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Approach to electron translation in low-energy atomic collisions
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Institut für Atom- und Moleku¨lphysik, Universita¨t Hannover, 30167 Hannover, Germany

A. K. Belyaev
Department of Theoretical Physics, Pedagogical University of Russia, 191186 St. Petersburg, Russia

~Received 31 July 1998!

We consider two conceptional problems that arise in the quantum-mechanical calculation of inelastic atomic
collisions. The definition of the coupling matrix elements, which govern the inelastic transitions, seems to be
ambiguous and the matrix elements can remain nonzero as the internuclear distance goes to infinity. We show
that there is no ambiguity in the coupled equations, which describe inelastic collisions, and we demonstrate that
the asymptotic couplings are required for a correct description of the asymptotic part of the scattering wave
function. We develop on this basis a straightforward and simple procedure to deal with the asymptotic cou-
plings in the framework of a full quantum approach and we apply it to a simple example of H1Na collisions.
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PACS number~s!: 34.10.1x, 34.50.Fa, 34.70.1e
n
oc
re
th
n
a
n
xe
n
te

ing
le
o
o

io
lec
a

tir

u

ely
in
te

ns
b

lec
nd
de
g

m

r
h,
of

to
o

ns
e a
de-
n-
ma-
is

m-
cal

or-
a

a
ef.
or-

are
ee,

ll
nd
-

, at
they
m

on.
inal
rdi-
tic
er-

are
I. INTRODUCTION

Inelastic collisions between low energy atoms~or atoms
and ions! govern the behavior of gaseous media in ma
cases of practical importance, e.g., laser media or nonl
thermodynamic equilibrium stellar atmospheres. It is the
fore highly desirable to possess a reliable method for
numerical calculation of the corresponding cross sectio
The appropriate procedure was formulated by Mott and M
sey @1#. The problem is attacked in two steps: The first o
deals with the motion of the electrons assuming space fi
nuclei and the second one with the motion of the nuclei a
the transitions between electronic states. The first s
~‘‘quantum chemical’’ treatment! yields the potential curves
of the collisional quasimolecule and a number of coupl
matrix elements. These data enter into a set of coup
channel equations, which have to be solved in the sec
step. This seems to be a straightforward procedure, but
encounters several problems in the practical applicat
First, the coupling matrix elements, which cause the e
tronic transitions, seem to be defined in an ambiguous m
ner. This has been discussed repeatedly@2,3# and is often
interpreted as a conceptional shortcoming of the en
method~see, for example, Ref.@2#, p. 112!. We will show in
Sec. II that there is actually no ambiguity at all. The arg
ments that we use for this point are not new~see Refs.@4,5#!,
but we work out this point in some detail because it is wid
unknown. A much more severe problem is that the coupl
matrix elements can happen to remain nonzero as the in
nuclear distance goes to infinity, suggesting inelastic tra
tions under the influence of a collision partner at an ar
trarily large distance. It is well known@6,7# that the
asymptotic couplings are required to correct for a neg
that is usually made implicitly: The nucleus of an atom a
its center of mass are assumed to coincide. Using this i
we develop a method to deal with the asymptotic couplin
in a full quantum approach~Sec. III! and we apply it to a
realistic example of H1Na collisions~Sec. IV!.

High-energy inelastic collisions are usually treated assu
PRA 591050-2947/99/59~2!/1309~8!/$15.00
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ing a classical trajectory for the motion of the nuclei@classi-
cal trajectory~CT! methods@2##. These methods encounte
similar problems. In the framework of the CT approac
there exists a well established remedy, the inclusion
‘‘electron translation factors’’~ETF’s! @2,5,7,8# into the ex-
pansion of the wave function. CT methods are limited
high ~typically keV! collision energies however. They are n
longer valid in the eV region, that is, for the applicatio
discussed above. Low-energy inelastic collisions requir
full quantum-mechanical treatment, which includes the
grees of freedom of the heavy particle motion. We will co
tinue to denote the undesired properties of the coupling
trix elements as ‘‘electron translation problems,’’ as
familiar from the CT approach. Unfortunately, in a quantu
mechanical description, ETF’s do not provide a practi
way to deal with the electron translation problem@5#. Delos
and Thorson@6,7# showed that the use of state-specific co
dinates in the expansion of the wave function provides
possibility to deal with the electron translation problem in
full quantum formulation; a summary can be found in R
@2#. More recent approaches rely on the use of special co
dinates. Solov’ev and Vinitsky@9# and Maceket al. @10#
proposed the use of hyperspherical coordinates, which
indeed frequently used in neighboring fields of research; s
for instance, Refs.@11,12#. Robert and Baudon@13# drew
attention to the suitability of Eckart coordinates. The fu
quantum approaches were reviewed by McCarroll a
Crothers@5#, who discuss their interrelation and their limita
tions. All methods are conceptionally rather complicated
least when compared to Masseys original concept, and
have not found wide application to atom-atom or ion-ato
scattering problems so far~for examples, see Refs.@14,15#!.
The present approach follows Masseys original formulati
We use the simplest adequate coordinates and the orig
form of the coupled equations. We use state-specific coo
nates only to find the correct interpretation of the asympto
wave function. It turns out that, in contrast to previous ass
tions @5#, it is possible to extract a meaningfulSmatrix from
the solution of the coupled equations, even when there
1309 ©1999 The American Physical Society
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1310 PRA 59J. GROSSER, T. MENZEL, AND A. K. BELYAEV
nonvanishing asymptotic couplings.
The goal of the present paper is to introduce the appro

