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Realization of the kicked atom
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The kicked atom is realized experimentally by exposing potassiumnp Rydberg atoms withn;388 to a
sequence of up to 50 half-cycle pulses whose duration is much shorter than the classical electron orbital period.
The Rydberg atom survival probability is observed to have a broad maximum for pulse repetition frequencies
near the classical orbital frequency. Comparisons with detailed classical trajectory Monte Carlo simulations
show that this behavior provides an unambiguous signature of dynamical stabilization. The classical simula-
tions further show that the kicked hydrogen atom is, depending on the pulse repetition frequency, chaotic or
characterized by a mixed phase space with various families of fully stable islands within which the atom is
stable against ionization. Signatures of stabilization and chaotic diffusion are also observed in the final bound-
state distribution of the surviving atoms.@S1050-2947~99!07302-3#

PACS number~s!: 42.50.Hz, 32.80.Rm, 03.65.Bz
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I. INTRODUCTION

Periodically ‘‘kicked’’ systems, i.e., impulsively driven
systems where the duration of each impulse is short c
pared to the period of the unperturbed system, provide v
able test cases for the study of nonlinear dynamics in Ha
tonian systems. Prime examples are the kicked rotor~or
standard map@1#! and the kicked hydrogen atom@2–9#. The
time evolution for kicked systems can be reduced to a
quence of discrete maps between adjacent kicks. This
plification permits detailed numerical studies of the lon
term evolution using both classical and quantum dynam
and hence, of the classical-quantum correspondence in
croscopic systems that feature regular and chaotic dynam
While systems subject to sinusoidal perturbations have b
widely studied, for example hydrogen in a microwave fie
@10,11#, experimental realizations of kicked systems ha
been scarce. Recently, however, atoms cooled in a stan
light wave have provided a realization of the on
dimensional standard map, demonstrating the existenc
Anderson localization in the translational motion of a sing
atom @12,13#.

Atoms in which an electron is excited to a state of lar
principal quantum numbern also afford the opportunity to
study the behavior of kicked systems because the cl
ical orbital periodTn of the excited electron is very larg
(;10 ns atn5400 increasing to;150 ns atn51000). It
is therefore possible using conventional pulse generator
apply unidirectional electric field pulses, termed half-cyc
pulses~HCPs!, to such atoms whose durationTp is much
shorter than the orbital period@14–16#. In the limit that
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Tp /Tn!1, a single pulse,FW HCP(t), simply delivers an impul-
sive momentum transfer or ‘‘kick,’’

DpW 52E FW HCP~ t !dt, ~1!

to the excited electron, where atomic units are used throu
out. Thus, very high-n atoms that are subject to a period
sequence of HCPs provide an ideal testing ground to ex
ine the behavior of kicked systems.

The impulsively driven~kicked! Rydberg atom has bee
the focus of a number of theoretical investigations@2–9#,
many of which have considered trains of impulses that al
nate in sign. Such a sequence of impulses has been us
model atoms in a monochromatic radiation field and has p
vided, for example, new insights into intense-field stabiliz
tion @8,9,17–19#. The behavior of a hydrogen atom subject
a series of unidirectional kicks has been investigated with
one-dimensional~1D! model @6#. Fully developed classica
chaos was observed, and the bound portion of the ph
space was found to decay algebraically as a function of t
as ;t21.65. Little is known about the response of a thre
dimensional~3D! Rydberg atom to a train of unidirectiona
pulses.

In this work we show both experimentally and theore
cally that the phase space of the kicked atom contains siz
regular islands that give rise to dynamical stabilization.~A
preliminary account of our findings was given in@20#.! Ex-
perimental measurements of the survival probability ver
HCP repetition frequency are presented which reveal a p
nounced structure that is well reproduced by classical tra
tory Monte Carlo~CTMC! simulations. Calculations were
undertaken for potassium and for hydrogen in three and
dimensions. The 1D model gives results that closely para
those for the 3D system and allows detailed examination
the stabilization in terms of the mixed phase-space struct

ter,
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PRA 59 1435REALIZATION OF THE KICKED ATOM
Signatures of stabilization and of chaotic diffusion are a
found in the final bound-state distribution, as measured
selective field ionization.

