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Low-energy scattering by nonspherically symmetric targets

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 14 September 1998!

A number of studies have been made over the years of the near-threshold behavior of phase shifts for the
scattering of electrons by spherically symmetric atomic targets, allowing for the important effect of long-range
polarization forces. For targets that are not spherically symmetric, the theory must be extended to account for
a superposition of asymptotic power-law potentials, including an inverse-cube potential for targets with a
permanent quadrupole moment, which couple the various channels. Such an extension is described here. A
degenerate perturbation theory, extended to arbitrarily high orders through the introduction of continued-
fraction representations, is developed for the construction of the asymptotic states. Results of illustrative
numerical calculations are reported. The asymptotic solutions, along with a variational principle for the reac-
tion matrix, provide the basis for a modified effective-range theory. A minimum principle, valid at threshold,
is available for the calculation of scattering length and effective range matrices.@S1050-2947~99!04402-9#

PACS number~s!: 34.80.Bm, 03.65.Nk, 34.10.1x
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I. INTRODUCTION

The effective long-range interaction between an elect
and an atomic system may be represented as a superpo
of inverse power-law potentials and this leads to modifi
tions @1# of the energy dependence of low-energy scatter
parameters found for short-range potentials@2#. For targets
that lack spherical symmetry, the effective potential will,
general, have an angular dependence@3#. Some progress ha
been made in determining the threshold behavior of
~angle-dependent! scattering amplitude in such cases@4#. An
alternative approach, based on a reduction of the Schro¨dinger
equation to a set of coupled radial equations, appears to
vide certain advantages~as noted in Ref.@4#! and is adopted
here. For definiteness, and to focus on the essential fea
of the problem, a very specific model is considered. T
channels are involved, with identical threshold energies,
with orbital quantum numbersl 1 and l 25 l 112. The 232
potential matrix is assumed to have the asymptotic formV
;VL for r→`, where, for a neutral target,

2
2m

\2 VL5S r 24b4
~1!2

r 23b31r 24b48
2

r 23b31r 24b48
2

r 24b4
~2!2 D , ~1.1!

with real-valued parametersb3 , b48 , b4
(1) , andb4

(2) . It is not
difficult to extend the theory to include components of t
potential falling off asr 2n, with n.4.

A key element in any analysis of scattering in the pr
ence of long-range interactions is the introduction of su
ciently accurate asymptotic solutions of the wave equat
A perturbation theory for single-channel scattering by a
perposition of power-law potentials has been developed
Cavagnero@5#. The method can be extended in a number
ways @6#. An application to multichannel scattering in th
absence of the off-diagonalr 24 component~that is, with
b4850! is straightforward and this provides the starting po
for a derivation of a modified effective range theory for th
class of scattering systems@7#. Somewhat surprisingly, inclu
sion of ther 24b48

2 component in Eq.~1.1! leads to the ap-
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pearance of a degeneracy. As described below in Sec
this requires a modification of the original method of Ref.@5#
for its removal, involving the diagonalization of an effectiv
Hamiltonian in a manner similar to that employed in sta
dard degenerate perturbation theory, although here the ei
value problem is a nonlinear one. A more elaborate vers
of the perturbation theory for the asymptotic states is dev
oped in Sec. II B, involving partial summations of the ser
expansion expressed in terms of continued fractions. A d
grammatic aid to the calculation of the level shifts that ar
in this formulation is described; the method is illustrat
with numerical evaluations of polarization eigenphases
mixing parameters in second order. The remarkable for
similarity of this procedure with that arising in the theory
electronic and atomic interactions with a radiation field@8,9#
is demonstrated. With only the inverse-cube poten
present, the continued-fraction representation can be de
oped in greater detail, as shown in the Appendix. A simi
treatment, accompanied by a numerical illustration, is p
sented there for the diagonalr 24 potential.

The low-energy behavior of the regular and irregular s
lutions of the wave equation in the presence of the poten
VL determines the form of the threshold singularities of t
scattering matrix, as described in Sec. III. Here one sees
the standard Wigner threshold law@2#, developed in the con-
text of nuclear reaction theory, is modified. A description
the scattering formalism appropriate to this system, alo
with a demonstration of unitarity, is included in this discu
sion.

With threshold singularities removed, a modified reacti
matrix may be defined that varies slowly with energy. T
introduction, in Sec. III C, of a variational principle for th
modified reaction matrix not only confirms this smooth e
ergy dependence near threshold but provides a means
finding accurate approximations for the parameters—
scattering length and effective range matrices—that app
in the effective range expansion of the reaction matrix. It
observed that for diagonal elements of the scattering len
matrix the variational principle is, in fact, a minimum prin
1253 ©1999 The American Physical Society
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1254 PRA 59LEONARD ROSENBERG
ciple, a property offering clear calculational advantages.
sults reported here are summarized in Sec. IV.

