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Methods for reliable teleportation
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Recent experimental results and proposals towards implementation of quantum teleportation are discussed.
It is proved that reliable~theoretically, 100% probability of success! teleportation cannot be achieved using the
methods applied in recent experiments, i.e., without quantum systems interacting with one another. Telepor-
tation proposals involving atoms and electromagnetic cavities are reviewed and the most feasible methods are
described. In particular, the language of nonlocal measurements has been applied; this language has also been
used for presenting a method for teleportation of quantum states of systems with continuous variables.
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I. INTRODUCTION

Teleportation is ‘‘... apparently instantaneous transpo
tion of persons etc., across space by advanced technolo
means’’ @1#. Recently, Bennett, Brassard, Crepeau, Joz
Peres, and Wootters~BBCJPW! @2# proposed a gedanke
experiment which they called ‘‘quantum teleportation
Many proposals were suggested and a few real experim
@3–5# were performed inspired by the BBCJPW work. How
ever, an experiment demonstrating a reliable~i.e., 100% suc-
cessful, given ideal devices! teleportation of an unknown
state of an external quantum system has not been perfor
yet. In this paper we prove that the methods used in
current experiments cannot lead to reliable teleportation
discuss other proposals for teleportation.

Quantum teleportation transports the quantum state
system and/or its correlations to another system. The sta
disintegrated in one place and a perfect replica appears
distant site. The state or its complete description is ne
located between the two sites during the transportation.
teleportation procedure, apart from quantum channels~pre-
pared in advance!, requires telegraphing a surprisingly sma
amount of information between the two sites. All these pro
erties justify the name ‘‘teleportation’’ for the BBCJPW pro
cedure. Note that telegraphing classical information can
be instantaneous. Therefore teleportation cannot be instan
neous either. This, however, is not surprising, since quan
states can carry information and special relativity does
allow instantaneous transmission of signals.

The organization of this paper is as follows. Section
reviews the original teleportation method. Section III is d
voted to the proof that without interaction between ‘‘qua
tum’’ objects the measurement of the nondegenerate
operator, which is the core of the original proposal, can
be performed. Section IV analyzes teleportation meth
which use quantum-quantum interactions, in particular
method based on nonlocal measurements@6#. In Sec. V we
discuss arguably more promising experimental proposals
reliable teleportation including implementation of
‘‘crossed’’ nonlocal measurements scheme for teleporta
of quantum states of atoms. In Sec. VI we discuss propo
for teleportation of quantum states of continuous variab
Section VII presents a discussion which concludes the pa
PRA 591050-2947/99/59~1!/116~10!/$15.00
-
cal
a,

ts

ed
e
d

a
is

t a
er
e

-

ot
-
m
t

I
-
-
ll
t
s
a

or

n
ls

s.
er.

II. THE ORIGINAL BBCJPW TELEPORTATION
PROCEDURE

Let us start with the analysis of teleportation of a quant
state of a two-level system. The states under discussion
spin states of a spin-1

2 particle,u↑& andu↓&, polarization states
of a photon,u↔& and ul&, the states of a photon in a two-arm
interferometer,ua& and ub&, ground and excited state of a
atom ~or ion!, ug& and ue&, and photon number states of
microwave cavity,u0& and u1&. Mathematically, there is no
difference between the analysis of various two-level syste
For the present analysis, following the tradition, we will u
spin states, in spite of the fact that this is the only syst
from the list above for which there is no proposal for a re
experiment.

The original BBCJPW teleportation procedure consists
three main stages.

~i! Preparation of an Einstein-Podolsky-Rosen~EPR! pair

uEPR&5
1

&
~ u↑&u↓&2u↓&u↑&). ~1!

~ii ! Bell-operator measurement performed on the ‘‘inpu
particle and one particle of the EPR pair. The Bell opera
has the following eigenstates:

uC2&5
1

&
~ u↑&u↓&2u↓&u↑&),

uC1&5
1

&
~ u↑&u↓&1u↓&u↑&),

~2!

uF2&5
1

&
~ u↑&u↑&2u↓&u↓&),

uF1&5
1

&
~ u↑&u↑&1u↓&u↓&).

~iii ! Transmission of the outcome of the Bell measu
ment and appropriate unitary operation on the second
ticle of the EPR pair~the ‘‘output’’ particle!. The possible
116 ©1999 The American Physical Society
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PRA 59 117METHODS FOR RELIABLE TELEPORTATION
operations arenothing in the case ofuC2& and p rotations
aroundx̂, ŷ, and ẑ axes for the three other outcomes.

Completing ~i!–~iii ! ensures transportation of the pu
state of the input particle to the state of the output particle
also ensures transportation of correlations: if the input p
ticle were correlated to other systems, then the output
ticle ends up correlated to these systems in the same w

Unitary operations can be performed more or less eff
tively on all systems.~The operations on quantum states o
microwave cavity can be performed indirectly through a m
nipulation of atomic state and the interchange of the state
the atom and the cavity.! Preparation of the EPR pair is als
achievable~with various levels of difficulty! for all systems.
The main difficulty is performing the Bell measurement.