II. EXPERIMENTAL REALIZATION OF THE
KICKED ATOM

In order to realize a kicked system in the laboratory, p
tassium Rydberg atoms withn;388 are exposed to a train o
equispaced unidirectional HCPs, each having a durationTp
.2 ns. Forn;388, the atomic orbital periodTn is .9 ns
and the conditionTp /Tn!1 is satisfied. Application of such
pulse trains can lead to ionization. The Rydberg atom s
vival probability is measured as a function of the numb
amplitude, and repetition frequency of the pulses using
apparatus shown in Fig. 1. The Rydberg atoms are create
photoexciting ground-state potassium atoms in a tightly c
limated thermal-energy beam using a frequency-stabiliz
intracavity-doubled Coherent CR 699-21 Rh6G dye las
Excitation occurs near the center of an interaction reg
defined by three pairs of planar electrodes, each
310 cm. The use of large electrodes well separated fr
the experimental volume minimizes the effect of patch fie
associated with nonuniformities in the electrode surfac
However, even with all electrodes grounded, fields
;2 mV cm21 remain in the experimental volume. The
are locally reduced to&50 mV cm21 by application of
small bias potentials to the electrodes that are determ
using a technique based on the Stark effect. To minim
motional electric fields, the magnetic field is reduced
&20 mG by use ofm-metal shields.

Measurements are conducted in a pulsed mode. The
output is formed into a train of pulses of;4 ms duration
and ;10 kHz pulse repetition frequency using an acous
optic modulator.~The probability that a Rydberg atom
formed during a laser pulse is very small,&0.05, and data
must be accumulated following many laser pulses.! Excita-
tion occurs in~near! zero electric field. Approximately 200
ns after each laser pulse, the atoms are subject to a tra
HCPs generated by applying voltage pulses to a circ
electrode 4 cm in diameter that is inset in the upper pla
The pulse shapes and amplitudes are measured directly a

FIG. 1. Schematic diagram of the apparatus. The inset show
typical profile of the train of HCPs used in this work.
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circular electrode using a fast probe and sampling osci
scope. A typical pulse train is included in Fig. 1. The numb
and excited state distribution of Rydberg atoms remaining
the experimental volume after application of the HCPs
measured after a time delay of;6 ms, using selective field
ionization ~SFI!. The time delay discriminates against fre
low-energy electrons resulting from HCP-induced ionizati
which, tests revealed, have a residence time of;5 ms in the
interaction region. For SFI, a slowly varying (;1 ms rise
time! voltage ramp is applied to the bottom interactio
region electrode. Electrons resulting from field ionization a
accelerated to, and detected by, a particle multiplier. Beca
atoms in different Rydberg states ionize at different appl
fields, measurement of the field ionization signal as a fu
tion of time, i.e., of applied field, provides a measure of t
excited-state distribution of those atoms present at the t
of application of the ramp. Measurements in which no HC
are applied are interspersed at routine intervals during d
acquisition to monitor the number of Rydberg atoms initia
created by the laser. The Rydberg atom survival probab
is determined by taking the ratio of the Rydberg atom sign
observed with and without HCP application.

Survival probabilities measured following application
trains of ten and fifty equispaced HCPs are presented in F
2~a! and 2~b!, respectively, as a function of HCP amplitud
for several values of the pulse repetition frequency. As mi
be expected, significantly larger HCP heights are require
induce ionization with ten HCPs than with fifty HCPs. Mo
surprising and important, however, is the observation that
a given HCP amplitude the survival probability depen
markedly on the repetition frequencynT of the HCPs in the
train. This is better illustrated in Fig. 3, which shows th
Rydberg atom survival probability following application o
ten and fifty HCPs with peak fields of 29 and 60 mV cm21

as a function ofnT , expressed in MHz and in scaled unit
Here, and in the following, scaled units will be used to e
plicitly display the scaling invariance of the classical dyna

a

FIG. 2. Measured survival probability of K(np) atoms withn
;388 as a function of the pulsed field amplitude following app
cation of~a! 10 HCPs with pulse repetition frequencies of 227 MH
~solid circles!, 200 MHz ~open circles!, 125 MHz ~solid triangles!,
100 MHz ~open squares!, 83 MHz ~solid squares!, 50 MHz ~open
triangles!, and 10 MHz~inverted solid triangles! and ~b! 50 HCPs
with pulse frequencies of 250 MHz~solid circles!, 166 MHz ~open
circles!, 100 MHz ~solid squares!, 50 MHz ~open squares!, and 20
MHz ~solid triangles!.
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1436 PRA 59M. T. FREY et al.
ics of the Rydberg-Coulomb orbits. Classically, all ener
levels are equivalent in that they can be mapped onto e
other by the following scaling transformation@21# for coor-
dinates, momenta, time, frequency, and momentum tran
respectively:

q→n2q, ~2!

p→n21p, ~3!

t→n3t, ~4!

nn→n23nn , ~5!