in its simplest form. We consider therefore a special sit
tion: a heteronuclear system with only one active electr
we consider only radial couplings and we neglect a num
of small terms. Not all of these assumptions are necess
but we postpone the corresponding discussion until so
practical experience with the procedure will have be
gained.

II. COUPLED EQUATIONS

We consider the case of two nucleiA andB with masses
MA and MB and one electron~massme). It is of course
expected that a case with one active electron and a numb
inactive electrons, which accompany one or the other of
nuclei, is represented in a reasonable way by this approac
well. H1Na collisions, which are considered below as
example, can be treated in this way: The inner Na electr
up to the 2p shell are considered as inactive and the
semble of the Na nucleus and the ten inactive electron
treated as a single particle, and similarly for the H atom.
describe the system in Jacobi coordinates@7#. Let R be the
vector connecting the nuclei andr the coordinate of the ac
tive electron, measured from the center of mass of the nu
@Fig. 1~a!#. The Hamiltonian for the entire system is

H52
\2

2M

]2

]R2
2

\2

2m

]2

]r2
1Hint~r,R !. ~1!

The kinetic-energy term for the center of mass of the en
system can be separated off and has therefore been om

FIG. 1. ~a! Jacobi coordinates for the three-particle system u
in the present work.A andB are the nuclei ande denotes the active
electron.r is measured from the center of mass ofA andB. ~b! An
alternative coordinate system. This choice of coordinates lead
exactly the same set of coupled equations as that of~a!.
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M is the reduced mass of the nuclei andm that of the elec-
tron, formed with the sum of the nuclear masses. The d
nitions of the reduced masses are collected in Table I.Hint
contains all interactions; for simplicity, we consider
present only electrostatic interactions. We call

Hel52
\2

2m

]2

]r2
1Hint ~2!

the electronic Hamiltonian; it depends onR as a parameter
The wave function for the total system is expanded as

C~r,R !5(
j

Gj~R!f j~r ,R!. ~3!

Thef j form a set of suitable electronic basis functions; th
are allowed to vary withR. After multiplying the stationary
Schrödinger equation (H2E)C50 by fk* and integrating
over the electron coordinate, one obtains a set of coup
channel equations for the functionsGj ,

F2
\2

2M

d2

dR2
1Vj~R!2EGGj

52(
kÞ j

K f jUHel2
\2

2M

]2

]R2UfkL Gk

1
\2

M (
k

K f jU ]

]RUfkL dGk

dR
. ~4!

The matrix elements denote integrals over the electron c
dinate. They are functions ofR, in general.E is the total
energy andVj are the potentials,

Vj~R!5K f jUHel2
\2

2M

]2

]R2Uf j L . ~5!

It has often been argued that the matrix eleme
^f j u]/]Rufk& and in particular the radial componen
^f j u]/]Rufk& depend on the choice of the origin for th
electron coordinates and therefore the coupled equations
ambiguous. The first part of this statement is indeed true;
second part is wrong.

