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Quantum nonlocality without entanglement

Charles H. BennettDavid P. DiVincenzd, Christopher A. Fuch$ Tal Mor? Eric Rains? Peter W. Shof,John A. Smolint

and William K. Wootters

1IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598

°Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
SDépartement d'Informatique et de Recherche @gienelle, Succursale Centre-Ville, Mongle Canada H3C 3J7
4AT&T Shannon Laboratory, 180 Park Avenue, Building 103, Florham Park, New Jersey 07932
5Physics Department, Williams College, Williamstown, Massachusetts 01267

(Received 17 June 1998

We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably
distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even
if the observers are allowed any sequence of local operations and classical communication between the
separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint
measurement on these states and a measurement in which only local actions are permitted. This result implies
the existence of separable superoperators that cannot be implemented locally. A set of states are found involv-
ing three two-state particles that also appear to be nonmeasurable locally. These and other multipartite states
are classified according to the entropy and entanglement costs of preparing and measuring them by local
operations[S1050-2947@9)00302-9

PACS numbgs): 03.67.Hk, 03.65.Bz, 03.67a, 89.70+c

[. INTRODUCTION of local measurements on the parts, even with the help of
classical communication between the observers holding the
The most celebrated manifestations of quantum nonlocalseparate parts, and the cloning operatigr- ¢; ® ¢; cannot
ity arise from entangled states: states of a compound quame implemented by any sequence of local operations and
tum system that admit no description in terms of states of thelassical communication. Some of the features of this kind of
constituent parts. Entangled states, by their experimentallyponlocality appeared if8], which presented a set of or-
confirmed violations of Bell-type inequalities, provide strongthogonal states of a bipartite system that cannot be cloned if
evidence for the validity of quantum mechanics and can bélice and Bob cannot communicate at all. However, the
used for different forms of information processing, such asstates in[8] can be cloned if Alice and Bob use one-way
guantum cryptographjl], entanglement-assisted communi- classical communication.
cation [2,3], and quantum teleportatiop4], and for fast Many more of the nonlocal properties considered in the
guantum computationgb,6], which pass through entangled present work were anticipated by the measurement protocol
states on their way from a classical input to a classical outintroduced by Peres and Woott¢f. Their construction in-
put. A related feature of quantum mechanics, also giving riselicates the existence of a nonlocality dual to that manifested
to nonclassical behavior, is the impossibility of cloning by entangled systems: Entangled states must be prepared
or reliably distinguishing nonorthogonal states. Quantunjointly, but exhibit anomalous correlations when measured
systems that for one reason or another behave classicaleparately; the Peres-Wootters states are unentangled and
(e.g., because they are of macroscopic size or are coupled tan be prepared separately, but exhibit anomalous properties
a decohering environmentan generally be described in when measured jointly. We note that such anomalies are at
terms of a set of orthogonal, unentangled states. the heart of recent constructions for attaining the highest pos-
In view of this, one might expect that if the states of asible capacity of a quantum channel for the transmission of
guantum system were limited to a set of orthogonal productlassical dat410-13.
states, the system would behave entirely classically and In the Peres-Wootters scheme, the preparator chooses one
would not exhibit any nonlocality. In particular, if a com- of three linear polarization directior3°®,60°, or 120° and
pound quantum system consisting of two patandB held  gives Alice and Bob each one photon polarized in that direc-
by separated observefdlice and Bol) were prepared by tion. Their task is to determine which of the three polariza-
another party in one of several mutually orthogonal, unentions they have been given by a sequence of separate mea-
tangled statesfy,», . ..., unknown to Alice and Bob, surements on the two photons, assisted by classical
then it ought to be possible to reliably discover which statecommunication between them, but they are not allowed to
the system was in by locally measuring the separate partperform joint measurements, share entanglement, or ex-
Also, it ought to be possible to clone the state of the wholechange quantum information.
by separately duplicating the state of each part. We show that Of course, because the three two-photon states are nonor-
this is not the case by exhibiting sets of orthogonal, unenthogonal, they cannot be cloned or reliably distinguished,
tangled state§y;} of two-party and three-party systems sucheven by a joint measurement. However, Peres and Wootters
that the state$y;} can be reliably distinguished by a joint performed numerical calculations that provided evidence
measurement on the entire system, but not by any sequenémore evidence on an analogous problem was provided by
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the work of Massar and Popes¢4]) indicating that a any sequence of classically coordinated measurements of the
single joint measurement on both particles yielded more inparts.