Dp→n21Dp, ~6!

wheren is the scaling parameter which is equivalent to t
classical action in units of\ ~i.e., the principal quantum
number!. Figure 3 reveals a broad maximum in the surviv
probability for pulse repetition frequencies near the class
orbital frequency, precisely the regime in which dynamic
stabilization of the kicked atom might be expected.

To investigate the origin of the maximum in the surviv
probability, a series of CTMC calculations were undertak
using the Hamiltonian

H~ t !5Hat1zF~ t !.Hat1(
j 51

N

zFHCP~ t2 j nT
21!, ~7!

whereFHCP is the field of a single pulse. We fit the exper
mental profileF(t) to a periodic train of individual pulse
which, strictly speaking, becomes valid only after the fi
two pulses. The atomic Hamiltonian is given by

Hat5
p2

2
1Vat~r ! ~8!

FIG. 3. Rydberg atom survival probability following applicatio
of ten and fifty HCPs with peak fields of 29 mV/cm and 60 mV/c
as a function of the HCP repetition frequency. Experimental d
h; results of CTMC calculations for K(388p), ; CTMC results
for the impulsively driven H(388p) atom withniDp50.3, .
The HCP repetition frequency is displayed in MHz and in sca
units n05nT2pni
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2

2r2
1Vat~Az21r2!. ~9!

We use a one-electron model potentialVat for theK1 core
potential that yields accurate quantum defects and satis
the correct boundary conditions at small and large distan
The time evolution of the electron is modeled using a qua
classical approach in which the wave function is replaced
a classical probability density in phase space,f (rW,pW ,t). For-
mally, the time evolution of this density is governed by t
classical Liouville equation for the HamiltonianH(t) @Eq.
~7!#,

] f

]t
5@H, f #, ~10!

where@ ,# denotes a Poisson bracket. Since classical ph
space points evolve in time independently according
Hamilton’s equations, the Liouville equation can be eas
solved using a Monte Carlo technique. The resulting meth
is usually referred to as the classical trajectory Monte Ca
~CTMC! approach@22#.

The experimental conditions for preparation of potassi
Rydberg atoms are such thatl 51 states with a statistica
population ofm substates are produced. Within the CTM
approach, this initial quantum state can be modeled b
subset of a microcanonical ensemble

f i~rW,pW !5CidFEi2
p2

2
2Vat~r !GQ~L2l !Q~ l 112L !,

~11!

whereCi is a normalization constant,Ei is the initial quan-
tum mechanical binding energy, andQ denotes a step func
tion.

Calculated survival probabilities are included in Fig.
and display excellent agreement with the experimental d
without recourse to any adjustable parameters. This ag
ment indicates that the stabilization signaled by the increa
survival probability forn0*1 is classical in origin. Simi-
larly, good agreement is obtained if a Coulomb potentia
used forVat. Note that in the limit of high frequencies th
train of pulses becomes equivalent to a single pulse,F(t)
.NFHCP(t), for which the agreement between the theo
and experiment~not shown here! is well established@16#.

Because the Hamilton equations for finite-width puls
must be solved numerically, it is not computationally fe
sible to investigate the long-term stability in the limitN
→` ~typically N*106) and to perform a detailed analysis o
the classical phase space. Thus, to further examine the o
of the maximum observed in the survival probability, w
have also performed calculations for the ‘‘kicked’’ hydroge
atom~i.e., assuming the sudden limit in which each HCP c
be replaced by ad-function impulse!, details of which are
given in the next sections. Results for the survival proba
ity within this model are also given in Fig. 3. This simplifie
model reproduces the observed overall structure in the
vival probability although the stability is somewhat reduce
This results because the finite width of each experime
HCP cuts off the higher frequencies in the perturbat

a,

d
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PRA 59 1437REALIZATION OF THE KICKED ATOM
which enhances the stability of the orbit. The similariti
between the different calculations and the experiment s
gest that the stabilization can be analyzed in detail in te
of the ‘‘kicked’’ atom. In the following, we analyze theoret
cally the dynamics of the simplest system, the 1D kick
atom, and we discuss the conditions for which the evolut
of the electron is regular or chaotic. Subsequently, we sh
that similar situations can be found for the 3D kicked ato

III. ONE-DIMENSIONAL KICKED ATOM

Consider the electron in a 1D hydrogen ‘‘atom’’ that
subject to a periodic train of impulsesDp with frequencynT
~period TT). The dynamics of the atom is governed by t
Hamiltonian

H1D~q,p,t !5Hat
1D~q,p!2qDp(

k51

N

d~ t2k/nT! ~12!