We consider the coordinatesr 8 andR8 shown in Fig. 1~b!
as an alternative. It is easily shown that

d

to
veling

TABLE I. Definitions of the reduced masses and the scaling factorsg j . The channel specific massesmj

andM j are required only in the region of large atomic distances. Their values are different for states tra
with nucleusA or B. The differencesmj2m andM j2M are small throughout.

m M mj M j g j

Electron travels
with nucleusA

meMA

me1MA

(MA1me)MB

me1MA1MB
2

MB

MA1MB

me(MA1MB)
me1MA1MB

MAMB

MA1MBElectron travels
with nucleusB

meMB

me1MB

(MB1me)MA

me1MA1MB

MA

MA1MB
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PRA 59 1311APPROACH TO ELECTRON TRANSLATION IN LOW- . . .
K f jU ]

]RUfkL 5K f jU ]

]R8
UfkL

1
MB

MA1MB
K f jU ]

]r 8
UfkL . ~6!

This is embarrassing becauseR5R8, but the behavior is
normal for partial derivatives. The matrix elements of]/]R
indeed change their values when another choice is made
the origin of the electron coordinates~for numerical ex-
amples see, e.g., Ref.@3#!.

However, in the present context, the choice for the ori
of the electron coordinates was made before writing do
Eq. ~1!. The differentiations in Eq.~1! as well as in the
matrix elements in question are partial derivatives, wh
change their meaning when another set of coordinate
used. Therefore, as long as Eq.~4! is derived from Eq.~1!,
the use of coordinates other thanr andR for the calculation
of the matrix elements is prohibited. We consider, therefo
the Hamiltonian in the new coordinates. One finds

H52
\2

2M

]2

]R82
2S \2

2m
1

\2MB

2~MA1MB!MA
D ]2

]r 82

2
\2

MA

]2

]R8]r 8
1Hint . ~7!

When the coupled equations are rederived, using the
form of the Hamiltonian together with the old basis fun
tions, one obtains a result that differs from Eq.~4! in two
ways: ~i! The coupling matrix elements must be calculat
with the primed coordinates and~ii ! there appear a number o
new terms, due to the new terms in the Hamiltonian. T
detailed calculation is straightforward; it turns out that t
corrections cancel each other completely, such that
coupled equations obtained with unprimed and primed co
dinates are completely identical. For instance, the matrix
ements of]/]R are different with primed and unprimed co
ordinates, as expressed by Eq.~6!. This difference is
compensated for, however, by an additional term, wh
arises from the mixed differentiation term in Eq.~7!. The
same sort of compensation occurs for the double differen
tion matrix element in the coupled equations. The argum
is easily generalized: Any origin of the electron coordina
on the internuclear axis leads to the same coupled equa
@4#. We conclude that there is no ambiguity for the coupli
terms to be used in the coupled equations. When one use
form of Eq. ~4!, all derivative matrix elements have to b
calculated with the electron coordinates measured from
center of mass of the nuclei. It should be emphasized
this conclusion is in contrast to the common usage@16#. One
often tries to avoid nonzero asymptotic couplings. This
vors in many cases a coordinate origin at one of the nucle
in Fig. 1~b!. The use of coupling matrix elements in Eq.~4!,
which are calculated with such coordinates, is wrong ho
ever.

We use the coordinatesr andR in what follows and we
introduce polar coordinatesR,Q, andF for R. We assume
for
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that only electronicS statesf j need to be considered. Th
wave function then takes the form@17#

C~r,R !5YLML
~Q,F!(

j

F j~R!

R
f j~r ,R!. ~8!

YLML
are the spherical harmonics andL and ML are the

quantum numbers for the angular momentum. The ra
functionsF j have to obey a set of equations, which can
derived from Eq.~4!,

F2
\2

2M

d2

dR2
1Vj~R!1

\2

2M

L~L11!

R2
2EGF j

52(
kÞ j

K f jUHel2
\2

2M

]2

]R2UfkL Fk

1
\2

M (
k

K f jU ]

]RUfkL R
d

dR

Fk

R
. ~9!

The angular components of the matrix eleme
^f j u]/]Rufk& do not appear anymore because they do
coupleS states with each other. The matrix elements in E
~9! depend onR, but not on the angular coordinates.Vj (R) is
the same quantityVj (R) as before; it depends on the distan
R alone now and is written correspondingly. Equations~8!
and ~9! are the basis of the following section.

III. ASYMPTOTIC COUPLINGS, ASYMPTOTIC WAVE
FUNCTION, AND THE S MATRIX

Equations~8! and ~9! seem to have a straightforward in
terpretation. When one uses, forR→`, atomic eigenstates
for the electronic basis statesf j , the single terms in Eq.~8!
are expected to represent, at largeR, the free motion of the
atoms in one or the other of their eigenstates. Only one of
terms should contain an incoming wave. Outgoing waves
the other terms occur because the right-hand side in Eq.~9! is
nonzero. They represent inelastic transitions. This interpr
tion is not correct however.

