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Low-energy scattering by nonspherically symmetric targets
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A number of studies have been made over the years of the near-threshold behavior of phase shifts for the
scattering of electrons by spherically symmetric atomic targets, allowing for the important effect of long-range
polarization forces. For targets that are not spherically symmetric, the theory must be extended to account for
a superposition of asymptotic power-law potentials, including an inverse-cube potential for targets with a
permanent quadrupole moment, which couple the various channels. Such an extension is described here. A
degenerate perturbation theory, extended to arbitrarily high orders through the introduction of continued-
fraction representations, is developed for the construction of the asymptotic states. Results of illustrative
numerical calculations are reported. The asymptotic solutions, along with a variational principle for the reac-
tion matrix, provide the basis for a modified effective-range theory. A minimum principle, valid at threshold,
is available for the calculation of scattering length and effective range matr8£850-29479)04402-9

PACS numbd(s): 34.80.Bm, 03.65.Nk, 34.18x

[. INTRODUCTION pearance of a degeneracy. As described below in Sec Il A,
this requires a modification of the original method of Ré&f.

The effective long-range interaction between an electroror its removal, involving the diagonalization of an effective
and an atomic system may be represented as a superpositiBlamiltonian in a manner similar to that employed in stan-
of inverse power-law potentials and this leads to modificadard degenerate perturbation theory, although here the eigen-
tions[1] of the energy dependence of low-energy scatteringjalue problem is a nonlinear one. A more elaborate version
parameters found for short-range potenti@$ For targets  of the perturbation theory for the asymptotic states is devel-
that lack spherical symmetry, the effective potential will, in oped in Sec. I B, involving partial summations of the series
general, have an angular dependef8je Some progress has expansion expressed in terms of continued fractions. A dia-
been made in determining the threshold behavior of theyammatic aid to the calculation of the level shifts that arise
(angle-dependenscattering amplitude in such cagés. An i, i formulation is described; the method is illustrated
alternatlve approach, based on a reducthn of the Bhger with numerical evaluations of polarization eigenphases and
equation to a set of coupled radial equations, appears to pr?ﬁixing parameters in second order. The remarkable formal

vide certain advantagdas noted in Refl4]) and is adopted . . =, ) . S
here. For definiteness, and to focus on the essential featurglfr;él,[?g;)i/(:o;;zlZt%rr?q?f?nutreer;ggzgz?:Ii‘;:'?r:g d';g;i tf?ég]y of

of the problem, a very specific model is considered. TwoS q 4 With v the i b ial
channels are involved, with identical threshold energies, anif demonstrated.  With ~only the inverse-cube potentia
with orbital quantum numberk, andl,=1,+2. The 2x2 present, the continued-fraction representation can be devel-

potential matrix is assumed to have the asymptotic fofm oped in greater detail, as shown in the Appendix. A similar

~V! for r o, where, for a neutral target treatment, accompanied by a numerical illustration, is pre-
sented there for the diagonal# potential.
2 - —4,12 The low-energy behavior of the regular and irregular so-
am [ et rBatr B, o J J

(1.2 lutions of the wave equation in the presence of the potential
V! determines the form of the threshold singularities of the
scattering matrix, as described in Sec. Ill. Here one sees how

with real-valued parametegs, 8;, 85", andB{?. Itisnot  the standard Wigner threshold 14&], developed in the con-

difficult to extend the theory to include components of thetext of nuclear reaction theory, is modified. A description of
potential falling off asr ™", with n>4. the scattering formalism appropriate to this system, along

A key element in any analysis of scattering in the preswith a demonstration of unitarity, is included in this discus-
ence of long-range interactions is the introduction of suffi-sjon.

ciently accurate asymptotic solutions of the wave equation. Wwith threshold singularities removed, a modified reaction

A perturbation theory for single-channel scattering by a sumatrix may be defined that varies slowly with energy. The

perposition of power-law potentials has been developed byhtroduction, in Sec. Il C, of a variational principle for the

Cavagnerd5]. The method can be extended in a number ofmodified reaction matrix not only confirms this smooth en-

ways [6]. An application to multichannel scattering in the ergy dependence near threshold but provides a means for

absence of the off-diagonal™* component(that is, with  finding accurate approximations for the parameters—the

B,=0) is straightforward and this provides the starting pointscattering length and effective range matrices—that appear

for a derivation of a modified effective range theory for thisin the effective range expansion of the reaction matrix. It is

class of scattering systerfigl. Somewhat surprisingly, inclu- observed that for diagonal elements of the scattering length
sion of ther ~*B,% component in Eq(1.1) leads to the ap- matrix the variational principle is, in fact, a minimum prin-

= 2 y
ﬁZ r—333+r_4 ‘/12 r—43512)
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ciple, a property offering clear calculational advantages. Re-

sults reported here are summarized in Sec. IV.