5
p2

2
1

L2

2q2
2

1

q
2qDp(

k51

N

d~ t2k/nT!, ~13!

where q and p denote the position and momentum of t
electron. The 1D atom is described by an unperturb
HamiltonianHat

1D and includes an effective centrifugal ba
rier with quasi-angular momentumL. We take the limitL
→0 and, therefore, the only role of this potential is to pr
vide an infinite barrier atq50 such that the motion is con
fined to theq.0 region of phase space.

Denoting the phase-space coordinates just before thekth
kick by (qk ,pk), the time evolution during a single period o
the perturbation is given by a map of phase-space coo
nates,

~qk ,pk!5M ~qk21 ,pk21!5MCoul+MDp~qk21 ,pk21!,
~14!

whereMDp describes the kick, i.e.,

~qk21 ,pk211Dp!5MDp~qk21 ,pk21!, ~15!

and MCoul describes the unperturbed Coulomb evoluti
governed byHat

1D . The latter depends on the atomic energ
Ek5Hat

1D(qk ,pk). Note that onlyMDp changes the atomic
energy according to

Ek5MEk215MDpEk215
~Dp!2

2
1pk21Dp1Ek21 .

~16!

Using the parametric form of Coulomb orbits@21#, the
full mappingM for Ek,0 is given by a set of implicit equa
tions:

qk215nk
2~12ekcosjk21!,

pk211Dp5
nk

qk21
eksinjk21 ,

jk212eksinjk215nk
23tk21 , ~17!
g-
s

d
n
w
.

d

-

i-

s

jk2eksinjk5nk
23tk5nk

23~ tk211TT!,

qk5nk
2~12ekcosjk!,

pk5
nk

qk
eksinjk ,

where nk5(2uEku)21/2 is the classical principal action~di-
rectly related to the principal quantum number! and ek

5A112EkL251 is the eccentricity. ForEk.0, M be-
comes correspondingly

qk215nk
2~ekcoshjk2121!,

pk211Dp5
nk

qk21
eksinhjk21 ,

eksinhjk212jk215nk
23tk21 , ~18!

eksinhjk2jk5nk
23tk5nk

23~ tk211TT!,

qk5nk
2~ekcoshjk21!,

pk5
nk

qk
eksinhjk .

The kicked one-dimensional~1D! atom represents a time
dependent dynamical system with one degree of freedom
can be canonically transformed into an equivalent tim
independent system with two degrees of freedom~usually
referred to as a 1 and 1/2 degrees of freedom system@23#!.

FIG. 4. Poincare´ surface of section for the 1D kicked hydroge
atom for nT5(2p)21 and various positiveDp values. The thick
line indicates the separatrix between bound and continuum un
turbed tori.
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1438 PRA 59M. T. FREY et al.
This low dimensionality greatly simplifies the study of th
electronic dynamics. Regular and chaotic dynamics can
easily identified by the Poincare´ surface of sections. Becaus
the Hamiltonian is periodic in time, Poincare´ sections~of the
equivalent time-independent system! can be generated b
taking stroboscopic snapshots of (q,p) during every period
of the perturbation. If the dynamics is regular~i.e., if there
exists a constant of motion!, a phase-space trajectory is co
strained to a torus whose image on a section takes the
of a closed loop.