Consider a basis functionf j , which becomes an atomi
eigenfunction at large internuclear distance. It travels w
one of the nuclei without changing its appearance; it the
fore has the form

f j5 f j~x,y,z2g jR! as R→`. ~10!

g j is a channel-specific scaling factor; see Table I.x, y, and
z are the body-fixed components of the electron coordinar
such that thez andR directions coincide. It is easily show
that under these conditions

K f jU ]

]RUfkL→2gkK f jU ]

]zUfkL as R→`. ~11!

The terms on the right-hand side are not zero in gene
Therefore, the coupling matrix elements^f j u]/]Rufk& can
remain nonzero asR→`; see Fig. 3 for examples. Togethe
with the tentative interpretation given above, this would le
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1312 PRA 59J. GROSSER, T. MENZEL, AND A. K. BELYAEV
to the conclusion that electronic transitions occur at a
trarily large distanceR. As this cannot be true, the tentativ
interpretation must be wrong.

Equation~11! shows that the derivative coupling matr
elements in Eq.~9! do not go to zero at largeR in general. It
is therefore necessary to discuss the asymptotic behavio
the wave functions more accurately. We request that the
sis statesf j become atomic eigenstates at largeR,

Hel
atf j5Vjf j for R→`. ~12!

The atomic HamiltonianHel
at is similar toHel in Eq. ~2!, but

it has the atomic reduced massmj in the kinetic-energy term
in place ofm. mj is different for atomic states travelin
with nucleusA or B; for the definition ofmj see Table I. The
atomic eigenfunctions have the form of Eq.~10!. This can be
used to show that

Hel
atf j5FHel2g j

2 \2

2M

]2

]r2G f j for R→` ~13!

and

^fkuHel
atuf j&5K fkUHel2

\2

2M

]2

]R2Uf j L for R→`.

~14!

The energiesVj defined in Eq.~12! therefore coincide ex-
actly with Vj (`) from Eq.~5!. Similarly, the first sum on the
right-hand side of Eq.~9! is identical to zero at largeR. It
will turn out, however, that the distinction betweenHel and
Hel

at is without much importance.
Next we consider the free motion of the atoms in atom

eigenstates. This can be written for largeR as incoming or
outgoing spherical waves of the form

C j
65YLML

~Q j ,F j !
exp~6 iK jRj !

Rj
f j for R→`.

~15!

Rj , Q j , andF j are polar coordinates for the vector

Rj5R1g j

mj

M
~r2g jR!, ~16!

which connects the center of mass of the atom with the
nucleus.Rj is a channel-specific coordinate, which is diffe
ent when the electron travels withA or B, respectively. The
wave numbersK j are given by

K j5A~2M j /\2!@E2Vj~`!#. ~17!

The channel-specific reduced massesmj andM j are listed in
Table I.

The C j
6 in Eq. ~15! are very similar to a single term in

Eq. ~8!. We need some order of magnitude consideration
order to make this statement more precise. We conside
particular large distances, where the basis functions have
form of Eq. ~10!; the operation]/]R then multiplies the
basis function typically by a factor 1/a, wherea is the typical
i-

of
a-

c

e

in
in
he

dimension of the atom.1 The diagonal and off-diagonal ma
trix elements ofHel have the order of magnitude\2k2/2m
'\2/2ma2, with k the typical electron wave number. Th
atomic kinetic energy can be estimated as\2K2/2M , with K
the typical atomic wave number. We consider here collis
energies, which have the same order of magnitude as
electron energy.K/k is therefore of the order ofAM /m. The
terms on the left-hand side of Eq.~9! all have the same orde
of magnitude (\2/2ma2)F j . The coupling terms withHel on
the right-hand side are of the order of (\2/2ma2)Fk . The
terms with the]/]R matrix elements are smaller by a fact
of the order ofAm/M . The terms with the matrix element
of ]2/]R2 and the double derivative terms in the definition
the potentials@Eq. ~5!# are smaller by a factor of the order o
m/M than the leading terms. The difference betweenR and
Rj is of the order of (m/M )a; see Eq.~16!. Upon multipli-
cation withK j , this contributes a correction of the order
Am/M in the exponent in Eq.~15!. We consider Eq.~15! for
R→` in an approximation, in which only terms of the firs
order inAm/M are retained. It turns out that out of the di
ferences between Eq.~15! and the single terms in Eq.~8!,
only the appearance ofRj in place ofR in the exponential in
Eq. ~15! contributes in this order. Expanding the exponent
correspondingly, one obtains

C j
65YLML

~Q,F!
exp~6 iK jR!