1. ASYMPTOTIC STATES

A. Almost-degenerate perturbation theory

LEONARD ROSENBERG

PRA 59

Bl =ajidg(27+ 1) 1+ )P (= )7 .
(2.5b

At this stage, in the absence of singularities, we would have
a;i = J;; and 6;=0. However, a straightforward extension of
this iteration procedure to second order would lead to near-

The radial Schidinger equation considered here takes thesingylarity difficulties owing to the appearance of small de-

form of two coupled equations with the matrix forb¥
=0, where, in atomic units,

2

1| d ) )

i~ 32|ar =12

(2.9

with 1,=1,+2; the energy i%?/2. We look for asymptotic
solutions in which thdreal, symmetricmatrix V is replaced
by the long-range componeXit shown in Eq(1.1). Starting
with the regular solution, we defire=kr and write f;;(2)
= Ci(wz/2)"m;;(z), whereC; is a normalization factor to
be determined. The matrix is then seen to satisfy

d2
2_" _ 2_
z d22+ZdZ+Z

2

1
Ij+§

m;;(2)

Ay A,
_ (B3, 84
Z Z

_ D;
mji(z)_?mji(z)- (2.2

Here we have defined the dimensionless paramefeys
=Bk, A,=(B;K)? and D;=(BY’k)?, and have let the
symbolj take the value 2 fof=1 and 1 forj=2. We seek

nominators of the formlg+2)2— (75— 2)? and (,+3)?
—(7;+3)2. To surmount this problem, we isolate the po-
tentially troublesome terms arising in the iteration procedure
by making use of the relations],m+5,2=J,72i+1,2 and

Jopp—32= 3y 112 and equating to zero the coefficients of the

terms proportional td, 12 andJ,72i+1,2. In this way we
arrive at coupled equations of the form

2
[(7+3)°= 1+ )%+ 2 Tjjap=0. (2.6
i'=1

In a given order, the effective potential matrix free of
near-singularities, may be determined; one then searches for
two distinct valuesg; andd,, of the phase parameter allow-
ing for a solution of Eq(2.6) and providing values for the
ratios a,; /a;; . The matrixa;; is then fixed by the normal-
ization conditiona?; + a3, = 1. The results of this type of cal-
culation will now be described in second order, where only
two solutions are possible. To choose the appropriate solu-
tions in higher orders, one requires that they merge smoothly
with the second-order solutions in the limit of small coupling

an approximate solution in the form of a perturbation expanparameters.

sion
mji:nzo mj(ln), (23)

with A treated as a parameter of first order andandD;

as quantities of second order, thiln term in the expansion is
of ordern. The lowest-order solution is assumed to be pro-

portional to the regular Bessel function; we have
miP(2)=ayJ,, +10(2), (2.43

where
ni=l;—(2/m) s, (2.4b

with the phases; and the matrixa;; to be determined.An

The off-diagonal elements of the second-orffematrix
are found to be

[o=A4(27+1) (27 +3) 71 (2.7a

and

[1o=A4(275+1) 129 —1) 7" (2.70

It will be convenient to have available a diagrammatic rep-
resentation of the terms appearing in the perturbation expan-
sion; once a set of rules are specified higher-order terms may
be written down quite readily. To make use of familiar con-
cepts we may envisiotsomewhat formallyan infinite set of
“states” associated with channel 1, labeled as1{}l,where
m=0,+1,=2,..., and similarly for states () belonging to

identical procedure is followed in the construction of thechannel 2. Ther',; may be thought of as the amplitude for
irregglar solution of Eq(2.2), but with the regular Bessel 3 transition between statés,0) and (2,0), with I';, repre-
function J,(2) replaced everywhere by the Neumann func-senting the reverse transition. The diagrams associated with

tion N,(z).] Substituting the first-order approximatian;
=m{P+m(® into Eq. (2.2, we find, with the aid of the
recurrence relation zflJ,ﬁl,z(z)=(27/+1)*1[J,7+3,2(z)
+J,-12(2)], that

M (2)=[af 3,502 + B3, 12)], (259
with

ol =ajiAs(275+1) (1 + 52— (m;+ 327,

Eqgs.(2.79 and(2.7b appear in Figs. (B and Xb), respec-
tively. They represent the effect of the off-diagora)z 2
interaction in Eq(2.2). Each factoz~* contributes a factor
[2(7m;+m)+ 1]%, where the indicegandm correspond to
the state from which the interaction originates, as indicated
by the position of the filled circle in the diagrams.

