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Realization of the kicked atom
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The kicked atom is realized experimentally by exposing potassipniRydberg atoms witin~388 to a
sequence of up to 50 half-cycle pulses whose duration is much shorter than the classical electron orbital period.
The Rydberg atom survival probability is observed to have a broad maximum for pulse repetition frequencies
near the classical orbital frequency. Comparisons with detailed classical trajectory Monte Carlo simulations
show that this behavior provides an unambiguous signature of dynamical stabilization. The classical simula-
tions further show that the kicked hydrogen atom is, depending on the pulse repetition frequency, chaotic or
characterized by a mixed phase space with various families of fully stable islands within which the atom is
stable against ionization. Signatures of stabilization and chaotic diffusion are also observed in the final bound-
state distribution of the surviving aton{$$1050-2947@9)07302-3

PACS numbd(s): 42.50.Hz, 32.80.Rm, 03.65.Bz

I INTRODUCTION T,/Ty<1,asingle pulsel,':Hcp(t), simply delivers an impul-

- . . . . ) sive momentum transfer or “kick,”
Periodically “kicked” systems, i.e., impulsively driven
systems where the duration of each impulse is short com-
pared to the period of the unperturbed system, provide valu- Ap= _f Fruep(t)dt, (1)
able test cases for the study of nonlinear dynamics in Hamil-
tonian systems. Prime examples are the kicked rétor
standard mapl]) and the kicked hydrogen atofai—9]. The to the excited electron, where atomic units are used through-
time evolution for kicked systems can be reduced to a sesut. Thus, very highs atoms that are subject to a periodic
guence of discrete maps between adjacent kicks. This sinsequence of HCPs provide an ideal testing ground to exam-
plification permits detailed numerical studies of the long-ine the behavior of kicked systems.
term evolution using both classical and quantum dynamics, The impulsively drivenkicked Rydberg atom has been
and hence, of the classical-quantum correspondence in mihe focus of a number of theoretical investigatidi2s-9],
croscopic systems that feature regular and chaotic dynamicmany of which have considered trains of impulses that alter-
While systems subject to sinusoidal perturbations have beemate in sign. Such a sequence of impulses has been used to
widely studied, for example hydrogen in a microwave fieldmodel atoms in a monochromatic radiation field and has pro-
[10,11, experimental realizations of kicked systems havevided, for example, new insights into intense-field stabiliza-
been scarce. Recently, however, atoms cooled in a standingn [8,9,17—19. The behavior of a hydrogen atom subject to
light wave have provided a realization of the one-a series of unidirectional kicks has been investigated within a
dimensional standard map, demonstrating the existence @he-dimensiona(1D) model [6]. Fully developed classical
Anderson localization in the translational motion of a singlechaos was observed, and the bound portion of the phase
atom[12,13. space was found to decay algebraically as a function of time
Atoms in which an electron is excited to a state of largeas ~t =15 Little is known about the response of a three-
principal quantum numben also afford the opportunity to dimensional(3D) Rydberg atom to a train of unidirectional
study the behavior of kicked systems because the clasgulses.
ical orbital periodT, of the excited electron is very large In this work we show both experimentally and theoreti-
(~10 ns atn=400 increasing to~150 ns an=1000). It  cally that the phase space of the kicked atom contains sizable
is therefore possible using conventional pulse generators t@gular islands that give rise to dynamical stabilizatioh.
apply unidirectional electric field pulses, termed half-cyclepreliminary account of our findings was given[i20].) Ex-
pulses(HCP9, to such atoms whose duratidi, is much  perimental measurements of the survival probability versus
shorter than the orbital periofl4—16. In the limit that HCP repetition frequency are presented which reveal a pro-
nounced structure that is well reproduced by classical trajec-
tory Monte Carlo(CTMC) simulations. Calculations were
*Present address: Schlumberger Sugar Land Products Centemdertaken for potassium and for hydrogen in three and one

P.O. Box 2175, Houston, TX 77252-2175. dimensions. The 1D model gives results that closely parallel
"Present address: Institute for Theoretical Physics, Vienna Univerthose for the 3D system and allows detailed examination of
sity of Technology, A-1040 Vienna, Austria. the stabilization in terms of the mixed phase-space structure.
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~388 as a function of the pulsed field amplitude following appli-

FIG. 1. Schematic diagram of the apparatus. The inset shows eation of(a) 10 HCPs with pulse repetition frequencies of 227 MHz
typical profile of the train of HCPs used in this work. (solid circleg, 200 MHz (open circley 125 MHz (solid triangles,
100 MHz (open squargs 83 MHz (solid squares 50 MHz (open
Signatures of stabilization and of chaotic diffusion are alsdriangles, and 10 MHz(inverted solid trianglgsand (b) 50 HCPs

found in the final bound-state distribution, as measured byvith pulse frequencies of 250 MHzolid circleg, 166 MHz (open
selective field ionization. circles, 100 MHz (solid squares 50 MHz (open squargsand 20

MHz (solid triangles.

