PHYSICAL REVIEW A VOLUME 59, NUMBER 2 FEBRUARY 1999

Fully relativistic calculations of and fits to 1s ionization cross sections
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The range of conditions for which inclusion of the generalized Breit interaction is important in calculating
the scattering matrix elements fos bnization is explored within the relativistic distorted-wave approxima-
tion. This approach is applied to the calculation efdnization cross sections for a variety of ions with one to
four bound electrons and nuclear cha@ye the range of 1&Z<92. These data are then interpolated with
simple, but accurate, fit formulas. The resulting expressions are readily integrated over a relativistic Maxwell-
ian electron distribution function to obtain rate coefficients for plasma modeling. A discussion of the high
energy behavior of the cross sections for lafgis also given[S1050-294709)08802-2

PACS numbd(s): 34.80.Kw

I. INTRODUCTION for 1s ionization; (2) to calculate these cross sectiomgth
inclusion of the GBI when significanfor a wide range of

In previous work[1] we used the relativistic distorted energies and for a large number of ions witin the range of
wave code of2,3] to calculate cross sections for electron- 10=Z<92; (3) to explain the high energy behavior of the
impact ionization from thex=3, 4, and 5 subshells of vari- Cross sections for largg; and(4) to make simple, accurate
ous ions. That study included an examination of the croséts to the corresponding reduced cross sections. These fits
sections over a range of values for the number of initialshould be readily integrated over a relativistic Maxwellian
bound electrondN and nuclear chargg. It was found that €lectron distribution function to obtain rate coefficients for
the reduced cross sectigsee Eq.(2.8) below] depended plasma applications.
only slightly onN andZ in these cases. Hence, the reduced In the next section a description is given of the method for
cross sections could be fit with a simple formula that de-obtaining the cross sections and the procedure for making
pended solely on impact energy and a simple prescriptiofits. This is followed by a discussion of the high energy
could be given for obtaining the ionization cross sections foehavior of the cross sections. Finally, the procedure for ob-
ions of arbitrary complexity. This procedure is especiallytaining rate coefficients is described. Numerical results are
useful because direct calculation of ionization cross sectiongiven and discussed in Sec. lll and the work is summarized
for individual cases requires a great deal of computationaln Sec. IV.
effort, much more than atomic structure calculations or even
collisional excitation calculations.

In the present work we consider ionization from the 1 Il. THEORY
subshell. This situation is considerably more complex than
ionization from then=3, 4, and 5 subshells for several rea-
sons. First of all the reduced cross sections ®iohization In the present work the atomic structure calculations are
vary strongly as a function d, as seen from Table Il d2]. made with the Dirac-Fock-SlatéDFS) program of{ 7], but
This behavior is due to relativistic effects on the tightly modified to include the GBI together with other QED cor-
bound X orbital, which are not important for the=3, 4, and  rections plus a distributed nuclear charge, as describggl.in
5 cross sections. The situation is further complicated by inin the ionization calculations the same potential is used for
cluding the generalized Breit interactiofGBI) between all electrons bound and free. Hence, all orbitals are automati-
bound and free electrons whenis large. This increases the cally orthogonal. For hydrogenic ions this potential is the
computational run time by more than two orders of magni-Coulomb potential-Z/r. For complex iongi.e., those with
tude, but is necessary for accurate results. The GBI increaséso or more electrorswe used the DFS potential given by,
the Is ionization cross section by about 50% 6=92, as for example, Eqs(14)—(16) of [2]. In determining this po-
was found by electron beam ion trépBIT) experiment§4]  tential we generally use a mean configuration in which the
and by theoretical calculatior}§,6], all of which are in ex- occupation of the active electron is split between the initial
cellent agreement. A final consideration is the apparent disand final subshells. For ionization, this final subshell, which
agreement of the hig#, high energy behavior between the corresponds to that of the ejected electron, is mocked up by
calculated cross sections and the traditional Bethe high era highly excited bound orbital. In the present case this was
ergy formula. Despite these obstacles, as will be shown, wehosen to be a high lying'=h orbital, but results are insen-
are able to make quite simple, but accur@eependent fits sitive to the precise highly excited bound orbital used.
to the reduced cross sections. Hence, for example, the mean configuration used in the DFS

