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Effects of strong driving fields in resonant four-wave mixing schemes with down-conversion
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An explicit solution is obtained for the four-wave frequency mixingvd5va2vb1vc of two strong fields
a and c and two weak fieldsb and d in a four-level system with large Doppler broadening in collinear
geometry, where the frequencies of weak fields are nearly equal,vb.vd , and the medium is optically thin.
Without weak fields there are two independent two-level systems. A pair of weak fields probes two other
allowed transitions. A peak of the mixing coefficient as a function of intensity is found around an equal Rabi
splitting of both two-level systems. The effect is based on a resonance between two closed cycles of four-wave
mixing via different dressed states. Three, four, or six peaks are predicted in the dependence of the mixing
coefficient on the frequency of the weak field; two of them are a consequence of averaging over velocities. The
model allows an interpretation of the dependence of the output wave power on the intensity and detuning in
recent experiments on frequency mixing in sodium vapor.@S1050-2947~99!06401-X#

PACS number~s!: 42.50.Hz, 42.62.Fi, 42.65.Ky
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I. INTRODUCTION

High-efficiency conversion of radiation by four-wav
mixing usually requires pumping of quantum states by me
watt laser pulses. For continuous frequency conversion
essentially lower pumping intensities a higher nonlinear s
ceptibility is necessary, which is achieved by tuning to re
nances. A few experiments on continuous sum freque
mixing have been performed so far, and output signals
about 1mW in atomic Ne@1# and 10mW in atomic Na@2#
have been obtained at near-resonant conditions.

The use of the resonance is partly hindered by the ef
of Doppler broadening, depending on the leading nonlin
process. Within the framework of perturbation theory, it w
shown@3# that in Raman-type schemes with difference f
quencies, according tovd5va2vb1vc ~see Fig. 1!, the
role of Doppler broadening decreases. Recently it w
proved in atomic neon@4,5# and diatomic molecular sodium
with up-conversion @6# (vd.va ,vb ,vc) and down-
conversion @7# (vc,vb ,vd,va), that the difference
scheme is more efficient compared with sum frequency m
ing. An output power near 0.1–0.2 mW has been reache
exact resonances for all the waves. Moreover, in these r
nant four-wave schemes interesting and unexpected po
and detuning dependences of the generated fieldd on the
input fields a, b, and c were observed, that could not b
related directly to existing analytical calculations of stron
field effects@8,9#, because the calculations were restricted
motionless atoms. The experiment displayed, in particu
the saturation of output as a function of the first strong fi
a and a linear growth with the third strong fieldc.

The Raman-type scheme, also called the doubleL
scheme, has gained attention concerning lasing without
version @10# and related topics. Experimentally, such
scheme has been utilized for efficient optical phase conju
tion in atomic Na with low-intensity lasers (1 W/cm2) using
coherent population trapping@11#. An efficient frequency
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conversion of laser pulses in optically thick media~atomic
Pb! has been realized by using atomic coherence on a Ra
transition accomplished by electromagnetically induc
transparency@12#. The effect of Doppler broadening was n
so important in both experiments, since nearly degene
mixing schemes or Rabi frequencies exceeding the inho
geneous width were used, correspondingly. Also, the D
pler broadening was insignificant for nearly degenerate fo
wave mixing in Rb levels@13#.

On the other hand, the Doppler broadening is of vi
importance for continuous-wave mixing experiments@4–7#,
and for laser action in the double-L scheme@14#. Stimulated
by various experiments with gases, different computatio

FIG. 1. Considered experimental four-level scheme in N2 .
Four rotational-vibrational levels (v,J) of the statesX 1Sg

1 ,
A 1Su

1 , and B 1Pu are coupled by four corresponding fieldsEn .
Wavelengths and Franck-Condon factorsq of the involved transi-
tions are given. Inset: the level diagram of a four-level system w
four fields. The process of resonant Raman mixing of two stro
fieldsEa andEc and a weak fieldEb into an output waveEd . Solid
lines show the strong fieldsa andc; wavy arrows denote the wea
fieldsb andd. Dotted lines display the forbidden transitionse andf.
Short-lived upper levels are denoted by wider boxes.
1355 ©1999 The American Physical Society
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1356 PRA 59S. A. BABIN et al.
relevant for the experimental situation have been publis
for Kr @15# and Ne@16#, including numerical integration fo
Maxwellian distribution. The general case of three stro
input fields under Doppler broadening can only be hand
numerically, while for specific situations, such as for e
ample two strong fields (va ,vc) and two weak fields with
nearly equal frequenciesvb.vd , compact analytical formu-
las can also be derived, as recently demonstrated@17#. Such
formulas or simplified expressions for limiting cases a
helpful for understanding and guiding experiments and w
be used in this paper for the interpretation of results obtai
in recent four-wave down-conversion experiments@7#.

This paper is organized as follows: In Sec. II, the expe
mental situation is briefly described, and measured par
eters of the light and medium are listed. Possible simplifi
tion in a theoretical description is noted. Section
introduces the model. Section IV presents the explicit form
las in more general form than in Ref.@17#, including arbi-
trary populations of all the levels. Section V discusses
conversion coefficient as a function of the detuning of
weak field. This dependence has not yet been measured
seems interesting because it is sensitive to thermal motio
Sec. VI we compare the intensity dependence given by
formulas with the experiment. In Sec. VII we compare t
dependence on strong-field detuning with analytical estim
tions and the numerical integration over velocity. In S
VIII we finally summarize essential aspects of the theoret
consideration and discuss requirements and further direct
of experiments.

II. EXPERIMENTAL SCHEME

The four-wave down-conversion mixing under examin
tion is schematically shown by diagram in the inset of Fig.
The transitions are denoted by Latin letters, while levels
numbered. The radiation fields are resonant with dipo
allowed transitions between the levels 1, 2, 3, and 4. Exp
mentally, this scheme has been realized in Na2 molecular
vapor between rotational-vibrational levels of theX 1Sg

1 ,
A 1Su

1 , and B 1Pu electronic states considered as a dow
conversion scheme, as indicated in Fig. 1. A similar sche
has also been operated in a He-Ne laser discharge@4,5#.