Il. EXPERIMENTAL REALIZATION OF THE

KICKED ATOM circular electrode using a fast probe and sampling oscillo-

scope. A typical pulse train is included in Fig. 1. The number

In order to realize a kicked system in the laboratory, po-and excited state distribution of Rydberg atoms remaining in
tassium Rydberg atoms with~ 388 are exposed to a train of the experimental volume after application of the HCPs is
equispaced unidirectional HCPs, each having a durafipn measured after a time delay of6 us, using selective field
=2 ns. Forn~ 388, the atomic orbital period,, is =9 ns ionization (SFI). The time delay discriminates against free
and the conditionT,/T,<1 is satisfied. Application of such low-energy electrons resulting from HCP-induced ionization
pulse trains can lead to ionization. The Rydberg atom surwhich, tests revealed, have a residence time bf us in the
vival probability is measured as a function of the number,interaction region. For SFI, a slowly varying-(L us rise
amplitude, and repetition frequency of the pulses using théime) voltage ramp is applied to the bottom interaction-
apparatus shown in Fig. 1. The Rydberg atoms are created bggion electrode. Electrons resulting from field ionization are
photoexciting ground-state potassium atoms in a tightly colaccelerated to, and detected by, a particle multiplier. Because
limated thermal-energy beam using a frequency-stabilizedatoms in different Rydberg states ionize at different applied
intracavity-doubled Coherent CR 699-21 Rh6G dye laserfields, measurement of the field ionization signal as a func-
Excitation occurs near the center of an interaction regiortion of time, i.e., of applied field, provides a measure of the
defined by three pairs of planar electrodes, each 1@xcited-state distribution of those atoms present at the time
X 10 cm. The use of large electrodes well separated fronof application of the ramp. Measurements in which no HCPs
the experimental volume minimizes the effect of patch fieldsare applied are interspersed at routine intervals during data
associated with nonuniformities in the electrode surfacesacquisition to monitor the number of Rydberg atoms initially
However, even with all electrodes grounded, fields ofcreated by the laser. The Rydberg atom survival probability
~2 mVem ! remain in the experimental volume. These is determined by taking the ratio of the Rydberg atom signals
are locally reduced tos50 wVcm™! by application of observed with and without HCP application.
small bias potentials to the electrodes that are determined Survival probabilities measured following application of
using a technique based on the Stark effect. To minimizarains of ten and fifty equispaced HCPs are presented in Figs.
motional electric fields, the magnetic field is reduced to2(a) and Zb), respectively, as a function of HCP amplitude
=20 mG by use ofu-metal shields. for several values of the pulse repetition frequency. As might

Measurements are conducted in a pulsed mode. The lasbe expected, significantly larger HCP heights are required to
output is formed into a train of pulses ef4 us duration induce ionization with ten HCPs than with fifty HCPs. More
and ~10 kHz pulse repetition frequency using an acousto-surprising and important, however, is the observation that for
optic modulator.(The probability that a Rydberg atom is a given HCP amplitude the survival probability depends

formed during a laser pulse is very sma#0.05, and data
must be accumulated following many laser puls&xcita-
tion occurs in(neay zero electric field. Approximately 200

markedly on the repetition frequenay of the HCPs in the
train. This is better illustrated in Fig. 3, which shows the
Rydberg atom survival probability following application of

ns after each laser pulse, the atoms are subject to a train tén and fifty HCPs with peak fields of 29 and 60 mV<¢ch