A summary of the purposes of the present work is agpotential for determining the orbitals in the case of inner-
follows: (1) to explore the range of conditions for which shell ionization of Li-like ions initially in the ground level
inclusion of the GBI has a significant effect on cross sectionsvas

A. Method of calculation
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1s>5259h05, (2.1 B=2 (2.6)

The GBI is the lowest order quantum electrodynamic corfor He-like ions and inner-shell ionization of Be-like ions
rection to the Coulomb interaction. The total interaction,initially in their ground levels, and
Coulomb plus generalized Breit, is given by

B=1/2 or 3/2 2.7
1 expli wr 1)
9(1.2)= ——(ar-ay)—— +(a'Vy) for inner-shell ionization of Li-like ions initially in the
12 ground level when the angular momentum of the final ion is
expliory)—1 0 or 1, respectively. _
X(ay- V) > , (2.2 It is convenient to express results in terms of the reduced
T2 cross sectiorQg(n/j,u) defined by

where ay and a, are the usual Dirac matrices aadis the ral
wave number of the exchanged virtual photon. The impor- QP(n/j)= 0 Qx(n/j,u), (2.9
tance of inclusion of the GBI was explored for the case of I(Ry 2

electron-impact excitation if9,10]. As discussed if6] and

in more detail in[2,3], in order to obtain an ionization com- wherel(Ry) is the ionization energy in rydbergs ands the
puter code from this relativistic distorted wave excitationimpact electron energy in threshold units

code one replaces the orbital representing the final excited

electron with that representing the ejected electron when cal- u=éell. 2.9
culating the scattering matrix elements. Care must be taken

to sum over the appropriate quantum numbers that arise froft single fit formula for Qr(n/j,u) is fairly accurate for
this orbital replacement, perform the necessary energy intdearly all values oZ andN as long as relativistic effects are
gration associated with the presence of two free electrons iAot important(see, for example, the results fi,2]). How-
the final state, and divide by a factor ofto account for the €Ver, for b ionization the GBI plUS other relativistic effects

different normalization between bound and free electrons. causeQg(1s,u) to increase quite rapidly wittZ. This is
especially true whem is large. Nevertheless we are able to

make quite simple and accurate fits@x(1s,u) using the
following procedure.

It was shown ir{3] that the cross section for ionization of  we takeZ=20 as the approximate value above which
ions of any complexity could be expressed in the form  relativistic effects become significant for the reduced cross
sections and first focus our attention on ions for whith

B. Form chosen for the fits to the cross sections

Q(U-U"= X B(U,SS;U",S'S)Q(n/j), =20. We return to the case &< 20, for which our tradi-
s,s tional methods prove quite accurate, near the end of this
$.8) subsection. As shown by test cases presented in Sec. Il the

(2.3 Qg(1s,u) for a givenZ have almost the same values, inde-
pendent of the number of bound electrddsvhen Z=20.

whereSand$S, are pure states contributing to initial leu@]  Therefore we need not be concerned witidependence and
while S” andS; are pure states contributing to final le¥#  choose to fit the hydrogenl=1 results in this regime. Our
with one less bound electron. TBecoefficients depend only  strategy is to define a new quantity that will be independent
on the ion properties such as mixing coefficients and angulasf Z for low impact energiegu near 2 and then to fit this
momenta and are rapidly computed. They are given by Eqgjuantity to a function ofu. To this end we define a new
(36)—(38) of [3], where Eq.(38) of [3] can be easily ex- quantity Qp(1s,u),
tended to more complex cases via E§9) of [11]. The
pseudohydrogenic cross sectiQ¥(n/j) in Eqg. (2.3 has Qi(1s,u)=Qg(1s,u)/F(Z), (2.10
exactly the same form as the cross section for electron-
impact ionization from subshel/’j in a hydrogenic ion whereF(Z) is chosen to mak€y(1s,u) independent oZ

except that for nonhydrogenic ions it is calculated usingfor low impact electron energies. The choice
bound and free orbitals determined using the appropriate