For the operation of a four-wave mixing scheme, thr
pump fields (va ,vb ,vc) are needed. Hereva is obtained
from a single-frequency Ar1 laser (la5488 nm) andvc
(lc5655 nm) from a single-frequency ring dye laser. T
laser with frequencyvb is generated by operation of a Na2
Raman laser between the levels 1-2-3 of Fig. 1 using the1

laser as a pump. In this way, only two independent pu
lasers are needed, and by the operation of the Na2 Raman
laser the frequencyvb is automatically adjusted to the res
nance 2-3. On the operation of continuous Raman laser
diatomic molecular vapor, see, for example, Ref.@18#. The
experimental data used here are obtained in resonant
wave mixing~RFWM! experiments in an external vapor ce
~Na heatpipe! @7#, as indicated in Fig. 2. This scheme pr
vides an independent variation of pump intensities.

For optimum frequency mixing, in addition to the fre
quency condition, a phase-matching condition also has to
fulfilled

vd5va2vb1vc , kd5ka2kb1kc , ~1!
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wherekn, n5a, b, c, andd, is thenth-field wave vector.
This is accomplished here in a slight noncollinear mixi
geometry induced by atomicD lines, with an angleu of
about 10 mrad between the laser beams (ka,c and kb). The
angle results in a mixing zone lengthL&1 cm, whereas the
length of the vapor cloud of the Na heatpipe was aboul
.6 cm. Therefore, the resonant fourth fieldd, after being
generated in the front part of the pipe, is reabsorbed be
reaching the detector. At an operating temperature of
heatpipe of aboutT5740 K, the characteristic absorptio
length of the unpumped vapor for the generated radiatio
a0

21.2.5 cm. In the experiment, at pump powers of typ
cally Pa5200 mW, Pb525 mW, andPc5400 mW out-
put powers ofPd50.2 mW are measured. Taking into a
count the reabsorption in specific geometry, this correspo
to an internally generated power of at least 6 mW and
conversion efficiencyC5Pd /PaPbPc as high as 3 W/W3.
For further experimental details, see Ref.@7#. Let us list the
experimental parameters significant for the developmen
adequate theoretical model.

The relaxation constants of levels areg2.g4;3
3108 s21 andg1.g3;33107 s21. The lower levels have
a purely collisional relaxation, while for the upper ones bo
radiative and collisional decay are important. The homo
neous width is the convolution of off-diagonal relaxatio
constants and apparatus broadening, namely, the jitter o
ser frequencies and the influence of a small angle betw
the wave vectors. The estimated value isg5(326)
3108 s21 for all transitions. The thermal velocityvT

5A2kBT/M , wherekB is the Boltzmann constant,T is the
temperature, andM is the molecular mass, gives the Doppl

FIG. 2. Experimental setup for resonant four-wave mixing.
part of the fieldEa of single frequency Ar1-laser 1 is used to pump
a Na2-Raman laserEb in heatpipe 1~dotted box!. These fieldsEa

andEb are mixed with the fieldEc of a cw ring dye laser in heatpipe
2. The generated FWM fieldEd is detected behind heatpipe 2~non-
collinear mixing geometry; see text!. Laser frequencies are con
trolled byl meters 1 and 2 and scanning interferometers SI 1 an
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widths kavT57.03109 s21, kbvT56.53109 s21, kcvT
55.23109 s21, andkdvT55.73109 s21. Thus, it is pos-
sible to make two simplifications in theory. The differen
betweenkb andkd is small~about 12%!, and may be ignored
as a first approximation. The effective homogeneous widt
much less than the Doppler broadening; then the theory
be built up in the Doppler limitkvT@g.

Maximum Rabi frequenciesVn can be estimated fo
experimental focusing schemeVa5(122)3109 s21,
Vb5(122)3108 s21, Vc5(326)3108 s21, and Vd
5(224)3107 s21. Therefore,Vb,d,g,Va,c ; then the
approximation of weak fieldsb andd and strong fieldsa and
c looks reasonable.

The estimated level populations areN1;1012 cm23 and
N3;1011cm23, where N1@N3@N2 ,N4 show that a good
approximation is the model of the only lowest levelu1& be-
ing populated. The absorption of fieldsa and d interacting
with this level is considerable along the whole heatpi
However, as mentioned above, the mixing zone length
small, L,a0

21, l . We can consider the mixing problem
within the thin medium approximation. Linear absorption
the output waved leads only to an attenuation of the inte
sity by a constant factor exp†22a0( l 2L)‡ without influenc-
ing the analyzed intensity and frequency dependences.
means the spectroscopic problem to compute the nonli
susceptibility in this case is more important than the opti
effects of propagation. Meanwhile, the noncollinearityu
;1023 is inessential for a spectroscopic treatment.

III. BASIC EQUATIONS

Let us consider the conversion of two strong incide
wavesEa,c resonantly interacting with transitions 2-1 an
4-3 and the weak fieldEb near the resonance with transitio
2-3 into the output waveEd with transition 4-1, according to
the inset of Fig. 1. The electric field in the medium is t
sum of traveling waves,

E~r ,t !5(
n

Enexp~2 ivnt1 ikn•r !, ~2!

where En is the amplitude of the nth field, and
n5a, b, c, andd. The frequency and wave vector of wav
d satisfy the phase-matching condition~1!. Since the cycle
1-2-3-4-1 is closed, the frequency detuningsDn satisfy the
condition

Dd5Da2Db1Dc , ~3!

where Da5va2v21, Db5vb2v23, Dc5vc2v43, Dd
5vd2v41, and v i j 5(Ei2Ej )/\ are the Bohr transition
frequencies.

We can neglect both weak fields to a zeroth-order
proximation, i.e., setEb,d→0. The complete set of 16 equa
tions for the density matrix of the four-level system reduc
and now allows us to find steady-state populations per
volume and velocityr j[r j j ( j :1,2,3,4) and coherence
r21[raexp(2iDat1ika•r ) andr43[rcexp(2iDct1ikc•r ) of
a pair of separated two-level systems:
is
an

.
is

f

at
ar
l

t

-

,
it

g1r152 Re~ iVa* ra!1g1N1~v!,

g2r2522 Re~ iVa* ra!1g2N2~v!, ~4!

Gara5 iVa~r12r2!;

g3r352 Re~ iVc* rc!1g3N3~v!,

g4r4522 Re~ iVc* rc!1g4N4~v!, ~5!

Gcrc5 iVc~r32r4!.