Figures 4 and 5 display Poincare´ surfaces of sections o
the kicked 1D atom forDp.0 andDp,0, respectively. For
Dp50 the dynamics is fully regular and each of the tori
the figure corresponds to a differentHat

1D5const surface. Due
to the Coulomb singularity at the origin (q50), this dynami-
cal system features several nonstandard properties; for
ample, the unperturbed tori do not have the appearanc
closed loops within any finite domain in phase space si
p→` as q→0. Furthermore, as soon as the perturbat
Dp.0 is turned on~momentum transfer in the direction o
the apocenter!, the tori are completely destroyed no matt
how smallDp is, and the system becomes globally chao
in agreement with the predictions of Hillermeieret al. @6#.
More surprisingly, forDp,0 ~kick toward the Coulomb
force center!, some of the tori survive weak perturbation
However, the transition to a mixed phase space with a
able chaotic region occurs for an arbitrary small moment
transfer. All chaotic regions become immediately interco
nected forming a chaotic sea. According to Eq.~16! this is
due to the fact that the high momentum ‘‘wing,’’pDp.Ek
2(Dp)2/2, of any unperturbed tori becomes immediately d

FIG. 5. Poincare´ surface of section for the 1D kicked hydroge
atom for nT5(2p)21 and various negativeDp values. The thick
line indicates the separatrix between bound and continuum un
turbed tori.
e
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stroyed. The coexistence of a chaotic sea and of tori de
mines the ionization dynamics. Note that stable regions
phase space are only associated with bound states o
unperturbed motion: i.e.,Hat

1D,0. ~For reference, the torus
Hat

1D50 separating bound and continuum unperturbed tor
also shown in the figures.!

Consider an atom in a well-definedn level ~i.e., in a well-
defined unperturbed torus defined by the initial binding e
ergy!. When subject to a train of impulses, ionization of su
an atom occurs as soon as the unperturbed torus ove
with the chaotic sea which, in turn, is connected with t
continuum. On the other hand, the partial stability of t
atom against ionization depends on whether or not the
perturbed torus overlaps with a stable region of phase sp
Hillermeier et al. @6# found that the survival probability o
atoms decays algebraically as a function of time forDp
.0, independent of the strength of the kicks and the f
quency of the train. This is a consequence of the fully dev
oped chaos in this system. In turn, Fig. 6 shows that
Dp,0 the survival probability as a function of the numb
of kicks, N, can be either dynamically stable or unstab
depending on the pulse repetition frequency of the tra
Therefore, the survival probability of an atom following a

r-

FIG. 6. Survival probability for the 1D kicked hydrogen atom
various scaled frequenciesn0 as a function of the number of kicks

FIG. 7. Survival probability of a 1D kicked atom with initia
energyE520.5 following application of 100 and 1000 kicks wit
Dp520.3 as a function of the pulse repetition frequency.
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PRA 59 1439REALIZATION OF THE KICKED ATOM
plication of a large number of kicks exhibits several pr
nounced peaks as a function of the repetition frequency~Fig.
7!. In order to compute the probabilities in Figs. 6 and 7
microcanonical ensemble of points in an unperturbed to
with energyE520.5 is followed as a function of time. Th
survival probability is given by the fraction of points whic
remain bound~i.e., E,0) after the train of pulses. Becaus
of classical scaling invariance@Eqs. ~2!–~6!#, the survival
probability is a function of the scaled variablesDp0

5Dp/pni
,n05n/nni

, where pni
5ni

21 and nni
5(2pni

3)21

only. Therefore, the results of Figs. 6 and 7 and in the f
lowing are presented in scaled units and are classically v
for any ni initial level.

Each of the peaks in Fig. 7 is associated with a regu
island in phase space. The survival probability is given
the fraction of the initial phase-space points that are c
tained within a given island. This is more clearly illustrat
in Fig. 8, where we display Poincare´ maps for different rep-
etition frequencies together with the fixed initial torus. F
repetition frequenciesnT50.616,1.07,2.12, the initial toru
overlaps with different stable islands and, therefore, stab
zation is obtained by trapping the phase-space trajecto
within a given island. In turn, fornT50.701,1.978,5.554, the
initial torus lies in the chaotic sea and the atom becom
fully ionized.

Ionization does not necessarily happen immediately a
in fact, an electron may wander among various regions
phase space before reaching the continuum. This is il

FIG. 8. Poincare´ surface of sections for the 1D kicked hydroge
atom for Dp520.3 and variousnT values. The dashed line indi
cates the unperturbed torus associated with the initial state o
atom in Fig. 9.
-
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trated in Fig. 9, where we display a Poincare´ section of a
single trajectory of an electron which is eventually ionize
The time evolution of the electron displays intermittenc
periods of trapping near stable islands. However, since
residual tori are not confining, the trapping is only transie
and the trajectory will eventually ‘‘jump’’ to another regio
of the chaotic sea and escape into the continuum.

The identification of the periodic orbits around which th
stable islands are organized proceeds by noting that the b
ing energy must be unchanged following some integer nu
ber j of applied kicks, i.e.,

Ek5M jEk2 j5Ek2 j . ~19!