III. BELL-OPERATOR MEASUREMENT WITHOUT
INTERACTION BETWEEN QUANTUM SYSTEMS

We shall prove here that it is impossible to perform co
plete ~nondegenerate! Bell-operator measurement withou
using interaction between quantum systems. We allow
unitary transformation of single-particle states and we
allowed to perform any local single-particle measuremen

According to the standard~von Neumann! approach, the
measurement procedure can be divided into two stages
unitary linear evolution and local detection. There are fo
distinct~orthogonal! single-particle states which are involve
in the definition of the Bell states: there are two channe
and a two-level system enters into each channel. We n
the channels left (L) and right (R) corresponding to the way
the Bell states~2! are written, i.e., in the explicit notation
uC2&5(1/&)(u↑&Lu↓&R2u↓&Lu↑&R). The general form of
the unitary linear evolution of the teleportation procedure
the four states can be written in the following form:

u↑&L→( ai u i &, u↓&L→( bi u i &,

~3!

u↑&R→( ci u i &, u↓&R→( di u i &,

where$u i &% is a set of orthogonal single-particle local state
The ‘‘linearity’’ means that the evolution of the particle i
one channel is independent of the state of the particle in
other channel and therefore Eq.~3! is enough to define the
evolution of the Bell states:

uC2&→(
i , j

a i j u i &u j &, uC1&→(
i , j

b i j u i &u j &,

~4!

uF2&→(
i , j

g i j u i &u j &, uF1&→(
i , j

d i j u i &u j &.

In the right hand side the sum is on all different pairs$ i , j %
and the order is irrelevant. States of distinguishable parti
correspond to differentu i & ’s. If the particles are identical
u i &u j & signifies properly symmetrized states (1/&)(u i &1u j &2
6u j &1u i &2).

We assume that we have only local detectors, theref
only the product statesu i &u j & ~and not their superpositions!
can be detected. Measurability of the nondegenerate Bell
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erator means that there is at least one nonzero coefficien
every kinda i j ,b i j ,g i j ,d i j and if, for a certaini , j , it is not
zero, then all others are zero.

If the particles entering the two channels are not identic
then there are strong restrictions on the unitary evolution~3!
which follows from the fact that the particles do not chan
their identity:

aiÞ0 ⇒ ci5di50,

biÞ0 ⇒ ci5di50,
~5!

ciÞ0 ⇒ ai5bi50,

diÞ0 ⇒ ai5bi50.

The equations for coefficients of the decomposition of
Bell states after the unitary evolution are as follows.

For i 5 j we have

a i i 5aidi2bici ,

b i i 5aidi1bici ,
~6!

g i i 5aici2bidi ,

d i i 5aici1bidi ,

but from Eq.~5! we immediately obtain

a i i 5b i i 5g i i 5d i i 50. ~7!

For iÞ j we have

a i j 5aidj1ajdi2~bicj1bjci !,

b i j 5aidj1ajdi1bicj1bjci ,
~8!

g i j 5aicj1ajci2~bidj1bjdi !,

d i j 5aicj1ajci1bidj1bjdi .

Let us assume thataiÞ0 anda i j Þ0. Then, taking into ac-
count Eq.~5! and the requirement of the measurability of t
Bell operator, we obtain

a i j 5aidj2bicjÞ0,

b i j 5aidj1bicj50,
~9!

g i j 5aicj2bidj50,

d i j 5aicj1bidj50.

However, we can immediately see that this set of equati
does not have a solution. Since the equations are essen
symmetric relative to the various coefficients, we get t
same result while choosing other nonzero coefficien
Therefore we have proved the statement for distinguisha
particles.

In fact, the proof yields more than the unmeasurability
the nondegenerate Bell operator. We have proved that ev
degenerate Bell-state-operator measurement which sepa
just one Bell state is impossible. Note, however, that deg
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118 PRA 59LEV VAIDMAN AND NADAV YORAN
erate Bell-state-operator measurement which distinguis
one pair of Bell states from the other pair is possible. F
example, measurements of thesz1 andsz2 distinguishes be-
tween the pair of statesuC& ~for both of which the two out-
comes are different! and the pair of statesuF& ~for which the
two outcomes are identical!. Obviously, these aredemolition
measurements and we cannot continue to measure the
ticles and specify all the Bell states.

Let us turn to the analysis of Bell measurement on id
tical particles starting with bosons@7#. Taking into account
symmetrization, we obtain Eqs.~6! and ~8! for the coeffi-
cients for differenti , j also for this case, except for the ove
all factor 1/& in Eqs. ~8! @we remind the reader thatu i &u j &
means (1/&)(u i &1u j &21u j &1u i &2)#. For bosons, however, w
have no restrictions, Eq.~5!, and therefore, we cannot claim
immediately that Eq.~7! holds. The measurability of the non
degenerate Bell operator requires that for any giveni at least
three out of the coefficientsa i i ,b i i ,g i i ,d i i are zero. From
Eqs.~6! it follows that the fourth coefficient must be zero to
and therefore we obtain Eq.~7! also for the identical bosons
Thus, using Eq.~6! again, we obtain

aidi5bici5aici5bidi50. ~10!

Therefore at least two coefficients out of four are zero: eit
ai5bi50 or ci5di50.