HereNj (v) andg j are the unperturbed population densiti
per unit velocity interval and relaxation constants of lev
j 51, 2, 3, and 4. For convenience we define the coheren
ra andrc so thatVa andVc to be real and positive, wher
Vn5En•mn/2\ is the Rabi frequency ofnth transition with
the dipole momentmn . We denote

Gn[gn2 iDn ,

wherega[g12 and gc5g34 are the relaxation constants o
the coherences, which determine the homogeneous wid
For a medium with thermal motion one should replaceDn

→Dn2knv, wherev is the velocity vector. The unperturbe
populationsNj (v) are assumed to have Maxwellian distrib
tion overv,

Nj~v!5
Nj

~ApvT!3
expS 2

v2

vT
2D . ~6!

For motionless particles (v[0), Nj (v) has to be replaced by
constantsNj .

The solutions of Eqs.~4! and ~5! are written as

r15N1~v!2
2Va

2gaN12~v!

g1~Gsa
2 1Da

2!
,

r25N2~v!1
2Va

2gaN12~v!

g2~Gsa
2 1Da

2!
, ~7!

ra5
iVaN12~v!Ga*

Gsa
2 1Da

2
;

r35N3~v!2
2Vc

2gcN34~v!

g3~Gsc
2 1Dc

2!
,

r45N4~v!1
2Vc

2gcN34~v!

g4~Gsc
2 1Dc

2!
, ~8!

rc5
iVcN34~v!Gc*

Gsc
2 1Dc

2
,

where Ni j (v)[Ni(v)2Nj (v) is the population difference
and
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1358 PRA 59S. A. BABIN et al.
Gsa
2 5ga

212Va
2ga~g1

211g2
21!,

Gsc
2 5gc

212Vc
2gc~g3

211g4
21!

are the homogeneous widths including the power broad
ing.

Weak fields, with amplitudesVb and Vd in frequen-
cy units, lead to the appearance of coherence between le
belonging to the different two-level systemsr23
[rbexp(2iDbt1ikb•r ) and r41[rdexp(2iDdt1ikd•r ) for
the allowed transitions, as well as to cross coherences fo
forbidden transitionse, f : r24[reexp(2iDet1ike•r ) and
r31[r fexp(2iDft1ik f•r ), where ke5ka2kd , k f5ka
2kb , De5Da2Dd , and D f5Da2Db . We neglect the in-
fluence of these weak fields on the populations of levelsr j .
The following set of four algebraic equations appears for
nondiagonal matrix elementsrb , rd , re , and r f in the
first-order approximations

Gbrb2 iVar f* 1 iVcre52 iVb~r22r3!,

Gd* rd* 1 iVc* r f* 2 iVa* re5 iVd* ~r42r1!,
~9!

Gere2 iVard* 1 iVc* rb5 iVbrc* 2 iVd* ra ,

G f* r f* 1 iVcrd* 2 iVa* rb52 iVbra* 1 iVd* rc .

Here gb[g23,gd[g41, and ge[g24,g f[g31 are the con-
stants of relaxation of the coherence of the allowed and
bidden transitions, respectively. The right-hand side in
~9! are given by solutions~7! and ~8! for independent two-
level systems.

In the limiting caseVc5Vd50 the system is the three
level L-scheme 1-2-3. The first and last equations from
~9! remain for coherencerb at allowed transition 2-3 and
Raman coherencer f at forbidden transition 1-3,

Gbrb2 iVar f* 52 iVb~r22r3!,

2 iVarb1G f* r f* 52 iVbra* .

Terms proportional to the weak fieldVb on the right side
correspond to the two main nonlinear effects of probe fi
spectroscopy@19#. The first is a population effect, propo
tional to the population differencer22r3 . It includes, in
particular, the saturation of populationr2 by the strong field
Va . The second is the nonlinear interference effect depe
ing on off-diagonal elementra . It describes the mixing of
statesu1& andu2& by the strong field. The Rabi frequencyVa
in the left side results in the third effect: the splitting of lev
u2& by the field. Analogously, atVa5Vb50 the remaining
pair of equations~9! for rd ,r f describes the three-levelL
configuration 3-4-1. Generally, at nonzero fields three-le
V schemes 2-1-4 and 2-3-4 also work and create Raman
herencere at forbidden transition 2-4.

The Maxwell equation for the generated wave envelo
can be reduced to

dEd

dx
52p ikdmd^rd&, ~10!
n-
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where all the input waves are supposed collinear,kaikcikb ;
x is the coordinate along the common direction of wave v
tors; and angular brackets denote the integration over
velocity distribution. In collinear geometry only averagin
over the longitudinal velocity is necessary in Eq.~10!. If a
small angleu exists between the wave vectors, it can
roughly taken into account as an additional broaden
;kvTu caused by averaging over the transverse velocity.
doing so we neglect the fine effects of angle tuning.

For a linear polarization of the radiation fields, and a
suming weak fieldsEd andEb , Eq. ~10! may be written as

dEd*

dx
522p ikdmd^rd* &52bEb2a* Ed* , ~11!

where coefficientsa andb depend on the strong fields, an
describe the absorption of fieldEd and conversion betwee
two weak fieldsEb→Ed , respectively. One can putVd
50 (Ed50) into Eq. ~9! to obtain the mixing coefficientb
or Vb50 (Eb50) to find the absorption coefficienta. At
the line center under strong fieldsVa,c@gn , both the coef-
ficients b and a are of the same order of magnitude,
shown in Sec. IV.

Under the thin medium approximation the generated fi
is small,Vd!Vb ; then one can neglect the absorption te
to find intensities of

I d~L !5ubLu2I b5U16p2

c
xd

NLkdLU2

I aI bI c , ~12!

b* 52pkdxd
NLEaEc , ~13!

whereI n is the intensity,L denotes the length of the medium
and b is represented in terms of the macroscopic nonlin
susceptibilityxd

NL , which depends on the intensitiesI a and
I c and contains all odd order coefficients. Within the pert
bation theory limit, whileVa andVc are much less thanD or
gn , the nonlinear susceptibilityxNL tends to cubic suscepti
bility x (3), which is then no longer intensity dependent. W
find the full coefficientb by comparing Eq.~9! with the
solution of form~11!:

b5
pkdmdmb

\ E dv
VaVc

D F ~Ge1G f* !~r22r3!