For a period-one (j 51) fixed point, Eqs.~19! and~16! imply

Dp2

2
1pDp50 ~20!

or p52Dp/2, which agrees with thep coordinate of the
center of the most prominent islands in Figs. 4, 5, and 8. T

he

FIG. 9. Poincare´ surface of section of a single trajectory startin
in a chaotic region of phase space for the 1D kicked hydrogen a
for Dp520.05 andnT51.

FIG. 10. Stable orbit fornT51.25 andDp520.3. The dashed
lines indicate the segment of the Coulomb orbit that is not reac
by the electron.



e
io
as
n

w
tio
k

bit

d,
o

ies
t

ha
rt
h
th

gy
e
th
he
ls

th
t
pr
o

el
in
T

nd
n

to

al
In
st

o

lte

ub

is

ng
d
with
2
l

for
m.

care
es,
ion-
en

D
ail-

to

(

1440 PRA 59M. T. FREY et al.
periodic orbit which corresponds to the center of the larg
stable island can be identified with the help of its project
onto the (q,p) plane, as shown in Fig. 10. The trajectory h
been followed for several kicks involving segments of ma
Coulomb orbits having the same binding energy~i.e., the
same unperturbed period!.

According to Eq.~17!, a kick maps a pointP5(q,p5
2Dp/2) on a given Kepler ‘‘orbit’’ onto a pointQ5(q,p
5Dp/2) of another orbit, as illustrated by the vertical arro
in Fig. 10. The subsequent unperturbed Coulomb evolu
transports the pointQ along the direction of the arrow bac
to point P, MCoul(Q).P. The periodic orbit is therefore
nothing but a sequence of segments of full Coulomb or
cut short by the kick. For this to occur, the time separationTs
between kicks~pulses! must be less than the Kepler perio
i.e., Ts5aTni

with a,1. Figure 7 suggests the existence
a family of stable periodic orbits with scaled frequenc
nT

s5(a1s)21 (s50,1,2, . . . ) corresponding to orbits tha
completes full periods and one segmenta prior to the next
kick, mappingP onto Q. From Eq.~16!, the simple expres-
sion

a5p21S cos21FDp224

Dp214
G1

4Dp

Dp214
D ~21!

can be obtained. Periodic orbits that are more complex t
that in Fig. 10 also exist that involve transfer back and fo
between several energy levels@20#. They are associated wit
tori that have undergone a bifurcation. The center of
torus overlapping the initial state of the electron fornT
52.12 in Fig. 8 provides an example involving two ener
levels @i.e., j 52 in Eq. ~19!#. In this case a kick excites th
electron to a higher energy level and, subsequently, ano
kick deexcites the electron back to its original level. T
electronic motion becomes trapped within these two leve

IV. THREE-DIMENSIONAL KICKED ATOM

In order to relate the results of the preceding section to
experimental data, it is necessary to analyze the exten
which the phase-space structure for the 1D system is
served for the 3D kicked atom, especially since it is n
obviousa priori that the stability properties should parall
each other. For a 1D system, tori are, in general, nested
each other and they are said to divide the phase space.
dynamics of chaotic orbits is constrained by regular isla
of nested tori. This is not necessarily true for higher dime
sions where the possibility of slow diffusion between s
chastic layers enclosed by KAM-like tori exists~Arnold dif-
fusion @23#!. In this section we show that the dynamic
stabilization in 1D closely mimics the stabilization in 3D.
particular, certain~but not all! classes of stable islands exi
in both 1D and 3D. Moreover, because of the existence
the chaotic sea for the 1D kicked atom for anyDpÞ0, the
effect of the higher dimension does not fundamentally a
the chaotic pathway to ionization.

Consider the electron in a 3D hydrogen atom that is s
ject to a periodic train of impulsesDpW 5Dpẑ. The Hamil-
tonian for this problem is
st
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H3D5Hat2zDp(
j 51

N

d~ t2 j n t
21!, ~22!

where the atomic Hamiltonian in cylindrical coordinates
given by

Hat5
p2

2
2

1

r
5

pz
21pr

2

2
1

Lz
2

2r2
2

1

Az21r2
~23!

with LW 5rW3pW 5(Lx ,Ly ,Lz) the angular momentum andr2

5x21y2. Since the impulsive momentum transfer is alo
the ẑ direction, Lz is a constant of motion and the kicke
atom represents a time-dependent dynamical system
two degrees of freedom~i.e., a time-independent 2 and 1/
degree of freedom system!. M maps the four-dimensiona
phase space (r,z,pr ,pz) onto itself.

