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Approach to electron translation in low-energy atomic collisions
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We consider two conceptional problems that arise in the quantum-mechanical calculation of inelastic atomic
collisions. The definition of the coupling matrix elements, which govern the inelastic transitions, seems to be
ambiguous and the matrix elements can remain nonzero as the internuclear distance goes to infinity. We show
that there is no ambiguity in the coupled equations, which describe inelastic collisions, and we demonstrate that
the asymptotic couplings are required for a correct description of the asymptotic part of the scattering wave
function. We develop on this basis a straightforward and simple procedure to deal with the asymptotic cou-
plings in the framework of a full quantum approach and we apply it to a simple example- Nfttollisions.
[S1050-294{@9)07402-9

PACS numbds): 34.10+X, 34.50.Fa, 34.7G.e

I. INTRODUCTION ing a classical trajectory for the motion of the nudlelassi-
cal trajectory(CT) methods[2]]. These methods encounter
Inelastic collisions between low energy atoas atoms  similar problems. In the framework of the CT approach,
and iong govern the behavior of gaseous media in manythere exists a well established remedy, the inclusion of
cases of practical importance, e.g., laser media or nonloc&klectron translation factors(ETF’s) [2,5,7,§ into the ex-
thermodynamic equilibrium stellar atmospheres. It is therepansion of the wave function. CT methods are limited to
fore highly desirable to possess a reliable method for thdigh (typically keV) collision energies however. They are no
numerical calculation of the corresponding cross sectiondonger valid in the eV region, that is, for the applications
The appropriate procedure was formulated by Mott and Masdiscussed above. Low-energy inelastic collisions require a
sey[1]. The problem is attacked in two steps: The first onefull quantum-mechanical treatment, which includes the de-
deals with the motion of the electrons assuming space fixedrees of freedom of the heavy particle motion. We will con-
nuclei and the second one with the motion of the nuclei andinue to denote the undesired properties of the coupling ma-
the transitions between electronic states. The first stefrix elements as “electron translation problems,” as is
(*quantum chemical” treatmentyields the potential curves familiar from the CT approach. Unfortunately, in a quantum-
of the collisional quasimolecule and a number of couplingmechanical description, ETF’'s do not provide a practical
matrix elements. These data enter into a set of coupledway to deal with the electron translation probl¢s}. Delos
channel equations, which have to be solved in the seconand Thorsori6,7] showed that the use of state-specific coor-
step. This seems to be a straightforward procedure, but orginates in the expansion of the wave function provides a
encounters several problems in the practical applicationpossibility to deal with the electron translation problem in a
First, the coupling matrix elements, which cause the elecfull quantum formulation; a summary can be found in Ref.
tronic transitions, seem to be defined in an ambiguous marj2]. More recent approaches rely on the use of special coor-
ner. This has been discussed repeat¢dl$] and is often dinates. Solov’ev and Vinitsky9] and Maceket al. [10]
interpreted as a conceptional shortcoming of the entirgproposed the use of hyperspherical coordinates, which are
method(see, for example, Ref2], p. 119. We will show in  indeed frequently used in neighboring fields of research; see,
Sec. Il that there is actually no ambiguity at all. The argu-for instance, Refs[11,12. Robert and Baudofl3] drew
ments that we use for this point are not n@ee Refs[4,5]), attention to the suitability of Eckart coordinates. The full
but we work out this point in some detail because it is widelyquantum approaches were reviewed by McCarroll and
unknown. A much more severe problem is that the couplingCrotherg[5], who discuss their interrelation and their limita-
matrix elements can happen to remain nonzero as the intetions. All methods are conceptionally rather complicated, at
nuclear distance goes to infinity, suggesting inelastic transiteast when compared to Masseys original concept, and they
tions under the influence of a collision partner at an arbi-have not found wide application to atom-atom or ion-atom
trarily large distance. It is well knowr{6,7] that the scattering problems so féfor examples, see Refgl4,15).
asymptotic couplings are required to correct for a negleche present approach follows Masseys original formulation.
that is usually made implicitly: The nucleus of an atom andWe use the simplest adequate coordinates and the original
its center of mass are assumed to coincide. Using this ide&rm of the coupled equations. We use state-specific coordi-
we develop a method to deal with the asymptotic couplingsates only to find the correct interpretation of the asymptotic
in a full quantum approackSec. Ill) and we apply it to a wave function. It turns out that, in contrast to previous asser-
realistic example of H-Na collisions(Sec. V). tions[5], it is possible to extract a meaningf@imatrix from
High-energy inelastic collisions are usually treated assumthe solution of the coupled equations, even when there are
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(a) (b) M is the reduced mass of the nuclei amdhat of the elec-
tron, formed with the sum of the nuclear masses. The defi-
nitions of the reduced masses are collected in Tabl, ],
contains all interactions; for simplicity, we consider at
present only electrostatic interactions. We call