DFS potential of the actual ion in place of theZ/r poten- F(Z)=[140+(Z/20)%?)/141 (2.1
tial.
For the relatively simple cases of principal interest fer 1 accomplishes this independence to within 1%. ThenZor
ionization Eq.(2.3) reduces to the simple form =20, whereQ,=Qg, we fit the calculated results to the
form
Q(U—-U")=BQ(1s), (2.9
1 2 1\4
whereB has the values Qg(1s,u)= m Aln(u)+D| 1- m +Cul 1- G)
B=1 (2.5 4 1
o +H=+—=||1-=], (2.12
for hydrogenic ions, u? u
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where A=1.13 is the known constant that reproduces the [ T w
nonrelativistic Bethe high energy limit afi®l C, c,andd are

free fit parameters. Except for the term proportionaCiqg.

(2.12 has the same form as the expression used jrand
earlier work cited therein.

For Z>20 we first tried using Eq(2.12 with the coeffi- <
cientsA, D, ¢ andd fixed at the same values as fae= 20 o
and made best fits to obtain tiie parameter at each test 3
value. This led to fits that were accurate to within 2.4%. We <
then used these best valuesdfo expres<C as a function of ©
Z. The results, which preserve the accuracy to within 2.4%,
are

o

C(Z2)=[(Z—-20)/50.5]*11+C(Z=20), 20<Z<66 ‘
(2.13 0.3 ! w \ ‘ ‘ ‘ ‘ ‘ ‘

and
FIG. 1. lonization cross sections for the électron in hydro-
C(2)=[(Z—20)/53]>"+C(Z2=20), 67<Z<92. genic ions as a function of impact energy in threshold units. Results
(2.149 are given forZ=66, 79, and 92. The dashed lines represent results
calculated with only the Coulomb interaction included in the scat-
tering matrix elements. The solid lines represent results calculated
with both the Coulomb and Breit interactions.

Moreover, the simple formula
C(Z)=[(Z—20)/55]%%%+ C(Z=20), 20<Z<92

(2.195
This rise results when the exchange of a virtual photon, the

gives only slightly worse accuracy over the entire rangg.of process represented by the Breit interaction, becomes impor-

Although the Z=20 fit parameters obtained from the tant(see, for example, the discussion i®]). The end result
above procedure also give a fairly good representation fops considering a virtual photon exchange is the addition of
QR(ls,u) for _Z< 20, further numerical study _shows th_at fit- extra terms to the Bethe formula that grow with increasing
ting the He-like,Z=10 results to Eq(2.12 gives an im-  johact energy. In particular, the high energy behavior of the
proved overall accuracy for the lo& region. There is no cross section is predicted to have the fofr2] {In[8%(1
need to de_fine a quantity lik®@g for.Z< 20, or to expres€ —B?)]—B2+G}B% One can see from the data in Fig. 1 and
asa f“”C"F’F‘ oiZ, because there is essent!ally Zicdepen- ._Table I that the results which include the Breit interaction are
dence exhibited by the reduced cross sections in this reglori1ncreasing slightly faster than the Coulomb only data as the
energy andZ value increase. This behavior is an indication
that the cross sections are approaching the region in which

The newC term that was added to E¢2.12 helps to the relativistic rise occurs. Due to the numerical difficulties
represent better the rapid increase in the reduced cross sassociated with obtaining converged cross sections for ener-
tion with increasingZ value. However, a second reason for gies beyondi=6, the highest energy for which detailed cross
introducing this term is to account for the near-constant besections were calculated, we were not able to further explore
havior exhibited by cross sections at large energies for &is behavior. In any event we do not expect our fits to be

fixed value ofZ. A graphical example of this behavior is reliable foru appreciably greater than 6, which is sufficiently
provided in Fig. 1 to complement the explanation that fol-|arge for most practical applications.

