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Bound entanglement and teleportation
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Recently M. Horodecki, P. Horodecki, and R. Horodecki@Phys. Rev. Lett.80, 5239~1998!# have introduced
a set of density matrices of two spin-1 particles from which it is not possible to distill any maximally entangled
states, even though the density matrices are entangled. Thus these density matrices do not allow reliable
teleportation. However, it might nevertheless be the case that these states can be used for teleportation, not
reliably, but still with fidelity greater than that which may be achieved with a classical scheme. We show that,
at least for some of these density matrices, teleportation cannot be achieved with better than classical fidelity.
@S1050-2947~99!03301-6#

PACS number~s!: 03.67.Hk, 03.65.Bz
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Nonlocality, discovered by Bell more than 30 years a
has recently shown itself to have many manifestations: t
portation @1#, distillability @2#, reduction of communication
complexity @3#, etc. It is not clear yet what the relation
between these different manifestations are@4#.

In two very interesting papers@5,6# a set of density ma-
trices of two spin-1 particles were introduced from which
is not possible to distill any states of which are maxima
entangled even though the density matrices are entang
This is very surprising since in the case of spin-1/2 partic
any entangled density matrix is distillable. Distillability
however is just one aspect of nonlocality. Thus, although
aspect of nonlocality is not active, the Horodecki dens
matrices may actively manifest other forms of nonlocali
For example, bound entanglement may be pumped in
single pair of free entangled particles@7#. Here we investi-
gate teleportation.

Since one cannot distill pure singlets from Horodecki de
sity matrices, these density matrices do not allow relia
teleportation. However, it might nevertheless be the case
these states can be used for teleportation, not reliably,
still with fidelity greater than that which may be achiev
with a classical scheme. This is the general question we
vestigate here.

First let us consider the case of spin-1/2 particles. Si
one cannot distill states formally equivalent to spin-1/2 s
glets from the Horodecki density matrices, these density
trices cannot be used for reliable teleportation of spin-
states. Furthermore, it is most probable that these den
matrices cannot be used to teleport spin-1/2 states at all
better than classical fidelity. The reason is the followin
Suppose Alice produces locally a spin-1/2 singlet and te
ports one of the spins to Bob. If Alice and Bob share
maximally entangled state of two spin-1 particles, then
then end of the process this state is destroyed and it is
placed by a state that is equivalent to a maximally entang
state of two spin-1/2 particles~i.e., the state originally held
by Alice!.

If, however, Alice and Bob were to share a Horodec
density matrix, at the end of the process, the original Ho
decki matrix is destroyed and now Alice and Bob share
PRA 591050-2947/99/59~1!/137~4!/$15.00
,
e-

d.
s

is
y
.
a

-
e
at
ut

n-

e
-
a-
2
ity
ith
.
-

t
e-
d

i
-
a

pair of particles whose state is equivalent to one of spin-
particles, but not a faithful copy of Alice’s original state
Presumably, however, if the teleportation works better th
any classical scheme, we expect that this state is still
tangled. This, however, cannot happen because from any
tangled state of spin-1/2 particles one can distill single
Thus the procedure would be tantamount to distilling singl
from the Horodecki matrices. We thus expect that Horode
density matrices cannot be used to teleport spin-1/2 st
with better than classical fidelity.

However, the above discussion leaves open the ques
of whether spin-1 states can be teleported with better t
classical fidelity using Horodecki density matrices. In pa
ticular the above argument does not rule out this possib
for the following reason. Suppose now that Alice were
prepare a maximally entangled state of two spin-1 partic
and teleport the state of one of them to Bob using a Ho
decki pair. At the end of the process the Horodecki matrix
again destroyed and Alice and Bob now share some stat
two spin-1 particles. As before this state will not be a faith
copy of the original singlet prepared by Alice; however,
the teleportation works better than any classical scheme
expect that this state is still entangled. However, now ther
the possibility that this state is a state of Horodecki-ty
boundentanglement that does not allow distillation and th
leads to no contradiction of the Horodeckis’ general arg
ments.

