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Quantum computing with complex instruction sets
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In most current quantum computers simple electromagnetic pulses implement computations using a minimal
set of universal gates. We propose an approach in which quantum control techniques combined with flexible
electromagnetic pulse shaping are used to replaceseveraluniversal gates with asingle instruction. We show
that this complex instruction set approach can significantly reduce the time required to perform quantum
computations.@S1050-2947~99!08902-7#

PACS number~s!: 03.67.Lx, 89.80.1h
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Quantum computers have attracted much interest s
quantum theory allows parallelism in ways that are not p
sible with classical computers@1–3#. The earliest quantum
algorithm that demonstrated an advantage of quantum a
rithms over classical ones is the Deutsch-Josza algorithm@4#.
As refined by Cleveet al. @5#, it determines whether a func
tion mappingN bits to one bit is constant or balanced with
single function call independent of the input sizeN, as op-
posed to 2N2111 function calls required on a classical com
puter. Other efficient quantum algorithms have been fou
including Shor’s algorithm for factoring integers@6# and
Grover’s algorithm for searching a database@7#.

Several quantum computer architectures have been
posed. Cirac and Zoller proposed a quantum computer ar
tecture based on laser-cooled trapped atomic ions@8# and
Monroeet al. @9# demonstrated a CONTROLLED NOT ga
in a 2-quantum-bit~qubit! trapped ion computer. Other a
chitectures have been proposed based on cavity quan
electrodynamics@10#, quantum dots@11#, and solution
nuclear magnetic resonance~NMR! @12#. In the NMR ap-
proach, the Deutsch-Josza@13,14# and Grover algorithms
@15# have been demonstrated on 2-qubit computers. A N
quantum computer has also been used to demonstrate 3-
error correction@16#. In these architectures,electromagnetic
pulses are used to implement quantum logic gates. Quantum
logic gates are unitary operators applied to qubit wave fu
tions and depend on the Hamiltonian of the quantum co
puter and its interaction with the electromagnetic pulse
universal quantum computer can be created using a se
universal gates and applying these gates sequentially@17,18#.
By analogy with classical computers, we refer to this asre-
duced instruction setquantum computing~RISC QC!. Deco-
herence of the quantum computer limits the number of
structions that can be executed in the serial RISC appro

In this paper we consider an alternative to RISC QC. R
gardless of the number of steps used in a computation,
unitary matrix of the overall computation is a matrix of th
same size as those used in RISC gates. This suggests th
might replace a RISC sequence with a single complex
struction having an optimally tailored electromagnetic pul
We refer to this approach ascomplex instruction set quantum
computing~CISC QC!. In CISC QC,one trades the require
ment for long coherence times for the ability to design a
generate a more complex pulse shape.

Designing pulse shapes to achieve a desired goal
quantum system is the subject of quantum control theo
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Judson and Rabitz@19# have proposed teaching lasers to co
trol femtochemistry experiments using a feedback loop.
their scheme, a laser pulse is found which maximizes a
sired experimental outcome. Atheoretical connection be-
tween quantum computing and quantum control has b
established by Ramakrishna and Rabitz@20#. They show that
universality of any quantum computing element is related
the controllability of a quantum control system.

Our focus is to investigate whether quantum control c
be applied to the design of pulses for CISC QC. Inideal
quantum computers, information is stored in a Hilbert spa
H, which is a tensor product of Hilbert spaces of distinguis
able two-state systems. The total Hilbert space is

H5H0^H1^¯^HN21 , ~1!

whereHi is the Hilbert space of theith two-state system. A
state ofHi is a qubit and information is stored in a state
H. The binary stringS5s0s1¯sN21 , (si50,1) can be en-
coded in the state

uS&5us0 ,s1 , . . . ,sN21&5us0&us1&¯usN21&. ~2!

In quantum computation, a unitary operator determin
the evolution of a wave function. A quantum computer c
ries out a computation through application of a controll
sequence of unitary matrices~gates! which act on qubits. The
wave functionuc(t)& is related to the evolution operatorU(t)
and the initial wave function uc(0)& by uc(t)&
5U(t)uc(0)&. The gate equation is

i\
]U~ t !