II. ASYMPTOTIC STATES

A. Almost-degenerate perturbation theory

The radial Schro¨dinger equation considered here takes
form of two coupled equations with the matrix formLC
50, where, in atomic units,

L ji 52
1

2 F d2

dr2 1k22 l j~ l j11!/r 2Gd j i 1Vji , i , j 51,2,

~2.1!

with l 25 l 112; the energy isk2/2. We look for asymptotic
solutions in which the~real, symmetric! matrix V is replaced
by the long-range componentVL shown in Eq.~1.1!. Starting
with the regular solution, we definez5kr and write f j i (z)
5Ci(pz/2)1/2mji (z), whereCi is a normalization factor to
be determined. The matrixm is then seen to satisfy

Fz2
d2

dz2 1z
d

dz
1z22S l j1

1

2D 2Gmji ~z!

52S D3

z
1

D4

z2 Dmj̄ i~z!2
D j

z2 mji ~z!. ~2.2!

Here we have defined the dimensionless parametersD3

5b3k, D45(b48k)2, and D j5(b4
( j )k)2, and have let the

symbol j̄ take the value 2 forj 51 and 1 forj 52. We seek
an approximate solution in the form of a perturbation exp
sion

mji 5 (
n50

`

mji
~n!; ~2.3!

with D3 treated as a parameter of first order andD4 andD j
as quantities of second order, thenth term in the expansion is
of ordern. The lowest-order solution is assumed to be p
portional to the regular Bessel function; we have

mji
~0!~z!5aji Jh j i 11/2~z!, ~2.4a!

where

h j i 5 l j2~2/p!d i , ~2.4b!

with the phased i and the matrixaji to be determined.@An
identical procedure is followed in the construction of t
irregular solution of Eq.~2.2!, but with the regular Besse
function Jn(z) replaced everywhere by the Neumann fun
tion Nn(z).# Substituting the first-order approximationmji

>mji
(0)1mji

(1) into Eq. ~2.2!, we find, with the aid of the
recurrence relation z21Jh11/2(z)5(2h11)21@Jh13/2(z)
1Jh21/2(z)#, that

mji
~1!~z!5@a j i

~1!Jh j̄ i13/2~z!1b j i
~1!Jh j̄ i21/2~z!#, ~2.5a!

with

a j i
~1!5aj̄ iD3~2h j̄ i11!21@~ l j1

1
2 !22~h j̄ i1

3
2 !2#21,
-

e

-

-

-

b j i
~1!5aj̄ iD3~2h j̄ i11!21@~ l j1

1
2 !22~h j̄ i2

1
2 !2#21.

~2.5b!

At this stage, in the absence of singularities, we would h
aji 5d j i andd i50. However, a straightforward extension
this iteration procedure to second order would lead to ne
singularity difficulties owing to the appearance of small d
nominators of the form (l 11 1

2 )22(h2i2
3
2 )2 and (l 21 1

2 )2

2(h1i1
5
2 )2. To surmount this problem, we isolate the p

tentially troublesome terms arising in the iteration proced
by making use of the relationsJh1i15/25Jh2i11/2 and

Jh2i23/25Jh1i11/2 and equating to zero the coefficients of th

terms proportional toJh1i11/2 and Jh2i11/2. In this way we
arrive at coupled equations of the form

@~h j i 1
1
2 !22~ l j1

1
2 !2#aji 1 (

j 851

2

G j j 8aj 8 i50. ~2.6!

In a given order, the effective potential matrixG, free of
near-singularities, may be determined; one then searche
two distinct values,d1 andd2 , of the phase parameter allow
ing for a solution of Eq.~2.6! and providing values for the
ratios a2i /a1i . The matrixaji is then fixed by the normal-
ization conditiona1i

2 1a2i
2 51. The results of this type of cal

culation will now be described in second order, where o
two solutions are possible. To choose the appropriate s
tions in higher orders, one requires that they merge smoo
with the second-order solutions in the limit of small couplin
parameters.

The off-diagonal elements of the second-orderG matrix
are found to be

G215D4~2h1i11!21~2h1i13!21 ~2.7a!

and

G125D4~2h2i11!21~2h2i21!21. ~2.7b!

It will be convenient to have available a diagrammatic re
resentation of the terms appearing in the perturbation exp
sion; once a set of rules are specified higher-order terms
be written down quite readily. To make use of familiar co
cepts we may envision~somewhat formally! an infinite set of
‘‘states’’ associated with channel 1, labeled as (1,m), where
m50,61,62,..., and similarly for states (2,m) belonging to
channel 2. ThenG21 may be thought of as the amplitude fo
a transition between states~1,0! and ~2,0!, with G12 repre-
senting the reverse transition. The diagrams associated
Eqs.~2.7a! and ~2.7b! appear in Figs. 1~a! and 1~b!, respec-
tively. They represent the effect of the off-diagonalD4z22

interaction in Eq.~2.2!. Each factorz21 contributes a factor
@2(h j i 1m)11#21, where the indicesj andm correspond to
the state from which the interaction originates, as indica
by the position of the filled circle in the diagrams.