2
ra*

iVa
~Va

22Vc
22GbGe!2

rc*

iVc
~Vc

22Va
22GbG f* !G .

~14!

Here the determinant of set~9! is

D5GbGeGd* G f* 1~Va
22Vc

2!2

1 1
2 ~Va

21Vc
2!~Gb1Gd* !~Ge1G f* !

2 1
2 ~Va

22Vc
2!~Gb2Gd* !~Ge2G f* !, ~15!

the polynomial of the fourth degree in velocity. For the ca
of collinear propagation we denote the projection of the
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locity vector onto the direction of propagation asv[vx .
Consider poles of the density matrix corresponding to ze
of determinantD as a function of complex velocityv. For
down-conversionvc,vb ,vd,va , a pair of poles is located
in the upper half-plane and another pair is in the lower h
plane. Each pole close to the real axis specifies theresonance
condition for interaction between the field and a group
particles with given velocity.

Assuming here that the coherences decay as half the
of populations~neglecting phase-changing collisions!, i.e.,
ga5(g11g2)/2, gb5(g31g2)/2, gc5(g31g4)/2, andgd
5(g11g4)/2 ~for the notations of the levels see the inset
Fig. 1!, then the resonance condition factorizes, since
~15! can be rewritten as

D5@~Db82Dd8!2/42~VRa1VRc!
2#

3@~Db82Dd8!2/42~VRa2VRc!
2#, ~16!

where

VRa5ADa8
2

4
1Va

2, VRc5ADc8
2

4
1Vc

2

are the generalized Rabi frequencies, and

Da85Da2kav1 i ~g22g1!/2,

Dc85Dc2kcv2 i ~g42g3!/2,

Db85Db2kbv1 igb ,

Dd85Dd2kdv2 igd .

Taking into consideration that the phase-matching conditi
~1! and ~3! give Db81Dd85Da81Dc8 , we see that the reso
nance conditionD50 occurs when the weak fields becom
resonant to quasienergy levels

Db85S Da8

2
6VRaD 1S Dc8

2
6VRcD ,

~17!

Dd85S Da8

2
7VRaD 1S Dc8

2
7VRcD .

Equation~17! defines the resonance frequency of a we
field for a given velocity group of atoms as a function
frequencies and intensities of both strong fields. The spec
s

f-

m

f
q.

s

k

al

dependence of a mixing coefficient onDb or Dd has four
peaks in the case of monokinetic particles. This is a con
quence of the field splitting of levels by strong fields in bo
two-level systems. Because the positions of resonan
strongly depend on the velocity, averaging over velocity~14!
can change the spectral dependence ofb. The interference of
the velocity groups may lead to a variation not only of t
amplitude of each peak, but even of their number. In gene
the integral over velocity can be evaluated only numerica
However, a compact analytical formula for the mixing coe
ficient can be obtained for a practically interesting symme
cal case of equal wave vectors,kd5kb . The formula is de-
rived and discussed in Sec. IV.

IV. EXPLICIT FORMULA

Integral ~14! for the mixing coefficient can be calculate
explicitly at equal relaxation constants of coherencesgn

5g; n5a, b, c, and d), exact resonanceDa5Dc50,
and equal wave numbers of the two weak fieldskb5kd . If
the wave numbers are not equal, but very close, then
result is also applicable. A small differenceukb2kdu
!ukbkd(ka2kb)(kb2kc)u1/4 disturbs function
b(Db ,Va ,Vc) insignificantly. Even for different relaxation
constants of levels, the relaxation of coherences may
equal due to dephasing effects. The applicability of the
conditions in experiment is discussed in Sec. II.

In view of the phase-matching condition~3!, the weak-
field detunings depend on a single parameterDd52Db
[D. In this symmetrical case the determinantD(v,D) turns
to be a function ofv2:

D~v,D!5k4v422k2v2Q8~D!1Q2~D!, ~18!

Q2~D!5@z22~Va2Vc!
2#@z22~Va1Vc!

2#,

Q8~D!5S ea
2

2
21D z22Va

21Vc
2 , ~19!

ea5
ka

k
, ec5

kc

k
, k5

1

2
Aka

22kc
2,

wherez5D2 ig is the extended detuning.
The averaging of coefficientb over velocity is possible

for an arbitrary thermal velocity, but the resultant formula
terms of the error function of the complex argument is u
wieldy. Then we present a simplified explicit formula in th
Doppler limit, when the thermal velocity is large,kvT
@Vn ,g,Dn :
b5
VambVcmd

\

p3/2kd

kvT
H 22izN32

RQ
1

N12g

Gsa
2 1GsaRea1Qea

2F izea
2/g11

R
1

4izVa
2/g22Q81ea

2z2/2

Q S 1

R
1

ea

Gsa
D G

1
N34g

Gsc
2 1GscRec1Qec

2F izec
2/g21

R
1

4izVc
2/g31Q82ec

2z2/2

Q S 1

R
1

ec

Gsc
D G J , ~20!
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1360 PRA 59S. A. BABIN et al.
where R5A2(Q2Q8), ReR.0. We have chosen th
branch of two-valued functionQ according to the rules

ReQ,0 atP1,uDu, ReQ>0 at uDu<P2 ,

sgn~ Im Q!5sgnD at P2,uDu<P1 ,

whereP65uVa6Vcu. If we were to choose another branc
of Q, then Q should be replaced by2Q in all formulas.
When ka→kc the Doppler limit approximation is broken
and Eq.~20! becomes invalid. However ifkvT!Vn ,g, then
integration overv is not necessary, and one can apply t
theory for motionless atoms under strong field@8,9#.

Consider the limiting cases of Eq.~20!. They are impor-
tant either to compare with experiment or for an interpre
tion of the phenomenon. When only the lower levelu1& is
populated (Ni50,iÞ1) expression~20! reduces to a simple
formula. Let us write it for the case of uniform relaxatio
i.e., equal relaxation constantsg of populations and polariza
tions

b5
p3/2

\kvT

N1kdVambVcmd

Gsa
2 1GsaRea1Qea

2

3Fg1 izea
2

R
1

4izVa
21g~ea

2z2/22Q8!

Q S 1

R
1

ea

Gsa
D G .

~21!