]t
5H~ t !U~ t !, ~3!

which is subject to initial conditionU(0)5I and target con-
dition U(T)5U0. In Eq. ~3!, I is the identity matrix andU0

is the matrix of the desired gate.
To proceed further, we must specify the Hamiltonia

While the Hamiltonian depends on the computer archit
ture, we suspect our overall conclusions will be independ
of the Hamiltonian chosen. In a study of quantum log
gates, Barencoet al. @11# proposed an implementation of
2-qubit CONTROLLED NOT gate based on optically drive
quantum dots coupled by dipole-dipole interactions. The s
tem can be modeled by a Hamiltonian@11#:
1098 ©1999 The American Physical Society
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where basis states inH are indicated for clarity. The param
etersDEi andm i represent the energy gap and dipole mat
element between statesu0& andu1& in the ith qubit,\CR is the
dipole-dipole coupling energy, andE(t) is the optical field
used to execute quantum computations. We adopt this
model system and takeDE1580 meV, DE25110 meV,
m15m25100 Å, and\CR510 meV. We can easily con
struct an energy diagram forH. Denoting the energies of ou
states asEi j , we haveE0,052100 meV,E1,05210 meV,
E0,1520 meV, andE1,1590 meV.

The quantum control problem of finding an optimal pul
shape is solved using a variational approach. We assumeE(t)
can be described by a chirped Gaussian pulse

E~ t !5E0 expF2S t2t0

G
D 2Gcos@U~ t !#. ~5!

The field E(t) is a carrier wave with time-dependent pha
U(t) modulated by a Gaussian envelope with an amplitu
E0 peaked at timet0 and having widthG. The phaseU(t) is
expanded in a Taylor series int2t0 and terms through fourth
order retained. Thus, following Ref.@21#,

U~ t !5u01
\v

1! S t2t0

\
D 1

a2

2!
S t2t0

\
D 1

b3

3!
S t2t0

\
D 3

1
g4

4!
S t2t0

\
D 4

, ~6!

whereu0 is the phase constant,\v is the center energy, an
a, b, andg are linear, quadratic, and cubic chirp energie

To see how well a given pulse performs, we define
fitness functionx @a nonlinear function of the paramete
describingE(t)# as

x5S 1

NU
(
i , j

UUi , j~T!2Ui , j
0 U2D 1/2

. ~7!

In Eq. ~7!, Ui , j
0 is the unitary matrix for the target gate,NU

516 is the number of elements inU(t), andx is a measure of
the average root mean squared error per matrix element
acceptable pulse shape is found whenx falls below an error
threshold of 531023. To find optimal pulse parameters, w
minimize x using a genetic optimization routine.
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As an example, we consider a 2-qubit EXCHANGE ga
which can be implemented by three CONTROLLED NO
gates CNOT12, CNOT21, and CNOT12, applied in s
quence. Here the first integer specifies the control bit, wh
remains unchanged, and the second integer specifies the
get bit, which flips only if the control bit is set to 1.

The operation of a CONTROLLED NOT gate acting o
the product state inH encoding control qubiti and target
qubit j is defined as

UCNOT
i j uc& i ut& j5uc& i ut % c& j , ~8!

FIG. 1. Optimal pulse for CNOT21 gate in a model 2-qub
quantum computer determined by a genetic algorithm. The p
profile is shown in~a! and the power spectrum is shown in~b!.
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where t % c is the EXCLUSIVE OR of t and c. The two
CONTROLLED NOT operators in a 2-qubit quantum com
puter are unitary matrices inH denoted CNOT12 and
CNOT21. It follows from Eq. ~8! that CNOT12 can be
implemented through an optical transition between sta
u1,0& and u1,1&, while CNOT21 can be implemented via a
optical transition betweenu0,1& and u1,1&. From the energy
level diagram forH, we find that the transition energy fo
CNOT12 is \vCNOT125100 meV while for CNOT21,
\vCNOT21570 meV.

The EXCHANGE gate is defined by

UEXCHANGE
i j ua& i ub& j5ub& i ua& j ~9!

and the unitary matrix for the EXCHANGE operator can
written down from the definition or obtained by carrying o
a multiplication of CONTROLLED NOT matrices:

UEXCHANGE
12 5UCNOT

12 UCNOT
21 UCNOT

12 . ~10!

Equations~9! and~10! suggest two possible implementatio
of the EXCHANGE gate, i.e., RISC and CISC. In the RIS
approach, the CONTROLLED NOT gates are performed
quentially as indicated in Eq.~10! by applying three Gauss
ian pulses with central energies of\v5100, 70, and 100
meV, respectively. At the same time, we see from Eq.~9!