HCPs generated by applying voltage pulses to a circulaas a function ofvr, expressed in MHz and in scaled units.
electrode 4 cm in diameter that is inset in the upper plateHere, and in the following, scaled units will be used to ex-
The pulse shapes and amplitudes are measured directly at thkcitly display the scaling invariance of the classical dynam-
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We use a one-electron model potenWa) for theK* core
potential that yields accurate quantum defects and satisfies
the correct boundary conditions at small and large distances.
The time evolution of the electron is modeled using a quasi-
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FIG. 3. Rydberg atom survival probability following application

gztznffggizﬁyo?%zsk""’gg Fr):sle(tiftiieolgsf rc;fqii:;\;/ Cg(s;‘?rfgngmcgawhere[,] denotes a Poisson bracket. Since classical phase-
h ) space points evolve in time independently according to
OJ; results of CTMC calculations for K(3§8,——; CTMC results b P P y 9

for the impulsively driven H(386) atom withnAp—0.3— — — Hamilton’s equations, the Liouville equation can be easily
- e ! - solved using a Monte Carlo technique. The resulting method

The HCP repetition frequency is displayed in MHz and in scaled; . .

Units vy= py27n2 is usually referred to as the classical trajectory Monte Carlo
: (CTMC) approach22].

ics of the Rydberg-Coulomb orbits. Classically, all energy The experimental condltlons for preparapon of po.ta_ssmm

levels are equivalent in that they can be mapped onto eaclﬁydble:ig r?tolf?ns arbe ,[Sl:Ch tr;at: rl dstate; V\Xllti?hii frt]at'sctllc_:sllc

other by the following scaling transformati¢@1] for coor- popuiation ofm substates are produced. €

dinates, momenta, time, frequency, and momentum transfe?pproaCh' this initial quantum state can be modeled by a

respectively: subset of a microcanonical ensemble

2
P
Ei— 5~ Valr)

p—n~!p, 3) (11

whereC; is a normalization constanE; is the initial quan-

q—n?q, (2 f.(r,p)=C.8 O(L—/)O(/+1-L),

3
t—=n, (4) tum mechanical binding energy, a@l denotes a step func-
tion.
va—n "%, 5 Calculated survival probabilities are included in Fig. 3
and display excellent agreement with the experimental data
Ap—n~1Ap, (6)  without recourse to any adjustable parameters. This agree-

ment indicates that the stabilization signaled by the increased
wheren is the scaling parameter which is equivalent to thesurvival probability forvg=1 is classical in origin. Simi-
classical action in units of (i.e., the principal quantum larly, good agreement is obtained if a Coulomb potential is
numbej. Figure 3 reveals a broad maximum in the survivalused forV,. Note that in the limit of high frequencies the
probability for pulse repetition frequencies near the classicalrain of pulses becomes equivalent to a single pufsg)
orbital frequency, precisely the regime in which dynamical=NFycp(t), for which the agreement between the theory
stabilization of the kicked atom might be expected. and experimentnot shown hergis well established16].

To investigate the origin of the maximum in the survival Because the Hamilton equations for finite-width pulses
probability, a series of CTMC calculations were undertakermust be solved numerically, it is not computationally fea-
using the Hamiltonian sible to investigate the long-term stability in the limit
— oo (typically N=10P) and to perform a detailed analysis of
the classical phase space. Thus, to further examine the origin
H(t)=HatzF(t)=Hqat+ >, zFucet—jrrh), (7)  of the maximum observed in the survival probability, we

=1 have also performed calculations for the “kicked” hydrogen
atom(i.e., assuming the sudden limit in which each HCP can
be replaced by a-function impulse, details of which are
given in the next sections. Results for the survival probabil-
ity within this model are also given in Fig. 3. This simplified
model reproduces the observed overall structure in the sur-
’ vival probability although the stability is somewhat reduced.
H :p_+v (r) ®) This results because the finite width of each experimental
at-p A HCP cuts off the higher frequencies in the perturbation

N

whereF cp is the field of a single pulse. We fit the experi-
mental profileF(t) to a periodic train of individual pulses
which, strictly speaking, becomes valid only after the first
two pulses. The atomic Hamiltonian is given by
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which enhances the stability of the orbit. The similarities &— Eksingk:n;%k:nk—?'(tk_ﬁ T,
between the different calculations and the experiment sug-

gest that the stabilization can be analyzed in detail in terms 0k=nZ(1— €COSEy),

of the “kicked” atom. In the following, we analyze theoreti-

cally the dynamics of the simplest system, the 1D kicked Ne .