formation about the states than any sequence of local mea- The inverse of local measurement is local preparation, the
surements. Thus unentangled nonorthogonal states appear®@pping from a classically provided indéxto the desig-
exhibit a kind of quantitative nonlocality in their degree of hated state);, by local operations and classical communica-
distinguishibility. The discovery of quantum teleportation, tion. If the statesy; are unentangled, local preparation is
incidentally, grew out of an attempt to identify what other always possible, but for any locally immeasurable set of
resource, besides actually being in the same place, wouRfates this preparation process is necessarigyersible in

enable Alice and Bob to make an optimal measurement of'€ thermodynamic sense, i.e., possible only when accompa-
the Peres-Wootters states. nied by a flow of entropy into the environment. Of course if

Another antecedent of the present work is a series of paq“"’!”‘“m communication or glopal operations were aIIovyed
pers [15—17 resulting in the conclusiofil7] that several during preparation, the preparation could be done reversibly,

forms of quantum key distributiofiLg] can be viewed as PrGEL T B0 e PIEREE S IDBNE e
involving orthogonal states of a serially presented bipartite . .
system. These states cannot be reliably distinguished by setlsuch ag(y, .. . yo} in EQ. (3) below], we obtain what

q b h | f the first half of pears to be a weaker kind of nonlocality, in which the
eavesdropper because she must let go of the first halt of the . ining subset of states is both locally preparable and lo-

system before she receives the second half. In this examplga iy measurable, but in neither cases far as we have been
the serial time ordering is essential: if, for example, the tWoype 1o discoverby a thermodynamically reversible process.
parts were placed in the hands of two separate C'?‘SS'Ca“@urioust, in these situations, the entropy of preparatimn
communicating eavesdroppers rather than being serially prehe best protocols we have been able to Jfiedceeds the
sented to one eavesdropper, the eavesdroppers could easifftropy of measurement.
cooperate to identify the state and break the cryptosystem. Besides entropies of preparation and measurement we
In this paper we report a form of nonlocality qualitatively have explored other quantitative measures of nonlocality for
stronger than either of these antecedents. We extensivelynentangled states. One obvious measure is the amount of
analyze an example in which Alice and Bob are each given guantum communication that would be needed to render an
three-state particle and their goal is to distinguish which ofotherwise local measurement process reliable. Another is the
nine product stateg);=|a;)®|B;), i=1,...,9, thecom- mutual information deficit when one attempts to distinguish
posite 3x3 quantum system was prepared in. Unlike thethe states by the best local protocol. Finally, one can quantify
Peres-Wootters example, these statesoaittogonal so the —the amount of advice, from a third party who knowyshat
joint state could be identified with perfect reliability by a Would be sufficient to guide Alice and Bob through an oth-
collective measurement on both particles. However, the nin€"Wise local measurement procedure. _
states are not orthogonal as seen by Alice or Bob alone, ang The results of this paper also have a bearing on, and were
we prove that they cannot be reliably distinguished by amyfiréctly motivated by, a question that arose recently in the
sequence of local measurements, even permitting an arbfontext of a different problem in quantum information pro-
trary amount of classical communication between Alice ancF€SSing- This is the problem eftanglement purificatigrin
Bob. We call such a set of states locally immeasurable an¥nich Alice and Bob have a large collection of identical
give other examples, e.g., a set of two mixed states of t\,V&)lpaftlte mixed states that are partially gntangled. Thelr ob-
two-state particlefquantum bitgqubits] and sets of four or JECt iS to perform a sequence of operations locally, i.e., by
eight pure states of three qubits, which apparently cannot b&0iNg quantum operations on their halves of the states and

reliably distinguished by any local procedure despite being:ommunicating classically, and end up with a smaller num-
orthogonal and unentangled. er of pure, maximally entangled states. Recently, bounds on

In what sense is a locally immeasurable set of stated€ €fficiency of this process have been studied by Raias
“nonlocal?” Surely not in the usual sense of exhibiting phe-2nd Vedral and Plenip20]; other constraints on entangle-
nomena inexplicable by any local hidden varialfleHV) ment purlf_lcat|0n by separgble superoperators have recently
model. Because the; are all product states, it suffices to P€en studied by Horodeckk al.[21]. _
take the local states; and B;, on Alice’s and Bob's side 'In their work, they represent the sequence of Qperatlons
respectively, as the local hidden variables. The standard lawiSing the theory obuperoperatorswhich can describe any
of quantum mechanide.g., Malus’s law, applied separately combination of unitary operations, interactions with an ancil-
to Alice’s and Bob’s subsystems, can then explain any local®’y guantum system or with the environment, quantum mea-
measurement statistics that may be observed. However, at/feément, classical communication, and subsequent quantum