The ~second-order! matrix elementG11 ~playing the role
of a level-shift interaction! is generated by the combinatio
of the diagonalD1z22 term in Eq.~2.2! and the off-diagonal
D3z21 taken in second order. The explicit form is
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G115D1~2h1i11!21@~2h1i13!211~2h1i21!21#

1D3
2~2h1i11!21$@~ l 21 1

2 !2

2~h2i2
1
2 !2#21~2h2i21!21

1@~ l 21 1
2 !22~h2i2

5
2 !2#21~2h2i25!21%. ~2.8!

The two diagrams associated with theD1z22 interaction are
shown in Figs. 2~a! and 2~b!. The iteratedD3z21 interaction
leads to a sum of two terms corresponding to the diagram
Figs. 2~c! and 2~d!. Figure 2~c!, for example, is interpreted
~in conformity with the language of ‘‘states’’ and ‘‘trans
tions’’ adopted here! as a sequence consisting of a transiti
(1,0)→(2,21), followed by propagation in state~2, 21!—
this is represented diagrammatically as an open circle—
then the reverse transition back to the reference state~1,0!. In
Fig. 2~d! the first transition is (1,0)→(2,23), followed by
propagation in state~2,23! and then a transition back to th
reference state. In general, a ‘‘propagator’’ in state~j,m! is
represented as@( l j1

1
2 )22(h j i 1m1 1

2 )2#21, with (l j1
1
2 )2

playing the role of the total energy in channelj, while the
term (h j i 1m1 1

2 )2 may be thought of as the ‘‘kinetic en
ergy’’ in state~j,m!. ~This analogy with nonrelativistic scat
tering theory, while it may appear forced, can be develo
much further in a useful way, as will be shown below in S
II B in connection with a discussion of diagram summati
methods.! The expression forG22, as well as for each matrix
element in higher orders, may be written down directly f
lowing the diagrammatic rules just described. Similar ru
apply to the construction of the functionsmji

(n)(z) appearing
in the expansion shown in Eq.~2.3!, as will be discussed
further below.

The ~normalized! matrix a in second order is orthogona
a property that may be understood in terms of the unita

FIG. 1. Off-diagonal elements of the level-shift matrix in seco
order, given in Eqs.~2.7a! and ~2.7b!, are represented in diagram
~a! and ~b!, respectively.

FIG. 2. Diagrams representing a diagonal element of the le
shift matrix in second order, as given in Eq.~2.8!. The first two
terms in that equation are represented in~a! and~b! and the second
two terms are represented in~c! and ~d!. Interactions and propaga
tors may be read off from the positions of the filled and open circ
in the diagrams using rules given in the text.
in

d
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-
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condition for scattering in the field of the long-range pote
tial as discussed below in Sec. III. It may, therefore, be r
resented as

a5S cos«
2sin«

sin«
cos« D . ~2.9!

The mixing angle« vanishes in the limitD450 @10#. As a
numerical illustration, the mixing angle is plotted as the so
curve in Fig. 3 forl 150 over a range of values of the rati
D4 /D3

2 with D15D25D3
2. We have also calculated, for th

same choices of strength parameters, the phasesd i defined
earlier in Eq.~2.4b!. The short- and long-dashed curves re
resentd1 /D3

2 andd2 /D3
2, respectively@11#.

Terms in the perturbative expansion of the wave funct
may be constructed most easily using diagrammatic rule
the type just described; with near-singularities having be
accounted for, transitions to states~1,0! and ~2,0! are to be
omitted in the determination of the functionsmji

(n) . Thus in
second order we have, for example,

m2i
~2!5a2i

~2!Jh2i15/2~z!1b2i
~2!Jh2i23/2~z!1g2i

~2!Jh2i27/2~z!.
~2.10!

The coefficienta2i
(2) is represented by the two diagrams

Fig. 4, from which its explicit form may be read off as

l-

s

FIG. 3. Plots of the mixing angle« ~solid curve! and scaled
polarization phasesd1 /D3

2 ~short-dashed curve! and d2 /D3
2 ~long-

dashed curve! as functions ofD4 /D3
2 for l 150, with strength pa-

rametersD1 , D2 , andD3
2 all taken to be equal. The notation is th

of Sec. II of the text.

FIG. 4. The first and second terms in the expansion coeffic
given in Eq.~2.11! are represented in diagrams~a! and~b!, respec-
tively.
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1256 PRA 59LEONARD ROSENBERG
a2i
~2!5a2i~2h2i11!21$D2~2h2i13!211D3

2@~ l 11 1
2 !2

2~h1i1
7
2 !2#~2h1i17!21%@~ l 21 1

2 !22~h2i1
5
2 !2#21.

~2.11!