Let us assume nowa i j Þ0 ~and thereforeb i j 5g i j 5d i j
50) and assume thatai5bi50. Then, Eqs.~8! become

a i j 5ajdi2bjciÞ0,

b i j 5ajdi1bjci50,
~11!

g i j 5ajci2bjdi50,

d i j 5ajci1bjdi50.

These equations, however, do not have a solution. It is e
to see that also for all other cases there are no soluti
which proves the statement for bosons.

For bosons, in contrast with the case of nonidentical p
ticles, it is possible to measure adegenerateBell operator
which distinguishes two Bell states. When we conside
degenerate Bell operator, it is not true anymore that at le
three out of the coefficientsa i i ,b i i ,g i i ,d i i are zero. A par-
ticular solution@8–10# allows us to distinguish two out o
four Bell states. The unitary linear transformation is

u↑&L→
1

&
~ u1&1u3&), u↓&L→

1

&
~ u2&1u4&),

~12!

u↑&R→
1

&
~ u1&2u3&), u↓&R→

1

&
~ u2&2u4&),

and it leads to
es
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uC2&→
1

&
~ u2&u3&2u1&u4&),

uC1&→
1

&
~ u1&u2&2u3&u4&),

~13!

uF2&→
1

2
~ u1&u1&2u3&u3&2u2&u2&1u4&u4&),

uF1&→
1

2
~ u1&u1&2u3&u3&1u2&u2&2u4&u4&).

@Note again that symmetrization is not written explicitly. F
example, u3&u4& means (1/&)(u3&1u4&21u4&1u3&2).# This
scheme can be realized in a laboratory for photon polar
tion states using a beam splitter followed by polarizing be
splitters and four detectors@11#, see Fig. 1.

The most difficult case for the analysis is when the p
ticles are identical fermions. Due to the~anti!symmetriza-
tion, Eq.~7! holds for any choice of basic unitary evolution
~3! and therefore we do not have equations analogous to
~6! but only the analog of Eqs.~8!:

a i j 5aidj2ajdi2~bicj2bjci !,

b i j 5aidj2ajdi1bicj2bjci ,
~14!

g i j 5aicj2ajci2~bidj2bjdi !,

d i j 5aicj2ajci1bidj2bjdi .

Again, measurability of the nondegenerate Bell opera
means that there is at least one nonzero coefficient of e

FIG. 1. A scheme for the Bell-operator measurement which d
tinguishes two out of four Bell states. The beam splitter BS p
forms ~up to irrelevant phases! interaction~12!, where for the input
statesu↑&[u↔&, u↓&[ul&, and for the output statesu1&[u↔&L ,
u2&[ul&L , u3&[u↔&R, u4&[ul&R . The polarization beam splitter
PBS transmit horizontal polarization and reflect vertical polari
tion. In this configuration each detectorDi detects the stateu i &. The
outcomes~2,3! and~1,4! signify detecting ofuC2&, while ~1,2! and
~3,4! signify detecting ofuC1&. The outcomes~1,1!, ~2,2!, ~3,3!,
and ~4,4! correspond both to the detection ofuF2& and to the de-
tection of uF1& which cannot be distinguished in this scheme.
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PRA 59 119METHODS FOR RELIABLE TELEPORTATION
kind a i j ,b i j ,g i j ,d i j and if, for a certaini , j , it is not zero,
then all others are zero. Thus, we can obtain from Eq.~14!
the following equations.

If the detection ofu i &u j & signifies findinguC2& or uC1&,
i.e., a i j or b i j are not zero, then

ai

aj
5

ci

cj
Þ

bi

bj
5

di

dj
. ~15!

If the detection ofu i &u j & signifies findinguF2& or uF1&,
i.e., g i j or d i j are not zero, then

ai

aj
5

di

dj
Þ

bi

bj
5

ci

cj
. ~16!

Equations~15! and~16! are valid provided there are no van
ishing denominators.

Let us first prove that there cannot be a ‘‘common’’ sta
in the product states corresponding to findinguC& ~1 or 2!
and uF& ~1 or 2!. Let us assume the opposite, that, s
u i &u j & corresponds to findinguC&, while uk&u j & corresponds to
finding uF&. Then we have Eqs.~15! as they are and Eqs.~16!
with index k instead ofi :

ak

aj
5

dk

dj
Þ

bk

bj
5

ck

cj
. ~17!

First, we will see that there cannot be zero in any of
denominators in Eqs.~15! and ~17!, i.e., that none of the
coefficients with indexj vanish. From the fact that for th
indices$ i , j % exactly one equation out of Eq.~14! does not
vanish follows that the two coefficients of the same kin
e.g., ai ,aj cannot vanish simultaneously. The same is t
for the indices$k, j %. Sinceu i &u j & corresponds to findinguC&
we must haveg i j 5d i j 50 anda i j Þ0 or b i j Þ0. Then, from
Eq. ~14! it follows that vanishing coefficients might appe
only in pairs:aj5cj50 or bj5dj50. Similarly, sinceuk&u j &
corresponds to findinguF&, we might have eitheraj5dj50
or bj5cj50. Therefore if one coefficient vanishes then
coefficients vanish, which is impossible. Therefore the
nominators in Eqs.~15! and ~17! do not vanish. We can
always find an equality in Eq.~15! which is not 050 and we
can divide the corresponding inequality in Eq.~17! by the
equality. We obtain

ak

ai
Þ

ck

ci
or

bk

bi
Þ

dk

di
. ~18!