R

3F16 iK jg j

m

M
~z2g jR!Gf j for R→`.

~18!

After expanding the product (z2g jR)f j in terms of thefk ,
we arrive at

C j
65YLML

~Q,F!(
k

exp~6 iK jR!

R
tk j

6fk for R→`

~19!

with R-independent matrices

tk j
65dk j6 iK jg j

m

M
^fkuz2g jRuf j&uR→` . ~20!

Thef j for R→` are eigenstates of the atomic parity ope
tor in general. The diagonal matrix elements ofz2g jR are
therefore zero. Using the commutation relation@Hel ,z#
52(\2/m)(]/]z), it can further be shown that the off diag
onal elements oftk j

6 are related, to the first order inAm/M ,
to the asymptotic values of the coupling matrix eleme
@Eq. ~11!#

^fku]/]zuf j&5~m/\2!~Vj2Vk!^fkuz

2g jRuf j& for R→`. ~21!

1The present order of magnitude discussion applies to all dista
R provided this estimate is valid. It may be necessary to replace
adiabatic basis by another~e.g., diabatic! one, when this is desired
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PRA 59 1313APPROACH TO ELECTRON TRANSLATION IN LOW- . . .
TheC j
6 in Eq. ~19! continue to represent the free motion

the atoms in thej th atomic eigenstate. They are now writte
in the form of the original expansion~8! and they have there
fore an unexpected appearance: The sum not only consis
a leading term with the statef j , but it contains additiona
terms with other electronic states, which are smaller typica
by a factorKa(m/M )'Am/M . The additional terms are ob
viously required to correct for the use of the inadequate
ordinates.

In the general case, the wave function at largeR is a
superposition of theC j

6 ,

C5(
j

K j
21/2@aj

1C j
11aj

2C j
2#. ~22!

The factorK j
21/2 has been introduced because in this way

uaj
6u2 represent the incoming and outgoing currents in

different atomic states. WritingC in the form of Eq.~8!, the
radial functions at largeR are found to be

F j5(
k

Kk
21/2@ t jk

1ak
1exp~ iK kR!1t jk

2ak
2exp~2 iK kR!#

for R→`. ~23!

One shows easily that theseF j satisfy the coupled channe
equations~9! for largeR to the first order inAm/M . As this
is true for any arbitrary choice of theaj

6 , Eq. ~23! is the
general form for the asymptotic behavior of the solutio
Note that we refer here to the coupled-channel equation
the correct form, which possess nonvanishing asympt
couplings.

To summarize so far, Eq.~23! represents the asymptot
form for the solutions of the coupled equations. The cor
sponding wave function can be written in the form of E
~22!, where every single term represents the free motion
an atom in an atomic eigenstate. The factorsaj

6 represent the
probability amplitudes to find the atoms in the correspond
states. Equation~23! therefore constitutes the relation b
tween the solutionsF j of the coupled-channel equations a
the true probability amplitudes. The remaining task is to fi
the aj

6 once the coupled equations have been solved.
Suppose that the coupled-channel equations~9! have been

solved between small distances and a fixed large dista
R0 . R0 should be so large that the coupled-channel eq
tions have their asymptotic form atR0 and hence the radia
functions have the form of Eq.~23!. Of course, the solutions
have to obey the usual boundary conditionsFk→0 as R
→0. All solutions with this property are characterized by
matrix Rjk that relates the values and the derivatives of
radial functions at the upper integration limit,

F j5(
k

Rjk

dFk

dR
at R0 . ~24!

The R matrix forms a convenient and well established w
@18–20# to express all properties of the solutionsF j (R),
which are needed for their continuation to the asympto
regionR.R0 . We describe in the Appendix how we obta
theRjk from a numerical treatment of the coupled equatio
of
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Upon a comparison of Eq.~24! with Eq. ~23!, one finds that
the amplitudesa1 anda2 are related by anS matrix,

aj
15~21!L11(

k
Sjkak

2 , ~25!

which can be expressed by theR matrix; the factor
(21)L11 appears here only to match the usual definition
the S matrix. For better readability, the relation is given
matrix notation.RI , SI , and tI6 represent the correspondin
matrices andKI , KI 61/2, and exp(2iKI R) stand for diagonal
matrices with elementsK j , K j

61/2, and exp(2iK jR):

SI 5~21!Lexp~2 iKI R0!KI 1/2~ tI12 iRI tI1KI !21

3~ tI21 iRI tI2KI !KI 21/2exp~2 iKI R0!. ~26!