atom, and we discuss the conditions for which the evolution pﬁafksmgk,

of the electron is regular or chaotic. Subsequently, we show
that similar situations can be found for the 3D kicked atom.yhere ne=(2|E4|) Y2 is the classical principal actiofdi-
rectly related to the principal quantum numpeand e,
I1l. ONE-DIMENSIONAL KICKED ATOM =y{1+2EA2=1 is the eccentricity. FolE,>0, M be-

Consider the electron in a 1D hydrogen “atom” that is comes correspondingly

subject to a periodic train of impulsésp with frequencyv Oe_1= nﬁ(ekcoshfk,l— 1),
(period Tt). The dynamics of the atom is governed by the
Hamiltonian Ny
N Pk-1TAp= &sinh, g,
10(q,p)—qAp Y, S(t—k/vr) (12) e
H(q,p,t)=Hz(q,p)— —klv
P TR E, ! &SINME 1~ &1 =N oy, (18
p> A% 1 . asinhg— &=n t=n 3t + Ty),
—7+2—qz—a—qugl o(t=klvr), (13

Ok = Ng(excoshE—1),

where g and p denote the position and momentum of the :%E sinhe
electron. The 1D atom is described by an unperturbed Pk=q, SNk
HamiltonianH2P and includes an effective centrifugal bar-

rier with quasi-angular momenturh. We take the limitA i .
—0 and, therefore, the only role of this potential is to pro-dependent dynamical system with one degree of freedom. It
vide an infinite barrier aj=0 such that the motion is con- €an be canonically transformed into an equivalent time-

The kicked one-dimension&l D) atom represents a time-

fined to theq>0 region of phase space. independent system with two degrees of freed@sually
Denoting the phase-space coordinates just beforéttne 'eferred to a a 1 and 1/2 degrees of freedom sys{e8]).

kick by (qx,py), the time evolution during a single period of

the perturbation is given by a map of phase-space coordi- 10

nates,

05 | |

(Ak,PK) =M (Ak—1,Pk-1) =McouP M ap(0dk—1,Pk-1), N
(14 oo

whereM,, describes the kick, i.e., 051

(Ak-1,Pk-1tAP) =My p(Ak—1,Pk-1)> (15 10

and My, describes the unperturbed Coulomb evolution 05

governed b)H;tD. The latter depends on the atomic energies o oo
Ex=Hz (dk,py). Note that onlyM,, changes the atomic
energy according to 05
(Ap)? 1.0
Ex=ME,_;= MApEk—lzT +Ppr-1Ap+Ei 1.
(16 05
Using the parametric form of Coulomb orbit&1], the 0.0
full mappingM for E, <0 is given by a set of implicit equa-
tions: -05 F
QKflan(l_GkCOfkfl), -0
Ny . o . .
Pr_1t+Ap= €Siné_1, FIG. 4. Poincaresurface of section for the 1D kicked hydrogen
Qk-1 atom for vr=(27) ! and various positive\p values. The thick

line indicates the separatrix between bound and continuum unper-

&1~ eSing 1=y 3ty (A7) turbed tori.
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FIG. 6. Survival probability for the 1D kicked hydrogen atom at
various scaled frequencieg as a function of the number of kicks.

stroyed. The coexistence of a chaotic sea and of tori deter-
mines the ionization dynamics. Note that stable regions of
phase space are only associated with bound states of the
unperturbed motion: i.eHP<0. (For reference, the torus
H;tD=0 separating bound and continuum unperturbed tori is
also shown in the figures.

Consider an atom in a well-definedevel (i.e., in a well-
defined unperturbed torus defined by the initial binding en-
F_rg)o. When subject to a train of impulses, ionization of such
an atom occurs as soon as the unperturbed torus overlaps
with the chaotic sea which, in turn, is connected with the