The (second-ordgrmatrix elementl’; (playing the role
of a level-shift interactionis generated by the combination
of the diagonaD;z~ 2 term in Eq.(2.2) and the off-diagonal
A5z~ taken in second order. The explicit form is
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FIG. 1. Off-diagonal elements of the level-shift matrix in second = T I T
order, given in Eqs(2.7a and (2.7h), are represented in diagrams L=

ively.

(a) and (b), respectively AR

[31=D4(274+1) 1 [(273+3) *+ (27— 1) 1] FIG. 3. Plots of the mixing angle (solid curvé and scaled

2 . 1 112 polarization phaseﬁl/Ag (short-dashed curyeand 52/A§ (long-
+A3(27i+ 1) H[(12+32) dashed cunjeas functions ofA,/A3 for |,=0, with strength pa-
— (72 _% 2]—1(2772_ _ 1)—1 rameterd,, D,, andAg all taken to be equal. The notation is that
' ' of Sec. Il of the text.

H(1+2)2= (7232 29 —-5)"1. (2.9

. . . o . condition for scattering in the field of the long-range poten-
The two diagrams associated with thgz = interaction are tial as discussed below in Sec. lll. It may, therefore, be rep-

shown in Figs. 29) and 2b). The iteratedA;z ! interaction resented as
leads to a sum of two terms corresponding to the diagrams in
Figs. 4c) and Zd). Figure Zc), for example, is interpreted
(in conformity with the language of “states” and “transi-
tions” adopted hereas a sequence consisting of a transition
(1,0)—(2,—1), followed by propagation in sta{@, —1)—
this is represented diagrammatically as an open circle—and . ) ) .
then the reverse transition back to the reference tae In  1he mixing angles vanishes in the limitA,=0 [10]. As a
Fig. 2(d) the first transition is (1,0)(2,—3), followed by numer!cal .|IIustrat|on, the mixing angle is plotted as the sqlld
propagation in stat€2,—3) and then a transition back to the curvezln F|g. 3 forl1=020ver a range of values of the ratio
reference state. In general, a “propagator” in stéte) is A4/A3 W'th D,;=D,=A3. We have also calculated, for the
represented aE(l,-+%)2—(77,-i+m+%)2]71, with (|j+%)2 same qhomes of strength parameters, the phéseéegfined
playing the role of the total energy in chanjelwhile the earlier in Eg.(2.4b). Th2e short- a_nd long-dashed curves rep-
term (z;;+m+%)? may be thought of as the “kinetic en- resentsy/Az and &,/Aj3, respectively 11]. _
ergy” in state(j,m). (This analogy with nonrelativistic scat- Terms in the perturbative expansion of the wave function
tering theory, while it may appear forced, can be developednay be constructed most easily using diagrammatic rules of
much further in a useful way, as will be shown below in Sec.the type just described; with near-singularities having been
Il B in connection with a discussion of diagram summationaccounted for, transitions to statels0) and(2,0) are to be
methods). The expression foF ,,, as well as for each matrix omitted in the determination of the functiom,‘i“) . Thus in
element in higher orders, may be written down directly fol-second order we have, for example,
lowing the diagrammatic rules just described. Similar rules
apply to the construction of the functiom%i”)(z) appearing m2 = 423 A2)+B23 (2)+ 2] (2)
in the expansion shown in Eq2.3), as will be discussed 2i 20 g+l 20 Vngy =32 )T Vi Sy =712 2
further below. (2.10
The (normalized matrix a in second order is orthogonal,

a property that may be understood in terms of the unitarityrhe coefficienta’?) is represented by the two diagrams in
Fig. 4, from which its explicit form may be read off as

cose  Sine

4=\ _sine cose

. (2.9

|
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FIG. 2. Diagrams representing a diagonal element of the level- ! | | I
shift matrix in second order, as given in E®.8). The first two @ ()
terms in that equation are representedanand (b) and the second
two terms are represented (@) and(d). Interactions and propaga- FIG. 4. The first and second terms in the expansion coefficient

tors may be read off from the positions of the filled and open circleggiven in Eq.(2.11) are represented in diagrart® and (b), respec-
in the diagrams using rules given in the text. tively.
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a2 =ay(27y+1) HDa(27+3) 1+ A (1, +3)2

—(71i+ )220+ 7)Y+ 3)2 = (9 +3)%] 7%
(2.11) A perturbation expansion based on this dynamics may be
shown to reproduce that developed in Sec. Il A for the origi-