Similarly, dividing the inequality from Eq.~15! by the equal-
ity from Eq. ~16! leads to

ak

ai
Þ

dk

di
or

bk

bi
Þ

ck

ci
. ~19!

From Eq.~18! it follows that u i &uk& corresponds to finding
uF& while Eq. ~19! yields thatu i &uk& corresponds to finding
uC&. This contradiction ends the proof that it cannot be t
u i &u j & corresponds to findinguC&, while uk&u j & corresponds to
finding uF&.

We have shown that if detectingu i &u j & corresponds to
finding uC& while detectinguk&um& corresponds to finding
uF& then all four statesu i &,u j &,uk&,um& are different. From Eq.
,

e

,
e

l
-

t

~15! and Eq.~17!, with indexm instead ofj , we always can
find an equality and the inequality for the same type of c
efficients. For example,

ai

aj
5

ci

cj
,

ak

am
Þ

ck

cm
. ~20!

Thus there must be at least one out of the following inequ
ties:

ai

am
Þ

ci

cm
, or

aj

ak
Þ

cj

ck
. ~21!

Therefore eitheru i &um& or uk&u j & corresponds to detection o
uF&. This contradicts what we have proved above, sin
u i &u j & corresponds to detection ofuC&. We have proved tha
also for fermions it is impossible to measure a nondegene
Bell operator without interaction between two quantum s
tems.

Note that a nondegenerate Bell-operator measurem
which allows us to distinguish two out of four Bell states c
be performed. In fact, it can be done in the same way as w
bosons. The single-particle transformations~12! lead@instead
of Eq. ~13! for bosons# to

uC1&→
1

&
~ u1&u2&2u3&u4&),

uC2&→
1

&
~ u3&u2&2u1&u4&),

~22!

uF2&→
1

&
~2u1&u3&2u2&u4&),

uF1&→
1

&
~2u1&u3&1u2&u4&).

@Again, the symmetrization is not written explicitly, e.g
u3&u4& means (1/&)(u3&1u4&22u4&1u3&2).# We see that find-
ing in the final measurementu1&u2& or u3&u4& signifies detect-
ing of uC2& while finding in u3&u2& or u1&u4& signifies detect-
ing of uC1&. Statesu1&u3& andu2&u4& correspond to bothuF2&
and uF1& which cannot be distinguished in this schem
~Slight modification of this method is required for distin
guishing any other two out of four Bell states.!

IV. TELEPORTATION USING INTERACTION
BETWEEN QUANTUM SYSTEMS

If we allow interaction between quantum particles we c
achieve reliable~100% efficient! teleportation. In this case
we can perform measurement of the nondegenerate Bell
erator, or we can use the method of ‘‘crossed’’ nonloc
measurements@6#.

For measurement of the Bell operator consider the in
action between the particles, say, according to the follow
rule:
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120 PRA 59LEV VAIDMAN AND NADAV YORAN
u↑&u↑&→u↑&u↓&,

u↑&u↓&→u↑&u↑&,
~23!

u↓&u↑&→u↓&u↑&,

u↓&u↓&→u↓&u↓&.

This interaction is a ‘‘conditional spin flip.’’ It transforms
the Bell states~2! to product states

uC2&→
1

&
~ u↑&2u↓&)u↑&,

uC1&→
1

&
~ u↑&1u↓&)u↑&,

~24!

uF2&→
1

&
~ u↑&2u↓&)u↓&,

uF1&→
1

&
~ u↑&1u↓&)u↓&,

which can be measured by local detectors. Note that the
ditional spin flip ~23! is equivalent~in another basis! to the
conditional phase flip:

u↑&u↑&→u↑&u↑&,

u↑&u↓&→2u↑&u↓&,
~25!

u↓&u↑&→u↓&u↑&,

u↓&u↓&→u↓&u↓&.

This is so when we use thex̂ direction~instead ofẑ) for the
spin of the second particle. This interaction is nonlinear
the sense that one quantum system changes its state de
ing on the state of another quantum system.

In a slightly different method for Bell measurement, t
two particles do not interact with one another but both int
act with an auxiliary quantum particle. Consider consecut
interactions of the two particles with a spin-1

2 particle pre-
pared initially in the stateu↑&. Each interaction is describe
by Eq. ~23! when the second terms in the products sign
the spin states of the auxiliary particle. This operation allo
us to distinguish betweenuC& and uF& states. Indeed, each o
the uC& states leads to the flip of the spin of the auxilia
particle, while each of theuF& states does not. In order t
distinguish betweenuC2& and uC1& ~or betweenuF2& and
uF1&) we have to repeat the procedure, i.e., to perform
two consecutive measurements~23! but now in the spin-x
component basis.

Another way to view the measurement procedure for B
measurement described above is to consider it as consec
measurements of two two-particle variables:

~s1z1s2z!mod4,
~26!

