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Effects of strong driving fields in resonant four-wave mixing schemes with down-conversion
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An explicit solution is obtained for the four-wave frequency mixing= w,— wp+ w. of two strong fields
a and ¢ and two weak fieldd and d in a four-level system with large Doppler broadening in collinear
geometry, where the frequencies of weak fields are nearly egyal w4, and the medium is optically thin.
Without weak fields there are two independent two-level systems. A pair of weak fields probes two other
allowed transitions. A peak of the mixing coefficient as a function of intensity is found around an equal Rabi
splitting of both two-level systems. The effect is based on a resonance between two closed cycles of four-wave
mixing via different dressed states. Three, four, or six peaks are predicted in the dependence of the mixing
coefficient on the frequency of the weak field; two of them are a consequence of averaging over velocities. The
model allows an interpretation of the dependence of the output wave power on the intensity and detuning in
recent experiments on frequency mixing in sodium vap8L050-294{@9)06401-X

PACS numbds): 42.50.Hz, 42.62.Fi, 42.65.Ky

[. INTRODUCTION conversion of laser pulses in optically thick med&omic
Pb) has been realized by using atomic coherence on a Raman
High-efficiency conversion of radiation by four-wave transition accomplished by electromagnetically induced
mixing usually requires pumping of quantum states by megatransparency12]. The effect of Doppler broadening was not
watt laser pulses. For continuous frequency conversion &0 important in both experiments, since nearly degenerate
essentially lower pumping intensities a higher nonlinear susmixing schemes or Rabi frequencies exceeding the inhomo-
ceptibility is necessary, which is achieved by tuning to resogeneous width were used, correspondingly. Also, the Dop-
nances. A few experiments on continuous sum frequencpler broadening was insignificant for nearly degenerate four-
mixing have been performed so far, and output signals ofvave mixing in Rb level§13].
about 1.W in atomic Ne[1] and 10xW in atomic Na[2] On the other hand, the Doppler broadening is of vital
have been obtained at near-resonant conditions. importance for continuous-wave mixing experimepts-7],
The use of the resonance is partly hindered by the effecand for laser action in the double-schemd 14]. Stimulated
of Doppler broadening, depending on the leading nonlineaby various experiments with gases, different computations
process. Within the framework of perturbation theory, it was

shown[3] that in Raman-type schemes with difference fre- Viem'l| X SRS
guencies, according tey=w,— w,+ o, (see Fig. 1, the 20000 BIl, ™S, 743 12>
role of Doppler broadening decreases. Recently it was (V=24 Pty
proved in atomic neof¥,5] and diatomic molecular sodium, At —— >
with up-conversion [6] (wq>w,,w,,0;) and down- 15000 ol ol ol w

conversion [7] (w.<wp,wq<w,), that the difference 2 slg| =

scheme is more efficient compared with sum frequency mix- 10000 LTI T

ing. An output power near 0.1-0.2 mW has been reached at £) £| g§| €

exact resonances for all the waves. Moreover, in these reso- g BlA E

nant four-wave schemes interesting and unexpected power 50007 ‘ L) gLl 4

and detuning dependences of the generated fletsh the g ":! il B ___fﬁ,---"('v"=13,1"=43) 13>
input fieldsa, b, andc were observed, that could not be R R e e Y OB
related directly to existing analytical calculations of strong- 2 3 4 5 fA]

f'el?. eﬁl‘ects[8t,9], bef:r?]use the .calcutlactillonls Wedre .restrlctt_edlto FIG. 1. Considered experimental four-level scheme in.Na
mho loniess & OTS' € eXpepmen Isfp ﬁyef. » 1N par 'Cfl_" ?éFour rotational-vibrational levelsv(J) of the statesxlig,
the saturation of output as a function of the first strong fie TS+ andB 1, are coupled by four corresponding fiels .

aand a linear growth with the third strong fietd Wavelengths and Franck-Condon factgrsf the involved transi-

The Raman-type scheme, also called the double- (ions are given. Inset: the level diagram of a four-level system with
scheme, has gained attention concerning lasing without ingyr fields. The process of resonant Raman mixing of two strong
version [10] and related topics. Experimentally, such afieldsE, andE, and a weak field, into an output wav&, . Solid
scheme has been utilized for efficient optical phase conjugaines show the strong fields andc; wavy arrows denote the weak
tion in atomic Na with low-intensity lasers (1 W/@nusing fieldsb andd. Dotted lines display the forbidden transitiomandf.
coherent population trappinpll]. An efficient frequency Short-lived upper levels are denoted by wider boxes.
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relevant for the experimental situation have been published . argon laser 1 12

for Kr [15] and Ne[16], including numerical integration for

Maxwellian distribution. The general case of three strong

. . . b it

input fields under Doppler broadening can only be handled owiing | o

numerically, while for specific situations, such as for ex- dye laser[ < A-meter 2

ample two strong fieldsd, ,w.) and two weak fields with

nearly equal frequencies,= w4, compact analytical formu- i 7 A-meter 1

las can also be derived, as recently demonstrgt&l Such o

formulas or simplified expressions for limiting cases are

helpful for understanding and guiding experiments and will . g IS

be used in this paper for the interpretation of results obtained £ z

in recent four-wave down-conversion experimemp @ 1 <7 A Y A
Raman laser

This paper is organized as follows: In Sec. I, the experi- Y Y
mental situation is briefly described, and measured param-
eters of the light and medium are listed. Possible simplifica-
tion in a theoretical description is noted. Section |lI
introduces the model. Section IV presents the explicit formu-
las in more general form than in Rdfl7], including arbi-
trary populations of all the levels. Section V discusses the
conversion coefficient as a function of the detuning of the
weak field. This dependence has not yet been measured, but Na-heatpipe2 o
seems interesting because it is sensitive to thermal motion. In
Sec. VI we compare the intensity dependence given by the FIG. 2. Experimental setup for resonant four-wave mixing. A
formulas with the experiment_ In Sec. VII we compare thepart of the erIdEa of Single frequency AJT'laser 1 is used to pump
dependence on strong-field detuning with analytical estima@ N&-Raman laseg, in heatpipe 1(dotted boy. These fieldsE,
tions and the numerical integration over velocity. In Sec.2ndEy, are mixed with the field. of a cw ring dye laser in heatpipe
VIl we finally summarize essential aspects of the theoreticaf- The generated FWM fielfly is detected behind heatpipe(iion-

consideration and discuss requirements and further directiorf@!inéar mixing geometry; see toxtlaser frequencies are con-
of experiments. trolled by\ meters 1 and 2 and scanning interferometers Sl 1 and 2.