Note that in constructing the diagrams formji
(n) we draw all

possible sequences, of ordern, of potential lines followed by
propagator circles starting at one of the reference states
ending at a state~j,m!, with mÞ0. In the diagrams associate
with Eq. ~2.10!, for example, the initial and terminal state
are (2,0)→(2,2) for a2i

(2) , (1,0)→(2,22) and (2,0)→(2,
22) for b2i

(2) , and (1,0)→(2,24) for g2i
(2) . Perturbation

contributions of arbitrary order may be determined straig
forwardly with the aid of these rules. As mentioned abo
approximations to the irregular solution of Eq.~2.2! are ob-
tained by the replacement ofJn(z) with Nn(z).

B. Level-shift reformulation

It is undoubtedly possible to arrive at the diagram su
mation procedure, now to be obtained, without setting up
analogy with the Green’s-function formalism of scatteri
theory but doing so appears to be a helpful device. Thus
set up an abstract dynamical system in parallel with the
of actual interest and that enables us to make use of pow
operator methods. This is a heuristic procedure; all res
obtained in this manner may be verified by reference to
original problem.

Consider a Hamiltonian matrixh5h01u operating in a
space of statesuj,m& with the connectionu2,m&5u1,m12&.
We set

u5S D1v2

D3v1D4v2
D3v1D4v2

D2v2 D , ~2.12!

with

vu j ,m&5@2~h j i 1m!11#21@ u j ,m11&1u j ,m21&] ~2.13!

and

h0u j ,m&5~h j i 1m1 1
2 !2u j ,m&. ~2.14!

We seek a solution of the Schro¨dinger equation (h2l)uc i&
50, where

l5S ~ l 11 1
2 !2

0

0

~ l 21 1
2 !2D ~2.15!

andh j i 5 l j2(2/p)d i , with thed i to be determined. Projec
tion operatorsp and q512p are introduced such tha
p5p101p20 where, with the introduction of some notatio
that will also be useful later on,

pjmS u1m8&

u2m8&
D 5uF jm&dmm8 ~2.16!

and

uF1m&5S u1,m&
0 D , uF2m&5S 0

u2,m& D . ~2.17!

We write uc i&5(p1q)uc i& and set
nd

t-
,

-
n

e
e

ful
ts
e

puc i&5S a1i u1,0&
a2i u2,0& D . ~2.18!

A perturbation expansion based on this dynamics may
shown to reproduce that developed in Sec. II A for the ori
nal system. To introduce partial summation methods,
make use of standard projection-operator techniques@12#
starting with the definition of the resolventg5@q(l
2h)q#21, in terms of which we have the representations

quc i&5ghupc i& ~2.19a!

and

p~h02l!upc i&1p@u1ugu#upc i&50. ~2.19b!

A level-shift matrixG may now be defined by the relation

pj 80@u1ugu#uF j 0&5uF j 80&G j 8 j . ~2.20!

Now, with the substitutions u2,22&5u1,0& and u1,2&
5u2,0&, we may rewrite Eq.~2.19b! as a set of coupled equa
tions for the coefficientsa1i and a2i ; they are precisely of
the form shown in Eq.~2.6!.

The matrixG may be determined perturbatively, thereb
reproducing the results of Sec. II A, by introducing, into E
~2.20! the expansion

g5g01g0ug01g0ug0ug01¯ , ~2.21!

where g05@q(l2h0)q#21. We now describe a rearrange
ment of this series leading to a continued-fraction repres
tation of the resolventg @13#. Thus we define a modified
resolvent from which a particular stateu j a ,ma&[ua& has
been removed~in addition to the statesu1,0& and u2,0& pro-
jected out ofg!. More precisely, letpa[pj ama

be the projec-

tor onto the vectoruF j ama
&[uFa&, and defineqa5q2pa .

Then, with ga5@qa(l2h)qa#21, we have the partitioning
identity @14#

g5ga1~11gau!pagpa~11uga!, ~2.22a!

where

pagpa5@pa~l2h02u2ugau!pa#21. ~2.22b!

We may write

pagapa5pa~da
a!21 ~2.23a!

with

da
a5~ l j a

1 1
2 !22~h j ai1ma1 1

2 !22Gaa
a . ~2.23b!

The superscript onG indicates that the stateFa has been
projected out; this modified level-shift matrix is determin
by the relation

pa~u1ugau!uFa&5uFa&Gaa
a . ~2.24!

The process of state removal may be continued. Thus
Eq. ~2.24! we may writega5ga(bpb , where pb projects
onto statesFb differing fromFa , F10, andF20. Then, with
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the aid of the partitioning identity~2.22! now applied toga ,
we obtain~in an obvious extension of the notation alrea
introduced! the relation

gapb5~11gabu!pb~db
ab!21 ~2.25a!

with

db
ab5~ l j b

1 1
2 !22~h j bi1mb1 1

2 !22Gbb
ab ; ~2.25b!

here, the modified level shift is defined by

pb~u1ugabu!uFb&5uFb&Gbb
ab . ~2.25c!