Remarkably, calculations show that the stable islands
the 3D kicked atom mimic those for the 1D kicked syste
This is illustrated in Fig. 11, in which Poincare´ sections are
compared. For the 3D case, the construction of the Poin´
surface requires, in addition to taking stroboscopic pictur
the slicing of phase space because of the higher dimens
ality of the dynamical systems. In Fig. 11 we have tak
slices of (r6Dr),(pr6Dpr) near r;0.1, pr;0, and Lz
50. Clearly, settingr50, pr50, andLz50 in Eqs. ~22!
and ~23! yields a Hamiltonian that is equivalent to the 1
Hamiltonian. Note, however, that because of the larger av
able phase space, chaotic trajectories in 3D are unlikely
return to the original slice of the Poincare´ section after a

FIG. 11. Comparison of the Poincare´ surfaces of sections for the
1D kicked hydrogen atom and the 3D kicked hydrogen atomLz

52.51024) subject to a train of pulses withDp520.2 andn0

51. The 3D section corresponds tor50.1 andpr50.
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finite number of kicks. The close correspondence betw
the Poincare´ surface of sections in 1D and 3D in Fig. 11
due to the fact that the phase-space slice taken near
50,pr50 corresponds to regions in phase space that h
large overlap with the extreme ‘‘uphill’’ or blueshifted para
bolic states~i.e., uphill in the average field provided by th
train of pulses!.

Presently, Rydberg atoms are experimentally created
single photon excitation of alkali-metal atoms, leading
small initial quantum numbersl i andmi , and cannot be con
sidered to be quasi-one-dimensional. Nevertheless, as sh
in Fig. 12, dynamical stabilization can still occur at freque
cies similar to those at which stabilization is expected for
1D kicked atom. The reason is partly that the initial ele
tronic state has a finite overlap with the extreme Stark sta
which are associated with stable islands in Fig. 11. Howe
only a small fraction of the microcanonical ensemble of t
jectories representing initial quantum numbersni5388,l i
51 belong to these islands. There are, in addition, ot
stable islands that cannot be easily associated wit

FIG. 12. Survival probability for the kicked hydrogen atom wi
L05 l i /ni5(388)21 at various frequenciesn0 as a function of the
number of kicks.

FIG. 13. Poincare´ surface of section around the most stab
region of phase space associated with the kicked hydrogen atom
n05(2p)21 and Dp050.2 corresponding tor51.05,pr50. Each
trajectory has been followed for up to one million kicks.
n

ve

y

wn
-
e
-
s,
r,
-

r
a

quasi-1D system. Figure 13 provides an example of s
stable regions and corresponds to a cut atr51.05,pr50.
The identification of the periodic orbit at the center of t
main stable island in the figure proceeds by noting that
binding energy must be unchanged following a kick, mu
like for the 1D system~i.e., pz52Dp/2). However, a simple
physical picture of the periodic orbit is presently not ava
able.

V. EXCITED BOUND-STATE DISTRIBUTION

Additional information on dynamical stabilization an
chaotic evolution is contained in the distribution of excit
bound states that remain following application of the HC
train. If dynamical stabilization occurs, the distribution
excitation energies of the surviving bound states should
sharply peaked at or near the initial energy. Conversely, c
otic dynamics should result in the population of states wit
broad distribution in energy. Figure 14 shows the calcula
final excited state, expressed as a function of the bind
energy for HCP trains, one withn0.2.3, corresponding to
the region of partial dynamical stabilization, and one w
n0'0.18, corresponding to the fully chaotic regime. In ea
case, the pulse amplitudes were such that;90% of the par-
ent atoms are ionized. In the absence of an applied H
train, the energy distribution corresponds to ad function at
E05E/Eni

51 ~i.e., atoms with well-defined initialn and,
therefore, energy!. After interaction with the HCP train, the
final-state distribution is broadened and its width is det
mined by the overlap between the ensemble of perturbed
near the stable island and the initial unperturbed torus. H
ever, the distribution is significantly narrower in the regim
where dynamical stabilization can occur than where ioni
tion is fully chaotic. In the case of chaotic ionization, th
remaining population is distributed over a broad range
states extending up to the ionization threshold.