Na - heatpipe 1

FWM

Il. EXPERIMENTAL SCHEME wherek,, v=a, b, ¢, andd, is the vth-field wave vector.

. L . This i mplish here in light noncollinear mixin
The four-wave down-conversion mixing under examina- s is accomplished here a slig oncollinea 9

tion is schematically shown by diagram in the inset of Fig. 1 geometry induced by atomiD lines, with an anglef of

The transitions are denoted by Latin letters, while levels arélboUt 10 mrad between the laser bealkg,(andky). The

numbered. The radiation fields are resonant with dipolefJlngle results in a mixing zone lengti=1 cm, whereas the

allowed transitions between the levels 1, 2, 3, and 4. Experi?%gth of _lt_?]e v?por CrI]OUd of the l;la hﬁa;fcgiipe fwasb "".UOUt
mentally, this scheme has been realized i, Neolecular cm. Therefore, the resonant fourth fidd after being

vapor between rotational-vibrational levels of the'S generated in the front part of the pipe, is reabsorbed before
ALS*  andB M. electronic states considered as a d’own_reachlng the detector. At an operating temperature of the

u: u - = . heatpipe of aboufT =740 K, the characteristic absorption
conversion scheme, as indicated in Fig. 1. A similar schem

has also been operated in a He-Ne laser discharge ?ength of the unpumped vapor for the generated radiation is

_1~ . .-
For the operation of a four-wave mixing scheme, three™© =2.5 cm. In the experiment, at pump powers of typi

pump fields ,,wp,w:) are needed. Here, is obtained cally P,=200 mW, P,=25 mW, andP,=400 mW out-
from a single-?réqz;enccy At laser ()\5.1:488 anm) ando, put powers ofP4=0.2 mW are measured. Taking into ac-

(\,=655 nm) from a single-frequency ring dye laser. Thecount the reabsorption in specific geometry, this corresponds

laser with frequencys, is generated by operation of a ja to an internally generated power of at least 6 mW and a

o . . conversion efficiencyC=P4/P,P,P. as high as 3 W/
Raman laser between the levels 1-2-3 of Fig. 1 using thie Ar For further experimental details, see Réf]. Let us list the
laser as a pump. In this way, only two independent pum

p . S
lasers are needed, and by the operation of the Riaman experimental parameters significant for the development of

laser the frequency,, is automatically adjusted to the reso- adequate theoretical model,
9 ¥b Y ad] The relaxation constants of levels arg,=7y,~3

e O e o™ 010 oty o310 5 . The ower el he
experimental data use% k;ere ére obtaingd i,n resc;nant fou?_purely collisional relaxation, while for the upper ones both

P o i . radiative and collisional decay are important. The homoge-
wave mixing(RFWM) experiments in an external vapor cell

. o P ; neous width is the convolution of off-diagonal relaxation
Na heatpipg[7], as indicated in Fig. 2. This scheme pro- . .
\(/ides an Fi)nrt)fege]ndent variation of p%mp intensities. PTO~ constants and apparatus broadening, namely, the jitter of la-

For optimum frequency mixing, in addition to the fre- ser frequencies and the influence of a small angle between

uency condition, a phase-matching condition also has to btehe wave vectors. The estimated value {5=(3-6)
9 y ap 9 X10% s! for all transitions. The thermal velocityt

fulfill . .
ulfilled =+2kgT/M, wherekg is the Boltzmann constant, is the
W= wa— wpt e, Kg=kz—kpt+Kke, (1)  temperature, ani¥l is the molecular mass, gives the Doppler
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widths k,ur=7.0x10° s°!, kyw:=6.5x10° s71, kwr
=5.2x10° s !, andkgu1=5.7x10° s 1. Thus, it is pos-
sible to make two simplifications in theory. The difference
betweerk,, andky is small(about 12%, and may be ignored
as a first approximation. The effective homogeneous width is
much less than the Doppler broadening; then the theory can
be built up in the Doppler limikv > 1y.

Maximum Rabi frequencieg), can be estimated for
experimental focusing scheme),=(1-2)x10° s 1,
Qp=(1-2)x1¢ s, Q,=(3-6)x10° s, and Q4
=(2—4)x10" s 1. Therefore, Qp g<y<Q,.; then the
approximation of weak fields andd and strong fields and
c looks reasonable.

The estimated level populations axg~ 102 cm™2 and
N3~ 10'%cm™3, where N;>N3>N,,N, show that a good
approximation is the model of the only lowest ley&) be-
ing populated. The absorption of fieldsand d interacting
with this level is considerable along the whole heatpipe.

3

However, as mentioned above, the mixing zone length i¢h€ dipole momeng, .

small, L<a51<l. We can consider the mixing problem
within the thin medium approximation. Linear absorption of
the output waved leads only to an attenuation of the inten-
sity by a constant factor ekp 2a(l —L)] without influenc-
ing the analyzed intensity and frequency dependences. Th
means the spectroscopic problem to compute the nonlinear
susceptibility in this case is more important than the optical
effects of propagation. Meanwhile, the noncollinearity

AP ; . tion overv,
~10 3 is inessential for a spectroscopic treatment.

Ill. BASIC EQUATIONS

Let us consider the conversion of two strong incident

EFFECTS OF STRONG DRIVING FIELDSN. ..

Y1p1=2 Rei Q3 pa) + y1N1(V),

Yap2=—2 Rei Q3 pa) + v2Na(V),

Lapa=1Qa(p1—p2);

¥3p3=2 REIQF pe) + y3N3(v),

Yapa=—2 REiQF pe) + y4Ny(v),

Lepe=iQc(p3—pa).

