that theSOMe sense on the border between macroscopic and micro-
ground state of a system is not an eigenstate of a commutirgfOPIC quantum systems. In fact the most common theoreti-

symmetry operatoP. In fact, two possible explanations can cal de_scr|pt.|o.n a_dopted in BEC's is macroscoplc” in OUI.'
. L N ) - look, in anticipation of eventually taking a thermodynamic
be invoked when this is observe() if the eigenstates dfl

limit. Yet the two-component BEC under discussion in this
are degenerat@ot normally expected for the ground state ok can be described equally well in simple Sainger

they need not be eigenstatesRyfalthough it is always pos- theory [8,9], with strict conservation of particle number,
sible to form linear combinations of the degenerate energynore akin to the approach used to describe the microscopic
eigenstates whichre simultaneous eigenstates BfandH; quantum-mechanical ground state of a molecule or cluster.
or (i) the symmetric mean-field ground state is simply aThe ground state of such a microscopic system retains the
poor approximation to the lowest-energy eigenstate of theymmetries of the Hamiltonian.
full many-body Hamiltonian. The experimental observation of interacting BEC's by
The phenomenon of SSB could become important for aiMyatt et al. [2] (see also Refd.3,4]) has sparked great the-
interpretation of current generation experiments on two-oretical interest in two-component BE('5-7,9-15 . The
component dilute alkali-metal-atom Bose-Einstein condensubject of two-component BEC's was addressed in the past
sates BEC’s) [2—4]. It has recently been demonstrated theo-[16], but most relevant to the present discussion are the more
retically that, in certain regimes of the interaction recent papers by lerg and StenholifB], by Timmermans
parameters, the Hartree-Fotsr Gross-PitaevsKiiground-  [12], by Gordon and Savadé], and by Pu and Bigeloy7].
state solution does not possess the symmetries of the ma@hberg and Stenholm suggested the possibility of symmetry
netic trap used to contain the condeng&t€]. In some cases breaking based upon some numerical results in two dimen-
this symmetry breaking was made explicit, as in the work ofsions, and Timmermans discussed the thermodynamic prop-
Refs.[5,6], whereas in other cases this effect was only indi-erties of the boundary between phase separated species. Gor-
rectly suggested by the occurrence of complex excitation fredon and Savage investigated the particular case of Ehe
guencies in solutions of the Bogoliubger random-phase =1,Mg=—1) and|2,1) hyperfine states of’Rb in a time-
approximation equationg7]. orbiting potential trap. They demonstrated that the cylindri-
Here, we address spatial SSB in trapped BEC's from aal symmetry is broken, and that the conditions for symme-
more general perspective. In particular, we point out thatry breaking in this case depend upon both the number of
spatial SSB in microscopic systems is purely a result of th@toms and the interspecies scattering lersgth Finally, Pu
independent-particle approximation, and that a “symmetry-and Bigelow investigated the ground-state configuration of a
restored” wave function should be used for calculatingmixed Na-Rb condensate in an isotropic trap. Since the
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Na-Rb scattering length;, is not known, they considered a pen, Eq.(2) is a necessary but not sufficient condition—a
range of values, finding phase separationdgrlarger than  point discussed in greater detail below. In the case of a TOP
some critical valugsimilar results have been presented bytrap, symmetry breaking has been shd@hto hinge on the
Bashkin and Vagoy13]). They explicitly assumed isotropic number of atoms, in contrast to E). Similarly, we show
solutions, however, and thus saw no symmetry breaking, abelow that, for a Na-Rb mixture, the condition for symmetry
though it is suggested by the fact that they found an imagipreaking has an even more interesting atom number depen-
nary frequency =1 excitation. dence. Thus, in accord with conventional views of SSB,
At this point, a clear statement of the phenomenon is inhere is a critical value of some parameter related to the
Order. Spontaneous Symmetry breaking iS Said to occur |f thgymmetry breaking_ The Specific dependence of this param_
mean-field solutions do not possess the symmetry of the Unster on the numbers of atoms, scattering lengths, and trap
derlying many-body Hamiltonian for values of some param-frequencies is, however, nontrivial and not readily obtainable
eter beyond a critical valugl7]. When compared to solu- except by direct solution of the Hartree-Fock equations.
tions obtained with symmetric orbitals, the symmetry-broken Here we present a qualitative framework in which the
states better approximate the true ground state, as judged Bynditions for symmetry breaking can be understood. Ob-
the variational principle. That iS, the mean-field solutions Calserye first that phase Separation adds, in effect, a boundary to
be viewed as the result of a variational analysis in thenhe unseparated density distributions, and places all atoms of
Hartree-Fock approximation, and the total energy calculate@ne species on one side of the boundary and all atoms of the
with the symmetry-broken state is lower than that obtainechther species on the other side. Moreover, near the critical
using the symmetry-preserving state. One theoretical signgrajue the total number density is roughly the same for both
ture of symmetry breakingand of instabilities of the separated and unseparated systems. The interspecies interac-
Hartree-Fock solution in genejab the appearance of van- tjon energy of the separated state is clearly lower, but this
ishing or imaginary excitation frequencies in a random-phasgyss is partially offset by the kinetic energy gained in form-
approximation or Bogoliubov quasiparticle analysis. Thejng the interphase boundary and the energy gained from the
zero-frequency excitation first occurs at exactly the transitionntraspecies interactions. The impact of the additional kinetic
from symmetry preserving to symmetry breaking, and sig-energy is largest for small numbers of atoms, however, since
nals the Goldstone mode typically associated with SSB.  the interaction energies contain an additional factor of par-
For fixed number&; andN, of two types of distinguish- ticle numbets) relative to the kinetic energy. These same
able bosonic atoms, the Hartree-Fock approximation to th@nergy considerations hold for SSB as well. To achieve an