Evidence of this behavior is contained in the experime
tally measured SFI profiles. As shown in Fig. 15, in t
absence of an applied HCP train, a single relatively narr
SFI profile is observed that corresponds to ionization of p
ent n atoms with well-defined initial energy. The SFI profi
measured following application of a train of 50 HCPs wi
n0;1.5 and amplitude;60 mV cm21, sufficient to ionize

for

FIG. 14. Calculated final-state energy distribution following a
plication of 50 HCPs with pulse repetition frequenciesn of 250
MHz and 20 MHz to K(388p) atoms. The pulse amplitudes ar
chosen to ionize;90% of the parent atoms.
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;90% of the parent atoms, is also included in Fig. 15. Io
ization is observed at field strengths both above and be
those characteristic of parent state ionization, indicating
HCPs application populates a range of finaln states. The
population transfer, however, is asymmetric, with more
oms being transferred to states of lowern than of highern:
i.e., the increase in the relative area under the SFI profil
greater at field strengths above, rather than below, th
characteristic of parent state ionization. The distribution
final n states is peaked at a value ofn that is somewhat
below, but close to, that of the parent atoms. This behavio
consistent with theoretical predictions and indicates that
namical stabilization is occurring. Figure 15 also includ
SFI data obtained following application of a train of 5
HCPs withn0;0.18 and amplitude 36 mV cm21, sufficient
to again ionize;90% of the parent atoms. The SFI profile
broader than that observed at the higher HCP repetition
quency and, in particular, contains a greater relative con
bution from the ionization of very-high-n atoms, which is a
characteristic of chaotic ionization. However, inspection
the data reveals that there are comparable numbers of p
uct atoms~as measured by the appropriate areas under
SFI profiles! with values ofn above and below that of th
parent atoms, which is again consistent with the theoret
predictions.~The sharp peak observed in the SFI profile
early times, i.e., small values of applied field, results beca
the threshold field for ionization scales asn24. As a conse-

FIG. 15. SFI profiles observed for~a! parent K(np) atoms with
n;388, and following application of 50 HCPs with pulse repetiti
frequencies of~b! 166 MHz and~c! 20 MHz. The HCP amplitudes
of ;60 mV cm21 and;36 mV cm21, respectively, are sufficien
to ionize;90% of the parent atoms. To better compare the sha
of the profiles, the SFI spectra are normalized to equal peak hei
J
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quence, ionization of the highestn atoms is compressed int
a narrow range of applied fields, i.e., a narrow time rang!

VI. CONCLUSIONS

The present work demonstrates that very-high-n Rydberg
atoms subject to a train of HCPs provide an excellent mo
system for investigating the behavior of periodically driv
systems. The experimental data provide evidence for
namical stabilization which is in accord with theoretical pr
dictions for both 1D and 3D impulsively kicked atoms. Th
good agreement between experiment and full CTMC sim
lations employing realistic potentials and pulse shapes d
onstrates that, for the range of fields and pulse repeti
frequencies studied here, classical-quantum correspond
approximately holds and quantum corrections appear to
negligible. Quantum calculations for this stabilization pr
cess are currently underway.

Impulsively driven Rydberg atoms provide an opportun
to study the correspondence between classical and qua
mechanics from a new perspective. Experimentally, v
precise studies are possible if the initial quantum state of
atoms is precisely known and the HCP trains are accura
controlled and characterized. This may allow identificati
of the possible breakdown of quantum-classical corresp
dence and of quantum modifications to irregular class
dynamics. An ideal candidate for such a study would b
‘‘downhill’’ quasi-one-dimensional kicked atom which i
classically fully chaotic. The strong similarities between t
1D and 3D kicked atoms indicate that classical-quantum c
respondence could be first analyzed in 1D where accu
quantum calculations may be computationally feasible. Ot
future possibilities include the use of a ‘‘chirped’’ pulse tra
in which the time separation between adjacent HCPs is
ied to better stay in phase with the motion of the electron
it moves to higher orbits, and the use of HCPs that altern
in sign. The latter have been used, for example, to model
behavior of atoms subject to intense electromagnetic ra
tion, and experimental measurements might provide new
sights into intense field stabilization. Also, because by va
ing the pulse width and/or shape the harmonic content of
driving field can be varied, such measurements might hav
bearing on the more general problem of atomic excitation
multifrequency ‘‘colored’’ fields.
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