We denote

FVE YV_iAVY

Nj(v)= Lex;{ - V—Z)
l (Vavr)® vg)
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®

HereN;(v) and y; are the unperturbed population densities
per unit velocity interval and relaxation constants of levels
j=1, 2, 3, and 4. For convenience we define the coherences
pa andp. so that(), and(). to be real and positive, where
Q,=E,- un, /2% is the Rabi frequency obth transition with

where y,= v, and y.= ya, are the relaxation constants of
the coherences, which determine the homogeneous widths.
r a medium with thermal motion one should repldcg

— A ,—Kk,v, wherev is the velocity vector. The unperturbed
populationsN;(v) are assumed to have Maxwellian distribu-

6

wavesE, . resonantly interacting with transitions 2-1 and For motionless particles/&0), Nj(v) has to be replaced by

4-3 and the weak fielf, near the resonance with transition constantsN; .
2-3 into the output wav&, with transition 4-1, according to
the inset of Fig. 1. The electric field in the medium is the
sum of traveling waves,

E(r,t)=2, E,exp—iwt+ik, ), )

where E, is the amplitude of thevth field, and
v=a, b, c, andd. The frequency and wave vector of wave
d satisfy the phase-matching conditi¢t). Since the cycle
1-2-3-4-1 is closed, the frequency detuninys satisfy the
condition

AdzAa_Ab+A01 (3)

Where Aa=wa— W21, Ab=wb—w23, AC:(J)C_(,U43, Ad
=wy—wy, and w;;=(E;—E;)/A are the Bohr transition
frequencies.

We can neglect both weak fields to a zeroth-order ap-
proximation, i.e., seg, 4—0. The complete set of 16 equa-
tions for the density matrix of the four-level system reduces,
and now allows us to find steady-state populations per unit
volume and velocityp;=p;; (j:1,2,3,4) and coherences
Po1=pXP(iAt+ik,-r) andpsz=pexp(—iAg+ik.-r) of
a pair of separated two-level systems: and

The solutions of Eqsi4) and (5) are written as

29§7aN12(V)
p1=Ny(V)— —————,
Y3+ A%)
202y,N5(V)
pa=Ng(v) + —2212 2
72(Fsa+Aa)
iQale(V)Fz
Pa™rz a2
202y:Nz4(V)
p3=Nz(V)— —————,
ya(Fact+A2)
202y Ny (V)
pa=Ngy(v)+ %,
74(Fsc+Ac)
QN3 (VTS
Pe™ T2 12

()

®

where N;;(v)=N;(v) —N;(v) is the population difference,
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[i=vi+20%ys(y3 '+ v h)
are the homogeneous widths including the power broade

ing.
Weak fields, with amplitude<£}, and Q4 in frequen-
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where all the input waves are supposed collinkgfk||kp;

X is the coordinate along the common direction of wave vec-
tors; and angular brackets denote the integration over the
velocity distribution. In collinear geometry only averaging

fRver the longitudinal velocity is necessary in E¢0). If a

small angle# exists between the wave vectors, it can be
roughly taken into account as an additional broadening

cy units, lead to the appearance of coherence between levelskvT6 caused by averaging over the transverse velocity. By

belonging to the different two-level systemg,;
=ppeXpiApt+iky-r) and ps=pgexp(iAg+iky-r) for

doing so we neglect the fine effects of angle tuning.
For a linear polarization of the radiation fields, and as-

the allowed transitions, as well as to cross coherences for thMing weak field€y andEy, Eq. (10) may be written as

forbidden transitionse,f: p,,=pcexp(—iAd+ike-r) and
pai=piexp(—iAs+iks-r), where ke=kz—ky, ki=kj,
—Kkp, Ae=A,— Ay, andA;=A,—A,. We neglect the in-
fluence of these weak fields on the populations of legels
The following set of four algebraic equations appears for th
nondiagonal matrix elements,, pq, pe, and p; in the
first-order approximations

Lopp=iQapf +i1Qcpe=—iQp(pa—p3),
L pd +1QLpT =103 pe=1Q5(pa—p1),
H * H * H * H * (9)
Pepe=1Qapg +1Q0¢ pp=1Qppc —1Qpa,
Fpf TiQepd —1QF pp=—1Qppz +iQGpc.

Here y,= 23, Y4= Y41, and ye= v24,¥1= 3, are the con-

e

*

d .
= —2mikgua(pg)= — BEp— @*Ef ,

dx (1)

where coefficienter and 8 depend on the strong fields, and
describe the absorption of fiel; and conversion between
two weak fieldsE,—Ey, respectively. One can puy
=0 (E4=0) into Eqg.(9) to obtain the mixing coefficiens
or Q,=0 (E,=0) to find the absorption coefficient. At
the line center under strong fields, .>v,, both the coef-
ficients B8 and « are of the same order of magnitude, as
shown in Sec. IV.

Under the thin medium approximation the generated field
is small,4<Q,; then one can neglect the absorption term
to find intensities of

2 2

(12

16
Id(L>=|ﬁLIZIb=‘ x4 KoL | Talple,

stants of relaxation of the coherence of the allowed and for-

bidden transitions, respectively. The right-hand side in set

(9) are given by solution$7) and (8) for independent two-
level systems.
In the limiting caseQ).=Q04=0 the system is the three-

B* =2mkgxh"ELE., 13

wherel , is the intensityl. denotes the length of the medium,
and B is represented in terms of the macroscopic nonlinear

level A-scheme 1-2-3. The first and last equations from sesusceptibilityx)-, which depends on the intensitiés and

(9) remain for coherence, at allowed transition 2-3 and
Raman coherence; at forbidden transition 1-3,

Tppp—iQapt =—1Qp(p2— pa),
—iQapp+ T pf =—1Qpp} .

Terms proportional to the weak fiel@, on the right side

correspond to the two main nonlinear effects of probe field

spectroscopy19]. The first is a population effect, propor-
tional to the population differencp,—ps. It includes, in
particular, the saturation of populati@p by the strong field

Q,. The second is the nonlinear interference effect depend- i

ing on off-diagonal elemeng, . It describes the mixing of
stateg1) and|2) by the strong field. The Rabi frequen€l,

in the left side results in the third effect: the splitting of level

|2) by the field. Analogously, af),=Q,=0 the remaining
pair of equationg9) for p4,ps describes the three-level

configuration 3-4-1. Generally, at nonzero fields three-level

I and contains all odd order coefficients. Within the pertur-
bation theory limit, while) , and(); are much less that or

v, the nonlinear susceptibilityN- tends to cubic suscepti-
bility ¥, which is then no longer intensity dependent. We
find the full coefficient by comparing Eq.(9) with the
solution of form(11):

_ mKgpapn
h

0.0 o,
[av=s (et T (2 p3)

* *

- (W3 02-Tolo)— {5 (Q2-02-TylY) .