ground state takes the form even lower total energy than the phase-separated state, the
symmetry-broken state seeks a simpler interphase boundary.
W(Xg,y o Xnypeny) = Pa(Xe) - - (X)) For example, in an isotropic trap with equal numbers of at-
oms of each species that differ only in their respective scat-
X ha(Xny+) - '/’Z(XN1+N2) ' tering lengths, the symmetry-preserving, phase-separated

state has a spherical interphase boundary with one species
where the orbitals}; and ¢, satisfy the Hartree-Fock equa- forming a spherical shell around the other. The symmetry-

tions broken state acquires a roughly planar boundary between the
two hemispheres of each species. The kinetic energy associ-
[hy+ (Ny— 1)U h1|?+ NoU 1 4ho| 2Tep =€ 1401, ated with the boundary curvature is reduced, as is the inter-
(1)  face volume.
[hy+N;Uy ¢1|2+ (Ny— 1)Uy ¢2|2] Yr=1. We illustrate these points with a two-body example. Two

atoms in the ground state of a trap do not constitute a con-

The one-body operators; in these equations include the densate, but the above development—i.e., Bg—holds
kinetic energy and trapping potential contributions. Note thagdually well for two atoms as for two million. A two-body
the interaction potentials have been approximated in thesgystem is also physically intuitive and “exactly solvable.”
equations by a Dira@ function pseudopotentidlL8]. The  For one ®Rb atom and oné’Rb atom in a trap with fre-
coefficient U;; of the & function is 2r#%a;;/wm;;, where quencies v,=4v,=1 MHz, Eq. (1) indeed yields a
wij=mm; /(m;+m;) is the reduced mass of atorhandj, symmetry-breaking solution with a total energy of 2.4949
with a;; their swave scattering length. For a large repulsive? @, compared to 2.567&w, for the symmetry-preserving
interactiona,, between the different atonfsompared t@;,  solution. The relevant symmetry operafdy, represents re-
and a,,), the mean-field interaction energy will clearly be flection through thez=0 plane. The symmetry-preserving
minimized if the orbitals do not overlap. This energy reduc-solution is partially phase separated due to a repulsive scat-
tion is the origin of the phase separation discussed by marigring length—a;,=210 a.u. for 43,3 *Rb atom colliding
authors. The critical value a;,, beyond which separation With a (2,2 #/Rb atom[19]—with interphase boundaries
occurs in the Thomas-Fermi approximation, can be shown t@bove and below they plane and parallel to itThere are