Note that in constructing the diagrams mﬂ‘) we draw all nal system. To introduce partial summation methods, we
possible sequences, of orderof potential lines followed by make use of standard projection-operator techniques
propagator circles starting at one of the reference states arslarting with the definition of the resolveng=[q(A
ending at a statg,m), with m# 0. In the diagrams associated —h)q] ™%, in terms of which we have the representations
with Eq. (2.10, for example, the initial and terminal states
are (2,0)+(2,2) for o8, (1,00—(2,—2) and (2,0)—(2, algi) =ghlpys) (2.193
—2) for B2, and (1,0)>(2,—4) for y$2). Perturbation
contributions of arbitrary order may be determined straight-

plyi) = (2.18

a;|1,0
a2i|210>) '

forwardly with the aid of these rules. As mentioned above, p(ho—\)|pwi)+plu+ugullpy)=0. (2.19H

approximations to the irregular solution of EQ.2) are ob-

tained by the replacement df(z) with N,(z). A level-shift matrixI' may now be defined by the relation
B. Level-shift reformulation pj/o[U+U9U]|q)jo>: |<I)j'0>rj’j . (2.20

It is undoubtedly possible to arrive at the diagram sum-\ow, with the substitutions|2,—2)=|1,00 and |1,2)
mation procedure, now to be obtained, without setting up an- |2 ), we may rewrite Eq(2.19h as a set of coupled equa-
analogy with the Green's-function formalism of scatteringjons for the coefficients,; anda,,; they are precisely of
theory but doing so appears to be a helpful device. Thus Wehe form shown in Eq(2.6).
set up an abstract dynamical system in parallel with the one The matrixI" may be determined perturbatively, thereby
of actual interest and that enables us to make use of powerfybnroducing the results of Sec. 1A, by introducing, into Eq.
operator methods. This is a heuristic procedure; all resultg, > the expansion
obtained in this manner may be verified by reference to the
original problem. 9=0o+goUdot goUGoudot- -, (2.21

Consider a Hamiltonian matrik=hg+u operating in a
space of state§,m) with the connectior{2,m)=|1,m+2). wherego=[a(A—hy)g] 1. We now describe a rearrange-
We set ment of this series leading to a continued-fraction represen-

5 ) tation of the resolveng [13]. Thus we define a modified
u— D Azv+Am (212 resolvent from which a particular statg¢,,m,)=|a) has
Agu+Aw? Dw? | ' been removedin addition to the statef,0) and |2,0) pro-
jected out ofg). More precisely, lep,= P m, be the projec-
tor onto the vectof®; , )=|®,), and defineg,=q—p,.

vli,my=[2(n;+m)+1]"[|jm+1)+]j,m—1)] (2.13  Then, withg,=[g.(A—h)g,]~*, we have the partitioning

with

identity [14]
and
holj,m) = (7 +m+)2[].m) (2.14 9=gat (1+9aU)PagpPa(l+uga), (2.223
olJ» - ji 2 1 . .
. o . where
We seek a solution of the Sclimger equation i{—\)| ;)
=0, where PagPa=[Pa(A—ho—u—ugau)pa] % (2.22h
(I1+3)? 0 We may write
A= 2.1
0 (o+b? (219 .
PalaPa=Pa(dy) (2.23a
and »;; =1j—(2/a) 5;, with the 5, to be determined. Projec-
tion operatorsp and g=1—p are introduced such that With
pP=piot P20 Where, with the introduction of some notation a 1o 1o ra
that will also be useful later on, da=(lj,+2) = (mj it mat+3)°—T35,. (2.23
|1m’) The superscript ol indicates that the stat®, has been
Pjm |2m’) =|<Djm>5mm’ (2.1 projected out; this modified level-shift matrix is determined
by the relation
and a
1 > Pa(UtUugau)|®y)=|DHI'3,. (2.24
m
|q)1m>:( 0 ) |‘D2m>:(|2’m>)- (2.17) The process of state removal may be continued. Thus, in