h? 9
=———+H.
el 2m &I’z Hlnt

@

A

the electronic Hamiltonian; it depends &as a parameter.

FIG. 1. (a) Jacobi coordinates for the three-particle system usedrhe wave function for the total system is expanded as
in the present workA andB are the nuclei and denotes the active

electron.r is measured from the center of massfofindB. (b) An
alternative coordinate system. This choice of coordinates leads to \li(r'R)ZE GJ-(R)tbj(r,R). 3
exactly the same set of coupled equations as théa)of i

nonvanishing asymptotic couplings. The ¢; form a set of suitable electronic basis functions; they
The goal of the present paper is to introduce the approacére allowed to vary witlR. After multiplying the stationary

in its simplest form. We consider therefore a special situaSchralinger equation il —E)¥ =0 by ¢; and integrating

tion: a heteronuclear system with only one active electronpver the electron coordinate, one obtains a set of coupled-

we consider only radial couplings and we neglect a numbechannel equations for the functio,

of small terms. Not all of these assumptions are necessatry,

but we postpone the corresponding discussion until som 72 g2
practical experience with the procedure will have been — ——+V,(R)—E|G;
: 2M gr2z ! !
gained.
h? 52
Il. COUPLED EQUATIONS =— . R
Q 2| 4 Ha 5 —o3| ) G
We consider the case of two nuckiand B with masses
M, and Mg and one electrorfmassm,). It is of course 7 d dGy
expected that a case with one active electron and a number of +m2k %11 5r1?%) TR - (4)

inactive electrons, which accompany one or the other of the
nuclei, is represented in a reasonable way by this approach %] . .

well. H+Na collisions, which are considered below as an' € matrix elements dt_anote mte_grals over th? electron coor-
example, can be treated in this way: The inner Na electrong'nate' They are functions (R in general.E is the total

up to the D shell are considered as inactive and the en€n€rgy andv; are the potentials,
semble of the Na nucleus and the ten inactive electrons is

treated as a single particle, and similarly for the H atom. We

describe the system in Jacobi coordindtéks Let R be the VJ'(R)=< i
vector connecting the nuclei amdthe coordinate of the ac-
tive electron, measured from the center of mass of the nucl
[Fig. 1(@]. The Hamiltonian for the entire system is

£2 92

e oM oRe

¢j>- 6)

8t has often been argued that the matrix elements
(¢jloloR|¢y) and in particular the radial components
(¢jldloR|¢y) depend on the choice of the origin for the

__ o o +Hi(NR). (1) elect_ron coordma.tes and thert_afore the cou_plgd equations are

2M pR2 2m py2 intt® ambiguous. The first part of this statement is indeed true; the
second part is wrong.

The kinetic-energy term for the center of mass of the entire  We consider the coordinatesandR’ shown in Fig. 1b)
system can be separated off and has therefore been omitteas an alternative. It is easily shown that

TABLE I. Definitions of the reduced masses and the scaling factprsThe channel specific masses
andM; are required only in the region of large atomic distances. Their values are different for states traveling
with nucleusA or B. The differencesn;—m andM;—M are small throughout.

m M m M; Y
Electron travels MM 5 (Ma+me)Mg Mg
with nucleusA Me+Mp Me+Mp+ Mg Ma+Mpg
Me(Ma+Mpg) MaMg
Mgt Ma+M Mo+ M
Electron travels e mATTE AR m,Mg (Mg+mg)Mp M

with nucleusB me+ Mg Me+Mp+ Mg Ma+Mg
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P 9 that only electronic states¢; need to be considered. The
b, R ) =\ b —| P« wave function then takes the forfi7]
JR
Fi(R
Mg J VR =Y (0.0 T g R, (®)
+ $|— &) © L R
i k ]
Mat Mg ar’