~s1x1s2x!mod4.
n-

n
nd-

-
e

s

e

ll
ive

~The spin components are measured in units of\/2.) These
two-particle variables are ‘‘local’’ since both particle 1 an
particle 2 are located at the same site, but these variables
be measured even if the particles are located in spati
separated sites, in which case they are callednonlocalmea-
surements@12#. A modification of nonlocal measuremen
when we ‘‘cross’’ the interactions with the two particles
time leads to an alternative method of teleportation@6#. In
order to teleport a quantum state from particle 1 to particl
and, at the same time, the quantum state of particle 2
particle 1, the following~nonlocal in space-time! variables
should be measured~see Fig. 2!:

Z[@s1z~ t1!1s2z~ t2!#mod4,
~27!

X[@s1x~ t2!1s2x~ t1!#mod4.

For any set of outcomes of the nonlocal measurements~27!
the spin state is teleported; in some cases the state is ro
by p around one of the axes, but the resulting rotation can
inferred from the nonlocal measurements. We can compl
then, the teleportation by the following transformations:

~Z,X! p rotation

~0,0! y axis

~2,0! x axis

~0,2! z axis

~2,2! no rotation. ~28!

In order to perform nonlocal measurements~26! or ~27!,
correlated pairs of auxiliary particles located in the sites
particle 1 and 2 are required. For example, for measur
(s1z1s2z)mod4 a pair of spin-12 particles in a singlet state i
used. The local interaction~23! in each site between the pa
ticle from the singlet and the auxiliary particle is perform
~the second ‘‘ket’’ in the product signifies the state of t

FIG. 2. Space-time diagram of ‘‘crossed’’ nonlocal measu
ments which result in two-way teleportation, i.e., swapping of
spin states. Space-time locations of local couplings are sho
When the nonlocal measurements~27! are completed, the states o

the two particles are interchanged up to localp rotations;C̃ i sig-
nifies C i rotated according to table~28!.
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PRA 59 121METHODS FOR RELIABLE TELEPORTATION
auxiliary particle!. Thensz measurement is performed on th
auxiliary particles in both sites. If the outcomes are the sa
it means that just one auxiliary particle has been flipped,
s1z and s2z are different and therefore (s1z1s2z)mod4
50. If the outcomes are different, then either both or none
the auxiliary particles have been flipped and therefore (s1z

1s2z)mod452.

V. TOWARDS EXPERIMENTAL REALIZATION
OF RELIABLE TELEPORTATION

In recent experiments, which announced first implem
tation of teleportation, the polarization state has been tra
ported from one photon to another. The experiments p
formed in Innsbruck, pure state teleportation@3# and
correlated state teleportation@4#, have a~theoretical! success
rate of 25%. A feasible modification of the experimen
setup for the Bell-state analyzer~bringing it to the one de-
scribed in Fig. 1! can increase the success rate of these
periments to 50%. However, due to lack of an effect
photon-photon interaction, these experiments cannot
modified to reach a 100% success rate, as was proved in
III. Popescu@13# has found an ingenious way to overcom
this difficulty by using polarization and location degrees
freedom of thesamephoton. Thus the Rome experiment@5#
which implemented his idea has a~theoretically! 100% suc-
cess rate. Unfortunately, this method works only for tra
portation of the polarization state prepared on a part
which is the local member of the EPR pair constituting t
quantum channel between the two sites. It is not applica
for teleportation of an unknown state of an external partic

Thus it seems that the most promising candidates for t
portation experiment which might have a 100% success
are proposals which involve atoms and electromagnetic c
ties. First suggestions for such experiments were m
shortly after publication of the original teleportation pap
@14–16# and numerous modifications have appeared sin
The reason why implementation of these proposals seem
be feasible is that in this case ‘‘quantum-quantum’’ intera
tion between the system carrying the quantum state an
system from the EPR pair exists. A dispersive interact
~DI! of a Rydberg atom passing through a properly tun
microwave cavity leads to a conditional phase flip as in E
~25!, depending on the presence of a photon in the cavity
resonant interaction~RI-p! between the Rydberg atom an
the cavity allows swapping of quantum states of the at
and the cavity. Thus manipulation of the quantum state of
cavity can be achieved via manipulation of the state of
Rydberg atom. The atom state is transformed by sendin
through an appropriately tuned microwave zone. Moreov
the direct analog of conditional spin flip interaction~23! can
be achieved through the Raman atom-cavity-field interac
@17#. No teleportation experiment has been performed
using these methods, but it seems that the technology is
too far from this goal. About the progress in this directi
one can learn from recent experiments on atom-cavity in
actions@18#.

Until further progress in technology it is not easy to pr
dict which proposal will be implemented first. Assuming th
resonant interactions between atoms and the cavity ca
e
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performed with a very good precision and that dispers
interaction is available with reasonable precision, the s
plest way is to use the quantum channel consisting of a c
ity and a Rydberg atom in a correlated state. A particu
resonant interaction, RI-p/2, of an excited atom passin
through an empty cavity,

ue&u0&→
1

&
~ ug&u1&1ue&u0&), ~29!

prepares this quantum channel.
The quantum state to be teleported is the state of ano

Rydberg atom. The Bell measurement is then performed
this atom and the cavity. An interaction between the at
and the cavity, the conditional phase flip via dispersive
teraction,

ue&u0&→ue&u0&,

ue&u1&→2ue&u1&,
~30!

ug&u0&→ug&u0&,

ug&u1&→ug&u1&,

disentangles the the following Bell states:

uC6&5
1

2
@ ue&~ u0&2u1&)6ug&~ u1&1u0&)],

~31!

uF6&5
1

2
@ ue&~ u0&1u1&)6ug&~ u1&2u0&)].