Eq. (2.249 we may writeg,=0g.2,P,, Where p, projects
We write | ¢;)=(p+q)|;) and set onto statesb,, differing from®,, ®,,, and®,,. Then, with
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the aid of the partitioning identity2.22 now applied tog,, A scattering matrixS° may be defined by consideration of

we obtain(in an obvious extension of the notation alreadya scattering solution, valid throughout space, and expressed

introduced the relation in terms of undistorted incoming and outgoing waves as
GaPo=(1+ Gapth) Po(d3”) (2.253 WH(r)~(2k) e T - kmAsE] (3.5

with for r—oo. Alternatively, in terms of the distorted waves,

dgb=(|1b+%)2_(mbi+mb+%)2_rgg; (2250 Li(r)=§&i(r)—ie;(r), Oji(r)=§&;(r)+ie;(r), (3.9

here, the modified level shift is defined by we have the related solution behaving as
Pol(U+ UGaplt) | D) =| Pop)TEE. (2.250 2
This continued-fraction structure effectively includes pertur- \P“(r)wlji(r)_jgl i Sy @9

bation terms of arbitrarily high order at each stage. More-
over, a state may give rise to a small denomindiorEq.  The relation between the two solutions is readily seen to be
(2.23b, for exampld, but it no longer appears in later stages ¥°=¥B, where
of the subtraction procedure and this can improve conver-
gence properties. A numerical example illustrating these re- BT=xexp(is"), (3.9
marks is given in the Appendix.
The same continued-fraction expansion for the resolgent the superscripl denoting transpose. The relation between
may be combined with the representati@193 to provide the two scattering matrices is
a successive approximation procedure for constructing the
(regular and irregularasymptotic wave functions. It is pos- S’=B'SB (3.93
sible to put this series expansion in more explicit form. This
is done in the Appendix for special cases in which the off-Sincex is orthogonal and thé" are real, it follows thaB is
diagonalr ~# potential is absent, but we shall not do so hereunitary. Then the unitarity property satisfied 8y is seen to
for the general case. A similar expansion was described eabe passed on to the modified scattering mafiin terms of
lier [9], though in connection with a different class of transition matrices, conventionally defined by the relations
systems—the interaction of an electron or atom with a radiaS’=1+2iT® andS=1+2iT, we find the unitarity relation
tion field—and those results may be taken over quite easilff —T'=2iTT' and the connection
to apply to the problem at hand.
TO=xe?® sins"x"+BTTB. (3.9b
IIl. NEAR-THRESHOLD SCATTERING
. To work with standing waves we introduce a reaction
A. Formulation matrix K through the relatiom 1=K ~1—i. The unitarity of
It will be convenient in this formal discussion to work T implies thatkK is Hermitian; it is in fact real and symmetric
with regular and irregular asymptotic solutions having a dif-(as may be confirmed directly with the aid of the variational
ferent(and simpley long-distance behavior from those intro- principle derived in Sec. Il Noting that the function
duced in Sec. II. The two sets of solutions are closely relatedi/2)¥ behaves asymptotically asT ~*+ O, we may define
in a manner described below. The regular solution considy = (i/2)¥K with asymptotic form
ered here has the asymptotic form
U~ ¢+ EK. (3.10
fi(r)~sin(kr —1;7/2) 8; + K} cogkr—1;m/2), (3.1)
To have available an approximation procedure for the
where the reaction matriK" is real and symmetric. Letting construction of the solutiong and £ we may relate them to
x represent the orthogonal matrix that diagonalikés we  the regular and irregular solutions introduced in Sec. II: this
have is accomplished by comparison of asymptotic forms. Thus
Lo L we write
K-x=xtanés-. (3.2
—~ Ve gj —1. :
The diagonal elements- differ from the phases; defined Fii(r)~ (28 sintkr =12+ 3))

in Sec. II; we return to this point below. Now using E§.2) +d;i cogkr—I;m/2+ 6))] (3.11a
we find that the functionp;;=(f"x);; cog(2/k)*? behaves,
for r—«, as for r—o, where, up to an overall normalization yet to be

fixed, the coefficient matricesandd are determined by the
;i (1) ~x;; sin(kr — | /2+ &) (2/k) Y2 (3.3  methods described earlier in Sec. Il. Rewriting 21113 as

In a similar way we may define an irregular solution with the (1)~ (2/)Y7c;; sin(kr — |j7T/2)+Eji cogkr—I;m/2)]
asymptotic form (3.11h

&ii(1)~x;i cogkr—1jm/2+ 85 (2/k) M2, (39  with
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Tji=cj coss,—d; sing,, d;=c; sing +d; coss,, . Having determined how threshold singularities argto be
(3.119 isolated, we may define a reduced wave function
=k~ (it 12y, with asymptotic form
we may, by comparison with the asymptotic form shown in

Eq. (3.3), conclude that the functionsand ¢ are identical — — — —
ar?d(thal ¢ Uji(r)~¢ji(r)+z &i(NKjrj. (3.17
II

Cji =X;i cos&iL, Eji =X;i Sin 5iL. (3.12  The smooth threshold behavior of the asymptotic solutions
appearing in Eq(3.17) implies that the matrix
In a similar way we may identify the irregular asymptotic _
solution defined in Sec. Il with-£ Another useful relation Kirj=k~ (72t 12K, k= (mit1/2) (3.18
i i i L_qey-1
found from this comparison of solutions Is =d(c) ~. is free of threshold singularities. This central property will be