be two boundaries in order to preserve the symmetithe
symmetry-broken solution has only one boundaryz&®;

c 4pqy 12 based on the above energy considerations, it has lower en-

a1~ my+m, 122 2) ergy since it has one fewer interphase boundary. The exact

two-body ground-state wave function has a definite symme-
In some cases, the total energy can be further lowered if thizy with respect to reflections abor#=0, and can be approxi-
species separate in an asymmetrical manner; for this to hapaated as a linear combination of the degenerate symmetry-
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FIG. 1. “Phase diagram” for the Na-Rb condensate. In the
shaded region, the symmetry-breaking solution is the Iowest-energ%

. ; ) e

Hartree-Fock state, while the symmetry-preserving solution has th

lowest energy elsewhere. The thick solid line and circles denote th

calculateda?,; the dotted line represents the Thomas-Fermi critical
value ofa;, from Eq. (2). The triangles and labels refer to Fig. 2.

FIG. 2. The number densities in tige=0 plane corresponding to
triangles in Fig. IN;=N,=N anda;,=105 a.u.:(a) N=500,

) N=2000, (c) N=10000, andd) N=20000. The dotted lines
ark the contours of Rb and the solid lines those of Na.

metastable state stabilized by the phase separation. In their
work, the solutions of Eq(1) were constrained to be isotro-
pic. Here we allow for symmetry-broken solutions and focus
on the criteria for symmetry breaking. Specifically, we solve
the Hartree-Fock equations for the isotropic trap in cylindri-

broken Hartree-Fock state¥(x;,X5) and IT1,¥(xq,X5).
Specifically, the symmetry-restored states (1
+11,)W¥(x,,X,) are eigenstates dl,, with energy expecta-

tions 2.475@w (+) and 2.5256« (). The first of these cal coordinates, thus choosing the axis of symmatpyiori.

gives a clear improvement over the simple product solutionsThe solution, however, is not forced to be either symmetry

both symmetry preserving and symmetry broken. It is thebroken or symmetry preserving. Rather, the numerical

best "independent-particle” ground state of this system Ofmethod forces the solution to converge to the lowest-ener
the various possibilities considered here. Note that these lin- ;" . X ge K . gy
lution regardless of its symmetry. This is accomplished by

ear combinations of Hartree-Fock states are not themselvés

solutions of Eqg.(1) and cannot be represented as a Simpleoropagating Eq(1) as a diffusion equation with=it, while

; : ; : training the orbitalg; to be normalized to unity. Start-
roduct of single-particle states. This two-body example il-°"S T :
P geep y P g from random initial orbitalsy; and i, will converge to

lustrates the general fact that spatial SSB in a microscopi ) - -
the state of lowest energy in the limit @f—« whether it is

guantum system is purely a result of the Hartree-Fock a i i .
proximation. symmetry brealgng or prese_rvmg._The symmetry-preserving
When a system is in the symmetry-breaking regime th('§olut|on is readily found by imposing an additional symme-
' try constraint.

solution of the Hartree-Fock equations will break the sym- Choosina the Rb i f ite th
metry in the direction corresponding to the weakest trap fre- oosing the parameters as a reterence, we write the

quency. For a cylindrically symmetric trap in which the Hariree-Fock equations usinfgw; as the energy unit and
stronger trapping frequency is in the axial direction, the ro-V#/Mi; as the length unit. In order to match previous stud-