lows. The figure contains hydrogenic results that were calcu-
lated with only the Coulomb interactioffCoulomb only”
curves and with the Coulomb plus Breit interactigiCou-
lomb + Breit” curves). For high Z ions the temperatures at whicls bnization
Normally one expects the ionization cross section to fallmay become important in a plasma could be sufficiently
off as Inu/u (the Bethe formulaat high energies, which is large as to require a relativistic treatment of the free electron
represented by the term proportionalkin Eq.(2.12. How-  energy distribution. Therefore we assume a relativistic Max-
ever, Bethe’s original formula was written in terms of veloci- wellian distribution function in determining rate coefficient
ties, an expression that holds for relativistic energies. A morgormulas. With this assumption the rate coefficient for ion-
appropriate form of the Bethe formula is given by A( ization by electron impact is given by
+G)/B?, wherep has the usual definitiog=v/c andGis a

C. High energy behavior for large Z

D. Formulas for rate coefficients

constant. This last expression approaches a constant value U N "
for very high energies due to the fact that the veloeitgf «(U=-U"T)= N, pone(p)vQ(U— U"dp
the impact electron is bounded by the speed of light. And, in

fact, that is precisely the behavior exhibited by the Coulomb 8me #

only results in Fig. 1. N.h3
In addition, there is a predicted “relativistic rise” in the €
cross section that occurs at sufficiently high impact energies. (2.19

f e—e(p)/kTp2vQ(U _ U//)d P,
Po
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whereN, is the electron densityp, is the momentum corre-
sponding to the threshold of the transition

€(Po) =1 (2.17

ande” is determined by imposing the usual density normal-

ization on the Maxwellian so that

8w (=
=3 h3fo e <(P/kTp2qp, (2.18
e
Making the change of variables
E
y=ma (2.19

whereE is the total energy(p)+mc?, we can rewrite Eq.
(2.18 as

3,M&KT o
e#=8W(mC) e f e—(ch/kT)y(yz_l)l/zydy_
1

Ngh?
(2.20

With the use of the expressions given in the appendpd.8f
this can be expressed as

3eaK
2 2(a),

8
Ne

mc

7 -
€ h

(2.21

wherea=mc?/kT andK,(a) is the modified Bessel function
of order 2. Fora>1 one can expani,(a) using Eq.(9.72
of [14] and substitute the results in EQ.21) to obtain

2BF(Z)e *

a(lsT)= ND
e
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in agreement with Eqs(35) and (36) of [15]. It is easily
shown(see, for exampld,15]) that
vdp=de (2.23

relativistically, as well as nonrelativistically. Also

2. R %e(Ry)

2
_(aolh)z[ } (229

where « is the fine structure constant. Now we apply Egs.
(2.23 and(2.29 together with Eqs(2.4), (2.8) and(2.9) to
Eq. (2.16 and obtain for the rate coefficient fos bbnization

a(ls;T)=

2Be # (=
—(I/kT)u
Neh J’]_ € QR(lSyu)u

2

x| 1+ %I(Ry)u du, (2.25

whereB has the simple values given by E@2.5—(2.7) for
the cases of interest here. Using E510—(2.12 one can
perform the integration over energy and obtain

e "+[A+b(c—2D+6C)]E(b)

+b(D—4C+d—C)E2(b)+b(C—d)E3(b)]

o2
+Z|(Ry)

+

where it is nearly always valid to use Q.22 in evaluating
e . In Eq.(2.26

(2.27

andE,(b) is thenth exponential integral defined by

we—bu

En(b):

du, (2.28

1 u"

D+3C 1A D-2C 2C
(C_ + )+B( +D— )+¥

b(D+d—c—4C)+% El(b)+b(C—d)E2(b)]

efb

, (2.26

with properties described ii4]. F(Z) is 1 forZ<20 and is
given by Eq.(2.11) for higherZ. Also for Z> 20 the quantity
C=C(2) is given by Egs(2.13 and(2.14), or alternatively
by Eq. (2.15. Although Eq.(2.26 looks quite lengthy it is
very rapidly calculated on a computer. Also fAx26 the
part proportional tax? will usually be negligible.