Thus in addition tog and £ we may determin&‘, and by . ] . o
- o L o ; confirmed below with the aid of a variational argument. The
diagonalizationx and - by application of the perturbation threshold behavior of thd matrix may now be deduced

procedure outlined in Sec. Il. Moreover, when the relation o o1 ;
shown in Eq.(3.8) is compared with Eqs(3.12 we may from the relationT *=K™~—i given earlier. If, for nota-

T o = i ) tional simplicity, we define the diagonal matrix with di-
conclude_tha_\B —cﬂd. FTrom the r_eaI and imaginary parts agonal elementsy;; and 7;,, we obtain the representation
of the unitarity relatiorBB'=1 we find that

T=km2tV Kfl_'knl+n2+1 —Lm+12 1
c'c+dTd=1, (3.13 1 : ] (319

, . . o . which, by virtue of the relation shown in E¢R.4b with §;
which supplies the required normalization condition to begt orger k2, contains the logarithmic contributions to the

combined with the TperturTba.tion procedure; in addition, thegnergy dependence at threshold that is characteristic of scat-
symmetry propertyc'd=d'c is uncovered. We note finally tering with long-range potentials.

that the normalization condition implied by E@.13), taken
in second order and evaluated at threshold, leads to the result

. . C. Variational principl
that the matrixa is orthogonal in second ord¢t5], as re- anafional principle

marked earlier in connection with E.9). A variational principle for the reaction matrix defined
in Eq. (3.18 may be derived by extending the procedure
B. Threshold behavior described in Refl7] to account for the asymptotic coupling

The threshold behavior of the asymptotic solutions mayOf channels. The derivation begins with the introduction of a

be inferred from the small argument limits of the Besseltfial functionU;; (r), vanishing at the origin and satisfying
functions from which they are composed. The regular soluthe asymptotic fornt3.17) with K replaced by a trial matrix
tion ¢, having been identified with the functiohstudied K;. The matrix

earlier, is expressed as

¢;i=[Ci(kI2)Y?|(mr)Ym,; . (3.14 2 fo (U} (L Uy 0 = (Lyj ) Uy dr
N

From the normalization condition placed on this function wejg eyaluated in two ways, first through the use of the $chro
may conclude that the factc;(k/2)Y?] is finite at thresh- dinger equation.U =0 and then by integration by parts tak-

old. Then the threshold behavior ¢f; may be deduced from ing into account the boundary conditions and making use of

that of m;; , with the latter determlned from an examination the Wronskian relation
of the structure of the perturbation expansion. One finds in

this way that the function 1 2 dgji o dgjj" B
bji(r) =k~ i1 (r) (3.19 :
is finite and nonvanishing at threshold and may be expande-HhIS leads to the identity
in powers ofk?. A very similar analysis shows that the re- L o o
duced irregular solution, defined as Ki’i:Ki’i,t_2 fo UjirLjrUj dr. (3.2)
N

E( =kt g (p 3.1 _

&i(r) &) (3.16 Actually, it is the matrix elemerk;;, that originally appears
is finite and nonvanishing at threshold. One understands th@ the left-hand side, but this matrix is symmetas may be
appearance of orbital quantum numbegrin the threshold venﬂgd by performing the above calculathn with the trial
factor in Eq.(3.19 andl, in Eq. (3.16) by recalling that the fgnctlon replaced by t_he exact solujorit will be conve-
angular momentum states are coupled; the threshold behal}i€nt to express the trial function for allas
ior of the regular and irregular solutions are determined by
the lowest and h[ghest partial waves, respectively, that are Uji,t(r):ys,ji(r)+z ycljj,(r)ﬁ,i’t, (3.22
present asymptotically. i’
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wherey~ ¢ andy.~ ¢ asymptotically. A trial functionJ , P

— — (p) — : ) — ) . -1y W
is defined as in Eq(3.22 but with K, replaced byK .. A Ailp= Ysir W) 2:1 (Wir Yo, )X (e Wi)-
variational principle is obtained ly replacing the exact wave I (3.29

function in the identity(3.21) with U ,. The trial matrices

— . .. - (0) i
andK, may be determined by requiring that the variational!f there are no bound states;™ provides an upper bound on
expression be stationary with respect to variations in thesf!® exact matrix elememd;; and as the number of basis
parameters. To simplify the form of the resultant expressiofunctions is increased, each successive term decreases the
we introduce some notation, starting with the definitionvalue of the approximation obtained at the previous stage.
w=Lys. A scalar product is now defined permitting the ab-More generally, suppose thakbound states exist. One ex-
breviation amines the sequence of scattering length approximations
AP, p=0,1,...n, wheren=N. After one verifiesN upward
o jumps along this sequence, the variational method is ensured
(a.b)=2 f aj:jbjdr. (323 to give an upper bound ofy;; . The details of the derivation
i 0 . . . . .
! of this result differ only slightly from those given earlier
[16], in connection with the problem of scattering by a tensor

With this notation we define the matrix .
force of short rangg17], and will not be repeated here.