tational symmetnt, will be broken. The solution, however, €S, We use trap frequencieg =160 Hz for the Rb atoms
retains a plane of symmetry that includes thexis, but and v2=310 Hz for the Na atoms. The effective trapping
whose orientation is random. In a cigarlike cylindrically frequencies are thus 1 amtbw,/myw, ~0.5 for the Rb and
symmetric trap, the-parity symmetry is broken. In a com- Na atoms, respectively. The difference in trapping frequen-
pletely anisotropic trap, the parity in the weakest trap direc1€S causes the Na atoms to form a sph(_erlcal shell around thg
tion will be broken. The rotational symmetty? in an iso- P atoms in the phase-separated regime, as suggested in
tropic trap can also be broken, but the system will retain arR€fs: [7,13l. While the intraspecies scattering lengtitg
axis of symmetry whose orientation is random. When a con@nday, are relatively well known,. the interspecies scattering
tinuous symmetry is broken, constructing a many-body staténgth a;, is not. We use the slightly inaccurate values of
with the correct symmetry is more complicated than in the11=113.38 a.u(6 nm) anday,=56.692 a.u(3 nm), how-
discrete case considered in the two-atom example abov&Ver, in order to match Ref7]. There remain three param-
Nevertheless, a general prescription for constructing th&ters in the problema,,, Nq, andN,. SettingN;=N,=N,
symmetry-restored many-body state is simply to project th&ve solved the Hartree-Fock equations as a functioN ahd
symmetry-broken state onto an eigenstate of the desire@2- _ _
symmetry[17]. Equivalently, the Hamiltonian can be diago- _ Figure 1 summarizes the results for the Na-Rb mixture.
nalized in the subspace of degenerate states related by t&€ critical value ofay, is just the curve separating the two
symmetry transformation under consideration. regions, and it depends strongly on the number of atoms. For

To gain further insight into the nature of spatial SSB insmallNy, af, is roughly proportional tdN™*, reflecting the
double-condensate systems, we investigate a particular efatio of kinetic to mean-field energy. For lardé, the N
ample: a mixture of Na and Rb in an isotropic trap. Thisdependence &S, is a result of the relatively large difference
system was studied by Pu and Bigelow in a series of papelis effective trapping frequencies each species experiences
[7] in which they focused on its stability and on a predictedcombined with the disparity betweem; and a,,. These
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differences lead to a shell-filling effect for the Na atomsan experimental realization of the conditions necessary to see
where the shell is the spatial region between the mean fieldpontaneous spatial symmetry breaking. Any stray field or
of the Rb atoms in the tighter trap and the weaker trap exfluctuation in trapping fields that favors a direction in space
perienced by the Na atoms. will likely destroy the symmetry of the trap in a manner
At a fixed interspecies scattering length greater than abowatastrophic for the effect. Should such technical difficulties
80 a.u., the System starts in a SymmetriC Configuration fObe overcome, however, the symmetry properties of the
smallN. since the kinetic energy barrier of forming an inter- ground state should be reflected in measurable observables.
phase boundary is too higbee Fig. 2a)]. AsNiis increased, For instance, in thez-parity symmetry-breaking case, a
the symmetry-broken state becomes energetically favorablg,pightforward species specific absorption image, or, e.g., a
when the energy lost in the.mean-.fleld interaction ENerY%Yight diffraction experiment, can quickly distinguish a
offsets the kinetic-energy gaisee Fig. Zo)]. With N in- symmetry-broken state from either the symmetry-preserving

fﬁgﬁgi{g%@%ﬁg SftL'JIrtvr\]’g?Qrgﬁg){?emsgy'bmkg? rezg)lahe or the symmetry-restored state. The latter two types of states
wrap . e Fig. - could then be differentiated in an experiment that measures
The Rb core is pushed slightly off center, but the trap is toothe two-body correlation function

tight to make large displacements energetically favorable.

The number of atoms eventually grows large enough that the The work of C.H.G. was supported in part by the U.S.

Na atoms wrap all of the way around the Rb core, filling theDepartment of Energy, Office of Basic Energy Sciences.

spatial shell available to them. Thus, the symmetric configuB.D.E. is now supported by the National Science Foundation

ration is again reacheddee Fig. 2d)]. through the Institute for Theoretical Atomic and Molecular
We conclude with the remark that it is difficult to envision Physics.
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