The Bell states~31! have the form of Eq.~2! when the first
u↑& in the product is identified withue&, the secondu↑&, with
(1/&)(u0&1u1&), etc. Measurement of the atom state a
the cavity state completes the Bell measurement proced

In order to make the measurement of the cavity state
perform another resonant interaction, RI-p, between the cav-
ity and an auxiliary atom prepared initially in the groun
state,

ug&u1&→ue&u0&,
~32!

ug&u0&→ug&u0&.

This interaction transfers the quantum state of the cavity
this atom. The final measurements on the atoms disting
between the states

1

&
~ ug&1ue&),

1

&
~ ug&2ue&). ~33!

Since detectors can distinguish betweenug& and ue&, the at-
oms should rotate their states passing through the approp
microwave zones before the detection. When the Bell m
surement is completed, the quantum state is teleported u
the known local transformation determined by the results
the Bell measurement. The scheme for this teleportation p
cedure, apart from the final local transformation, is presen
in Fig. 3.
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Another proposal for teleportation involving a single ca
ity @17# is based on Raman interaction. This scheme does
require microwave zone interactions, but it requires an ad
tional atom for preparing the initial state of the cavit
(1/&)(u0&1u1&). A very recent single-cavity teleportatio
proposal@19#, which employs a three-particle~cavity and
two atoms! correlated state, seems to be more complica
The main advantage of this scheme, that it does not req
measurement of the nondegenerate Bell operator, is not
important since quantum-quantum interactions are availa
and, consequently, the Bell measurement is not too probl
atic. On the other hand, the complications related to
preparation of the three-particle entanglement are signific

One of the relatively simple methods for ‘‘two-way’’ tele
portation, i.e., swapping of quantum states of two separa
atoms, is a direct implementation of the crossed nonlo
measurement procedure presented in the preceding sec
Two pairs of correlated microwave cavities are prepared
the two quantum channels. Preparation of such a cha
requires consecutive resonant interaction of an auxili
atom, prepared in the excited state: first, RI-p/2 with the
cavity in one site and second, RI-p with the cavity in the
other site, see Fig. 4~a!.

FIG. 3. Single-cavity teleportation of a quantum state of
atom. The final stage, the rotation of the state according to
results of the Bell measurement, is not shown.~a! Preparation of
the quantum channel. An atom passes through a cavity and is
to a remote site. Resonant interaction RI-p/2 given by Eq.~29! of
the atom in the cavity creates the correlation.~b! The atom, car-
rying the quantum state to be teleported, passes through the ca
microwave field zoneR, and is detected by the detectorD. Disper-
sive atom-cavity interaction DI given by Eq.~30! disentangles the
Bell states~31!. Microwave field zoneR rotates the atom states~33!
to ug& and ue& accordingly, which are then distinguished by th
detectorD. ~c! An auxiliary atom passes through the cavity
order to measure its state. Resonant interaction RI-p transfers the
states of the cavity to the atom. Then, the atom states are rotat
the microwave zoneR and distinguished by the detectorD.
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In the second step, the atom in each site passes, inte
ing dispersively, through the cavities in the ‘‘crossed’’ orde
see Fig. 4~b!. The dispersive interaction is given by Eq.~30!
and it corresponds to measurement ofsz , becauseu↑z& flips
the states of the cavity defined as

u↑&[
1

&
~ u0&1u1&), u↓&[

1

&
~ u0&2u1&). ~34!

This is the basis of the Bell states~31!. Since we also have to
make coupling tosx , we have to rotate the state of the ato
such that ‘‘x’’ rotates to ‘‘z’’ before coupling with the cavity
and rotate it back after the interaction.

e

ent

ity,

in

FIG. 4. Two-way teleportation of quantum states of atoms. T
final rotations of the states of the atoms according to the result
nonlocal measurements are not shown.~a! Preparation of the
quantum channels. The atom in the excited state makes reso
interaction RI-p/2 with a cavity in one site and resonant interacti
RI-p with the corresponding cavity in another site. Another ato
makes the same interactions with the second pair of cavities. E
pair ends up in a correlated state (1/&)(u0&u1&1u1&u0&). ~b!
Coupling of the atoms with the quantum channels. An atom on e
site passes through two cavities making dispersive interactions
In between, the atoms pass through microwave zones which m
the appropriate rotations of their quantum states.~c! Local mea-
surements of the quantum states of the cavities which yield
results of the nonlocal measurements. Auxiliary atoms pass thro
cavities in order to measure their states. Resonant interactionsp
transfer the states of the cavities to the atoms. Then, the atom s
are rotated in the microwave zonesR and distinguished by detector
D.
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PRA 59 123METHODS FOR RELIABLE TELEPORTATION
The third step, described in Fig. 4~c!, is the measuremen
of the states of the cavities in the basis~34!. This stage
requires an auxiliary atom for each cavity. The resonant
teraction transfers the correlated state of the pairs of cav
to the correlated states of the atoms. Then the atoms
through microwave zones rotating their states before de
tion by the detectors which distinguish between ground
excited states. These outcomes of these local measurem
yield the result of the nonlocal measurements~27! which
determine the final transformation to be performed on
atoms@to be combined withz→x rotation for the first atom
which was left out, see Fig. 4~b!#. Completing all stages o
the procedure described above results in two-way telepo
tion.