essential feature of classical mechanics, not usually mer2Perations conditioned on measurement results. In the
operator-sum representation of superoperators developed by

tioned in LHV discussions, is the fact that variables corre- _ .
sponding to real physical properties aret hidden, but in  Kraus and others, the general final sta{g) of the density

principle measurable. In other words, classical mechanicdiPerator of the system is written as a function of the initial
systems admit a description in terms of locahiddenvari- ~ Statép as

ables. The locally immeasurable sets of quantum states we

describe here are nonlocal in the sense that, if we believe S(p)=2 SKPSI- (1)
guantum mechanics, there is no local unhidden variable K

model of their behavior. Thus a measurement of the whole

can reveal more information about the system’s state thaifhe S, operators appearing in this equation will be referred
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to as “operation elements.” Arace-decreasinguperopera- B
tor satisfies the condition f@EkS‘iSk<1 and is appropriate I
for describing the effect of arbitrary quantum measurements (0
on the systen(see[22], Sec. Il), while atrace-preserving 0
superoperator specified bglkS{Sﬁl describes a general
time evolution of the density operator if a measurement is ~ =
not made or its outcomes are ignorg2B|. Referencd 24|
has a useful general review of the superoperator formalism. A

To impose the constraint that Alice and Bob act only lo- 1 1
cally, Rains and Vedral and Plenio restricted their attention
to separablesuperoperators, in which the operation elements L7t
have a direct product form involving an Alice operation and = : 3
a Bob operation: 4

S=A®B,. 7) 5

We will show in Sec. Il B(see alsd22], Sec. IXQ that all
operations that Alice and Bob can perform during entangle- FIG. 1. Graphical depiction of the nine orthogonal states of Eq.
ment purificationbilocally, in which they can perform local (3) as a set of dominoes.

guantum operations and communicate classically, can be

written in this separable form. This was enough for the deri-dimensional Hilbert space, with Alice and Bob each possess-
vation of valid upper bounds on the efficiency of entangle-ing three dimensions. We will use the notati@),|1), and
ment purification. However, the natural question that this led2) for the bases of Alice’s and Bob’s Hilbert spaces. The
to is the converse, that is, can all separable superoperators behonormal set has the forta)®|g):

implemented by bilocal operations?

..... 8,,.,9,.“ [ fed

The answer to this question is definitelg, as a result of Y1=[1)®|1),
the examples that we analyze in this paper. Quantum mea-
surements are a subset of the superoperators, and measure- ¥,=|0)®[0+1),
ments involving only product states are separable superop-
erators. Thus our proof that some unentangled states cannot ¥3=|0)®[0-1),

be distinguished locally shows that some separable superop-
erators cannot be implemented by only separate operations
by Alice and Bob with classical communication between

them. This indicates that any further investigations of en- ys=2)®[1-2), )
tanglement purification protocols involving separable super-

¥4=[2)®[1+2),

operators will have to be performed with some caution. Ye=[1+2)®[0),
This paper is organized as follows. Section Il presents the

3% 3 example and sketches the proof that these states cannot ¥7=1-2)®|0),

be distinguished by local measurements. Appendix B gives

many of the important details of this proof and Appendix A Ys=[0+1)®[2),

supplies a crucial technical detail that all superoperators can Yo=|0-1)2|2).

be decomposed into a sequence of very weak measurements.
Section 1l shows how the measurement can be done locall .
if some states are excluded and presents the best measu&?c:\(lavlOaisilj> Sggtri]\?es frc;r éiilfl)\/\(/f>;_;>|ét>a)’icteiﬁe E:ggrsta%es of
ment strategy we have found for distinguishiimperfectly 99 grap y P

all nine states. Section IV shows how the measurement cagigljrﬁ?o'g;hri ié:e:'t"kt)r?ét fzpficea(.)rfsA(l)'fztg?eds?ﬁ; I]hilfoé"s i
be done for the &3 example if entanglement is supplied. ! P urpai invove su