This continued-fraction structure effectively includes pert
bation terms of arbitrarily high order at each stage. Mo
over, a state may give rise to a small denominator@in Eq.
~2.23b!, for example#, but it no longer appears in later stag
of the subtraction procedure and this can improve conv
gence properties. A numerical example illustrating these
marks is given in the Appendix.

The same continued-fraction expansion for the resolveg
may be combined with the representation~2.19a! to provide
a successive approximation procedure for constructing
~regular and irregular! asymptotic wave functions. It is pos
sible to put this series expansion in more explicit form. T
is done in the Appendix for special cases in which the o
diagonalr 24 potential is absent, but we shall not do so he
for the general case. A similar expansion was described
lier @9#, though in connection with a different class
systems—the interaction of an electron or atom with a rad
tion field—and those results may be taken over quite ea
to apply to the problem at hand.

III. NEAR-THRESHOLD SCATTERING

A. Formulation

It will be convenient in this formal discussion to wor
with regular and irregular asymptotic solutions having a d
ferent~and simpler! long-distance behavior from those intro
duced in Sec. II. The two sets of solutions are closely rela
in a manner described below. The regular solution con
ered here has the asymptotic form

f j i
L ~r !;sin~kr2 l jp/2!d j i 1K ji

L cos~kr2 l jp/2!, ~3.1!

where the reaction matrixKL is real and symmetric. Letting
x represent the orthogonal matrix that diagonalizesKL, we
have

KLx5x tandL. ~3.2!

The diagonal elementsd i
L differ from the phasesd i defined

in Sec. II; we return to this point below. Now using Eq.~3.2!
we find that the functionf j i [( f Lx) j i cosi

L(2/k)1/2 behaves,
for r→`, as

f j i ~r !;xji sin~kr2 l jp/21d i
L!~2/k!1/2. ~3.3!

In a similar way we may define an irregular solution with t
asymptotic form

j j i ~r !;xji cos~kr2 l jp/21d i
L!~2/k!1/2. ~3.4!
-
-

r-
e-

e

s
-
e
r-

-
ly

-

d
-

A scattering matrixS0 may be defined by consideration o
a scattering solution, valid throughout space, and expres
in terms of undistorted incoming and outgoing waves as

C j i
0 ~r !;~2/k!1/2@e2 i ~kr2 l jp/2!2ei ~kr2 l jp/2!Sji

0 # ~3.5!

for r→`. Alternatively, in terms of the distorted waves,

I j i ~r !5j j i ~r !2 iw j i ~r !, Oji ~r !5j j i ~r !1 iw j i ~r !, ~3.6!

we have the related solution behaving as

C j i ~r !;I j i ~r !2 (
j 851

2

Oj j 8Sj 8 i . ~3.7!

The relation between the two solutions is readily seen to
C05CB, where

BT5x exp~ idL!, ~3.8!

the superscriptT denoting transpose. The relation betwe
the two scattering matrices is

S05BTSB. ~3.9a!

Sincex is orthogonal and thed i
L are real, it follows thatB is

unitary. Then the unitarity property satisfied byS0 is seen to
be passed on to the modified scattering matrixS. In terms of
transition matrices, conventionally defined by the relatio
S05112iT0 andS5112iT, we find the unitarity relation
T2T†52iTT† and the connection

T05xeidL
sindLxT1BTTB. ~3.9b!

To work with standing waves we introduce a reacti
matrix K through the relationT215K212 i . The unitarity of
T implies thatK is Hermitian; it is in fact real and symmetri
~as may be confirmed directly with the aid of the variation
principle derived in Sec. III C!. Noting that the function
( i /2)C behaves asymptotically asfT211O, we may define
U5( i /2)CK with asymptotic form

U;f1jK. ~3.10!

To have available an approximation procedure for
construction of the solutionsw andj we may relate them to
the regular and irregular solutions introduced in Sec. II: t
is accomplished by comparison of asymptotic forms. Th
we write

f j i ~r !;~2/k!1/2@cji sin~kr2 l jp/21d j !

1dji cos~kr2 l jp/21d i !# ~3.11a!

for r→`, where, up to an overall normalization yet to b
fixed, the coefficient matricesc andd are determined by the
methods described earlier in Sec. II. Rewriting Eq.~3.11a! as

f j i ~r !;~2/k!1/2@ c̄ j i sin~kr2 l jp/2!1d̄ j i cos~kr2 l jp/2!#
~3.11b!

with
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c̄ j i 5cji cosd i2dji sind i , d̄ j i 5cji sind i1dji cosd i ,
~3.11c!

we may, by comparison with the asymptotic form shown
Eq. ~3.3!, conclude that the functionsf and f are identical
and that

c̄ j i 5xji cosd i
L , d̄ j i 5xji sind i

L . ~3.12!