Ill. NUMERICAL RESULTS AND DISCUSSION

First an exploration was made of the range&Zdbr which
inclusion of the GBI is important in calculating the scattering
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TABLE I. Comparison of results forslionization of hydrogenic  values obtained with only the Coulomb interaction included.
ions. The cross sections below are given in units of’t@nt for  The lower entries are those obtained with inclusion of the
various impact electron energiesand nuclear charg&. Upper || interaction given by Eq(2.2) except that the imaginary
entries are_values calcu!ated with only the Coulomp interaction iNhart was omitted. Test calculations indicate that the maxi-
cluded, while lower entries are values calculated with the generaly, m effect of including the imaginary contribution is to in-
ized Breit interaction also included. ; .
crease the cross sections by only 1.6% for energies near

7 threshold wherz=92. Hence, the effect is essentially negli-
u 10 20 30 42 50 66 79 9o  gible and its omission saves roughly a factor of 2 in comput-
ing time. One sees that inclusion of the Breit interaction is
1125 2490 155.7 30.8 8.04 4.01 1.327 0.649 0.355very important for highZ, especially for high energies, but
312 833 4.27 1535 0.831 0.516 the effect steadily decreases withand ranges from only
1.250 4219 264.0 523 13.65 6.82 2259 1.106 0.6051.3% to 3.4% wherZz=30. ForZ=10 and 20 the effect is
53.1 1421 7.29 2.636 1.432 0.889 negligible and hence omitted.
1500 6374 399.3 79.2 20.74 10.37 3.453 1.695 0.926 In Table Il results for ions in the ground state with various
80.6 21.71 11.19 4.081 2.227 1.381 values ofN andZ are given in terms of reduced cross sec-
2.250 8624 5425 108.3 28.67 14.46 4.897 2.429 1.331tions Qg, obtained using Eqg2.4)—(2.8). Also the ioniza-
110.9 30.32 15.82 5.910 3.268 2.029 tion energied (Ry) are listed. For H-like and He-like ions
4.000 8453 538.9 109.9 30.03 1551 5.503 2.815 1.56%this is the level-level energy, but for Li-like and Be-like ions
113.1 32.16 17.28 6.823 3.894 2.450 it is the Is orbital binding energy. Exceptions to this pre-
6.000 7266 471.2 98.6 27.96 14.83 5512 2.903 1.647scCription occur aZ=10 for which we also give results for
102.0 30.31 16.80 7.009 4.126 2.639 the level-level energy in the cases that the final level is listed.
One sees that even fd=10, for which the effect of electron
correlation should be greatest, there is hardly any difference
matrix elements for dionization. The results for cross sec- between theQg values determined with these various ener-
tions calculated for hydrogenic ions withvalues of 10, 20, gies for a givenN value. Hence, for higheE the Qg for
30, 42, 50, 66, 79, and 92 and a range of impact enetgies Li-like and Be-like ions were determined using only the or-
threshold units are given in Table I. The upper entries ardital binding energy foil (Ry).

TABLE Il. Reduced cross sectior@g(1s,u) and ionization energieRy) for ions in the ground state
with variousN andZ values. Hergy[n] meansy X 10"