V schemes 2-1-4 and 2-3-4 also work and create Raman co-

herencep, at forbidden transition 2-4.

The Maxwell equation for the generated wave envelope

can be reduced to

dE4 ]
dx — 2mKaka(pa), (10

(14)
Here the determinant of séd) is
D=T,llETF +(025-Q9)°
+3(QE+ QYT+ T (Te+T)
—3(Q3-Q)(My—TH (T TT), (15)

the polynomial of the fourth degree in velocity. For the case
of collinear propagation we denote the projection of the ve-
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locity vector onto the direction of propagation assv,. dependence of a mixing coefficient a@x, or Ay has four
Consider poles of the density matrix corresponding to zeropeaks in the case of monokinetic particles. This is a conse-
of determinantD as a function of complex velocity. For  quence of the field splitting of levels by strong fields in both
down-conversiom < wy,,wq<w,, a pair of poles is located two-level systems. Because the positions of resonances
in the upper half-plane and another pair is in the lower half-strongly depend on the velocity, averaging over velo¢i#)
plane. Each pole close to the real axis specifiesébenance can change the spectral dependencg.of he interference of
condition for interaction between the field and a group of the velocity groups may lead to a variation not only of the
particles with given velocity. amplitude of each peak, but even of their number. In general,

Assuming here that the coherences decay as half the suthe integral over velocity can be evaluated only numerically.
of populations(neglecting phase-changing collisions.e.,  However, a compact analytical formula for the mixing coef-
va=(y1+ v2)12, vo=(v3+¥2)12, y.=(y3+v4)/2, andyy ficient can be obtained for a practically interesting symmetri-
=(y1+ v4)/2 (for the notations of the levels see the inset ofcal case of equal wave vectoig;=k,. The formula is de-
Fig. 1), then the resonance condition factorizes, since Eqrived and discussed in Sec. IV.
(15) can be rewritten as

IV. EXPLICIT FORMULA

— I AIN2 A 2
D=[(Ap=Ag) 74~ (Qrat Qro)"] Integral (14) for the mixing coefficient can be calculated

, o ) explicitly at equal relaxation constants of coherences (
X[(Ap=Ag)74= (Qra= Qro)], (16) =y; v=a, b, ¢, and d), exact resonancé,=A.=0,
and equal wave numbers of the two weak figkgs-ky . If
where the wave numbers are not equal, but very close, then the
result is also applicable. A small differenck,—ky|

NG A2 <|kpkq(ka—kp) (kp—ke) |24 disturbs function

Ora= \| —+02, Qpe=\/—+02 B(Ay,Q,,Q,) insignificantly. Even for different relaxation
4 4 constants of levels, the relaxation of coherences may be
equal due to dephasing effects. The applicability of these

are the generalized Rabi frequencies, and conditions in experiment is discussed in Sec. Il.
In view of the phase-matching conditigB), the weak-
Aj=Ar—Kav+i(y2—y1)/2, field detunings depend on a single parametgr=—A,
=A. In this symmetrical case the determin&nv,A) turns
Al=Ac—Kv—i(ys—v3)12, to be a function ob?:
Ap=Ap—kpV+iyp, D(v,A)=x*v*—2x%2Q"(A)+Q?(A), (18
Aa=Aa—kav=lvg. Q*(2)=[2~(Q,= Q)°N[ 2~ (2 +0Q)°)],

Taking into consideration that the phase-matching conditions

2
(1) and (3) give A{+A =A.+A[, we see that the reso- a2 )2 62,02
nance conditiorD =0 occurs when the weak fields become Q'(a)= 2 1)z =05+ 0, (19
resonant to quasienergy levels
k k 1
Al Al _la _c e I
(17  wherez=A—iy is the extended detuning.
, o ¢ The averaging of coefficien8 over velocity is possible
Ag= 7+QRa + 7+QRC : for an arbitrary thermal velocity, but the resultant formula in

terms of the error function of the complex argument is un-
Equation(17) defines the resonance frequency of a weakwieldy. Then we present a simplified explicit formula in the
field for a given velocity group of atoms as a function of Doppler limit, when the thermal velocity is largesv
frequencies and intensities of both strong fields. The spectratQ ,,vy,A,:

_ QappQopq 773/2de —2izNgp Ny [izez/y+ 1+ 4iz02%y,— Q'+ 6322/2/1+i)
hi xr | RQ TIZ4TrRe,+Qed R Q \R Tea
N Nsay [iZegl'y—li 4iz02% y;+Q' — e§22/2/£+ i) 20
F§C+ I'sRe+ Qeﬂ R Q \ R Tse ,
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where R=y2(Q—Q’), ReR>0. We have chosen the
branch of two-valued functio® according to the rules
ReQ<0 atP, <|A|,

ReQ=0 at|A|<sP_,

sgnimQ)=sgnA at P_<|A|<sP,,

whereP.=|Q,*=Q|. If we were to choose another branch
of Q, then Q should be replaced by-Q in all formulas.
When k,— k. the Doppler limit approximation is broken,
and Eq.(20) becomes invalid. However iv<Q,,7, then

integration overv is not necessary, and one can apply the

theory for motionless atoms under strong fig89].
Consider the limiting cases of EQR0O). They are impor-

tant either to compare with experiment or for an interpreta-

tion of the phenomenon. When only the lower ley#} is
populated N;=0,i # 1) expression(20) reduces to a simple
formula. Let us write it for the case of uniform relaxation,
i.e., equal relaxation constangsof populations and polariza-
tions

3/2

T N1KgQamp{dcpq

B 0T T4 T o Rest Q2

y y+ iZegL 4izQ2+ y( egzz/z—Q')/
| Q \

€a

s,

|

For the domain of weak fieldq ,,).< vy, the expression
for the nonlinear susceptibility, following from Eq&.3) and
(20), can be derived also as the first nonlinear correction o
the perturbation theory

1
R R

(21)

o NT maphpep
NEI
d kaUT 4h3

N3z
(y—id)?