In a similar way we may identify the irregular asymptot
solution defined in Sec. II with2j. Another useful relation
found from this comparison of solutions isKL5d̄( c̄)21.
Thus in addition tof andj, we may determineKL, and by
diagonalizationx and dL by application of the perturbation
procedure outlined in Sec. II. Moreover, when the relat
shown in Eq.~3.8! is compared with Eqs.~3.12! we may
conclude thatBT5 c̄1 i d̄. From the real and imaginary par
of the unitarity relationBB†51 we find that

cTc1dTd51, ~3.13!

which supplies the required normalization condition to
combined with the perturbation procedure; in addition,
symmetry propertycTd5dTc is uncovered. We note finally
that the normalization condition implied by Eq.~3.13!, taken
in second order and evaluated at threshold, leads to the r
that the matrixa is orthogonal in second order@15#, as re-
marked earlier in connection with Eq.~2.9!.

B. Threshold behavior

The threshold behavior of the asymptotic solutions m
be inferred from the small argument limits of the Bes
functions from which they are composed. The regular so
tion f, having been identified with the functionf studied
earlier, is expressed as

f j i 5@Ci~k/2!1/2#~pr !1/2mji . ~3.14!

From the normalization condition placed on this function
may conclude that the factor@Ci(k/2)1/2# is finite at thresh-
old. Then the threshold behavior off j i may be deduced from
that of mji , with the latter determined from an examinatio
of the structure of the perturbation expansion. One finds
this way that the function

f̄ j i ~r !5k2~h1i11/2!f j i ~r ! ~3.15!

is finite and nonvanishing at threshold and may be expan
in powers ofk2. A very similar analysis shows that the re
duced irregular solution, defined as

j̄ j i ~r !5k~h2i11/2!j j i ~r ! ~3.16!

is finite and nonvanishing at threshold. One understands
appearance of orbital quantum numberl 1 in the threshold
factor in Eq.~3.15! and l 2 in Eq. ~3.16! by recalling that the
angular momentum states are coupled; the threshold be
ior of the regular and irregular solutions are determined
the lowest and highest partial waves, respectively, that
present asymptotically.
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Having determined how threshold singularities are to
isolated, we may define a reduced wave functionŪ j i

5k2(h1i11/2)U ji with asymptotic form

Ū j i ~r !;f̄ j i ~r !1(
i 8

j̄ j i 8~r !K̄ i 8 i . ~3.17!

The smooth threshold behavior of the asymptotic solutio
appearing in Eq.~3.17! implies that the matrix

K̄ i 8 i5k2~h2i 811/2!Ki 8 ik
2~h1i11/2! ~3.18!

is free of threshold singularities. This central property will
confirmed below with the aid of a variational argument. T
threshold behavior of theT matrix may now be deduced
from the relationT215K212 i given earlier. If, for nota-
tional simplicity, we define the diagonal matrixh j with di-
agonal elementsh j 1 andh j 2 , we obtain the representation

T5kh211/2@K̄212 ikh11h211#21kh111/2, ~3.19!

which, by virtue of the relation shown in Eq.~2.4b! with d i
of order k2, contains the logarithmic contributions to th
energy dependence at threshold that is characteristic of s
tering with long-range potentials.

C. Variational principle

A variational principle for the reaction matrixK̄ defined
in Eq. ~3.18! may be derived by extending the procedu
described in Ref.@7# to account for the asymptotic couplin
of channels. The derivation begins with the introduction o
trial function Ū j i ,t(r ), vanishing at the origin and satisfyin
the asymptotic form~3.17! with K̄ replaced by a trial matrix
K̄ t . The matrix

(
j , j 8

E
0

`

@Ū j 8 i 8~L j 8 j Ū j i ,t!2~L j j 8Ū j 8t8!Ū j i ,t#dr

is evaluated in two ways, first through the use of the Sch¨-
dinger equationLŪ50 and then by integration by parts tak
ing into account the boundary conditions and making use
the Wronskian relation

1

2 (
j

Fdf̄ j i 8
dr

j̄ j j 92f̄ j i 8

dj̄ j j 9
dr

G5d i 8 j 9 . ~3.20!

This leads to the identity

K̄ i 8 i5K̄ i 8 i ,t2(
j , j 8

E
0

`

Ū j 8 i 8L j 8 j Ū j i ,tdr. ~3.21!

Actually, it is the matrix elementK̄ ii 8 that originally appears
on the left-hand side, but this matrix is symmetric~as may be
verified by performing the above calculation with the tri
function replaced by the exact solution!. It will be conve-
nient to express the trial function for allr as

Ū j i ,t~r !5ys, j i ~r !1(
j 8

yc, j j 8~r !K̄ j 8 i ,t , ~3.22!
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whereys;f̄ and yc;j̄ asymptotically. A trial functionŪt

is defined as in Eq.~3.22! but with K̄ t replaced byK̄t . A
variational principle is obtained by replacing the exact wa
function in the identity~3.21! with Ūt . The trial matricesK̄ t

and K̄t may be determined by requiring that the variation
expression be stationary with respect to variations in th
parameters. To simplify the form of the resultant express
we introduce some notation, starting with the definiti
w5Lys . A scalar product is now defined permitting the a
breviation

~aj ,bi ![(
j 8

E
0

`

aj 8 jbj 8 idr. ~3.23!