Xjrj=Yejr LYe,)- (3.24
IV. SUMMARY
After some algebra the variational approximattopmay be

A modified version of effective range theory has been
seen to take the form

developed that is applicable to the study of low-energy scat-
tering of an electron by an atomic target with a ground-state
Kinio=—(Ysir W)+ > (Wir Vo)XY (Ve Wi). wave function that is not spherically symmetric. For simplic-
i’ ity, only the inverse-cube and inverse-fourth-power contribu-
(3.29 tions to the long-range effective electron-target interaction
i ) . . ) has been retained. A two-channel model was adopted, with
With threshold singularities removed, the trial functions  channel thresholds taken to be identical, corresponding to the
andys may be connected smoothly, from their prescribedgegeneracy of the two target states differing only in spin
forms at great distances from the origin, to “inside” func- projection. Exact analytic asymptotic solutions of the wave
tions that vanish at the origin. In line with the conventional equation are not available for potentials of this type. A gen-
effective range approximation, the inside functions may besra| method for developing approximate solutions that de-
chosen to be independent of energy near threshold. The errggripe fairly accurately the nature of the threshold singulari-
in the trial functions thereby incurred will be of first order in ties was described in Sec. Il with additional details given in
the energy and this leads to an errorkip of second order. the Appendix. The method is based on perturbation theory,
Then, with the effective range approximation expressed irenhanced through the introduction of diagram summation

the standard manner as techniques. A distorted-wave theory was presented in Sec.
lll, based on the availability of these asymptotic wave func-
(K)*lg —A 14 %rokz, (3.26 tions. This analysis leads to the representation of a modified

scattering amplitude given in E¢3.19, in which the kine-
variational estimates of the scattering length and effectivénatical factors singular at threshold are displayed. This
range matrices are available. leaves a reaction matrix, denoted there Kasthat varies
At zero energy the variational principle becomes a mini-smoothly with energy and may, therefore, be parametrized in
mum principle for diagonal elements of the scattering lengtithe standard manner of effective range theory. A variational
matrix. A particularly useful version of the minimum prin- procedure was presented in Sec. lll C for estimating the scat-
ciple is based on the addition to the right-hand side of Eqtering length and effective range matrices.
(3.22 a superposition of normalizable basis functions with
linear parameters determined variationally. That is, we write ACKNOWLEDGMENT
the zero-energy trial function as
This work was supported in part by the National Science
. p Foundation under Grant No. PHY-9605218.
Uji N =Ysii(N+ 2 Yejj(Nbjie (327
bt APPENDIX
with the parametersb;; ; determined variationally. For  The continued-fraction structure of the modified perturba-
j'=1,2 the trial functiony/, ;;, are the(normalizablg zero-  tjon theory presented in Sec. Il becomes more transparent in
energy limits of the functions introduced above, while for e apsence of the off-diagonal* potential. Here we ex-
j'=3.4,...p they are chosen from a normalizable basis set. Aymine two special cases, each of interest in its own right, for
similar form is taken for the trial functio);; ,. The varia-  which the perturbation expansion can be developed in more
tional expression for one of the elemeis of the scattering  explicit form.
length matrix, involvingp basis functions, then takes the  Consider first the case where only tBg/r® contribution
form appears in the long-range potential shown in @ql). Thel’
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matrix is then diagonal, the mixing angle in EQ.9) van-
ishes, and Eq(2.6) decouples. Assuming that the system is
in channel 1 in the limit of vanishingd;, we need only 0.5
consider a single level-shift element corresponding to the
virtual transitions (1,03-(2,—1)—(1,0) and (1,0)-(2,
—3)—(1,0). To simplify notation we denote the states
(1,m) as(m) for m even and states () as (m+2) for m
odd. The matrix elemenf |, of interest is denoted abk,.
Dropping the subscrigtin Eq. (2.4b we write that equation
for j=1 asn=I1,—(2/7) 45, so thatn,; has become; and
1n,=n+2. Theny is determined from the relation 0