This low dimensionality greatly simplifies the study of the continuum. On the other hand, the partial stability of the
electronic dynamics. Regular and chaotic dynamics can b8!0M against ionization depends on whether or not the un-
easily identified by the Poincagairface of sections. Because Perturbed torus overlaps with a stable region of phase space.
the Hamiltonian is periodic in time, Poincasectiongof the ~ Hillermeier et al. [6] found that the survival probability of
equivalent time-independent systerman be generated by atoms decays algebraically as a function of time A
taking stroboscopic snapshots af,p) during every period >0, mdependem of the'strength of the kicks and the fre-
of the perturbation. If the dynamics is regulde., if there ~ quency of the train. This is a consequence of the fully devel-
exists a constant of motipna phase-space trajectory is con- 0P€d chaos in this system. In turn, Fig. 6 shows that for
strained to a torus whose image on a section takes the foriP<0 the survival probability as a function of the number
of a closed loop. of klcks_, N, can be either dyn_a_mlcally stable or unstab!e
Figures 4 and 5 display Poinéaserfaces of sections of depending on the _pulse repe_tl_tlon frequency of the train.
the kicked 1D atom foAp>0 andAp<0, respectively. For Therefore, the survival probability of an atom following ap-
Ap=0 the dynamics is fully regular and each of the tori in
the figure corresponds to a differdnf”= const surface. Due 10 T y
to the Coulomb singularity at the origin & 0), this dynami- 100 pulses
cal system features several nonstandard properties; for ex-
ample, the unperturbed tori do not have the appearance of
closed loops within any finite domain in phase space since
p—c as g—0. Furthermore, as soon as the perturbation
Ap>0 is turned onlmomentum transfer in the direction of
the apocenter the tori are completely destroyed no matter
how smallAp is, and the system becomes globally chaotic,
in agreement with the predictions of Hillermeiet al. [6].
More surprisingly, forAp<0 (kick toward the Coulomb
force center, some of the tori survive weak perturbations.
However, the transition to a mixed phase space with a siz- : -
able chaotic region occurs for an arbitrary small momentum Scaled frequency
transfer. All chaotic regions become immediately intercon-
nected forming a chaotic sea. According to Eg) this is FIG. 7. Survival probability of a 1D kicked atom with initial
due to the fact that the high momentum “winggAp>E,  energyE= —0.5 following application of 100 and 1000 kicks with
—(Ap)?/2, of any unperturbed tori becomes immediately de-Ap=—0.3 as a function of the pulse repetition frequency.

FIG. 5. Poincaresurface of section for the 1D kicked hydrogen
atom for vy=(21) " and various negativdp values. The thick
line indicates the separatrix between bound and continuum unpe
turbed tori.

1000 pulses

0.1 |

Survival probability
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h & e FIG. 9. Poincaresurface of section of a single trajectory starting
05 | SR ANDERNT in a chaotic region of phase space for the 1D kicked hydrogen atom
| : N , for Ap=—0.05 andv;=1.
ey
0or L trated in Fig. 9, where we display a Poincaection of a
05 S single trajectory of an electron which is eventually ionized.
’ / Vs The time evolution of the electron displays intermittency,
o V/ o periods of trapping near stable islands. However, since the

1 2 3 residual tori are not confining, the trapping is only transient
q and the trajectory will eventually “jump” to another region
of the chaotic sea and escape into the continuum.

The identification of the periodic orbits around which the
stable islands are organized proceeds by noting that the bind-
ing energy must be unchanged following some integer num-

er j of applied kicks, i.e.,

FIG. 8. Poincareurface of sections for the 1D kicked hydrogen
atom for Ap=—0.3 and various/; values. The dashed line indi-
cates the unperturbed torus associated with the initial state of th
atom in Fig. 9.

o . o Ex=ME,_;=E_;. (19
plication of a large number of kicks exhibits several pro-
nounced peaks as a function of the repetition frequéRray. For a period-onej(=1) fixed point, Eqs(19) and(16) imply
7). In order to compute the probabilities in Figs. 6 and 7, a
microcanonical ensemble of points in an unperturbed torus
with energyE= —0.5 is followed as a function of time. The
survival probability is given by the fraction of points which . . ]
remain boundi.e., E<0) after the train of pulses. Because OF P=—Ap/2, which agrees with the coordinate of the
of classical scaling invarianciEgs. (2)—(6)], the survival center of the most prominent islands in Figs. 4, 5, and 8. The
probability is a function of the scaled variablesp,
=Ap/pp,vo=vlv,, Wherep,=n;* and v, =(2m7n}) "
only. Therefore, the results of Figs. 6 and 7 and in the fol-
lowing are presented in scaled units and are classically valid
for any n; initial level. r

Each of the peaks in Fig. 7 is associated with a regular
island in phase space. The survival probability is given by
the fraction of the initial phase-space points that are con- o ¢ |
tained within a given island. This is more clearly illustrated
in Fig. 8, where we display Poincaneaps for different rep-
etition frequencies together with the fixed initial torus. For
repetition frequencies;=0.616,1.07,2.12, the initial torus
overlaps with different stable islands and, therefore, stabili-
zation is obtained by trapping the phase-space trajectories
within a given island. In turn, fopr+=0.701,1.978,5.554, the -2
initial torus lies in the chaotic sea and the atom becomes
fully ionized.

lonization does not necessarily happen immediately and, FIG. 10. Stable orbit fonr=1.25 andAp=—0.3. The dashed
in fact, an electron may wander among various regions ofines indicate the segment of the Coulomb orbit that is not reached
phase space before reaching the continuum. This is illussy the electron.