N34(ka—Kq)
(y=iA)(kpy—ikcA) |

(22

Here the conversion coefficient is equal to zero when onIy:I

the lowest level|1) is populated, since the populatidy,
does not enter the expression in the Doppler limit, as well &
in up-conversion[3]. The susceptibility is nonzero in the
next order of expansion in parametgtkv .

Using Eqg.(20), we can now estimate the relative contri-
butions of different terms in Eq11) for a generated wave:
In the strong-field limitQ,= Q.= Q> yk.k./«? and exact
resonance\ =0, the mixing coefficient can be estimated as

\/g

As distinct from the perturbative resy22), the mixing co-
efficient does not turn to zero when only the lower level is
populated.

Analogously, the formula for the absorption coefficient
can be derived by comparing s& with Eq. (11) and inte-

773/2kd;“«d
2h kvt

B
Mp

N3zav4
Y3t 74

N12v1
Y1t 72

= —Nag|. (23
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Conversion coefficient [arb. units]
25

20

15

10

0 L B s

-2 Ab[ns_1]2
FIG. 3. Conversion coefficiedB|?x14/1 ]l in arb. units cal-
culated according to Eq21) as a function of detuning\,, of the
second field atkut=7.0, keor=5.2, and y=0.02 for (1) Q,

=10.=0.1, (2) Q,=0Kk¥k?*=0.5, and (3) Q,=0,=0.5 (in

ns .
-
5| Naa

and occurs to be within the same order @slf only the
lower level|1) is populated, them/uy= B/, . Note that
the real part of the coefficieft defines the absorption length
of field E4 and the applicability of the thin medium approxi-
mation. Thus, in the strong-field limit, the approximation is
valid, while Q4<Q,,.

a

3/2
Ky

,ud_ ZﬁKUT

N3av3
Y3t va

N12v2

Y1t Y2

(24)

f V. DEPENDENCE ON THE WEAK-FIELD FREQUENCY

Based on Eq(21), the dependence of conversion coeffi-
cient| 8|? vs the detuning\,, of the second field is plotted in
Fig. 3 at smally<Q,,{). and exact resonande,=A.=0.
The output intensity is proportional to the conversion coeffi-
cientl4~|B|2. Hereinafter all the frequencies in figures are
given in ns!. One can see that the number of peaks
changes. There are six, four, or three peaks for different re-
lations between the intensities of the strong fields.

Why are there six peaks in conversion coefficierfi\)
a/lalpl | BL|? instead of four, as distinct from the case
of motionless atoms? The physical reason for this effect is

the interference of light emitted at frequenay by atoms

moving with different velocities. If the interference is con-

structive for somevy, then a peak arises in the dependence.

By contrast, if it is destructive, then the thermal motion sup-

presses the mixing. More details will be discussed below.
Expressiong20) and(21) carry information on the results

of the interference. We search for maxima of functigf\)

by looking for minima ofQ andR in Eq. (20):

A=+0,+Q,, (25)
where|Q| is minimal, or at
A=+2 \/—Qa 2 26
= + —
—ZK kg kg’ ( )

grating over velocity. The absorption coefficient at the same

condition as for Eq(23) is written as

provided that
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=12 (27) A, N /
c [ns_1] | \ /

o
®

k

D N

where|R| is minimal. As a result, there are six peaks in the 2 \ /
dependence, as curve 1 in Fig. 3 shows. At

Oy Q¢

== (29 '

2R 7
minima of both functiondQ(A)| and |R(A)| coincide for . | (a) .
detuningsA = i4QaK2/k§, yielding a four-peak curve. Un- -1 0 V/VT 1

der this condition the output intensity is highest for the cen-
tral two peaks, as curve 2 in Fig. 3 displays. Four peaks
remain in the dependence, whi,k2/k2<Q.<Q,. Fi- 10
nally, at equal Rabi frequencie®.=(},, the two central
peaks of four merge at the centk=0, as curve 3 in Fig. 3
indicates. Fo).> (), condition (27) is violated; then only
four peakdg Eq. (25)] are restored.

The maximal absolute value of the mixing coeffici¢at
is achieved at detunings given by EHg&6), when Rabi fre-
qguencies of both strong fields obey conditidi28). In the
strong-field limit, expressiof21) yields

= T Kttty (202 (050
Ahkor  (kko M Y

. (29

; 34 FIG. 4. (a) Resonance condition in the (Ay,) plane at),=1,
which has the dependenc@(y)~", in contrast to Eq(23). 0,=01 (ns?) for A,—A.~0. Two positive solutions\(v) of

'dFortr? q“a"tt"’_‘g"f mte:cpretiy(im of .tt?]e erendeinc_e, Con'equationD(v,A):O as a function ob/vt at y=0 calculated by
S| e_r € con .”. ution 0. par Icles with given ve OCIt.MS Eq. (30). Curves 1 and 2 correspond to the upper and lower middle
=y into the mixing coefficien{8. The resonance condition

] . . . signs in the formula. Two other zeros are symmetrital — A
[the denominatoD of the integrand in expressidii4) goes i respect to the: axis. Four return points whe\/dv=0 are

to zerd is complied with eigenfrequencies given by E&7).  placed at zero velocities =0, and four at finite velocityxv

Under the assumption of Sec. IV, the eigenfrequencies take -+ JQ'. They are responsible for peaks in the spect(siown

an especially simple form, schematically at the right because the neighborhood of a return

point only gives a constructive contribution to the integral over

Alv)== \/Qg—l— kgv 2|4+ \/Q§+ kgv 2l4—iy. (30 velocity. (b) Resonance condition in the (A.) plane at smalf),.
Return points corresponding td,=A,=0 (curves 1 and Rand

Two upper branches of Re(v) are shown in Fig. @). A,=A,=6.5 ns?! (curves 3 and ¥
Let us fix a branchA(v) and consider detuning\
=ReA(vo) such that|dA(v,)/dv|>7, i.e., the derivative Equation(30) allows one to find coordinates of the return

with respect to velocity is large enough. Determingb®  point. There are four solutiondg=*+Q,*. at vg=0.
nearv=v, could be written asD~ (dA(vo)/dv)(v—v,)  The upper pair of these points is shown as big gray circles;
—iy. Integral(14) of ((dA(vo)/dv)(v—vo)—iy) toverv  the other pair is symmetric about the velocity axis and is not
around v, appears to be small, since contributions wof shown in the plot of Fig. @). Additional four return points
<vo andv>v, cancel each other. Therefore, it is valid to are placed at
say that radiation emitted by atoms with different velocities

experiences the destructive interference; consequently, the . \/ Qake 2_ Qcka\? a1
mixing and conversion coefficients at this frequency turn to KUR™ = Ky k. |’ (31)
be small.