Note another~seemingly less economical! proposal for a
two-way teleportation of atom states using interaction w
cavities@20#. It essentially doubles one of the original atom
cavity teleportation schemes@15# reusing atoms which bring
the quantum states for receiving the quantum states from
other site after ‘‘stripping’’ from them quantum information
Anyway, today the two-way teleportation is still a gedank
experiment, at least until one-way teleportation is imp
mented.

One difficulty with teleportation of atomic states whic
should be mentioned is that usual experiments are perfor
with atomicbeamsand not with individual atoms. Such ex
periments might be good for demonstration and studying
perimental difficulties for teleportation, but they cannot
considered as implementation of the original wisdom of te
portation or used for cryptographic purposes. In fact, opt
experiments have this difficulty too, unless ‘‘single-photon
guns will be used. Both for atoms and in the optical regi
this problem does not seem to be unsolvable, but it certa
brings attention to experiments with trapped ions, the exp
ments which involve individual quantum systems. There
many similarities between available manipulations with
oms and with ions so the methods discussed above migh
implemented for ion systems too.

VI. TELEPORTATION OF CONTINUOUS VARIABLES

In the framework of nonlocal measurements there i
natural way of extending the teleportation scheme to the
tems with continuous variables@6#. Consider two similar sys-
tems located far away from each other and described by
tinuous variablesq1 and q2 with corresponding conjugat
momentap1 andp2 . In order to teleport the quantum state
the first particleC1(q1) to the second particle@and the state
of the second particleC2(q2) to the first# we perform the
following ‘‘crossed’’ nonlocal measurements~see Fig. 5!,
obtaining the outcomesa andb:

q1~ t1!2q2~ t2!5a,
~35!

p1~ t2!2p2~ t1!5b.

In Ref. @6# it is shown that these nonlocal ‘‘crossed’’ me
surements ‘‘swap’’ the quantum states of the two particles
to the known shifts inq and p. Indeed, the states of th
particles after completion of the measurements~35! are
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C f~q1!5e2 ibq1C2~q12a!,
~36!

C f~q2!5eibq2C1~q21a!.

The state of particle 2 aftert2 is the initial state of the par-
ticle 1 shifted by2a in q and by2b in p. Similarly, the
state of particle 1 is the initial state of particle 2 shifted bya
in q and byb in p. After transmitting the results of the loca
measurements,a and b, the shifts can be corrected by ap
propriate kicks and back shifts~even if the quantum state i
unknown!, thus completing a reliable teleportation of th
stateC1(q1) to C1(q2) and of the stateC2(q2) to C2(q1).

In order to perform nonlocal measurements of continuo
variables~35! a quantum channel is required. While for th
case of spin-12 particles the quantum channel was an EP
~-Bohm! pair, for continuous variables the entangled state
the original EPR paper is required:

Q11Q250,
~37!

P12P250,

where Q1 and Q2 are continuous variables of the pair o
auxiliary particles with corresponding conjugate mome
P1 andP2 . Two local von Neumann type interactions whic
can be written in the interaction Hamiltonian

H5g~ t2t1!P1q12g~ t2t2!P2q2 , ~38!

with normalized and localized around zerog(t) lead to final
state of auxiliary particles such that

Q1 f1Q2 f5q1~ t1!2q2~ t2!. ~39!

Thus local measurements ofQ1 f and Q2 f yield a @of Eq.
~35!#. Another EPR pair is needed for measuringb.

A generalization of the BBCJPW scheme to the case
continuous variables is also possible. The quantum cha
is again the EPR state~37!. Now, an analog of Bell measure
ment for the system with variableq which carries the quan
tum state and the auxiliary system with variableQ1 is

FIG. 5. Space-time diagram of ‘‘crossed’’ nonlocal measu
ments which result in two-way teleportation of quantum states
quantum systems with continuous variables. Space-time locat
of local couplings are shown. When the nonlocal measurem
~35! are completed, the states of the two particles are interchan
up to the known shifts inq andp.
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124 PRA 59LEV VAIDMAN AND NADAV YORAN
needed. While it is not easy to make a generalization of
Bell operator through definition of its eigenstates, it
straightforward to generalize Bell-operator measurem
from the two consecutive nonlocal measurements~26! ap-
plied in the spin-12 particles case, to the following two con
secutive nonlocal measurements:

q1Q1 ,
~40!

p2P1 .

These measurements end up in finding one of the ‘‘shifte
EPR states, where the shifts are the outcomes of the m
surements:

q1Q15a,
~41!

p2P15b.

At the end of this measurement the quantum stateC(q) is
teleported, again up to the known shifts, to the remote p
ticle of the EPR pair, the state of which becomes

C f~Q2!5eibQ2C~Q21a!. ~42!