FIG. 2. Optimal pulse for CNOT12 gate in a model 2-qu
quantum computer determined by a genetic algorithm. The p
profile is shown in~a! and the power spectrum is shown in~b!.
s

-

that the EXCHANGE gate may also be obtained directly
an optical transition betweenu1,0& and u0,1& at an energy of
\vEXCHANGE530 meV.

To illustrate the RISC approach, the gate equations for
CONTROLLED NOT gates are solved numerically. We s
the target timeT52500 fs and use the genetic algorithm
evolve an optimal pulse shape. The results for CNOT21
shown in Fig. 1 where we plot the optimal fieldE(t) and its
power spectrumE(\v). As seen in Fig. 1, the system imple
ments CNOT21 with a simple Gaussian pulse with ess
tially no chirp. As expected, the power spectrum show
peak near\vCNOT21570 meV. The results for CNOT12 ar
shown in Fig. 2 where the optimal field and its power spe
trum are plotted. We chose our target time to beT53000 fs.
In this case, we obtain a narrow peak in the power spect
centered at the CNOT12 transition energy\vCNOT125100
meV. Again, there is virtually no chirp present in the optim
pulse. We thus find we can implement the EXCHANGE ga
by applying three Gaussian pulses in sequence for a t
computation time ofTRISC58500 fs. The choice of targe
times for the CONTROLLED NOT gateswas notarbitrary.
The values we chose were the shortest we could use and
get nice monochromatic pulses and convergence ofx to
within our specified tolerance. We did this to be faithful
the spirit of the RISC QC paradigm.

The EXCHANGE gate can also be implemented with
Gaussian pulse having a transition energy of 30 meV p
vided thatT is large enough. But with the CISC paradigm w

e
FIG. 3. Optimal pulse for EXCHANGE gate in a model 2-qub

quantum computer determined by a genetic algorithm. The p
profile is shown in~a! and the power spectrum is shown in~b!.
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can, in fact, do better. To illustrate the advantage of
CISC approach in implementing the EXCHANGE gate, w
set the target time toT53000 fs, i.e., we seek to perform th
EXCHANGE gate in roughly1

3 the time required for the
RISC implementation using only a single chirped Gauss
pulse. The results are shown in Fig. 3. Clearly, our res
demonstrate that the CISC approach can achieve the de
computing operation in a considerably shorter time fra
compared to the RISC treatment. We note that the po
spectrum is not centered at the expected EXCHANGE tr
sition energy of 30 meV.The selected target time is simp
too short for this to be workable. Instead, the system evolve
a complicated and highly nonintuitive chirped Gauss
pulse centered at higher energy. As seen in Fig. 3, the po
spectrum forE(t) has a sharp peak at 80 meV with fringes
higher energies. Interestingly, the large peak seen at 80 m
is roughly midway between the monochromatic transit
energies for CNOT12 and CNOT21. As the desired tar
time is reduced, it is expected that the pulse shape wo
become more complex until an absolute minimum tar
time is reached.

To summarize, we can achieve the EXCHANGE gate
one of two ways. In the RISC approach, we apply th
simple Gaussian pulses and achieve the desired resu
8500 fs. In the CISC approach, we apply a single chirp
Gaussian pulse and achieve the same result in 3000 fs.
a reduction in computation time is achieved at the expens
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generating a more complicated~and nonintuitive! pulse
shape. It is expected that the CISC paradigm can rea
similar advantages over the RISC approach in other cru
quantum logic gates.

The pulse shapes presented here result from simulati
quantum computer on a classical one. Feedback from
simulated computer was used to obtain pulses that im
ment desired gates. Our simulations are limited to a f
qubits since the time required to simulate a quantum co
puter grows exponentially with the number of qubits.
implementing CISC, feedback needs to come from the qu
tum computer, not a simulation thereof. Quantum cont
with feedback from a quantum computer offers a way to tr
the computer to perform gates. Error reduction is enhan
in this approach since the system finds the pulse shape
gives the highest experimental fidelity. Once the pulse
learned, it can be used whenever the gate is applied
computation. We note that CISC does not eliminate the n
for quantum error correction in long computations. Howev
it may make error correction more robust~i! by providing
gates of optimal fidelity and ~ii ! by combining short se-
quences of RISC gates intosingle instructions and reducing
the overall computation time.

This work was supported, in part, by the Defense A
vanced Research Project Agency and the U.S. Office of
val Research.
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