However, the interference can be constructive, too, if wawvhereas the detuning is given by E@6). The velocity has
choose detuning\ =Ag=ReA(vg) such thatdA(vg)/dv  to be real; then conditioi27) is necessary. Two of those
=0. In this case the expansion of the determinant starts frorpoints are shown by tight black circles in Figat Both
a quadratic ternD~ (d?A(vg)/dv?)(v—vg)?/2—iy. Inte- have equal detuning in the velocity-frequency plane, and
gration around =vg in Eq. (14) gives the main contribution contribute to the same peak shown at the right. Another pair
to B, proportional toy 2 because the light emitted by of return points at nonzero velocity is also symmetric about
atoms with velocityy >vg andv<vg add up in phase. All the axisv.
points r,AR) in the (v,A) plane, wheredA(v)/dv=0, The most interesting phenomenon is the fusion of three
will be called thereturn points Examples of return points return points(one “gray” at vg=0 and two “black” at
are displayed in Fig. (@) as circles. Each results in a narrow nonzerovg), when the Rabi frequencies satisfy condition
peak, shown schematically at the right, ndar Ag. (289). In this special case not only does the first derivative
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Output intensity [arb. units]
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FIG. 5. The intensity of output wavé)4|?=14 as a function of
two intensities| <02, 1,202 of strong fields(in ns™?) at y
=0.1. A=0, kw7=7.0, kyor=6.5 (all in ns'1), and N,=Nj
:N4:0

dA(vg)/dv equal zero, buti?A/dv? andd3A/dv? also do.
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FIG. 6. Scheme of the Rabi splitting of dressed states of mo-
tionless atoms. Whefi,= ()., the splittings of both two-level sys-
tems are equal. Four fieldsbcd form two closed cycles starting
and ending at statfl).

The crest near the equal Rabi frequencies is the maximum of

The expansion of determinant starts with the fourth powegytput,.

D~ (d*A(vR)/dvH)(v—vR)¥4!—iy; then the integration

To interpret the origin of this maximum qualitatively, let

aroundvg makes a particularly large contribution propor- ys consider the theory of return points again. We now fix

tional to y~ ¥4 The dependence corresponds to E§) ob-
tained by the explicit formula.
At equal Rabi frequencieQ = (). we observe how two

A=0 and find the relation between the Rabi frequefity
and velocityv given by the resonance conditi@=0 [Eq.
(18)] at y—0. In the (v,ng) plane the resonance condition

return points belonging to the symmetric branches of funcyje|gs the following parabola:

tion A(v) merge atA=0 [in Fig. 4(a) the lower gray circle
merges with its mirror image This “fusion” also increases

Q§= Q;-I— k?v2.

the height of peak. Unfortunately, this growth is counterbal-

anced in part by the small numerator in integrdhd) at A
=0. The resultant height remains proportionalyto/? ac-
cording to formula(23).

Return points(or “return frequencies) were introduced

Analysis analogous to the one presented in Sec. V proves
that the peak of 8| appears near the return points where
dQ2/dv=0. The only return point is =0,Q.=Q,, which
leads to a peak in the intensity dependence of output

in the theory of a probe-field spectrum of a three-level sys1d(|a,|c)oc|ﬁ(Qa,Qc)|2_ This peak is formed by particles

tem with large Doppler broadenif@0]. The strong field in

with nearly zero velocity; then the physical reason for the

that theory interacts with a two-level system; then the corremaximum could be understood within the framework of the
sponding determinant is a second-degree polynomial in vepicture of dressed states of motionless atoms.

locity and detuning. The resonance condition is displayed by The equal Rabi splitting of levels by strong fields is
two branches of hyperbole in the velocity-detuning plane;shown in Fig. 6. Here the frequenay, is equal to both the
then the number of return points is 2 or 0. Consequently, thérequencies of the cross-transition from the upper sublevel of
number of peaks in the probe-field absorption spectrum aftelevel |4) to the upper sublevel of levél), and of the tran-
averaging over velocity remains equal to 2, as for motionlessition between their lower sublevels, as shown by the thin
atoms, or it becomes equal to zero. In the four-level systenines. The equality between frequeney and both transition

under consideration the number of peaksd(A) can be

frequencies between sublevels of 3-2 is concurrently

more than in motionless case, since the resonance conditigithieved, as also shown by thin lines. Both pathways be-
D=0 gives four branches of the fourth-order curve in thetween all the upper sublevels and all the lower sublevels in

(v,A) plane.

Fig. 6 are closed simultaneously, and the fields occur in reso-

Based on the concept of a return point one can concludgance with the transitions @=0 only if Rabi frequencies

that in the domain of low gas temperature, while
<\(Q k. Tk)2— (Q Kk, /Kk.)?, the additional peak§26) dis-

are equal (,=Q.). Let us call this condition thdRabi-
frequency resonance

appear. The reason is the exponentially small number of par- Such a resonance manifests itself in the RFWM experi-

ticles having as high a velocity as that given by E81).

ment in Ng as a saturation of output power. For a discussion

Thus these additional peaks are sensitive to the velocity disf the intensity dependence of(1,),14(1¢), Egs.(12) and

tribution in contrast to four main peakgq. (25)].

VI. INTENSITY DEPENDENCE

Reasoning from Eq412) and(21), the output intensity is
calculated for complete resonankg=A,=A.=A ;=0 as a

(21) are considered, with the data taken from the experiment,
Sec. Il.

In Fig. 5 the dependence of the output intensity on the
intensitiesl , and | is given. According to Fig. 5 the Rabi-
frequency resonand®,= () results in a peak in the depen-
dencel 4(I,) at fixedl., and in a peak in the dependence

function of both the input intensities of strong fields. The|(I.) at fixedl,. The width of the peak is defined by the

dependence of the normalized output intendifyon I,
=Q2ch?mpu’ and | ;= Q2ch?27u? is shown in Fig. 5.

effective y. Since in the experimeny was very large, the
peak was wide. For a high relaxation constant, d) gives
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FIG. 8. (a) Output intensityl 4 (arb. unit3 vs detuningA, at
several amplitudes of wave ,=1 (curve 1, 2 (curve 2, and 4
(curve 3; N3=0.1IN,, N,=N,=0, y=0.6,k,v7=7.0,k,v1=6.5,
and kew1=5.2; Q,=0.1 andQ.=0.5; andA,=A,=0. (b) The
same atA,=A,=6.5. The maximum point moves towatk,=0
with growing Q.

