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Bound entanglement and teleportation
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Recently M. Horodecki, P. Horodecki, and R. HoroddgdMys. Rev. Lett80, 5239(1998 | have introduced
a set of density matrices of two spin-1 particles from which it is not possible to distill any maximally entangled
states, even though the density matrices are entangled. Thus these density matrices do not allow reliable
teleportation. However, it might nevertheless be the case that these states can be used for teleportation, not
reliably, but still with fidelity greater than that which may be achieved with a classical scheme. We show that,
at least for some of these density matrices, teleportation cannot be achieved with better than classical fidelity.
[S1050-294{@9)03301-9

PACS numbgs): 03.67.Hk, 03.65.Bz

Nonlocality, discovered by Bell more than 30 years ago,pair of particles whose state is equivalent to one of spin-1/2
has recently shown itself to have many manifestations: teleparticles, but not a faithful copy of Alice’s original state.
portation[1], distillability [2], reduction of communication Presumably, however, if the teleportation works better than
complexity [3], etc. It is not clear yet what the relations @ny classical scheme, we expect that this state is still en-
between these different manifestations e tangled. This, howe\_/er, cannot happen becausga f.rom_ any en-

In two very interesting paper,6] a set of density ma- tangled state of spin-1/2 particles one can distill singlets.

: . . ; . . Thus the procedure would be tantamount to distilling singlets
trices of two spin-1 _pa_whcles were mtrodu_ced from Wh'Ch It from the Horodecki matrices. We thus expect that Horodecki
is not possible to distill any states of which are maximally

; ) ensity matrices cannot be used to teleport spin-1/2 states
entangled even though the density matrices are entangle y P P

S - . . . : ith better than classical fidelity.
This is very surprising since in the case of spin-1/2 particles However, the above discussion leaves open the question

any enta_ngled density matrix is dis_tillable. Distillability, _of whether spin-1 states can be teleported with better than
however is just one aspect of nonlocality. Thus, although thig|assical fidelity using Horodecki density matrices. In par-
aspect of nonlocality is not active, the Horodecki densityticular the above argument does not rule out this possibility
matrices may actively manifest other forms of nonlocality.for the f0||owing reason. Suppose now that Alice were to
For example, bound entanglement may be pumped into grepare a maximally entangled state of two spin-1 particles
single pair of free entangled particl€g]. Here we investi- and teleport the state of one of them to Bob using a Horo-
gate teleportation. decki pair. At the end of the process the Horodecki matrix is
Since one cannot distill pure singlets from Horodecki den-again destroyed and Alice and Bob now share some state of
sity matrices, these density matrices do not allow reliablgwo spin-1 particles. As before this state will not be a faithful
teleportation. However, it might nevertheless be the case th&opy of the original singlet prepared by Alice; however, if
these states can be used for teleportation, not reliably, bdbe teleportation works better than any classical scheme, we
still with fidelity greater than that which may be achieved expect that this state is still entangled. However, now there is
with a classical scheme. This is the general question we inthe possibility that this state is a state of Horodecki-type
vestigate here. boundentanglement that does not allow distillation and thus

First let us consider the case of spin-1/2 particles. Sincd#@ds to no contradiction of the Horodeckis’ general argu-
one cannot distill states formally equivalent to spin-1/2 sin-Ments.

: : : : Furthermore, another argument that might give hope to
glets from the Horodecki density matrices, these density ma- L X
trices cannot be used for reliable teleportation of spin-l/%he possibility that spin-1 states can be teleported better than

states. Furthermore, it is most probable that these densitghe classical case while spin-1/2 states cannot is that one

matrices cannot be used to teleport spin-1/2 states at all wit xpects that the classical fidelity to be lower for spin-1 than
P P pin-1/2 states. This is because it is more difficult to identify,

better than classical fidelity. The reason is the foIIowing.using a measurement, a state that may be anywhere in a
Suppose Alice produces locally a spin-1/2 singlet and teleg, ae_dimensional Hilbert space than a state that may be any-
ports one of the spins to Bob. If Alice and Bob share aynere in a two-dimensional Hilbert space. In this paper we
maximally entangled state of two spin-1 particles, then akpow that, despite the arguments presented above, at least for
then end of the process this state is destroyed and it is reome of the Horodecki density matrices, it is not possible to
placed by a state that is equivalent to a maximally entanglegeleport spin-1 states with better than classical fidelity, thus
state of two spin-1/2 particle@.e., the state originally held confirming the remarkable nature of these density matrices.
by Alice). As is customary, we imagine that Alice and Bob each
If, however, Alice and Bob were to share a Horodeckihave one of the pair of particles described by the density
density matrix, at the end of the process, the original Horomatrix p,. Alice receives a particle in an unknown stage
decki matrix is destroyed and now Alice and Bob share aand she performs a measurement of the pair of particles she
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has and transmits some information to Bob. The aim is to
maximize the fidelity of transmission, averaged over all un-

known statesp.
To be explicit, we write the staté as
|¢)=(Cs+iSsC4)|1) +S5S4(C3+i53C,)[2)
+8554535,€' 71/ 3), (1)
with respect to some basjs), |2), or |3), wheress=sin s,
Cs5=C0s6s, etc. (for simplicity we have takemb to be a vec-

tor rather than a rgy With this parametrization, the ()
invariant measure is

1
du(p)= ?sin405sirr"’04sin2035in02d 0sd0,d0;d60,d0);.
2

We first derive a general expression for the fidelity of
transmission using an arbitrary density matpixshared be-

tween Alice and Bob. A convenient parametrizatiorppthe
Schmidt representation, is