polarization phase
o
w

(7+3)%=(13+3)*+T=0. (A1) | Bk

FIG. 5. Plot of the polarization phase fdtwave scattering in an
inverse fourth-power potential as a function of the strength param-
Io.=voy(1/d1;)v 10, (A2) eter (84k)? obtained using the continued-fraction formulatisnlid
curve in an approximation carried to the third lev@ls defined in
with v0=Az(27+ 1)—1 andvg=A5(279+ 3)—1_ The sub- the tex). The dashed curve represents the lowest-order approxima-
script + on d; is inserted to emphasize that since the state§on. given(for all 1) in Eq. (A16).
(0) and(1) are removed, and there are no interactions in this . _ o
model causing transitions (1)(m) for m<0, only those dators are represented by continued fractions, as indicated
states withm>0 appear as intermediate states. The propagaPove. The wave function in channel 2 is given by a similar

Writing I'g=T"g, +T5_, we have

tor is now expressed in the form gxpansion, put with the nonvanishing orders of the perturba-

tion expansion taking on the values=1,3,....
di=(,+5H2—(p+3)2-T,, . (A3) We now consider the single-channel scattering problem

with the long-range potential taken to lﬁ/r“. We may,

Here we have therefore, drop the channel label and write the appropriate
version of Eq.(2.6) as (5+2)?—(1+2)2+T'=0, where

Py =vsd Ly vz, (A%) 2 as fr+2)"- (1 +2)
With = As(27+3) "1 andv,,=As(27+5) L. This as- I'=To+I%-. (A10)

cending sequence may be continued in an obvious way; in . ) )
general, we have . ,=As[2(7+m)+1]"1 with m’=m W|th_t1he |r,1teract|ons now given by, m=(84k)[2(%+m)
+1. The descending sequence is developed similarly, with + 1177, m’=m=1, we have

Fo-=vo—1)(Md(—1)-)v(—1)0- (A5) o4 =UgiUqgF UgaUgx( 1/d5 1 ) UsqUgg, (A1)
We have with
dop-=0z (=D Ty (A9 Ay = (14 12— (7+3)7— T (A12)
and
Fy-=veneaMdig vz -1. (A7) e
The wave function satisfies E(R.2) with A,=D;=0. In I'24 = Ugglizyt Upaliza(1/da- ) UsgUizy . (A13)

the absence of any perturbation, the system is in gtjte
with wave functionJ,, 1/5(2z). The perturbation expansion
shown in EQ.(2.3) is rewritten asmj=E;°:0m](“) with sub-
scriptj retained as a channel index. Hor 1 the nth-order
contribution, withn=2,4,..., is

The structure of this ascending sequence should now be
clear. The descending sequence has the form

o =Ug—1)U—1)0+ Up—1)U_1(-2)

M (2)= and s 12+ @-ndyone1d), (AB) X We-a-Woa-ob-o - (A9
where with
an=(1dn)vnn-1 - v2(1dy v (A9a) d_z-=(+3)2=(9—3*-T _y-, (A15)
and and so forth. The sequences are terminated, in practice, by

_ settingl'5,,. =T',,_-=0; we may say that such an approxi-
a_ = (L)~ )0_n—n+1) 072(’1)(1/d(71)7)v(71:gb mation is carried to thath “level.” The solid curve in Fig.
(A9D) 5 represents the results of a third-level calculation of the
This has the form of the lowest nonvanishing order of perpolarization phase for |=2 as a function of g,k)2. Re-
turbation theory, but with modified propagators; these propasults at levels two and four differ only slightly. Instabilities,
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signaling the onset of complex phagé4] in the calculation,
appear for B,k)?>>9.5. The precise numerical calculation
done by HolzwartH11] gives the onset of the instability at .
(84K)2=10.5. The level-one calculation gives no better thanVith
10% accuracy for g,k)?>>4 and fails for (8,k)>>6. For
comparison, a plot of the polarization phase in lowest order, Yn= (L4 ) Un(n—1)Un—1(n-2)"**Usalizo 15 )UpUisg
namely, (A183)

e m(B4k)?
~(21+3)(21+1)(21-1)’

m" = ¥nd ptn+12t Y- nJ 7—n+1/21 (AL7)

(A16)  and

is given(for | =2) by the dashed curve.

A - _a=(1Md - )u_ = u_ _ “U_g_gU_g_
The wave function is expanded agz)=>7_,m"(z). ' " (A= )Uni-nepU-nea-nea) U-a-3U-3-2

We have, fom=24, ...,

X(l/d(,z),)ufz(,l)uflo. (A18b)
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