Equation~26! is our central result. Theaj
6 are the correct

incoming and outgoing amplitudes. They are related to e
other by theSmatrix. Equation~26! shows how the correctS
matrix is obtained from the solution of the coupled equ
tions, which are expressed by the matrixRI . When one re-
places thet matrices by a unit matrix~this means that one
disregards the difference between the atomic and nuclea
ordinates!, Eq. ~26! reduces to the relation

SI 5~21!Lexp~2 iKI R0!KI 1/2~1I 2 iRI KI !21

3~1I 1 i1I KI !KI 21/2exp~2 iKI R0!, ~27!

where 1I is the unit matrix. This expression forSI is valid in
the absence of asymptotic couplings, that is, it is the nor
relation between theR andS matrices. A comparison of the
two expressions forSI shows that the present procedure
only slightly more complicated than the normal procedure
obtain theS from theR matrix.

Equation~26! is not convenient for numerical application
because in order to findRI one has to integrate the couple
equations from zero to a very large distance. This is es
cially due to the presence of the centrifugal term in Eq.~9!,
which can be neglected only at very large distance. Supp
that there exists a smaller distanceR1 beyond which the
electronic states and the coupling matrix elements are g
with sufficient accuracy by their limiting forms as express
by Eqs.~12! and~11!. Neglecting again terms of the order o
m/M , a WKB approximation to the solution of Eq.~9! at
R.R1 is

F j5(
k

kk
21/2@t jk

1ak
1exp$ iFk~R!%1t jk

2ak
2exp$2 iFk~R!%#,

~28!

with

tk j
65dk j6 ik jg j

m

M
^fkuz2g jRuf j&,

F j~R!52E
R

`

~k j2K j !dR81K jR,

and
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1314 PRA 59J. GROSSER, T. MENZEL, AND A. K. BELYAEV
k j~R!5A~2M j /\2!@E2Vj
e f f~R!#.

Vj
e f f is the potential plus the centrifugal potential. Equati

~28! is a good approximation as long as the conditions

dk j /dR!k j
2 , j 51, . . . , ~29!

hold; these are the usual WKB conditions@21#. The WKB
approximation holds under most conditions of practical
terest and Eq.~28! is expected to be practically as exact f
R.R1 as Eq.~23! is for R→`. As R→`, Eq.~28! becomes
identical to Eq.~23! with the same coefficientsaj

6 . It can
therefore be used to calculate theSmatrix from anR matrix,
which relates theF j and thedFk /dR as before, but at a
much smaller distanceR1 . One finds

SI 5~21!Lexp~2 iFI !kI 1/2~tI 12 iRI tI 1kI !21

3~tI 21 iRI tI 2kI !kI 21/2exp~2 iFI !. ~30!

exp(2iFI ), kI , andkI 61/2 are diagonal matrices with elemen
exp@2iFj(R1)#, kj(R1), andk j (R1)61/2 and the matricestI 6

have the elementstk j
6(R1).

IV. A NUMERICAL EXAMPLE

We performed numerical calculations for the inelas
process

H~1s!1Na~3s!→H~1s!1Na~3p!.

The process is possible with collision pairs forming both
singlet and a triplet collisional quasimolecule. In the sing
system, one basic mechanism is a radial coupling assoc
with the pseudocrossing of two potential curves@22#. The
three lowest adiabatic1S potentials and the correspondin
]/]R coupling matrix elements are shown in Figs. 2 and
The double derivative matrix elements are obtained on
basis of a reasonable model; the details@22# are without im-
portance here. Note the nonzero asymptotes of the si
derivative matrix elements, which occur because the elec
coordinate was measured from the nuclear center of m
according to the conclusions at the end of Sec. II. The th
state coupled system was solved numerically fromR50 to