FIG. 7. (a) Output intensityl 4| 8| (arb. unit$ as a function of
the intensityl ;= Q2 at 02=0.25 ns2, A=0, andy=0.6 ns.
Experimental dat47] are taken at two different values bf: 25
mW (boxes and 3 mW ((crossel normalized to equal values at
02=0.5 ns2. (b) Output wave intensity as a function k<2 at

Q2=1 ns 2. Boxes correspond to experiment. ) ) o )
=A,, without independent variation df,, . This corresponds

a smooth curvey(l,), shown in Fig. 7a), that looks like a  to the resonant operation of the Raman ldsemember that
“saturation.” The maximum in this dependendg(la)  w, is generated as a Stokes-type Raman laser pumped by the
| B|? is shifted to higher intensities with respect to the Rabi-jasere,). In such experiments it was observed that the maxi-
frequency resonance, because the output intensity at small ;mym point of the detuning curviey(A,) does not depend

the curve was measured for different vallgsaried by one  —A_ and lies arouna .= 0. Let us analyze the dependence

order, as shown by crosses and boxes. At the same paragr ihe conversion coefficient on the third field detunifg.

eters there is no peak in the dependence on the other strongze he determinarit5) is not biquadratic, so the following
field intensity 1 4(1.) both in theory and experimenfig. spectra are obtained by numerical integration.

7(b)]. The reason for this is that the maximum intensity of Calculations were carried out with the help of a simple

field c available in the experiment was less than necessary tQ hich i h luti f the densi )
detect the peak, i.eQ < Q.. program, which integrates the solution of the density matrix

Within the domain of small intensity, asymptotic experi- equations(9) over velocity by the_Slmpson me_thod.. For ex-
mental data are absent. This does not allow us to verify th@ct reson'an'caa:ACZO _and uniform .relgxatlon;'/ in the
features of perturbation theory. However, experimentaPOPPler limit, the numerical result coincides with the ex-
points show that the functioky(1,) may not be entirely lin- plicit formula (_21). In the gene_ral case the input parameters
ear nearl ,=0. In addition, the asymptotics nefg=0 is  are the following: ten relaxation constartfeur for levels
approximately linear in contrast to the previous case. Botfnd six for coherencgsthree detunings and wave vectors,
asymptotics agree with the explicit formul@1). Thus a three intensitiegof two strong fields and one weak fig/d
good agreement of the model with experiment is demonfour unperturbed populations, and four Einstein coefficients.
strated qualitatively, and even quantitatively within an accu\We also set the populations of upper levi@s and|4) equal
racy of experimental points, as Fig. 7 shows. Simultaneouslyo zero, since the temperature in the experiment was much
the experiment differs from the perturbative pictyieg. less than the energy interval between electronic states of the

(22)]. molecule.
Figure 8a) shows the dependence of the output intensity
VII. DEPENDENCE ON THE STRONG-FIELD I 4 on the detuning\.. The Rabi frequency of the first field
FREQUENCY

is doubled with increasing curve number; that §3,=1
Fortunately, the dependentg(A,A,) on the detuning X10° s™* for curve 1, 2<10° s™* for curve 2, and 4
of the strong fields was measured under the conditign < 10° s™* for curve 3 at fixed2,=0.5x10° s 1. We see



1364 S. A. BABIN et al. PRA 59

the Rabi splitting of the line. The distance between compo- Output intensity [normalized]
nents is nearly proportional to the first wave amplitude if :
0 .>Q.. Figure 8b) displays the same three cases for the
detuned first and second waves by the Doppler witith
=Ap=kyv7. Now the dip is centered approximately&f ,
but the main peak is close to zero detuning. Its position de-
pends on Rabi splitting, and under the stronger driving field
Q> Q. the position may become negative. Whag=()
the two components merge into one centered approximately
atA.=A,.

To interpret the spectral dependence, let us put the Raman
laser conditiom,= A, into Eq.(16). For a qualitative analy-
sis we set(},=y=D=0; then, the quadratic equation ob-
tained,

Position of maximum [ns'1]

A2—Ac((2kg—k v +Ay) 15

* Experiment ® Numerical —Perturbation

+ A kgv —kg(ka—kg)v?—Q2=0, (32

describes a hyperbole i (A.) plane. Detuning\. satisfy- 0 . ﬁ/ _/./-/'/'\'\-\.
L T

ing Eq.(32) is shown in Fig. 4b) as a function of the veloc-
ity v/vt. The solid hyperbole corresponds to the exact reso-
nanceA,=0, whereas the dotted one refers to the detuning

Az=kpvt. The return points of curves 3 and 4 are shifted to -10 _ (b)
the right. The dependence ak. has two peaks, because ;
there are two return points 150 3 S e »
Aies™
V= E - Qa(Zkg—ka) FIG. 9. (a) Output intensityl 4 (arb. unit$ vs the detuning\ at
Ka ka‘/kd(ka_ Kq) ’ different values of the detunin,=A,= 6.5 (curve 1, 10 (curve
2), and 14(curve 3; N;=1.0N3;=0.1,N,=N,=0, y=0.6, kvt
k 2 /k k.—k =7.0, kva:6.5, andkch:5.2; Qa: 2, szo.l, andQc=0.5.
Acz—dAaiMQa (33 (b) PositionA . of maximum of contout 4(A.) vs detuning of the
Ka Ka Raman lasen\,= A, : perturbation theory, numerical calculations