Ap?
T-l—pAp:O (20)

2
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periodic orbit which corresponds to the center of the largest 10
stable island can be identified with the help of its projection
onto the €,p) plane, as shown in Fig. 10. The trajectory has
been followed for several kicks involving segments of many
Coulomb orbits having the same binding ener@g., the
same unperturbed peripd a 00}
According to Eq.(17), a kick maps a poinP=(q,p=
—Ap/2) on a given Kepler “orbit” onto a poinQ=(q,p
=Ap/2) of another orbit, as illustrated by the vertical arrow
in Fig. 10. The subsequent unperturbed Coulomb evolution G
transports the poin® along the direction of the arrow back -0,
to point P, Mo,(Q)=P. The periodic orbit is therefore
nothing but a sequence of segments of full Coulomb orbits
cut short by the kick. For this to occur, the time separalign 10
between kickgpulses must be less than the Kepler period,
e, Tg= aTy, with a<<1. Figure 7 suggests the existence of

a family of stable periodic orbits with scaled frequencies
vi=(a+s) ! (s=0,1,2...) corresponding to orbits that

o5 -

05 |

completes full periods and one segment prior to the next o 00
kick, mappingP onto Q. From Eq.(16), the simple expres-
sion -05 |
Ap?—4|  4A 7o | ' ;
a=m"1 cos?! P P (21) ° 1 ; ? !
Ap?+4| Ap’+4

FIG. 11. Comparison of the Poincasarfaces of sections for the

can be obtained. Periodic orbits that are more complex thahP kicked hydrogen atom and the 3D kicked hydrogen attup (
that in Fig. 10 also exist that involve transfer back and forth=2.510"") subject to a train of pulses withp=—0.2 andv,
between several energy levgéR0]. They are associated with =1 The 3D section corresponds fe-0.1 andp,=0.

tori that have undergone a bifurcation. The center of the
torus overlapping the initial state of the electron fof 3D R
=2.12 in Fig. 8 provides an example involving two energy H™ =Ha ZApJZl S(t=jv ),
levels([i.e., j=2 in Eg.(19)]. In this case a kick excites the

electron to a higher energy level and, subsequently, anothgyere the atomic Hamiltonian in cylindrical coordinates is
kick deexcites the electron back to its original level. Thegiven by

electronic motion becomes trapped within these two levels.

N
(22)

H :p—2—3=p§+p’2’+ = (23
2T T2 T2 2

IV. THREE-DIMENSIONAL KICKED ATOM

In order to relate the results of the preceding sectiontothe
experimental data, it is necessary to analyze the extent toith L=rXxp=(L,L,,L,) the angular momentum anef
which the phase-space structure for the 1D system is pre=x2+y?. Since the impulsive momentum transfer is along
served for the 3D kicked atom, especially since it is notthe z direction, L, is a constant of motion and the kicked
obviousa priori that the stability properties should parallel atom represents a time-dependent dynamical system with
each other. For a 1D system, tori are, in general, nested intuo degrees of freedorfi.e., a time-independent 2 and 1/2
each other and they are said to divide the phase space. Thgegree of freedom systémM maps the four-dimensional
dynamics of chaotic orbits is constrained by regular islandphase spacep(z, p,.p,) onto itself.
of nested tori. This is not necessarily true for higher dimen-  Remarkably, calculations show that the stable islands for
sions where the possibility of slow diffusion between sto-the 3D kicked atom mimic those for the 1D kicked system.
chastic layers enclosed by KAM-like tori existarnold dif-  This is illustrated in Fig. 11, in which Poincasections are
fusion [23]). In this section we show that the dynamical compared. For the 3D case, the construction of the Pdincare
stabilization in 1D closely mimics the stabilization in 3D. In syrface requires, in addition to taking stroboscopic pictures,
particular, certair(but not al) classes of stable islands exist the slicing of phase space because of the higher dimension-
in both 1D and 3D. Moreover, because of the existence oflity of the dynamical systems. In Fig. 11 we have taken
the chaotic sea for the 1D kicked atom for ap+#0, the  glices of @=Ap),(p,=Ap,) nearp~0.1, p,~0, andL,
effect of the higher dimension does not fundamentally alter=0. Clearly, settingp=0, p,=0, andL,=0 in Egs.(22)