With this notation we define the matrix

Xj 8 j5~yc, j 8 ,Lyc, j !. ~3.24!

After some algebra the variational approximationK̄v may be
seen to take the form

K̄ i 8 i ,v52~ys,i 8 ,wi !1(
j , j 8

~wi 8 ,yc, j 8!~X21! j 8 j~yc, j ,wi !.

~3.25!

With threshold singularities removed, the trial functionsyc
and ys may be connected smoothly, from their prescrib
forms at great distances from the origin, to ‘‘inside’’ fun
tions that vanish at the origin. In line with the convention
effective range approximation, the inside functions may
chosen to be independent of energy near threshold. The
in the trial functions thereby incurred will be of first order
the energy and this leads to an error inK̄v of second order.
Then, with the effective range approximation expressed
the standard manner as

~K̄ !21>2A211 1
2 r 0k2, ~3.26!

variational estimates of the scattering length and effec
range matrices are available.

At zero energy the variational principle becomes a mi
mum principle for diagonal elements of the scattering len
matrix. A particularly useful version of the minimum prin
ciple is based on the addition to the right-hand side of
~3.22! a superposition of normalizable basis functions w
linear parameters determined variationally. That is, we w
the zero-energy trial function as

Ū j i ,t~r !5ys, j i ~r !1 (
j 851

p

yc, j j 8~r !bj 8 i ,t ~3.27!

with the parametersbji ,t determined variationally. Fo
j 851,2 the trial functionsyc, j j 8 are the~normalizable! zero-
energy limits of the functions introduced above, while f
j 853,4,...,p they are chosen from a normalizable basis se
similar form is taken for the trial functionŪ j i ,t . The varia-
tional expression for one of the elementsAii of the scattering
length matrix, involvingp basis functions, then takes th
form
e

l
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A

Aii ,v
~p! 5~ys,i 8 ,wi !2 (

j , j 851

p

~wi 8 ,yc, j 8!~X21! j 8 j~yc, j ,wi !.

~3.28!

If there are no bound states,Aii
(0) provides an upper bound o

the exact matrix elementAii and as the number of bas
functions is increased, each successive term decrease
value of the approximation obtained at the previous sta
More generally, suppose thatN bound states exist. One ex
amines the sequence of scattering length approximat
Aii

(p) , p50,1,...,n, wheren>N. After one verifiesN upward
jumps along this sequence, the variational method is ens
to give an upper bound onAii . The details of the derivation
of this result differ only slightly from those given earlie
@16#, in connection with the problem of scattering by a tens
force of short range@17#, and will not be repeated here.

IV. SUMMARY

A modified version of effective range theory has be
developed that is applicable to the study of low-energy sc
tering of an electron by an atomic target with a ground-st
wave function that is not spherically symmetric. For simpl
ity, only the inverse-cube and inverse-fourth-power contrib
tions to the long-range effective electron-target interact
has been retained. A two-channel model was adopted,
channel thresholds taken to be identical, corresponding to
degeneracy of the two target states differing only in s
projection. Exact analytic asymptotic solutions of the wa
equation are not available for potentials of this type. A ge
eral method for developing approximate solutions that
scribe fairly accurately the nature of the threshold singula
ties was described in Sec. II with additional details given
the Appendix. The method is based on perturbation the
enhanced through the introduction of diagram summat
techniques. A distorted-wave theory was presented in S
III, based on the availability of these asymptotic wave fun
tions. This analysis leads to the representation of a modi
scattering amplitude given in Eq.~3.19!, in which the kine-
matical factors singular at threshold are displayed. T
leaves a reaction matrix, denoted there asK̄, that varies
smoothly with energy and may, therefore, be parametrize
the standard manner of effective range theory. A variatio
procedure was presented in Sec. III C for estimating the s
tering length and effective range matrices.
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APPENDIX

The continued-fraction structure of the modified perturb
tion theory presented in Sec. II becomes more transpare
the absence of the off-diagonalr 24 potential. Here we ex-
amine two special cases, each of interest in its own right,
which the perturbation expansion can be developed in m
explicit form.

Consider first the case where only theb3 /r 3 contribution
appears in the long-range potential shown in Eq.~1.1!. TheG
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matrix is then diagonal, the mixing angle in Eq.~2.9! van-
ishes, and Eq.~2.6! decouples. Assuming that the system
in channel 1 in the limit of vanishingb3 , we need only
consider a single level-shift element corresponding to
virtual transitions (1,0)→(2,21)→(1,0) and (1,0)→(2,
23)→(1,0). To simplify notation we denote the stat
(1,m) as ~m! for m even and states (2,m) as (m12) for m
odd. The matrix elementG11 of interest is denoted asG0 .
Dropping the subscripti in Eq. ~2.4b! we write that equation
for j 51 ash5 l 12(2/p)d, so thath1 has becomeh and
h25h12. Thenh is determined from the relation

~h1 1
2 !22~ l 11 1

2 !21G050. ~A1!