The final stage of this teleportation procedure consists of
appropriate back shifts of the state inQ2 andP2 which result
in transporting the quantum stateC(q) in site 1 to the same
quantum stateC(Q2) of a system in site 2. Of course, th
method, unlike the crossed measurements scheme, y
only one-way teleportation. Both methods transport not j
pure states but also correlations, when the input particl
not in a pure state before teleportation.

Surprisingly, reliable teleportation of continuous variab
seems to be possible to implement in a real laborato
Braunstein and Kimble made a realistic proposal for telep
ing the quantum state of a single mode of the electrom
netic field@21#. This remarkable result is an implementatio
of the scheme described in the preceding paragraph. In
methodsq is ‘‘ x’’defined for a single mode of an electro
magnetic field, and correspondinglyp is the conjugate mo-
mentum ofx. The analog of the EPR state~37! is obtained
by shining squeezed light with a certainx from one side and
squeezed light with a certainp from the other side of a
simple beam splitter. The analog of measurements~40! is
achieved using another simple beam splitter and homod
detectors. The shifts inx andp which complete the telepor
tation procedure can be done by combining the output fi
with the coherent state of an appropriate amplitude fixed
the results of the homodyne measurements. Preliminary
perimental results for such a teleportation procedure h
been obtained@22#. Note also a very recent proposal@23# for
teleporting of a single-photon wave packet.

VII. CONCLUSIONS

We have shown that without ‘‘quantum-quantum’’ inte
action one cannot perform complete measurement of the
nondegenerate operator and therefore one cannot perform
liable teleportation of photon polarization states using
method employed in recent experiments, i.e., experime
e
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without quantum-quantum interactions. Therefore oth
methods for teleportation have to be developed. Toda
technology allows quantum-quantum interaction between
oms and electromagnetic field in cavities which makes te
portation schemes using such elements good candidate
implementation of reliable teleportation. Various schem
are briefly analyzed, in particular, using the language of n
local measurement which proved to be helpful for such pr
lems. Schemes for one- and two-way teleportation wh
seem to be the easiest to implement are proposed.

We have discussed methods for teleportation of a sys
described by continuous variables. One may see an appa
contradiction between the proof of Sec. III that 100% ef
cient teleportation cannot be achieved using linear elem
and single-particle state detectors and the result of Bra
stein and Kimble presented at the end of the preceding
tion according to which one can perform areliable telepor-
tation of the quantum state of a system with continuo
variables using beam splitters and local measuring devi
Indeed, it is natural to assume that if reliable teleportation
a quantum state of a two-level system is impossible un
certain circumstances, it is certainly impossible for quant
states of systems with continuous variables. However,
though it is not immediately obvious, the circumstances
very different. There are several differences. The analog
the Bell operator for a continuous variable does not ha
among its eigenvalues four states of the general form~2!
whereu↑& and u↓& signify some orthogonal states. Even mo
importantly, the beam splitter, a simple half-silvered mirro
is not a ‘‘linear’’ element in the sense of Sec. III. If we d
not send any ‘‘light’’ from one side of the beam splitter, w
still get the vacuum field from this port. The beam splitter
the Braunstein-Kimble experiment leads to ‘‘quantum
quantum’’ interaction: the variablex of one of the output
ports of the beam splitter becomes equal to (1/&)(x1
1x2), essentially, the sum of the quantum variables of
input port. The absence of such ‘‘quantum-quantum’’ inte
actions is an essential ingredient in the proof of Sec. III. T
beam splitter, however, is linear for photons, but the hom
dyne detectors which measurex are not single-particle detec
tors for photons—using single-particle measuring device
another constraint used in the proof. The Braunstein-Kim
method is not applicable directly for teleportingC(x) where
x is a spatial position of a quantum system. Addition
quantum-quantum interaction which converts the continu
variable of a real particle to the abstract~although measur-
able! variablex of their method is required.

The fact that the Braunstein-Kimble method does not c
tradict the proof does not make the method less interest
The task is to find feasible proposals for teleportation. T
reason why linear devices were considered in the proo
because usually it is more difficult to implement nonline
interactions in a laboratory. A half-silvered mirror, even if
can be considered as a nonlinear device in some sense
be easily used in a laboratory.~The main experimental diffi-
culty of the Braunstein-Kimble proposal is preparation
highly squeezed light, which is necessary for high-efficien
teleportation.! On the other hand, the fact that there are re
istic proposals for teleportation which do not fulfill the a
sumption of the proof of Sec. III does not make the pro
irrelevant. It still limits a wide class of teleportation propo
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PRA 59 125METHODS FOR RELIABLE TELEPORTATION
als, in particular, those in which quantum states are enco
in photon polarization or photon location.

Although it is argued in this paper that current telepor
tion experiments cannot lead to reliable teleportation pro
dure and that for alternative proposals some technolog
tools are currently not available, we are optimistic about
lution of the problem in the foreseeable future. Much eff
has been made in this direction because teleportation
related experiments are building blocks of quantum crypt
raphy and quantum computation: the two extremely imp
-
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tant fields which are on the verge of transformation fro
gedanken ideas to reality.
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