FIG. 2. Three lowest1S potential curves of the NaH system th
we use for our model calculation.
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an upper integration limitR1 varying between 17 and 40 a.u
The numerical result was expressed by theR matrix. TheS
matrix was then calculated from Eq.~30!. Figure 4 demon-
strates what happens when we vary the upper integra
limit R1 . When theS matrix is calculated correctly~thick
lines!, the result is practically independent ofR1 , as ex-
pected for a physically meaningful result, providedR1 is
large enough. The variation observed forR1 values below 20
a.u. arise because here the]/]R couplings begin to deviate
from their asymptotic values. An alternative is to use E
~30! with tI 6 replaced by the unit matrix. This gives a rel
tion similar to Eq.~27!; the procedure corresponds to a sit
ation in which the asymptotic couplings are included in t
numerical part of the calculation from smallR to R1 but are
omitted atR.R1 . Results computed in this way show osc

FIG. 3. Radial coupling matrix elementŝ11Su]/]Ru21S&
~thick solid line!, ^11Su]/]Ru31S& ~thin solid line!, and
^21Su]/]Ru31S& ~dashed line! for the HNa system. Note that two
of the coupling matrix elements have nonzero asymptotes.

FIG. 4. Squares of theS-matrix elementsS3s,3p andS3s,4s , cal-
culated with a variable upper integration limitR1 (E550 eV, L
5160). TheuSu2 correspond to the outgoing currents in the excit
channels H1Na(3p) or H1Na(4s), populated from the initial state
H1Na(3s). Thick lines, results obtained with the correct formu
~30!, thin lines, results obtained withtI 651I , that is, without an
electron translation correction.
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lations as a function ofR1 . They represent electronic trans
tions between ground and excited states at large internuc
distance. However, this is obviously only due to the ina
equate way in whichSI is obtained fromRI . Transitions at
large distances do not appear with the correct formula~30!.
The results in Fig. 4 were obtained for a collision energy
50 eV andL5160. Other energies between 5 and 500
and other angular momenta were used as well; the gen
behavior remains the same.

V. DISCUSSION

The present work has two main results.
~i! We emphasize that there is an unambiguous defini

for the coupling matrix elements that appear in the coupl
channel equations. The definition is different from what h
been used in many cases in the past. However, when we
for HNa coupling matrix elements in Eq.~9!, which are cal-
culated with the electron coordinates measured from the
atom, the numerical results differ only slightly from those
the correct treatment. We feel that in many cases the rigo
treatment will not lead to considerable changes.

~ii ! The correct coupling matrix elements remain nonz
for large internuclear distance in general. We show how
deal with the asymptotic couplings in the frame of a f
quantum-mechanical treatment. The present approach m
use of a number of approximations or simplifications.

~a! The method is of practical use only for a finite syste
of basis statesf j . Correspondingly, the effects of the ele
tron translation are treated here in terms of a truncated b
In the numerical example, only one additional state Na(3p)
is used for the corresponding correction of the Na(3s) state.
The present approach is certainly correct in the limit o
complete basis. In order to estimate how many expans
terms are required for a good approximation, we consi
once more Eq.~18!. The coordinate correction occurs by th
expansion of the product (z2g jR)f j in terms of the func-
tions fk . The expansion coefficients are the dipole mat
elementŝ fku(z2g jR)uf j&, which are well known for many
cases. For instance, the dipole matrix element between
3s and 4p states in Na is by about an order of magnitu
smaller than that between 3s and 3p, indicating that the
approach of Sec. IV might already be sufficient to achiev
reasonable description of electron translation in the 3s state.
One might argue that electron translation effects are cove
only in the asymptotic region by the present approach. T
is not true because a sufficiently large basis will include
effects of this type and like for the asymptotic region, o
can argue that a small number of basis states might be
ficient.

~b! There are situations in which the use of a finite basi
not adequate. In particular, ionization processes canno
treated rigorously in such a way and they are therefore
side the range of applicability of the present approach. C
lisions that involve a negative ion in the entrance or the e
channel provide another example. Negative ions possess
ally only one bound state. The present approach provid
way to calculate a meaningfulS matrix in these cases, bu
when one wishes to discuss effects explicitly, which are d
to the translation of the bound electron, it would be nec
sary to include continuum states in the expansion~19!.
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~c! The results are correct only to the first order inAm/M ;
it is remarkable to what accuracy we obtain constant val
for uSjku2 in Fig. 4 already on the basis of this approximatio
There remain indeed slight variations, which are too sm
however, to be visible in the figure. For instance, the up
thick line in Fig. 4 shows residual oscillations with amp
tude 531025, superimposed on the average value of ab
0.06. It appears that the neglect of terms of orderm/M is
very well justified.