Writing G05G011G02 , we have

G015v01~1/d11!v10, ~A2!

with v105D3(2h11)21 andv015D3(2h13)21. The sub-
script 1 on d1 is inserted to emphasize that since the sta
~0! and~1! are removed, and there are no interactions in t
model causing transitions (1)→(m) for m,0, only those
states withm.0 appear as intermediate states. The propa
tor is now expressed in the form

d115~ l 21 1
2 !22~h1 3

2 !22G11 . ~A3!

Here we have

G115v12~1/d21!v21, ~A4!

with v215D3(2h13)21 and v125D3(2h15)21. This as-
cending sequence may be continued in an obvious way
general, we havevm8m5D3@2(h1m)11#21 with m85m
61. The descending sequence is developed similarly, w

G025v0~21!~1/d~21!2!v ~21!0 . ~A5!

We have

d~21!25~ l 21 1
2 !22~h2 1

2 !22G~21!2 ~A6!

and

G~21!25v ~21!~22!~1/d~22!2!v ~22!~21! . ~A7!

The wave function satisfies Eq.~2.2! with D45D j50. In
the absence of any perturbation, the system is in state~0!
with wave functionJh11/2(z). The perturbation expansio
shown in Eq.~2.3! is rewritten asmj5(n50

` mj
(n) with sub-

script j retained as a channel index. Forj 51 the nth-order
contribution, withn52,4,..., is

m1
~n!~z!5anJh1n11/2~z!1a2nJh2n11/2~z!, ~A8!

where

an5~1/dn1!vnn21¯v21~1/d11!v10 ~A9a!

and

a2n5~1/d~2n!2!v2n~2n11!¯v22~21!~1/d~21!2!v ~21!0 .

~A9b!

This has the form of the lowest nonvanishing order of p
turbation theory, but with modified propagators; these pro
e

s
is

a-

in

-
-

gators are represented by continued fractions, as indic
above. The wave function in channel 2 is given by a simi
expansion, but with the nonvanishing orders of the pertur
tion expansion taking on the valuesn51,3,... .

We now consider the single-channel scattering probl
with the long-range potential taken to beb4

2/r 4. We may,
therefore, drop the channel label and write the appropr
version of Eq.~2.6! as (h1 1

2 )22( l 1 1
2 )21G50, where

G5G011G02 . ~A10!

With the interactions now given byum8m5(b4k)@2(h1m)
11#21, m85m61, we have

G015u01u101u01u12~1/d21!u21u10, ~A11!

with

d215~ l 1 1
2 !22~h1 5

2 !22G21 ~A12!

and

G215u23u321u23u34~1/d41!u43u32. ~A13!

The structure of this ascending sequence should now
clear. The descending sequence has the form

G025u0~21!u~21!01u0~21!u21~22!

3~1/d~22!2!u22~21!u~21!0 ~A14!

with

d~22!25~ l 1 1
2 !22~h2 3

2 !22G~22!2 , ~A15!

and so forth. The sequences are terminated, in practice
settingG2n15G2n250; we may say that such an approx
mation is carried to thenth ‘‘level.’’ The solid curve in Fig.
5 represents the results of a third-level calculation of
polarization phased for l 52 as a function of (b4k)2. Re-
sults at levels two and four differ only slightly. Instabilitie

FIG. 5. Plot of the polarization phase ford-wave scattering in an
inverse fourth-power potential as a function of the strength par
eter (b4k)2 obtained using the continued-fraction formulation~solid
curve! in an approximation carried to the third level~as defined in
the text!. The dashed curve represents the lowest-order approx
tion, given~for all l! in Eq. ~A16!.



n
t
a

e

PRA 59 1261LOW-ENERGY SCATTERING BY NONSPHERICALLY . . .
signaling the onset of complex phases@11# in the calculation,
appear for (b4k)2.9.5. The precise numerical calculatio
done by Holzwarth@11# gives the onset of the instability a
(b4k)2510.5. The level-one calculation gives no better th
10% accuracy for (b4k)2.4 and fails for (b4k)2.6. For
comparison, a plot of the polarization phase in lowest ord
namely,

d>
p~b4k!2

~2l 13!~2l 11!~2l 21!
, ~A16!

is given ~for l 52! by the dashed curve.
The wave function is expanded asm(z)5(n50

` m(n)(z).
We have, forn52,4, . . . ,
.

en

ef
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ed
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r,

m~n!5gnJh1n11/21g2nJh2n11/2, ~A17!

with

gn5~1/dn1!un~n21!un21~n22!¯u43u32~1/d21!u21u10
~A18a!

and

g2n5~1/d~2n!2!u2n~2n11!u2n11~2n12!¯u24~23!u23~22!

3~1/d~22!2!u22~21!u210. ~A18b!
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