Yim, are the spherical harmonics ahdand M, are the

This is embarrassing becau&=R’, but the behavior is quantum numbers for the angular momentum. The radial

normal for partial derivatives. The matrix elementsoddR functionsF; have to obey a set of equations, which can be

indeed change their values when another choice is made falerived from Eq.(4),

the origin of the electron coordinatggor numerical ex-

amples see, e.g., RdB]). K2 g2 #2 L(L+1)
However, in the present context, the choice for the origin — ?+V1(R)+m ——— —E|F;j

- - 2M d R?
of the electron coordinates was made before writing dow!

Eqg. (1). The differentiations in Eq(1) as well as in the 52 g2

matrix elements in question are partial derivatives, which _ _ éi|Ho— = —| ¢ ) Fi

change their meaning when another set of coordinates is k] 17 2M yR2

used. Therefore, as long as Ed) is derived from Eq(1),

the use of coordinates other thaandR for the calculation ﬁzz J R d Fy 9
of the matrix elements is prohibited. We consider, therefore, M - % 3R %/ RGR R ©)

the Hamiltonian in the new coordinates. One finds

The angular components of the matrix elements
B2 g2 52 72Mg 92 <¢j|r7/(9R|¢k> do not appear anymore because they do not
couple states with each other. The matrix elements in Eq.
(9) depend orR, but not on the angular coordinat&§(R) is

—+
2M aR’z 2m 2(MA+MB)MA ar’z

52 2 the same quantity;(R) as before; it depends on the distance
4 Hiy. (7) R alone now and is written correspondingly. Equatig¢@s
Ma oR’ gr’ and(9) are the basis of the following section.

When the coupled equations are rederived, using the newlll. ASYMPTOTIC COUPLINGS, ASYMPTOTIC WAVE
form of the Hamiltonian together with the old basis func- FUNCTION, AND THE SMATRIX
tions, one obtains a result that differs from Eg) in two

ways: (i) The coupling matrix elements must be CaICUIatedterpretation. When one uses, fBrsw, atomic eigenstates

with the primed coordinates artiil) there appear a number of . . . -
new terms, due to the new terms in the Hamiltonian. Thefor the electronic basis statefy, the single terms in Eq(8)

detailed calculation is straightforward; it turns out that the?'® expected to represent, at Iz_an@_ethe free motion of the
corrections cancel each other completely, such that th toms in one or the other of their eigenstates. Only one of the

coupled equations obtained with unprimed and primed coorc'ms should contain an incoming wave. Outgoing waves in

dinates are completely identical. For instance, the matrix el'Ehe other terms occur because the right-hand side ifgés

ements ofd/JR are different with primed and unprimed co- Egzzigrﬁ(.);rsgr)ggfrr]eosvsg\t/érrlelastlc transitions. This interpreta-
ordinates, as expressed by E(p). This difference is '

compensated for, however, by an additional term, which_. Con&de;r a basis funCt'wi' Wh|ch.becomes an atom|q
arises from the mixed differentiation term in Ef). The eigenfunction at large internuclear distance. It travels with

same sort of compensation occurs for the double differenti gne of the nuclei without changing its appearance; it there-

tion matrix element in the coupled equations. The argumen pre has the form
is easily generalized: Any origin of the electron coordinates
on the internuclear axis leads to the same coupled equations
[4]. We conclude that there is no ambiguity for the couplin . . .
terms to be used in the coupled equatiogns.yWhen one qu)esgtP(é&'S a channel-;pecnﬁc scaling factor; see Table ly, and
form of Eq. (4), all derivative matrix elements have to be zare the body-fixed cqmpqnents Qf t.he eleptron qoordlnate
calculated with the electron coordinates measured from thgUch that the andR directions coincide. It is easily shown
center of mass of the nuclei. It should be emphasized thdf'at under these conditions
this conclusion is in contrast to the common uspb. One
often tries to avoid nonzero asymptotic couplings. This fa- <¢, i‘ b >_}_ y <¢,
vors in many cases a coordinate origin at one of the nuclei as I aR| 7K K\ ™
in Fig. 1(b). The use of coupling matrix elements in E4),
which are calculated with such coordinates, is wrong how-The terms on the right-hand side are not zero in general.
ever. Therefore, the coupling matrix elemer(t$j|a/&R| ¢y ) can