the chaotic pathway to ionization. . and (23) yields a Hamiltonian that is equivalent to the 1D
Consider the electron in a 3D hydrogen atom that is subHamiltonian. Note, however, that because of the larger avail-
ject to a periodic train of impulseAp=Apz. The Hamil- able phase space, chaotic trajectories in 3D are unlikely to

tonian for this problem is return to the original slice of the Poincasection after a
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FIG. 14. Calculated final-state energy distribution following ap-
Number of kicks, N plication of 50 HCPs with pulse repetition frequenciesof 250
MHz and 20 MHz to K(38®) atoms. The pulse amplitudes are

FIG. 12. Survival probability for the kicked hydrogen atom with chosen to ionize-90% of the parent atoms

Lo=I;/n;=(388)"! at various frequencies, as a function of the

number of kicks. quasi-1D system. Figure 13 provides an example of such
stable regions and corresponds to a cupatl.05p,=0.

finite number of kicks. The close correspondence betweefThe identification of the periodic orbit at the center of the
the Poincaresurface of sections in 1D and 3D in Fig. 11 is main stable island in the figure proceeds by noting that the
due to the fact that the phase-space slice taken pear binding energy must be unchanged following a kick, much
=0,p,=0 corresponds to regions in phase space that havike for the 1D systenti.e., p,= —Ap/2). However, a simple
large overlap with the extreme “uphill” or blueshifted para- physical picture of the periodic orbit is presently not avail-
bolic states(i.e., uphill in the average field provided by the able.
train of pulses

Presently, Rydberg atoms are experimentally created by V. EXCITED BOUND-STATE DISTRIBUTION
single photon excitation of alkali-metal atoms, leading to
small initial quantum numbe“$ andmi , and cannot be con- Add|t|0nal information on dynamical Stabilization and
sidered to be quasi-one-dimensional. Nevertheless, as showhaotic evolution is contained in the distribution of excited
in Fig. 12, dynamical stabilization can still occur at frequen-bound states that remain following application of the HCP
cies similar to those at which stabilization is expected for therain. If dynamical stabilization occurs, the distribution of
1D kicked atom. The reason is partly that the initial elec-€xcitation energies of the surviving bound states should be
tronic state has a finite overlap with the extreme Stark statesharply peaked at or near the initial energy. Conversely, cha-
which are associated with stable islands in Fig. 11. Howeverotic dynamics should result in the population of states with a
only a small fraction of the microcanonical ensemble of tra-Proad distribution in energy. Figure 14 shows the calculated
jectories representing initial quantum numbers=388]; final excited state, .expressed. as a function of thg binding
=1 belong to these islands. There are, in addition, othefnergy for HCP trains, one with,=2.3, corresponding to

stable islands that cannot be easily associated with H€ region of partial dynamical stabilization, and one with
vo~0.18, corresponding to the fully chaotic regime. In each

case, the pulse amplitudes were such th80% of the par-
0.1 y y y ent atoms are ionized. In the absence of an applied HCP
train, the energy distribution corresponds t@ dunction at
1 E0=E/Eni=1 (i.e., atoms with well-defined initiah and,
’ therefore, energy After interaction with the HCP train, the
final-state distribution is broadened and its width is deter-
mined by the overlap between the ensemble of perturbed tori
near the stable island and the initial unperturbed torus. How-
] ever, the distribution is significantly narrower in the regime
where dynamical stabilization can occur than where ioniza-
tion is fully chaotic. In the case of chaotic ionization, the
remaining population is distributed over a broad range of
states extending up to the ionization threshold.
04 = 5 16 1A 1o Evidence of this behavior is contained in the experimen-
z tally measured SFI profiles. As shown in Fig. 15, in the
absence of an applied HCP train, a single relatively narrow
FIG. 13. Poincaresurface of section around the most stable SFI profile is observed that corresponds to ionization of par-
region of phase space associated with the kicked hydrogen atom f@&ntn atoms with well-defined initial energy. The SFI profile
vo=(2m)"* and Apy=0.2 corresponding tp=1.05p,=0. Each measured following application of a train of 50 HCPs with
trajectory has been followed for up to one million kicks. vo~1.5 and amplitude~60 mV cm !, sufficient to ionize