Furthermore, another argument that might give hope
the possibility that spin-1 states can be teleported better
the classical case while spin-1/2 states cannot is that
expects that the classical fidelity to be lower for spin-1 th
spin-1/2 states. This is because it is more difficult to ident
using a measurement, a state that may be anywhere
three-dimensional Hilbert space than a state that may be
where in a two-dimensional Hilbert space. In this paper
show that, despite the arguments presented above, at lea
some of the Horodecki density matrices, it is not possible
teleport spin-1 states with better than classical fidelity, th
confirming the remarkable nature of these density matric

As is customary, we imagine that Alice and Bob ea
have one of the pair of particles described by the den
matrix ra . Alice receives a particle in an unknown statef
and she performs a measurement of the pair of particles
137 ©1999 The American Physical Society
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has and transmits some information to Bob. The aim is
maximize the fidelity of transmission, averaged over all u
known statesf.

To be explicit, we write the statef as

uf&5~c51 is5c4!u1&1s5s4~c31 is3c2!u2&

1s5s4s3s2eiu1u3&, ~1!

with respect to some basisu1&, u2&, or u3&, wheres55sinu5,
c55cosu5, etc.~for simplicity we have takenf to be a vec-
tor rather than a ray!. With this parametrization, the U~3!
invariant measure is

dm~f!5
1

p3sin4u5sin3u4sin2u3sinu2du5 du4 du3 du2 du1 .

~2!

We first derive a general expression for the fidelity
transmission using an arbitrary density matrixr shared be-
tween Alice and Bob. A convenient parametrization ofr, the
Schmidt representation, is

r5
1

9
I ^ I 1

1

6
r il i ^ I 1

1

6
I ^ sil i1

1

4
t i j l i ^ l j , ~3!

wherel i are the Gell-Mann matrices~see, for example,@8#!
that satisfy Tr(l i)50 and Tr(l il j )52d i j . Thus r i
5Tr(rl i ^ I ), si5Tr(rI ^ l i), andt i j 5Tr(rl i ^ l j ).

The fidelity of transmission is

F5E dm~f!(
k51

9

pkTr3~rkPf!, ~4!

where

pk5Tr1,2,3~Pk^ Uk!~Pf ^ r!~Pk^ Uk
†! ~5!

is the probability of thekth outcome,

rk5
1

pk
Tr1,2~Pk^ Uk!~Pf ^ r!~Pk^ Uk

†! ~6!

is the output state,

Pk5
1

9
I ^ I 1

1

6
Ri

~k!l i ^ I 1
1

6
I ^ Si

~k!l i1
1

4
Ti j

~k!l i ^ l j

~7!

are the projection operators corresponding to the meas
ment Alice makes,Uk are the unitary operators Bob pe
forms that depend on which result Alice obtains, and

Pf5
1

3
I 1

1

2
a il i ~8!

is the projection operator of the unknown input statef. The
subscripts on the traces indicate the Hilbert space over w
the trace is taken.

Now
o
-

f

re-

ch

pkrk5S 1

27
1

1

18
r qSq

~k!1
1

18
aqRq

~k!1
1

12
apr qTpq

~k!D I

1S 1

18
sqOq j

~k!1
1

12
t iqSi

~k!Oq j
~k!

1
1

12
a iRi

~k!sqOq j
~k!1

1

8
apTpi

~k!t iqOq j
~k!Dl j , ~9!

where the orthogonal matrixO(k) is that induced by conju-
gation by the unitary matrixUk :

U ~k!xjl jU
~k!†5xiOi j

~k!l j . ~10!

Thus

Tr3~pkrkPf!5S 1

27
1

1

18
r qSq

~k!1
1

18
aqRq

~k!1
1

12
apr qTpq

~k!D
1S 1

18
sqOq j

~k!1
1

12
t iqSi

~k!Oq j
~k!

1
1

12
a iRi

~k!sqOq j
~k!1

1

8
apTpi

~k!t iqOq j
~k!Da j .

~11!