We use the coordinatasandR in what follows and we remain nonzero aB—«; see Fig. 3 for examples. Together
introduce polar coordinateR,®, and® for R. We assume with the tentative interpretation given above, this would lead

Equations(8) and (9) seem to have a straightforward in-

dj=f;(x,y,z—yR) as R—x. (10

% ¢k> as R—w. (11)
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to the conclusion that electronic transitions occur at arbi-dimension of the atorh.The diagonal and off-diagonal ma-
trarily large distanceR. As this cannot be true, the tentative trix elements ofH,, have the order of magnitude®k?/2m
interpretation must be wrong. ~h?/2ma?, with k the typical electron wave number. The

Equation(11) shows that the derivative coupling matrix atomic kinetic energy can be estimatedid& %/2M, with K
elements in Eq(9) do not go to zero at largR in general. It  the typical atomic wave number. We consider here collision
is therefore necessary to discuss the asymptotic behavior ehergies, which have the same order of magnitude as the
the wave functions more accurately. We request that the bailectron energyK/k is therefore of the order ofM/m. The

sis statesp; become atomic eigenstates at lafge terms on the left-hand side of E(®) all have the same order
N of magnitude f*/2ma?)F; . The coupling terms witll; on
Heidj=Vj¢; for R—o. (120 the right-hand side are of the order df%(2ma?)F,. The

terms with thed/ dR matrix elements are smaller by a factor
The atomic Hamiltoniamg; is similar toHe, in Eq. (2), but  of the order ofJm/M. The terms with the matrix elements
it has the atomic reduced masg in the kinetic-energy term  of 52/ JR? and the double derivative terms in the definition of
in place ofm. m; is different for atomic states traveling the potential§Eq. (5)] are smaller by a factor of the order of
with nucleusA or B; for the definition ofm; see Table I. The m/M than the leading terms. The difference betw&and
atomic eigenfunctions have the form of Ed0). This can be R; is of the order of (WM)a; see Eq(16). Upon multipli-
used to show that cation withK;, this contributes a correction of the order of
Ym/M in the exponent in Eq.15). We consider Eq(15) for

Hatgp = | H,,— zﬁ_zﬁ_z b for Row (13 R—oo in an approximation, in which only terms of the first
el®i7| Mel™YioMm 52| ¥ order inym/M are retained. It turns out that out of the dif-

ferences between E@1l5) and the single terms in E@8),
and only the appearance &; in place ofRin the exponential in
Eq. (15) contributes in this order. Expanding the exponential

2 g2 correspondingly, one obtains
(dlHa o) ={ ¢ Heimorr —| ¢j) for R—oe.
el © 2M yR2| T ) exp(=iK|R)
(14) \I,j_:YLML(('D,(D)—
R
The energies/; defined in Eq.(12) therefore coincide ex- m
actly with V() from Eq.(5). Similarly, the first sum on the X|1£iK;y, M(Z_ YR |¢; for R—co.
right-hand side of Eq(9) is identical to zero at larg&. It
will turn out, however, that the distinction betweéh, and (19

H2| is without much importance. _
Next we consider the free motion of the atoms in atomicAfter expanding the product(- yjR) ¢; in terms of theg,,
eigenstates. This can be written for lafBeas incoming or We arrive at
outgoing spherical waves of the form )
. exp(£iK;R) |
exp(=iK,R)) s =YLML(®,<I>); — R tigdk for Roo
(15

Wi=Yiy (0],

with R-independent matrices
R;, ©;, and®; are polar coordinates for the vector

+ . m
m tl?jzﬁkjilijjm<¢k|Z— ViRl b)) Rooe - (20)

The ¢; for R— are eigenstates of the atomic parity opera-
which connects the center of mass of the atom with the freeor in general. The diagonal matrix elementszef y;R are
nucleus R; is a channel-specific coordinate, which is differ- therefore zero. Using the commutation relatiph,,z]

ent when the electron travels withor B, respectively. The = —(#%2/m)(d/9z), it can further be shown that the off diag-
wave numbers; are given by onal elements ofy; are related, to the first order ifm/M,
5 to the asymptotic values of the coupling matrix elements
Kij=V(2M;/A*)[E—V/()]. (17 [Eq.(11)]
The channel-specific reduced massgsandM; are listed in (pulalaz| b;)y=(MIT2)(V; = Vi){ iz
Table I.
The ¥ in Eq. (15) are very similar to a single term in —7R¢;) for R—eo. (21