. for the above parameters, and experimental pqgints
located in the ¢,A.) plane, as for a three-level systé@0],

coupled with strong and probe fields at the adjacent transicuracy_ However, a smooth contour without a dip had been
tions. The positions of return points reflect resonances in thgpyserved. The splitting is first apparent at the exact reso-
dependencéy(A.). The coordinate of the dip in the numeri- nance, while experimental data are available only |fio]

cal calculatior{Fig. 8(b)] is proportional toA,, whereas the >, /2. In the experiments the shifted component will be
distance between the peaks is proportional to Rabi frequengyifficult to detect[Fig. 9a)]. Several reasons for “washing
Qa. i ) » off” the dip are also possible. In the experiment the intensity
Figure 9a) shows the contourq(A.) at fixed intensities  of waveb is already powerful enough to give Rabi frequen-
but different detuning values of the Raman lage;=A,  cies comparable to the relaxation ratgs~y, which does
=(1-2)kyvr. The contour for each case consists of a widenot fulfill assumptions of the above theory. The differences

main peak and a narrow satellite. The satellite vanishes witih Rabi frequencies for transitions between magnetic sublev-
an increase in Raman detuning. The width of the main peak|s can smooth the total contour, too.

is close to the Doppler one, its position being almost inde-

pendent of the detun!ng as in the experiment. F_|gL(|t® 9 VIIl. CONCLUSIONS

illustrates the comparison of the position in experiment and

calculation. The present theory agrees with experimental Let us summarize the treatment of strong-field effects for

points qualitatively, since the position of the maximum isRFWM in Doppler-broadened media. The theory is devel-

near the line center and almost independent of detuaing oped for Raman-type down-conversi@oubleA) schemes

as distinct from the perturbation theory. The perturbationwith strong-weak-strong-weak field topology, where the out-

theory gives quite a different dependence, namely, the peahut wave is generated by the mixing of three input waves.

shifts proportionally to Raman detuning,.=k.A,/k, for  An explicit solution for the symmetrical case of equal relax-

down-conversion as well as for up-convers|@&j. ation constants ¥,= y,v=a,b,c,d) and wave numbers of
The only principle distinction between theory and experi-weak fields k,=ky) has been obtained. The analysis of the

ment is a dip in the center at the exact resonance. Two conresultant formula gives a clear picture of basic strong-field

ponents appear analogous to the Autler-Townes doublet in @ffects in such a scheme. A multipe@lp to si¥ structure

three-level system, as mentioned in REF]. Such a large for the conversion coefficient versus detuning of the weak

splitting should be resolvable under actual experimental acfield A, has been revealed; four of the peaks are a conse-
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guence of Rabi splitting of levels by strong fields, and twomuch higher sensitivity to the weak-field detuning com-
others appear through constructive interference of light emitpared to the strong-field detunirdg. . Nevertheless, there is
ted by different velocity groups. At equal Rabi frequenciesstrong evidence of agreement between various experimental
of the strong fields),=(., two peaks collapse into one data with the theory within a domain of self-consistent pa-
resonance maximum at the line center. Such a resonancameters, which is a good demonstration of the model’s va-
condition is a result of the interference of RFWM cycles lidity.

involving different Rabi sublevels at a complete resonance To compare theory and experiment in further detail, as
A ,=0. It determines the maximum conversion coefficient. well as to test some predicted dependences, it will be neces-

This effect can be verified experimentally, since the assary to reduce the jitter of the lasers and to increase the
sumptions of the theory agree with the conditions of Réf.  accuracy of the frequency adjustment. If the Raman laser is
It is shown that, forQ]®>0T* realized in the experiment, used to generate the second wave, some tunability inside the
the resonance condition for strong fields leads to a saturatioRaman gain contour is necessary to test the dependence on
of the output power versus the intensity of the first fieldthe weak-field frequency. When all the frequencies are reso-
14(1,). At the same time there is no saturation of the depennant with the corresponding transition within an accuracy
dencel 4(I) in accordance with the theory. Moreover, the determined by the least relaxation constast miny,, the
asymptotics for these two curves are quite differégel 3 at ~ fundamental condition of equal Rabi frequencies of the
| .=const for smallerl, and | 4|, at | ;=const, since the strong fields(),=(. plays the main role for efficient con-
two strong fields interact with different lower levels having version. IfQ,# (., one has to adjust the frequency of the
different populationsN;>N;. weak field to one of the four shifted resonandgs= £,

Another significant feature of the experiment is the unex-+{).. Here we expect the maximum conversion coefficient
pected dependence of the output power versus the detunidg Qa=QKk3/kZ, as curve 2 in Fig. 3 shows.
of strong fieldl 4(A,): it has a large widtlicomparable to the In principle, the four-wave mixing scheme discussed
Doppler ong, and the position of its maximum is not sensi- above may also be considered ag@ optical parametric
tive to the detuning of the Raman laskf=A, used as a generator, analogous to the well-knowt?) optical paramet-
source of secon@iveak pump field. This is in contradiction ric generator, where two pump fields generate a signal field
with the perturbation theory. To explain such a behavior,and an idler field. Here the two strong pump fieldsandw.
numerical calculations involving variations of strong-field drive two weaker fieldso, and wq. For both fieldsw, and
detuning have been explored. It is shown that the contouky, exponential growth should occur, which for the figlg
l4(A,) is also a subject of Rabi splitting induced by theis manifested by Raman lasing. In fact, if the fielg is
strongest field,. In the general case, the contour has twogenerated within the resonator of the Raman laser, the
components of different height and width, and the splitting isscheme may already be considered ag% singly resonant
proportional to the Rabi frequencyl,. At Q,=2  optical parametric oscillator. It should therefore also be of
x10° s71, which is inside the domain of the estimated ex-interest to realize feedback and oscillation for the fourth
perimental parameters, the main peak has a width close twave, corresponding to the double-resonant optical paramet-
the Doppler width, and its maximum lies near the line centeric oscillator. Theoretical and experimental investigations in
independently of the detuning df,=A,, as in the experi- this direction will be made.
ment.

The main uncertainty in the experiment is a possible mis-
match in the frequencies of the pump and Raman fields
(|Ap| —]A4~Q,), which does not allow one to compare in ~ We are grateful to A. K. Popov, M. G. Stepanov, and A.
detall the shape of the contoly(A.) with the theory, since A. Apolonsky for fruitful discussions on theory and experi-
it is very sensitive to the above mismatch. One can see thament, respectively. This work was partially supported by
the scale of the detuning axis in Fig. 3 is less than that irRFBR Grants Nos. 96-02-00069G and 96-15-96642, and by
Figs. §a) and &b) by an order of magnitude. That means aDeutsche Forschungsgemeinschaft Grant No. WE 872/18-1.
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