For the domain of weak fieldsVa ,Vc!g, the expression
for the nonlinear susceptibility, following from Eqs.~13! and
~20!, can be derived also as the first nonlinear correction
the perturbation theory

xd
~3!52

Ap

kavT

mamb* mcmd*

4\3

3H N32

~g2 iD!2
1

N34~ka2kd!

~g2 iD!~kbg2 ikcD!J . ~22!

Here the conversion coefficient is equal to zero when o
the lowest levelu1& is populated, since the populationN1
does not enter the expression in the Doppler limit, as wel
in up-conversion@3#. The susceptibility is nonzero in th
next order of expansion in parameterg/kvT .

Using Eq.~20!, we can now estimate the relative cont
butions of different terms in Eq.~11! for a generated waved.
In the strong-field limitVa5Vc5V@gkakc /k2 and exact
resonanceD50, the mixing coefficient can be estimated a

b

mb
5

p3/2kdmd

2\kvT
AV

g S N12g1

g11g2
1

N34g4

g31g4
2N32D . ~23!

As distinct from the perturbative result~22!, the mixing co-
efficient does not turn to zero when only the lower level
populated.

Analogously, the formula for the absorption coefficienta
can be derived by comparing set~9! with Eq. ~11! and inte-
grating over velocity. The absorption coefficient at the sa
condition as for Eq.~23! is written as
e

-

f

ly

s

e

a

md
5

p3/2kdmd

2\kvT
AV

g S N142
N12g2

g11g2
2

N34g3

g31g4
D , ~24!

and occurs to be within the same order asb. If only the
lower level u1& is populated, thena/md5b/mb . Note that
the real part of the coefficienta defines the absorption lengt
of field Ed and the applicability of the thin medium approx
mation. Thus, in the strong-field limit, the approximation
valid, while Vd!Vb .

V. DEPENDENCE ON THE WEAK-FIELD FREQUENCY

Based on Eq.~21!, the dependence of conversion coef
cient ubu2 vs the detuningDb of the second field is plotted in
Fig. 3 at smallg!Va ,Vc and exact resonanceDa5Dc50.
The output intensity is proportional to the conversion coe
cient I d;ubu2. Hereinafter all the frequencies in figures a
given in ns21. One can see that the number of pea
changes. There are six, four, or three peaks for different
lations between the intensities of the strong fields.

Why are there six peaks in conversion coefficienth(D)
5I d /I aI bI c}ubLu2 instead of four, as distinct from the cas
of motionless atoms? The physical reason for this effec
the interference of light emitted at frequencyvd by atoms
moving with different velocities. If the interference is con
structive for somevd , then a peak arises in the dependen
By contrast, if it is destructive, then the thermal motion su
presses the mixing. More details will be discussed below

Expressions~20! and~21! carry information on the results
of the interference. We search for maxima of functionh(D)
by looking for minima ofQ andR in Eq. ~20!:

D56Va6Vc , ~25!

whereuQu is minimal, or at

D562kAVa
2

ka
2 2

Vc
2

kc
2 , ~26!

provided that

FIG. 3. Conversion coefficientubu2}I d /I aI bI c in arb. units cal-
culated according to Eq.~21! as a function of detuningDb of the
second field atkavT57.0, kcvT55.2, and g50.02 for ~1! Va

51,Vc50.1, ~2! Va5Vcka
2/kc

250.5, and ~3! Vc5Va50.5 ~in
ns21).
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Va

ka
2 >

Vc

kc
2 , ~27!

whereuRu is minimal. As a result, there are six peaks in t
dependence, as curve 1 in Fig. 3 shows. At

Va

ka
2 5

Vc

kc
2 , ~28!

minima of both functionsuQ(D)u and uR(D)u coincide for
detuningsD564Vak2/ka

2 , yielding a four-peak curve. Un
der this condition the output intensity is highest for the ce
tral two peaks, as curve 2 in Fig. 3 displays. Four pe
remain in the dependence, whileVakc

2/ka
2,Vc,Va . Fi-

nally, at equal Rabi frequenciesVc5Va , the two central
peaks of four merge at the centerD50, as curve 3 in Fig. 3
indicates. ForVc.Va condition ~27! is violated; then only
four peaks@Eq. ~25!# are restored.

The maximal absolute value of the mixing coefficientubu
is achieved at detunings given by Eq.~26!, when Rabi fre-
quencies of both strong fields obey conditions~28!. In the
strong-field limit, expression~21! yields

ubu5
p3/2kdmbmdN1

4\kvT

~2k!1/2

~kakc!
1/4SAVaVc

g D 3/4

, ~29!

which has the dependence (V/g)3/4, in contrast to Eq.~23!.
For a qualitative interpretation of the dependence, c

sider the contribution of particles with given velocityvx
[v into the mixing coefficientb. The resonance conditio
@the denominatorD of the integrand in expression~14! goes
to zero# is complied with eigenfrequencies given by Eq.~17!.
Under the assumption of Sec. IV, the eigenfrequencies
an especially simple form,

D~v !56AVa
21ka

2v2/46AVc
21kc

2v2/42 ig. ~30!

Two upper branches of ReD(v) are shown in Fig. 4~a!.
Let us fix a branchD(v) and consider detuningD

5ReD(v0) such thatudD(v0)/dvu@g, i.e., the derivative
with respect to velocity is large enough. Determinant~16!
near v5v0 could be written asD;„dD(v0)/dv…(v2v0)
2 ig. Integral~14! of „(dD(v0)/dv)(v2v0)2 ig…21 over v
around v0 appears to be small, since contributions ofv
,v0 and v.v0 cancel each other. Therefore, it is valid
say that radiation emitted by atoms with different velocit
experiences the destructive interference; consequently,
mixing and conversion coefficients at this frequency turn
be small.

However, the interference can be constructive, too, if
choose detuningD5DR[ReD(vR) such thatdD(vR)/dv
50. In this case the expansion of the determinant starts f
a quadratic termD;„d2D(vR)/dv2

…(v2vR)2/22 ig. Inte-
gration aroundv5vR in Eq. ~14! gives the main contribution
to b, proportional tog21/2, because the light emitted b
atoms with velocityv.vR andv,vR add up in phase. All
points (vR ,DR) in the (v,D) plane, wheredD(v)/dv50,
will be called thereturn points. Examples of return points
are displayed in Fig. 4~a! as circles. Each results in a narro
peak, shown schematically at the right, nearD5DR .
-
s

-

ke

he
o

e

m

Equation~30! allows one to find coordinates of the retu
point. There are four solutionsDR56Va6Vc at vR50.
The upper pair of these points is shown as big gray circ
the other pair is symmetric about the velocity axis and is
shown in the plot of Fig. 4~a!. Additional four return points
are placed at

kvR56AS Vakc

ka
D 2

2S Vcka

kc
D 2

, ~31!

whereas the detuning is given by Eq.~26!. The velocity has
to be real; then condition~27! is necessary. Two of thos
points are shown by tight black circles in Fig. 4~a!. Both
have equal detuning in the velocity-frequency plane, a
contribute to the same peak shown at the right. Another p
of return points at nonzero velocity is also symmetric ab
the axisv.