Eq. (8). We need some order of magnitude considerations in

order to make this statement more precise. We consider in

particular large distances, where the basis functions have théiThe present order of magnitude discussion applies to all distances
form of Eq. (10); the operationd/JdR then multiplies the R provided this estimate is valid. It may be necessary to replace an
basis function typically by a factord/ wherea s the typical  adiabatic basis by anothée.g., diabatit one, when this is desired.
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The\Ifji in Eg. (19) continue to represent the free motion of Upon a comparison of Eq24) with Eq. (23), one finds that
the atoms in thgth atomic eigenstate. They are now written the amplitudesa™ anda™ are related by a® matrix,

in the form of the original expansidi8) and they have there-

fore an unexpected appearance: The sum not only consists of +_ L+1 _

a leading term with the state;, but it contains additional 3y =(~1) ; Sik (25
terms with other electronic states, which are smaller typically

by a factorKa(m/M)~{m/M. The additional terms are ob- which can be expressed by thB matrix; the factor
viously required to correct for the use of the inadequate cof—1)-** appears here only to match the usual definition of

ordinates. the S matrix. For better readability, the relation is given in
In the general case, the wave function at laigés a  matrix notation.R, S, andt™ represent the corresponding
superposition of thel -, matrices andK, K2, and exp{iKR) stand for diagonal
matrices with elements;, K;""%, and exp¢iK;R):
_ =12+t Iy
q’—; K] z[aJ qu +aj \I}l ] (22) _S=(—1)L9XK—|KR0)K1/2(E+—|R I+K)_1
X (17 +HIR 1TK)K ™ Yoexp( —iKRy). (26)

The factork; *? has been introduced because in this way the

t 2 . . . . -
|6.‘j | represent the incoming and outgoing currents in thezqyation(26) is our central result. Tha;" are the correct
different atomic states. Writin@ in the form of Eq.(8), the  jhcoming and outgoing amplitudes. They are related to each

radial functions at larg& are found to be other by theS matrix. Equation(26) shows how the corre@
matrix is obtained from the solution of the coupled equa-

F= KoYt atexn(iK.R)+t-aext —iK.R tions, which are expressed by the matRx When one re-

) Ek K 1 i@k XK R) + tja expl R places the matrices by a unit matrixthis means that one
disregards the difference between the atomic and nuclear co-
for R—o. (23 ordinate$, Eq. (26) reduces to the relation

One shows easily that thesg satisfy the coupled channel S=(—1)texp(—iKRy)KY(1—iR K)*

equationg9) for largeR to the first order inym/M. As this B _ :1/2 S

is true for any arbitrary choice of tha]", Eq. (23) is the X (1+i1 K)K™"exp(—iKRy), (27)

general form for the asymptotic behavior of the solutions. . . . . _ _ o
Note that we refer here to the coupled-channel equations i¥here 1is the unit matrix. This expression f&is valid in
the correct form, which possess nonvanishing asymptotiéh€ absence of asymptotic couplings, that is, it is the normal
couplings. relation betvyeen th® and S matrices. A comparison of the'
To summarize so far, Eq23) represents the asymptotic WO expressions fo shows that the present procedure is
form for the solutions of the coupled equations. The correonly slightly more complicated than the normal procedure to
sponding wave function can be written in the form of Eq.OPtain theS from the R matrix. _ o
(22), where every single term represents the free motion of Equation(26) is not convenient for numerical applications
an atom in an atomic eigenstate. The factfsrepresent the 0ecause in order to finR one has to integrate the coupled
probability amplitudes to find the atoms in the correspondingtduations from zero to a very large distance. This is espe-
states. Equatior23) therefore constitutes the relation be- cidlly due to the presence of the centrifugal term in &,
tween the solution§; of the coupled-channel equations and which can be neglected only at very large distance. Suppose
the true probability amplitudes. The remaining task is to findterl‘:;[:t'r[gﬁirs S?;‘;ng aarll dsmilIs(r)u0|c|)lﬁ:]agnr?atlr)iiyglr;%x?;cgréhgiven
thesadpgggs tt:aet fﬁ: ?:lc?t?pﬁa?;iﬂggier;a;\iqeuggg;ﬁszg/l\éegéen with sufficient accuracy by their limiting forms as expressed

solved between small distances and a fixed large distané?ey Egs.(12) and(11). Neglecting again terms of the order of