~d! We disregard rotational coupling. This is legitima
for a model calculation. It is well known, however, that
the framework of CT approaches, electron translation effe
concern not only radial but also rotational couplings@23#.
There are long-range contributions in the rotational coupl
terms, which have the same origin as the asymptotic ra
couplings; in contrast to the leading radial terms, they
crease asR21 for R→`. The terms occur also in the frame
work of the present full quantum treatment. We are worki
on a corresponding extension of the general theory.

~e! We have been considering the case of a heteronuc
system with only one active electron.

The present method is applicable to collisions without a
with charge exchange. The data that are required to set up
coupled equations and to calculate theS matrix are the ma-
trix elements of the electronic Hamiltonian~in the adiabatic
basis only the potentialsVj ) and the coupling matrix ele
ments^fku]/]Ruf j&. They can be obtained from standa
quantum chemical programs; see, e.g., Ref.@24#; care must
be taken to calculate the single derivative coupling ma
elements with the correct origin of the electron coordinate
discussed at the end of Sec. II. Note that thet-matrix ele-
ments, which are required for the correct computation of
Smatrix, can be obtained from these data. It is not neces
to calculate any extra quantities to take account of elect
translation. The definition of the potentials~5! and the
asymptotic condition for the basis functions~12! are unusual.
They were chosen because in this way the potentials
wave functions converge to the exact atomic limits asR
→`. However, compared to normal usage, the correcti
are of the order ofm/M and are therefore unimportant in th
framework of the present theory. In fact, standard quant
chemical programs use an electronic Hamiltonian that
the uncorrected electron mass in the kinetic-energy te
This is different from both ourHel and Hel

at . Again, the
difference is negligible. There is no objection against the
of adiabatic potentials and single derivative coupling mat
elements in Eq.~9!, which have been calculated by standa
quantum chemical programs. The error that one makes in
potentials in this way has a typical magnitude of (m/M )Vj ,
that is, 1 meV or less; this is much less than the typi
uncertainty of quantum chemical data. The double deriva
matrix elements in the coupled equations are usually not p
vided by quantum chemical programs. The correspond
terms in the coupled equations are of the order of (m/M )Vj
as well~this is true as long as a slowly varying basis is us
see footnote 1!. They should not be neglected entirely b
cause they are required for particle conservation@22#, but a
reasonable guess will be sufficient in many cases. Simila
the expressionR(d/dR)(Fk /R) in the single derivative cou-
pling term in Eq.~9! can usually be replaced bydFk /dR,
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which is more familiar; again the difference is of the order
(m/M )Vj only.

We consider our present results as a promising way
take care of electron translation in the frame of a full qua
tum approach. Additional experience and the extension
rotational coupling effects, homonuclear collision pairs, a
many electron systems are required before a final judgem
can be given.
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APPENDIX: THE R MATRIX

A truncated system ofN coupled-channel equations po
sesses 2N linearly independent solutions. Normally, the
exist N independent regular solutionsF j

(n)(R) ( j ,n
51, . . . ,N), which obey the correct boundary condition
small R,

F j
~n!~R!→0 as R→0. ~A1!

j is the channel number andn is the number of the solution
Assume that these solutions are known at a distanceR0 and
denote
s.

. A

e

f

to
-
to
d
nt

-

Pjn5F j
~n!~R0!, Qjn5

dFj
~n!

dR
U

R5R0

. ~A2!

ProvidedQ21 exists, it easily shown that Eq.~24! holds for
every regular solution of the coupled equations~that is, every
linear combination of theF j

(n)) at R0 , with

RI 5PI QI
21. ~A3!

Under the present conditions,N regular solutions are easil
obtained by numerical computation. We use Eq.~A3! to
compute theR matrix from the numerical solutions.

An explicit expression forRI was derived by Wigner and
Eisenbud@18,25,26#, which is much more complicated tha
the present usage. We use theR matrix as a very convenien
way to match the numerical solution at the boundaryR0 to
the analytic solution atR.R0 . TheR matrix in this sense is
nothing but the generalization of the inverse of the logari
mic derivative of the wave function to the many-chann
case. This use of theR matrix has become familiar in nu
merical applications in atomic collision physics@19,20#.
There are in fact different definitions of theR matrix in the
literature. Except for an extra minus sign, the present us
is that of Ref.@20#.
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