1 1 1 1
p:§|®|+gri)\i®|+€|®Si)\i+ztij)\i®)\j, (3)

where\; are the Gell-Mann matricesee, for exampld3])
that satisfy Tr§;)=0 and Tr@;\;)=26;. Thus r;
=Tr(p)\|®|), Si=Tr(p| ®)\i), andtij =Tr(p)\|®)\])

The fidelity of transmission is

9

F=J du(e) 2, PeTra(pkPy), (4)
k=1

where
P=Tri24 P@U) (P42 p)(P@U) (5)

is the probability of thekth outcome,
1 t
Pk:ETrl,Z(Pk@’Uk)(P¢®P)(Pk®Uk) (6)

is the output state,

1 1 1 1
Pi=glol+sRIN eI+ Zle SN+ 2T\ e,

(@)
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1 1 1 1
— (K) (k) (k)

1 1
s o4 —t. gk
+(183q0qj + 12t|q$ O

1 1
+ 5% RMs,00 + gapT;,'?tiqogkj)) A, (9

where the orthogonal matri®® is that induced by conju-
gation by the unitary matrixJ, :

UMx;\URT=x,0(); . (10
Thus

1 1 1

_ (k) (k) (k)
Tr3(pkka¢)— 2—7+ 1—8I'qu +1—8(1’qRq +1—2apqupq>
1
_ Ky —+ (kK
+| 15808 + TotiaS O

1 1
+ 5 aRMs,00 + gapTEJki)tqug?) aj.
(11

We may now perform integration over in the expression
for the fidelity using

f da aiMijaj=f dﬂ(¢)<¢|)\l|¢>Mlj<¢|)\J|¢>

1

ZETI‘(M) (12)

and
J d““i=fdu(¢)<¢|>\i|¢>=0- (13)

Thus

F=2> |55+ 15 504 L Rig 04 LTy o

T4 277 18" T 73 e SaPap T g i tiaPap |-
(14)

We now put a bound on the fidelity by considering the maxi-
mum value of the summand. Let us cBI'®* (with Schmidt
componentsR™M2% SMaX and TM#X the projection operator

are the projection operators corresponding to the measurdlat maximizes the summand in E(4). Without loss of
ment Alice makesU, are the unitary operators Bob per- 9énerality we may take the orthogonal mat@xto be the

forms that depend on which result Alice obtains, and

1 1
P¢:§|+Eai)\i (8)

is the projection operator of the unknown input steteThe

identity. Thus

1 1 3
F<|Z+ 518 ZRIs + Tt | (15)

3 2 8 16 Pi

Let us now denote byY™2* the projection operator defined

subscripts on the traces indicate the Hilbert space over whichY

the trace is taken.
Now

pmax= N pmat, (16)
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where N is the interchange operator that we define by itsto rewrite the bound on the fidelity as

action on basis vectors

1 3 3 .
Ne©e=eoe;. (7 F<|Z+5raSy™ ZTr(pP™)|. (19)
We may then use the fact that
. 11 1 1 W i ifi isedntro-
max)_ ~ 4 —, gmaxy — g gMmaxy ¢ Tmax e now consider the specific case of the matriggsntro
TH(pP™™) =g +gnST SR 26T 18 4 ced in[5.6]
a 0 0 0 a O 0 0 a
00 a 00 00 0 0 0
0 0a 000 0 0 0
0 00 a 00 0 0 0
a 00 0 a O 0 0 a
1
= 0 0 0 0O
Pa=Bar1 I (20)
— 2
000000 2 o Vl-a
2 2
0 00 00O 0 a 0
_ .2
@000 a0 Y& , Lte
L 2 2

We find that all the Schmidt componentg for this matrix

3
are zero exceptg, which is > f du()lvilp)*=5 (24)
=1
2(a-1 o .
rg=Tr(pahg®l)= — ——— (22) Let us now return to the fidelity of teleportation. The
y3i8a+1 maximum value of the fidelity in E¢(23) is obtained when
. . we chooseP™?* so thatP™2* is the projector onto the maxi-
Thus, if we write . ~ . X . .
mum eigenvalue op,. If this maximum eigenvalue is less
B 1/ a-1 than3, then the fidelity of teleportatiof23) is less tharg and
Pa=pat— 8arl Ag®lI, (22 therefore the density matrig, cannot be used to teleport
V3 better than the optimal classical schefméich may have
. - fidelity greater thar}).
then we may write the bound on the fidelity as By direct calculation we find that foa= \/3/2 the eigen-
1 3 ) values ofp, are
F<|=+—=Tr(p,P™®|. (23
44
1[2y3-1
We now consider under what conditions the fidelity of 3 43+1)’
teleportation can be greater than any classical procedure.
One particular classical scheme that Alice and Bob could use 83 1
is as follows. First Alice simply measures the unknown state 1128 376 376(10 588- 5786\/—)1’2

¢ using an arbitrary nondegenerate operator. Let us call the

eigenvectors of this operataer;,v,,v; with associated ei- 83 1
genvaluesuy,u,,ug. If Alice’s outcome isu; she tells Bob —— — 3+ _(10 588-5786\/3)1/2,
to guess that the unknown state wasand so onthis pro- 1128 376" 376

cedure may not be the optimal classical scheme, but we will
not need this in what follows The fidelity of this procedure

is

(25
7 3
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37 29 cannot teleport a spin-1 state with fidelity better than classi-
@Jr 188"°" cal. We note that we have not limited ourselves to ‘“stan-
dard” teleportation: The projecto®, were not assumed to
4 5 be maximally entangled.
er Q\E; Numerical evidence indicates that farroughly in the

region 4/5<a< 1, the maximum eigenvalue pf, is less than
the first eigenvalue occurs with multiplicity 4. All the above 3. For smalla, 5, does have an eigenvalue larger tharso
eigenvalues are less thdnThus we have shown thats, the argument presented here is not conclusive in this case.
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