The most interesting phenomenon is the fusion of th
return points~one ‘‘gray’’ at vR50 and two ‘‘black’’ at
nonzerovR), when the Rabi frequencies satisfy conditio
~28!. In this special case not only does the first derivat

FIG. 4. ~a! Resonance condition in the (v,Db) plane atVa51,
Vc50.1 (ns21) for Da5Dc50. Two positive solutionsD(v) of
equationD(v,D)50 as a function ofv/vT at g50 calculated by
Eq. ~30!. Curves 1 and 2 correspond to the upper and lower mid
signs in the formula. Two other zeros are symmetricalD→2D
with respect to thev axis. Four return points wheredD/dv50 are
placed at zero velocitiesv50, and four at finite velocitykv
56AQ8. They are responsible for peaks in the spectrum~shown
schematically at the right!, because the neighborhood of a retu
point only gives a constructive contribution to the integral ov
velocity. ~b! Resonance condition in the (v,Dc) plane at smallVc .
Return points corresponding toDa5Db50 ~curves 1 and 2! and
Da5Db56.5 ns21 ~curves 3 and 4!.
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dD(vR)/dv equal zero, butd2D/dv2 andd3D/dv3 also do.
The expansion of determinant starts with the fourth pow
D;„d4D(vR)/dv4

…(v2vR)4/4!2 ig; then the integration
aroundvR makes a particularly large contribution propo
tional to g23/4. The dependence corresponds to Eq.~29! ob-
tained by the explicit formula.

At equal Rabi frequenciesVa5Vc we observe how two
return points belonging to the symmetric branches of fu
tion D(v) merge atD50 @in Fig. 4~a! the lower gray circle
merges with its mirror image#. This ‘‘fusion’’ also increases
the height of peak. Unfortunately, this growth is counterb
anced in part by the small numerator in integrand~14! at D
50. The resultant height remains proportional tog21/2 ac-
cording to formula~23!.

Return points~or ‘‘return frequencies’’! were introduced
in the theory of a probe-field spectrum of a three-level s
tem with large Doppler broadening@20#. The strong field in
that theory interacts with a two-level system; then the co
sponding determinant is a second-degree polynomial in
locity and detuning. The resonance condition is displayed
two branches of hyperbole in the velocity-detuning pla
then the number of return points is 2 or 0. Consequently,
number of peaks in the probe-field absorption spectrum a
averaging over velocity remains equal to 2, as for motionl
atoms, or it becomes equal to zero. In the four-level sys
under consideration the number of peaks inb(D) can be
more than in motionless case, since the resonance cond
D50 gives four branches of the fourth-order curve in t
(v,D) plane.

Based on the concept of a return point one can concl
that in the domain of low gas temperature, whilekvT

!A(Vakc /ka)22(Vcka /kc)
2, the additional peaks~26! dis-

appear. The reason is the exponentially small number of
ticles having as high a velocity as that given by Eq.~31!.
Thus these additional peaks are sensitive to the velocity
tribution in contrast to four main peaks@Eq. ~25!#.

VI. INTENSITY DEPENDENCE

Reasoning from Eqs.~12! and~21!, the output intensity is
calculated for complete resonanceDa5Db5Dc5Dd50 as a
function of both the input intensities of strong fields. T
dependence of the normalized output intensityI d on I a

5Va
2c\2/2pma

2 and I c5Vc
2c\2/2pmc

2 is shown in Fig. 5.

FIG. 5. The intensity of output waveuVdu2}I d as a function of
two intensities I a}Va

2 , I c}Vc
2 of strong fields~in ns22) at g

50.1. D50, kavT57.0, kbvT56.5 ~all in ns21), and N25N3

5N450.
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The crest near the equal Rabi frequencies is the maximum
output I d .

To interpret the origin of this maximum qualitatively, le
us consider the theory of return points again. We now
D50 and find the relation between the Rabi frequencyVc
and velocityv given by the resonance conditionD50 @Eq.
~18!# at g→0. In the (v,Vc

2) plane the resonance conditio
yields the following parabola:

Vc
25Va

21k2v2.

Analysis analogous to the one presented in Sec. V pro
that the peak ofubu appears near the return points whe
dVc

2/dv50. The only return point isv50,Vc5Va , which
leads to a peak in the intensity dependence of out
I d(I a ,I c)}ub(Va ,Vc)u2. This peak is formed by particle
with nearly zero velocity; then the physical reason for t
maximum could be understood within the framework of t
picture of dressed states of motionless atoms.

The equal Rabi splitting of levels by strong fields
shown in Fig. 6. Here the frequencyvb is equal to both the
frequencies of the cross-transition from the upper subleve
level u4& to the upper sublevel of levelu1&, and of the tran-
sition between their lower sublevels, as shown by the t
lines. The equality between frequencyvd and both transition
frequencies between sublevels of 3-2 is concurren
achieved, as also shown by thin lines. Both pathways
tween all the upper sublevels and all the lower sublevels
Fig. 6 are closed simultaneously, and the fields occur in re
nance with the transitions atD50 only if Rabi frequencies
are equal (Va5Vc). Let us call this condition theRabi-
frequency resonance.

Such a resonance manifests itself in the RFWM exp
ment in Na2 as a saturation of output power. For a discuss
of the intensity dependence ofI d(I a),I d(I c), Eqs. ~12! and
~21! are considered, with the data taken from the experim
Sec. II.