Final u=¢ll
Z N Level I(Ry) 1.125 1.250 1.500 2.250 4.000 6.000
10 1 1.00182] 0.2837 0.4807 0.7264 0.9828 0.9632 0.8280
2 8.77971] 0.2714 0.4580 0.7038 0.9682 0.9669 0.8396
3 8.437¢1] 0.2636  0.4557 0.6951 0.9694 0.9768  0.8495
3 (1s2s) 8.47931] 0.2647 0.4577 0.6982 0.9744 0.9819 0.8539
3 (1s2s) 8.40071] 0.2626 0.4539 0.6923 0.9650 0.9721 0.8455
4 8.08981] 0.2587 0.4434 0.6824 0.9600 0.9790 0.8574
4 (1s2%),, 8.079%1] 0.2584 0.4430 0.6816 0.9588 0.9777 0.8563
20 1 4,0202] 0.2861 0.4851 0.7337 0.9968 0.9901 0.8657
2 3.76882] 0.2793 0.4743 0.7217 0.9882 0.9896 0.8682
3 3.697%2] 0.2774 04722 0.7196 0.9886 0.9942 0.8733
4 3.62182] 0.2730 0.4679 0.7142 0.9862 0.9960 0.8766
23 1 5.326[2] 0.2873 0.4871 0.7369 1.0030 1.0017 0.8822
30 1 9.10682] 0.2943 0.5003 0.7602 1.0450 1.0659 0.9610
42 1 1.8063] 0.3091 0.5269 0.8051 1.1244 1.1927 1.1240
50 1 2.586@3] 0.3245 0.5545 0.8509 1.2030 1.3143 1.2779
2 2.51813] 0.3198 0.5469  0.8407 1.1904 1.3012 1.2642
3 2.50363] 0.3192 0.5461  0.8400 1.1907 1.3027 1.2655
4 2.482%3] 0.3173 0.5432 0.8361 1.1869 1.2995 1.2623
66 1 4.63783] 0.3751 0.6444 0.9976 1.4447 1.6678 1.7134
2 4.53893] 0.3702 0.6352  0.9850 1.4270 1.6468 1.6905
79 1 6.859{3] 0.4446 0.7660 1.1912 1.7477 2.0825 2.2067
2 6.73113] 0.4383 0.7554 1.1754 1.7248 2.0546 2.1764
92 1 9.7078] 0.5531 0.9522 1.4798 2.1740 2.6247 2.8273
2 9.54223] 0.5455 0.9391 1.4599 2.1451 2.5903 2.7942
3 9.54073] 0.5459 0.9394 1.4614 2.1481 2.5950 2.8024
4 9.49343] 0.5431 0.9394 1.4545 2.1389 25845 2.7890
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TABLE Ill. Calculated values(upper entries for Qg(1s,u) TABLE IV. Parameters for fits t@Qg by use of Eq.(2.12) for
=Qg(1s,u)/F(Z), whereF(Z) is given by Eq.(2.10. Lower en-  hydrogenic ions witiz=20 and heliumlike ions witlz=10.
tries are fits oQx(1s,u) to Eq.(2.12 with C=C(Z) given by Egs.
(2.13 and(2.14. Z N A D c d C

10 2 11300 3.82652 —0.80414 2.32431 0.14424
20 1 1.1300 3.70590 —0.28394 1.95270 0.20594

u=¢€ll
A 1.125 1.250 1.500 2.250 4.000 6.000

20 0.2861 0.4851 0.7337 0.9968 0.9901 0.8657
0.2865 0.4843 0.7333 0.9993 0.9875 0.8666
23 0.2862 0.4852 0.7340 0.9990 0.9977 0.8787
0.2865 0.4843 0.7338 1.0035 1.0013 0.8876
30 0.2889 0.4910 0.7461 1.0257 1.0462 0.9432
0.2865 0.4845 0.7353 1.0151 1.0399 0.9466

applying Eq.(2.12 to theZ=10, N=2 values forQg given
in Table Il are also displayed in Table IV.

In summary, both sets of fit parameters listed in Table IV
are to be used in E¢2.26 for rates, or Egs(2.4), (2.8), and
(2.10—(2.12 for cross sections. Thé=20 parameters are
also to be used for ions witZ>20, provided the above
4202891 04928 07531 10517 1.1156 1.0514 prescription for properly choosing theé coefficient is fol-