Ry. Rg should be so large that the coupled-channel equar-n/M' a WKB approximation to the solution of E¢9) at

tions have their asymptotic form &, and hence the radial R>R, is
functions have the form of Eq23). Of course, the solutions

have to obey the L.Jsuallboundary conditidﬁﬁo. asR szz KEIIZ[Tﬂa;eXP{i‘Dk(R)}‘*‘Tj_kak_exp{—iq’k(R)}L
—0. All solutions with this property are characterized by a k
matrix Ry that relates the values and the derivatives of the (28

radial functions at the upper integration limit, with

F=>R 9P R (24) m
P = iK 4o al . + .
I 4 TikKdR 0 T|<_j:5kji|Kj'}’jM<¢k|z_7jR|¢j>!

The R matrix forms a convenient and well established way

[18-20Q to express all properties of the solutiofg(R), @-(R)z—fw(x-—K-)dR’+K-R
which are needed for their continuation to the asymptotic ! R I
regionR>R,. We describe in the Appendix how we obtain

the R from a numerical treatment of the coupled equationsand
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0.20 0.20

H+Na(4s)

0.10 0.10 ¢

H+Na(3p) T

H+Na(3s)

0.00 0.00

potential energy (a.u.)
derivative couplings (a.u.)

0.1 : - ‘ A — ,
%% 100 200 300 400 00 100 200 300 400

H - Na distance (a.u.) H - Na distance (a.u.)

FIG. 2. Three lowests, potential curves of the NaH systemthat ~ FIG. 3. Radial coupling matrix element&l'S)|a/9R|213)

we use for our model calculation. (thick solid line, (1'3|a/oR|3'Z) (thin solid line, and
(2'3)0/9R|32) (dashed lingfor the HNa system. Note that two
KJ(R) - \/(ZMJ- /ﬁZ)[E_V]?ff( R)]. of the coupling matrix elements have nonzero asymptotes.

Vf” is the potential plus the centrifugal potential. Equationan upper integration limiR, varying between 17 and 40 a.u.
(28) is a good approximation as long as the conditions The numerical result was expressed by Benatrix. TheS
matrix was then calculated from E¢30). Figure 4 demon-
dej/dR<ky, j=1,..., (29)  strates what happens when we vary the upper integration

) . limit R;. When theS matrix is calculated correctlythick
hold; these_ are the usual WKB COI’IdIt_IQf&l]. The WKB lines), the result is practically independent 8%, as ex-
approximation holds under most conditions of practical in-

) . pected for a physically meaningful result, provideq is
terest and Eq(28) is expected to be practically as exact for S
R>R, as Eq(23) is for R—. As R, Eq.(28) becomes large enough. The variation observed Ryrvalues below 20

: . . o - a.u. arise because here th&/R couplings begin to deviate
identical to Eq.(23) with the same coefficients;” . It can

! ‘ from their asymptotic values. An alternative is to use Eg.
therefore be used to calculate tBenatrix from anR matrix, (30) with 7= replaced by the unit matrix. This gives a rela-

which relates theF; ad thedF,/dR as before, but at @ s similar to Eq.(27); the procedure corresponds to a situ-

much smaller distancB, . One finds ation in which the asymptotic couplings are included in the
S=(—Dlexn —id) kY27t —iR 77 k)L nur_nerlcal part of the calculation from smﬁllto R; but are _
S=(-Drexa—id) s R176) omitted atR>R;. Results computed in this way show oscil-