In Fig. 5 the dependence of the output intensity on
intensitiesI a and I c is given. According to Fig. 5 the Rabi
frequency resonanceVa5Vc results in a peak in the depen
denceI d(I a) at fixed I c , and in a peak in the dependenc
I d(I c) at fixed I a . The width of the peak is defined by th
effective g. Since in the experimentg was very large, the
peak was wide. For a high relaxation constant, Eq.~21! gives

FIG. 6. Scheme of the Rabi splitting of dressed states of m
tionless atoms. WhenVa5Vc , the splittings of both two-level sys
tems are equal. Four fieldsabcd form two closed cycles starting
and ending at stateu1&.
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a smooth curveI d(I a), shown in Fig. 7~a!, that looks like a
‘‘saturation.’’ The maximum in this dependenceI d(I a)
}ubu2 is shifted to higher intensities with respect to the Ra
frequency resonance, because the output intensity at smI a
increases asI a

3 @Eq. ~21!# until it falls down. Such a run of
the curve was measured for different valuesI b varied by one
order, as shown by crosses and boxes. At the same pa
eters there is no peak in the dependence on the other str
field intensity I d(I c) both in theory and experiment@Fig.
7~b!#. The reason for this is that the maximum intensity
field c available in the experiment was less than necessar
detect the peak, i.e.,Vc,Va .

Within the domain of small intensity, asymptotic expe
mental data are absent. This does not allow us to verify
features of perturbation theory. However, experimen
points show that the functionI d(I a) may not be entirely lin-
ear nearI a50. In addition, the asymptotics nearI c50 is
approximately linear in contrast to the previous case. B
asymptotics agree with the explicit formula~21!. Thus a
good agreement of the model with experiment is dem
strated qualitatively, and even quantitatively within an ac
racy of experimental points, as Fig. 7 shows. Simultaneou
the experiment differs from the perturbative picture@Eq.
~22!#.

VII. DEPENDENCE ON THE STRONG-FIELD
FREQUENCY

Fortunately, the dependenceI d(Dc ,Da) on the detuning
of the strong fields was measured under the conditionDb

FIG. 7. ~a! Output intensityI d}ubu2 ~arb. units! as a function of
the intensityI a}Va

2 at Vc
250.25 ns22, D50, andg50.6 ns21.

Experimental data@7# are taken at two different values ofI b : 25
mW ~boxes! and 3 mW ~crosses!, normalized to equal values a
Va

250.5 ns22. ~b! Output wave intensity as a function ofI c}Vc
2 at

Va
251 ns22. Boxes correspond to experiment.
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.Da , without independent variation ofDb . This corresponds
to the resonant operation of the Raman laser~remember that
vb is generated as a Stokes-type Raman laser pumped b
laserva). In such experiments it was observed that the ma
mum point of the detuning curveI d(Dc) does not depend
practically on the detuning of the Raman laser withDb
.Da , and lies aroundDc50. Let us analyze the dependen
of the conversion coefficient on the third field detuningDc .
Here the determinant~15! is not biquadratic, so the following
spectra are obtained by numerical integration.

Calculations were carried out with the help of a simp
program, which integrates the solution of the density ma
equations~9! over velocity by the Simpson method. For e
act resonanceDa5Dc50 and uniform relaxationg in the
Doppler limit, the numerical result coincides with the e
plicit formula ~21!. In the general case the input paramete
are the following: ten relaxation constants~four for levels
and six for coherences!, three detunings and wave vector
three intensities~of two strong fields and one weak field!,
four unperturbed populations, and four Einstein coefficien
We also set the populations of upper levelsu2& andu4& equal
to zero, since the temperature in the experiment was m
less than the energy interval between electronic states o
molecule.

Figure 8~a! shows the dependence of the output intens
I d on the detuningDc . The Rabi frequency of the first field
is doubled with increasing curve number; that is,Va51
3109 s21 for curve 1, 23109 s21 for curve 2, and 4
3109 s21 for curve 3 at fixedVc50.53109 s21. We see

FIG. 8. ~a! Output intensityI d ~arb. units! vs detuningDc at
several amplitudes of wavea: Va51 ~curve 1!, 2 ~curve 2!, and 4
~curve 3!; N350.1N1 , N25N450, g50.6, kavT57.0, kbvT56.5,
and kcvT55.2; Vb50.1 andVc50.5; andDa5Db50. ~b! The
same atDa5Db56.5. The maximum point moves towardDc50
with growing Va .
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1364 PRA 59S. A. BABIN et al.
the Rabi splitting of the line. The distance between com
nents is nearly proportional to the first wave amplitude
Va@Vc . Figure 8~b! displays the same three cases for t
detuned first and second waves by the Doppler widthDa
5Db5kbvT . Now the dip is centered approximately atDa ,
but the main peak is close to zero detuning. Its position
pends on Rabi splitting, and under the stronger driving fi
Va@Vc the position may become negative. WhenVa[Vc
the two components merge into one centered approxima
at Dc.Da .

To interpret the spectral dependence, let us put the Ra
laser conditionDb5Da into Eq.~16!. For a qualitative analy-
sis we setVc5g5D50; then, the quadratic equation ob
tained,

Dc
22Dc„~2kd2ka!v1Da…

1Dakdv2kd~ka2kd!v22Va
250, ~32!

describes a hyperbole in (v,Dc) plane. DetuningDc satisfy-
ing Eq.~32! is shown in Fig. 4~b! as a function of the veloc
ity v/vT . The solid hyperbole corresponds to the exact re
nanceDa50, whereas the dotted one refers to the detun
Da.kbvT . The return points of curves 3 and 4 are shifted
the right. The dependence onDc has two peaks, becaus
there are two return points

v5
Da

ka
7

Va~2kd2ka!

kaAkd~ka2kd!
,

Dc5
kd

ka
Da6

2Akd~ka2kd!

ka
Va ~33!

located in the (v,Dc) plane, as for a three-level system@20#,
coupled with strong and probe fields at the adjacent tra
tions. The positions of return points reflect resonances in
dependenceI d(Dc). The coordinate of the dip in the numer
cal calculation@Fig. 8~b!# is proportional toDa , whereas the
distance between the peaks is proportional to Rabi freque
Va .