0.2865 0.4849  0.7382 10372  1.1133  1.0584 |5\ eq ‘More specifically, th€ coefficient should be deter-
50 02882 04924 07557 10684 11672 11349 ined from Eqs(2.13 and(2.14, or from Eq.(2.15. For
0.2865 04851 07402 1.0528 1.1650 1.1372 750 poth sets of parameters do a good job of fitting the
66 02849 04895 0.7578 1.0974 12668 1.3015 cross sections because tg are reasonably insensitive to
0.2866 0.4857 0.7444 1.0852 1.2728 1.3014 changes irZ in this region. From Table Il we find a maxi-
79 02835 04885 0.7596 1.1145 1.3280 1.4072 mym difference of 5.9% between the calcula®@d values
0.2866 0.4860 0.7466 1.1023 1.3297 1.3882 for Z:]_O, N=2 andZ:ZO’ N=1. Since each set of param-
92 0.2866 0.4935 0.7669 1.1266 1.3602 1.4652 eters reproduces the calculat®g values from which they
0.2867 0.4863 0.7487 1.1185 1.3832 1.4698 were determined to within 0.4%, we conclude that either set
will give good results foZ<20. However, to obtain the best
possible fits we recommend using the20, N=1 values for

For Z=20 one sees from the results in Table Il that the1e<z<20 and thez=10, N=2 values forZ<15. This
dependence o is weak. More specifically, a maximum choice should give moderately accurate results down to at-
difference of 4.8% occurs near threshold betweenNkel oms that have lost three or more electrons.
and 4 values foz=20. The differences in the reduced cross
sections for differenN values at higher energies a#dval- IV. SUMMARY
ues are progressively smaller. Hence, the results for H-like
ions with Z=20 have been chosen in determining the fit pa- A fully relativistic distorted wave method has been used
rameters for this regime. If the reader desires extremely higkP explore the range of conditions for which inclusion of the
accuracy in the cross sections for a number of bound e|e(GB| has a Significant effect on cross sections for ionization
trons other than one, a different set of fit parameters caffom the I subshell. A discussion of the resulting high en-
always be generated from the relevant values in Table IErgy behavior of the cross sections for lafjaas also been
using the procedure described in Sec. IIB. However, ougiven. Results are expressed conveniently in terms of re-
results generated from the hydrogenic cross sections shouficed cross sectior@z . Based on the calculated values for
be accurate enouglwithin about 5% for most purposes. @ large number of ions with ¥0Z<92, quite simple fits

Values ofQj(1s,u), which is obtained fronQg via Eqs.  have been made that allow one to readily calculatéom-
(2.10 and(2.12), are listed in Table Ill. Upper entries are the ization cross sections and rate coefficients for ions with one
calculated values o and the lower entries are the fits to to four bound electrons. These fits are V:.’:l|ld' for a large range
QL obtained as described in Sec. Il B. One sees Qfaiat of systems, from lowZ atoms a few times ionized up to those
energies close to threshold is nearly independeit dhe fit with Z=92. For most of this range the results are expected

parameters obtained from fitting the hydrogenic results fof© be qu[te accurate, within about 5.%’ but the accuracy wil
Qh=Qr WhenZ=20 are listed in Table IV. FaZ>20 these progressively lessen as one considers Bwnear-neutral

A . species.

same fit para_lmeters are u;ed to qalcu(aﬁewa Eq.(2.12 In future work it is planned to consider ionization from
except thatC is r.eplaced W|trf_:(Z)g|\{en .by Eqs(2.13) and the n=2 subshell, where the Breit interaction is also ex-
(2.14). The maximum errors in the fits listed in Table Il are pected to be important for high, but somewhat less so than
2.4% and 2.0%, occurring at=1.5 for Z=92 and 50, re- for 1s ionization
spectively. If insteadC(Z) given by Eqg.(2.195 is used, the '
maximum error is 2.5%, which occurs at6 for Z=30.

For Z<20 one sees that th@g in Table Il exhibit the ACKNOWLEDGMENTS
strongestN dependence, as expected. To help mitigate this The work was supported in part by the U.S. Department
dependence we chose to fit the results for He-like ions wittof Energy. The calculations were made on the NERSC su-
Z=10, rather than the hydrogenic results, as the best conpercomputers at Livermore, CA, and on the supercomputers
promise in the lowZ regime. The fit parameters obtained by at the Los Alamos National Laboratory.
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