X (1 +iR 177 K)x Vexp(—i D). (30)
_ 1 _ _ , 0.08 |
exp(=i®), x, and k~ < are diagonal matrices with elements
exd —i®;(R)], j(Ry), and xj(Ry) 2 and the matrices™ 0.07 + H+Na(3s)—H+Na(3p)
have the elements(R;).
SkJ( l) N;;_‘. 0.06 Bgﬂv%ﬁvﬂv[
IV. A NUMERICAL EXAMPLE 2 005
E
We performed numerical calculations for the inelastic s 004 -
process g
5 0.03 +
H(1s)+Na(3s)—H(1s)+Na(3p). % H+Na(3s)—H+Na(4s)
: : , L : . & 002}
The process is possible with collision pairs forming both a £ ~~
singlet and a triplet collisional quasimolecule. In the singlet 0.01
system, one basic mechanism is a radial coupling associated
with the pseudocrossing of two potential cur@®]. The 0.00 0 1‘0 2‘0 30 4'0

three lowest adiabati¢s, potentials and the corresponding
dl IR coupling matrix elements are shown in Figs. 2 and 3.
The double derivative matrix elements are obtained on the [ 4. squares of thematrix elementsS;q 5, and Sy 46, cal-
basis of a reasonable model; the detpig] are without im-  ¢yjated with a variable upper integration lin (E=50 eV, L
portance here. Note the nonzero asymptotes of the single 160). The|S|2 correspond to the outgoing currents in the excited
derivative matrix elements, which occur because the electrophannels H-Na(3p) or H+Na(4s), populated from the initial state
coordinate was measured from the nuclear center of masgi+Na(3s). Thick lines, results obtained with the correct formula
according to the conclusions at the end of Sec. Il. The three30), thin lines, results obtained with™ =1, that is, without an
state coupled system was solved numerically fil@m0 to  electron translation correction.

upper integration limit R, (a.u.)
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lations as a function oR;. They represent electronic transi-  (c) The results are correct only to the first order/im/M;
tions between ground and excited states at large internucledris remarkable to what accuracy we obtain constant values
distance. However, this is obviously only due to the inad-for |S;,|2 in Fig. 4 already on the basis of this approximation.
equate way in whicl is obtained fromR. Transitions at  There remain indeed slight variations, which are too small,
large distances do not appear with the correct fornt8@.  however, to be visible in the figure. For instance, the upper
The results in Fig. 4 were obtained for a collision energy Ofthick line in Fig. 4 shows residual oscillations with ampli-
50 eV andL=160. Other energies between 5 and 500 eVy,qe 5x 1075, superimposed on the average value of about

and other angular momenta were used as well; the gener@l% It appears that the neglect of terms of orogM is
behavior remains the same. very well justified.

(d) We disregard rotational coupling. This is legitimate

V. DISCUSSION for a model calculation. It is well known, however, that in
) the framework of CT approaches, electron translation effects
The present work has two main results. concern not only radial but also rotational couplif@s].

(i) We emphasize that there is an unambiguous definitioRpere are Jong-range contributions in the rotational coupling
e e e, APl whieh have e same orgh 25 he asympiot ada
been usedqin man); cases in the past. However, when we u(s:é)Up”ngS; ,'rll contrast to the leading radial tgrms, they de-
for HNa coupling matrix elements in E9), which are cal- crease ai = for R— . The terms occur also in the framg-
culated with the electron coordinates measured from the N\‘Q/ork of the prese_znt full qua_ntum treatment. We are working
atom, the numerical results differ only slightly from those of on a corresponding exten_5|on_ of the general theory.
the correct treatment. We feel that in many cases the rigorous (& We have been considering the case of a heteronuclear

treatment will not lead to considerable changes. system with only one active electron. o _

for large internuclear distance in general. We show how tdVith charge exchange. The data that are required to set up the
deal with the asymptotic couplings in the frame of a full coupled equations and to calculate enatrix are the ma-
quantum-mechanical treatment. The present approach mak#ix elements of the electronic Hamiltonidm the adiabatic
use of a number of approximations or simplifications. basis only the potential¥;) and the coupling matrix ele-

(@ The method is of practical use only for a finite systemments(¢|d/JR|¢;). They can be obtained from standard
of basis stateg;. Correspondingly, the effects of the elec- quantum chemical programs; see, e.g., R24]; care must
tron translation are treated here in terms of a truncated basibe taken to calculate the single derivative coupling matrix
In the numerical example, only one additional state N(3 elements with the correct origin of the electron coordinate, as
is used for the corresponding correction of the Ng)(8tate.  discussed at the end of Sec. Il. Note that theatrix ele-