Figure 9~a! shows the contourI d(Dc) at fixed intensities
but different detuning values of the Raman laserDa5Db
5(1 –2)kbvT . The contour for each case consists of a w
main peak and a narrow satellite. The satellite vanishes w
an increase in Raman detuning. The width of the main p
is close to the Doppler one, its position being almost in
pendent of the detuning as in the experiment. Figure 9~b!
illustrates the comparison of the position in experiment a
calculation. The present theory agrees with experime
points qualitatively, since the position of the maximum
near the line center and almost independent of detuningDa ,
as distinct from the perturbation theory. The perturbat
theory gives quite a different dependence, namely, the p
shifts proportionally to Raman detuning,Dc.kcDa /kb for
down-conversion as well as for up-conversion@3#.

The only principle distinction between theory and expe
ment is a dip in the center at the exact resonance. Two c
ponents appear analogous to the Autler-Townes doublet
three-level system, as mentioned in Ref.@9#. Such a large
splitting should be resolvable under actual experimental
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curacy. However, a smooth contour without a dip had be
observed. The splitting is first apparent at the exact re
nance, while experimental data are available only foruDau
>kvT/2. In the experiments the shifted component will
difficult to detect@Fig. 9~a!#. Several reasons for ‘‘washing
off’’ the dip are also possible. In the experiment the intens
of waveb is already powerful enough to give Rabi freque
cies comparable to the relaxation ratesgb;g, which does
not fulfill assumptions of the above theory. The differenc
in Rabi frequencies for transitions between magnetic sub
els can smooth the total contour, too.

VIII. CONCLUSIONS

Let us summarize the treatment of strong-field effects
RFWM in Doppler-broadened media. The theory is dev
oped for Raman-type down-conversion~doubleL) schemes
with strong-weak-strong-weak field topology, where the o
put wave is generated by the mixing of three input wav
An explicit solution for the symmetrical case of equal rela
ation constants (gn5g,n5a,b,c,d) and wave numbers o
weak fields (kb5kd) has been obtained. The analysis of t
resultant formula gives a clear picture of basic strong-fi
effects in such a scheme. A multipeak~up to six! structure
for the conversion coefficient versus detuning of the we
field Db has been revealed; four of the peaks are a con

FIG. 9. ~a! Output intensityI d ~arb. units! vs the detuningDc at
different values of the detuningDa5Db5 6.5 ~curve 1!, 10 ~curve
2!, and 14~curve 3!; N151.0,N350.1, N25N450, g50.6, kavT

57.0, kbvT56.5, andkcvT55.2; Va52, Vb50.1, andVc50.5.
~b! PositionDc of maximum of contourI d(Dc) vs detuning of the
Raman laserDb5Da : perturbation theory, numerical calculation
for the above parameters, and experimental points@7#.
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quence of Rabi splitting of levels by strong fields, and tw
others appear through constructive interference of light em
ted by different velocity groups. At equal Rabi frequenc
of the strong fieldsVa5Vc , two peaks collapse into on
resonance maximum at the line center. Such a reson
condition is a result of the interference of RFWM cycl
involving different Rabi sublevels at a complete resona
Dn50. It determines the maximum conversion coefficien

This effect can be verified experimentally, since the
sumptions of the theory agree with the conditions of Ref.@7#.
It is shown that, forVa

max.Vc
max realized in the experiment

the resonance condition for strong fields leads to a satura
of the output power versus the intensity of the first fie
I d(I a). At the same time there is no saturation of the dep
denceI d(I c) in accordance with the theory. Moreover, th
asymptotics for these two curves are quite different:I d}I a

3 at
I c5const for smallerI a and I d}I c at I a5const, since the
two strong fields interact with different lower levels havin
different populations,N1@N3 .

Another significant feature of the experiment is the un
pected dependence of the output power versus the detu
of strong fieldI d(Dc): it has a large width~comparable to the
Doppler one!, and the position of its maximum is not sens
tive to the detuning of the Raman laserDb.Da used as a
source of second~weak! pump field. This is in contradiction
with the perturbation theory. To explain such a behav
numerical calculations involving variations of strong-fie
detuning have been explored. It is shown that the cont
I d(Dc) is also a subject of Rabi splitting induced by th
strongest fieldVa . In the general case, the contour has t
components of different height and width, and the splitting
proportional to the Rabi frequencyVa . At Va.2
3109 s21, which is inside the domain of the estimated e
perimental parameters, the main peak has a width clos
the Doppler width, and its maximum lies near the line cen
independently of the detuning ofDb.Da , as in the experi-
ment.

The main uncertainty in the experiment is a possible m
match in the frequencies of the pump and Raman fie
(uDbu2uDau;Va), which does not allow one to compare
detail the shape of the contourI d(Dc) with the theory, since
it is very sensitive to the above mismatch. One can see
the scale of the detuning axis in Fig. 3 is less than tha
Figs. 8~a! and 8~b! by an order of magnitude. That means
Z.
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much higher sensitivity to the weak-field detuningDb com-
pared to the strong-field detuningDc . Nevertheless, there i
strong evidence of agreement between various experime
data with the theory within a domain of self-consistent p
rameters, which is a good demonstration of the model’s
lidity.

To compare theory and experiment in further detail,
well as to test some predicted dependences, it will be ne
sary to reduce the jitter of the lasers and to increase
accuracy of the frequency adjustment. If the Raman lase
used to generate the second wave, some tunability inside
Raman gain contour is necessary to test the dependenc
the weak-field frequency. When all the frequencies are re
nant with the corresponding transition within an accura
determined by the least relaxation constantg5mingn , the
fundamental condition of equal Rabi frequencies of t
strong fieldsVa5Vc plays the main role for efficient con
version. If VaÞVc , one has to adjust the frequency of th
weak field to one of the four shifted resonancesDb56Va
6Vc . Here we expect the maximum conversion coefficie
at Va5Vcka

2/kc
2 , as curve 2 in Fig. 3 shows.

In principle, the four-wave mixing scheme discuss
above may also be considered as ax (3) optical parametric
generator, analogous to the well-knownx (2) optical paramet-
ric generator, where two pump fields generate a signal fi
and an idler field. Here the two strong pump fieldsva andvc
drive two weaker fieldsvb andvd . For both fieldsvb and
vd , exponential growth should occur, which for the fieldvb
is manifested by Raman lasing. In fact, if the fieldvd is
generated within the resonator of the Raman laser,
scheme may already be considered as ax (3) singly resonant
optical parametric oscillator. It should therefore also be
interest to realize feedback and oscillation for the fou
wave, corresponding to the double-resonant optical param
ric oscillator. Theoretical and experimental investigations
this direction will be made.
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