00
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quence, ionization of the highestatoms is compressed into
a narrow range of applied fields, i.e., a narrow time range.

a) VI. CONCLUSIONS

The present work demonstrates that very-higRydberg
atoms subject to a train of HCPs provide an excellent model
system for investigating the behavior of periodically driven
systems. The experimental data provide evidence for dy-
b) namical stabilization which is in accord with theoretical pre-
dictions for both 1D and 3D impulsively kicked atoms. The
good agreement between experiment and full CTMC simu-
lations employing realistic potentials and pulse shapes dem-
onstrates that, for the range of fields and pulse repetition
frequencies studied here, classical-quantum correspondence
approximately holds and quantum corrections appear to be
negligible. Quantum calculations for this stabilization pro-
cess are currently underway.

; o 55 0 Impulsively driven Rydberg atoms provide an opportunity
ARRIVAL TIME (us) to study the correspondence between classical and quantum
mechanics from a new perspective. Experimentally, very

FIG. 15. SFI profiles observed f¢a) parent Kgp) atoms with  precise studies are possible if the initial quantum state of the
n~388, and following application of 50 HCPs with pulse repetition gtoms is precisely known and the HCP trains are accurately
frequencies ofb) 166 MHz and(c) 20 MHz. The HCP amplitudes  controlled and characterized. This may allow identification
of ~60 mVcm* and~36 mVcm *, respectively, are sufficient of the possible breakdown of quantum-classical correspon-
to ionize ~90% of the parent atoms. To better compare the shape§ance and of quantum modifications to irregular classical
of the profiles, the SFI spectra are normalized to equal peak heightaynamics. An ideal candidate for such a study would be a
“downhill” quasi-one-dimensional kicked atom which is

ELECTRON SIGNAL

c)

~90% of the parent atoms, is also included in Fig. 15. lon- lassically fully chaotic. Th imilarities b h
ization is observed at field strengths both above and belof'assically fully chaotic. The strong similarities between the

those characteristic of parent state ionization, indicating that> @nd 3D kicked atoms indicate that classical-quantum cor-
HCPs application populates a range of fimabtates. The respondence cogld be first analyzed in 1D wherg accurate
population transfer, however, is asymmetric, with more atgquantum ca}lgglgtlo_ns may be computatlonally feasible. Other
oms being transferred to states of lowethan of highem: future possibilities include the use of a “chirped” pulse train

i.e., the increase in the relative area under the SFI profile il which the time separation between adjacent HCPs is var-

greater at field strengths above, rather than below, thos&d 10 better stay in phase with the motion of the electron as

characteristic of parent state ionization. The distribution oft MOVes to higher orbits, and the use of HCPs that alternate

final n states is peaked at a value ofthat is somewhat in sign. The latter have been used, for example, to model the
below, but close to, that of the parent atoms. This behavior i

gehavior of atoms subject to intense electromagnetic radia-
consistent with theoretical predictions and indicates that dy!i°n: and experimental measurements might provide new in-
namical stabilization is occurring. Figure 15 also include

sights into intense field stabilization. Also, because by vary-
SFI data obtained following application of a train of 50

ing the pulse width and/or shape the harmonic content of the
HCPs withvy~0.18 and amplitude 36 mV cnl, sufficient driving field can be varied, such measurements might _have a
to again ionize~90% of the parent atoms. The SFI profile is bearllng on the rI]ore gerler_al problem of atomic excitation by
broader than that observed at the higher HCP repetition frerpultlfrequency colored” fields.
guency and, in particular, contains a greater relative contri-
bution from the ionization of very-high-atoms, which is a
characteristic of chaotic ionization. However, inspection of
the data reveals that there are comparable numbers of prod- The experimental work was supported by the National
uct atoms(as measured by the appropriate areas under th8cience Foundation and the Robert A. Welch Foundation.
SFI profiles with values ofn above and below that of the The theoretical work was funded by the Division of Chemi-
parent atoms, which is again consistent with the theoreticatal Sciences, Office of Basic Energy Sciences, U.S.D.O.E.
predictions.(The sharp peak observed in the SFI profile atunder Contract No. DE-AC05-960R22464, managed by
early times, i.e., small values of applied field, results becauskockheed Martin Energy Research Corporation, and the Na-
the threshold field for ionization scales ms®. As a conse- tional Science Foundation.
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