The present approach is certainly correct in the limit of aments, which are required for the correct computation of the
complete basis. In order to estimate how many expansio® matrix, can be obtained from these data. It is not necessary
terms are required for a good approximation, we consideto calculate any extra quantities to take account of electron
once more Eq(18). The coordinate correction occurs by the translation. The definition of the potential§) and the
expansion of the productz(- y;R) ¢; in terms of the func- asymptotic condition for the basis functiofi<) are unusual.
tions ¢, . The expansion coefficients are the dipole matrixThey were chosen because in this way the potentials and
elements ¢,|(z— 7jR)|¢j>v which are well known for many wave functions converge to the exact atomic limits Ras
cases. For instance, the dipole matrix element between the>>. However, compared to normal usage, the corrections
3s and 4 states in Na is by about an order of magnitudeare of the order om/M and are therefore unimportant in the
smaller than that betweens3and 3, indicating that the framework of the present theory. In fact, standard quantum
approach of Sec. IV might already be sufficient to achieve &hemical programs use an electronic Hamiltonian that has
reasonable description of electron translation in teestate.  the uncorrected electron mass in the kinetic-energy term.
One might argue that electron translation effects are coveretihis is different from both ouH,, and H3f. Again, the
only in the asymptotic region by the present approach. Thiglifference is negligible. There is no objection against the use
is not true because a sufficiently large basis will include allof adiabatic potentials and single derivative coupling matrix
effects of this type and like for the asymptotic region, oneelements in Eq(9), which have been calculated by standard
can argue that a small number of basis states might be suffuantum chemical programs. The error that one makes in the
ficient. potentials in this way has a typical magnitude of/M)V;,

(b) There are situations in which the use of a finite basis ighat is, 1 meV or less; this is much less than the typical
not adequate. In particular, ionization processes cannot bé@ncertainty of quantum chemical data. The double derivative
treated rigorously in such a way and they are therefore outmatrix elements in the coupled equations are usually not pro-
side the range of applicability of the present approach. Colvided by quantum chemical programs. The corresponding
lisions that involve a negative ion in the entrance or the exiterms in the coupled equations are of the ordernofNi)V;
channel provide another example. Negative ions possess usas well(this is true as long as a slowly varying basis is used;
ally only one bound state. The present approach provides see footnote L They should not be neglected entirely be-
way to calculate a meaningf® matrix in these cases, but cause they are required for particle conservaf@®i, but a
when one wishes to discuss effects explicitly, which are dugeasonable guess will be sufficient in many cases. Similarly,
to the translation of the bound electron, it would be necesthe expressio®R(d/dR)(F,/R) in the single derivative cou-
sary to include continuum states in the expansit®). pling term in Eq.(9) can usually be replaced byF,/dR,
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which is more familiar; again the difference is of the order of dFJ(“)
(M/M)V; only. Pin=F"(Ro). Qn="gg (A2)

We consider our present results as a promising way to R=R,
take care of electron translation in the frame of a full quan-

tum approach. Additional experience and the extension to idedO ! exi . iiv sh h holds
rotational coupling effects, homonuclear collision pairs, and”"0VidedQ "~ exists, it easily shown that E¢24) holds for

many electron systems are required before a final judgemefi/€"Y regular solution of ﬂzf) coupled equatidiat is, every
can be given. linear combination of thé;™) atRg, with
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Sidis for useful discussions. Under the present conditionhl, regular solutions are easily

obtained by numerical computation. We use E/3) to
_ compute theR matrix from the numerical solutions.
APPENDIX: THE R MATRIX An explicit expression foR was derived by Wigner and

sesses B linearly independent solutions. Normally, there the present usage. We use fRenatrix as a very convenient
exist N independent regular squtionszf”)(R) (ion Way to match the numerical solution at the boundBgyto

-1 N), which obey the correct boundary condition at the analytic solution aR>R,. The R matrix in this sense is
smallR nothing but the generalization of the inverse of the logarith-

mic derivative of the wave function to the many-channel
case. This use of thR matrix has become familiar in nu-
merical applications in atomic collision physi¢49,2Q.
There are in fact different definitions of tHiRmatrix in the
literature. Except for an extra minus sign, the present usage
is that of Ref.[20].

FI"(R)—0 as R—O0. (A1)

j is the channel number amdis the number of the solution.
Assume that these solutions are known at a dist&ycend
denote
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