We may now perform integration overa in the expression
for the fidelity using

E da a iM i j a j5E dm~f!^ful i uf&Mi j ^ful j uf&

5
1

6
Tr~M ! ~12!

and

E da a i5E dm~f!^ful i uf&50. ~13!

Thus

F5(
k

S 1

27
1

1

18
r qSq

~k!1
1

72
Rp

~k!sqOqp
~k!1

1

48
Tpi

~k!t iqOqp
~k!D .

~14!

We now put a bound on the fidelity by considering the ma
mum value of the summand. Let us callPmax ~with Schmidt
componentsRmax, Smax, andTmax) the projection operator
that maximizes the summand in Eq.~14!. Without loss of
generality we may take the orthogonal matrixO to be the
identity. Thus

F<S 1

3
1

1

2
r qSq

max1
1

8
Rq

maxsq1
3

16
Tpi

maxt ipD . ~15!

Let us now denote byP̂max the projection operator define
by

P̂max5NPmaxN, ~16!
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where N is the interchange operator that we define by
action on basis vectors

Nei ^ ej5ej ^ ei . ~17!

We may then use the fact that

Tr~r P̂max!5
1

9
1

1

6
r iSi

max1
1

6
siRi

max1
1

4
t i j Tji

max ~18!
of
u
us
at
th

w

sto rewrite the bound on the fidelity as

F<S 1

4
1

3

8
r qSq

max1
3

4
Tr~r P̂max! D . ~19!

We now consider the specific case of the matricesra intro-
duced in@5,6#:
(20)
e

-
s

rt
We find that all the Schmidt componentsr q for this matrix
are zero exceptr 8, which is

r 85Tr~ral8^ I !5
2

A3
S a21

8a11D . ~21!

Thus, if we write

r̃a5ra1
1

A3
S a21

8a11Dl8^ I , ~22!

then we may write the bound on the fidelity as

F<S 1

4
1

3

4
Tr~ r̃aP̂max! D . ~23!

We now consider under what conditions the fidelity
teleportation can be greater than any classical proced
One particular classical scheme that Alice and Bob could
is as follows. First Alice simply measures the unknown st
f using an arbitrary nondegenerate operator. Let us call
eigenvectors of this operatorv1 ,v2 ,v3 with associated ei-
genvaluesm1 ,m2 ,m3 . If Alice’s outcome ism1 she tells Bob
to guess that the unknown state wasv1 and so on~this pro-
cedure may not be the optimal classical scheme, but we
not need this in what follows!. The fidelity of this procedure
is
re.
e

e
e

ill

(
i 51

3 E dm~f!z^v i uf& z45
1

2
. ~24!

Let us now return to the fidelity of teleportation. Th
maximum value of the fidelity in Eq.~23! is obtained when
we choosePmax so thatP̂max is the projector onto the maxi
mum eigenvalue ofr̃a . If this maximum eigenvalue is les
than 1

3, then the fidelity of teleportation~23! is less than1
2 and

therefore the density matrixra cannot be used to telepo
better than the optimal classical scheme~which may have
fidelity greater than1

2!.
By direct calculation we find that fora5A3/2 the eigen-

values ofr̃a are

1

3S 2A321

4A311
D ,

83

1128
2

1

376
A32

1

376
~10 58825786A3!1/2,

83

1128
2

1

376
A31

1

376
~10 58825786A3!1/2,

~25!
7

141
2

3

94
A3,
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37

564
1

29

188
A3,

4

141
1

5

94
A3;

the first eigenvalue occurs with multiplicity 4. All the abov
eigenvalues are less than1

3. Thus we have shown thatrA3/2
s,

J.
cannot teleport a spin-1 state with fidelity better than clas
cal. We note that we have not limited ourselves to ‘‘sta
dard’’ teleportation: The projectorsPk were not assumed to
be maximally entangled.

Numerical evidence indicates that fora roughly in the
region 4/5,a,1, the maximum eigenvalue ofr̃a is less than
1
3. For smalla, r̃a does have an eigenvalue larger than1

3, so
the argument presented here is not conclusive in this ca
v.
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