Section V analyzes the thermodynamics of local state me _erppgitions of the basis states. Stggeis clearly special in
surement, studying the heat generated in measurement and n‘fﬂ it involves no such superposition.
state preparation; Appendix C gives some details. Section VI

analyzes a three-party>22 X 2 example involving eight pure B. Measurement
states. Section VII gives other compact examgfesr pure We will show that the separable superoperaf{p)
states ina X2X2 SyStem, two mixed states in ax2 Sys- :EISiPSIT Consisting of the projection operators
tem) and poses some questions for the fut(ependix D
gives details of a specific problem considered there S =|i)ali)e(#il (4)
Il. A SEPARABLE MEASUREMENT cannot be performed by local operations of Alice and Bob,
THAT IS NOT BILOCAL even allowing any amount of classical communication be-

tween them. In Eq(4) the output Hilbert space is different

from the input; it is a space in which both Alice and Bob
We will consider the following complete, orthonormal set separately have a complete and identical record of the out-

of product statesy;=|q;)®|B;). They exist in a nine- come of the measurement. See Sec. VIl for a discussion of

A. Ensemble of states in a % 3 Hilbert space
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why we use the particular form of E¢4) for the operator; We can get some intuitive idea of why it will be hard for
note that the input state need not be present at the output ilice and Bob to perform Eq(4) by local operations by
Eq. (4). noting the result if Alice and Bob perform simple, local von

Since this superoperator corresponds to a standard vadeumann measurements in any of their rounds. These mea-
Neumann measurement, we can equally well consider thsurements can be represented on the “tic-tac-toe” board of
problem in the form of the following game. Alice and Bob Fig. 1 as simple horizontal or vertical subdivisions of the
are presented with one of the nine orthonormal product statdsoard. The fact that any such subdivision cuts apart one of
(for the time being, with equal prior probabilities, let ussay the dominoes shows very graphically that after such an op-
This is not important; it is only important that the prior prob- eration the distinguishability of the states is spoiled. This
abilities of states), throughyy be nonzerp Their job is to  spoiling occurs in any local bases and is more formally just a
agree on a measurement protocol with which they can detereflection of the fact that the ensemble of states as seen by
mine, with vanishingly small error, which of the nine states itAlice alone, or by Bob alone, is nonorthogonal.
is, adhering to a bilocal protocol. However, it is not sufficient to show the impossibility of

Let us characterize bilocal protocols a little more explic-performing Eq.(4) using a succession of local von Neumann
itly. Our discussion will apply both to bilocal measurementsmeasurements, as Alice and Bob have available to them an
and to bilocal superoperatofis which the measurement out- infinite set of weak measurement strated@s]. Much more
comes may be traced guiBy prior agreement one of the careful reasoning is required to rule out any such strategy. In
parties, let us say Alice, initiates the sequence of operationshe remainder of this section we present the details of this
The most general operation that she can perform locally iproof, which also results in a computation of an upper bound
specified by the set of operation elements on the amount of information Alice can Bob can obtain when

attempting to perform the nine-state measurement bilocally.
A el (5

We will immediately specialize to the case where each value C. Summary of the proof

rl labels a distinct “round 1” measurement outcome that \We assume that Alice and Bob have settled on a bilocal
she will report to Bob, since no protocol in which she with- protocol with which they will attempt to complete the mea-
held any of this information from Bob could have greatersurement as well as possible. We identify the moment in the
power. She cannot act on Bob's state, so her operators aesecution of this measurement when Alice and Bob have
always the identity on his Hilbert spaceA,; can also in-  accumulated a specific amount of partial information. We
clude any unitary operation that Alice may perform before orwill have to show that it is always possible to identify this
after the measurement. Note also that the operdtprmay  moment either in Alice and Bob’s protocol or in an equiva-
not be a square matrix; the final Hilbert space dimensionent protocol that can always be derived from theirs. We then
may be smaller(but this would never be usefubr larger  show, based on the specific structure of the nine states, that
(because of the introduction of an ancilthan the original.  at this moment the nine possible input states must have be-
After the recordrl is reported to Bob, he does his own come nonorthogonal by a finite amount. We then present an
operation information-theoretic analysis of the mutual information ob-
tainable in the complete measurement and show, using an
l®B,2(rl). (6)  accessible-information bound, that the mutual information
obtainable by Alice and Bob bilocally is less, by a finite
The only change from round 1 is that Bob's operations camymount, than the information obtained from a completely

be explicit functions of the measurements reported in thahonlocal measurement. Now we present the steps of this
round. Now the process is repeated. The overall set of OPproof in detail.

eration elements specifying the net operation afteounds

is given by multiplying out a sequence of these operations  p |normation accumulation and the modified continuous

S, =A, @B, ) protocol .
If the measurement has proceeded to a point where mea-
An=An(1r2, ... r(n—1))---A3(r1r2)A,,, (8  surement recordn has been obtained, an inference can be
made using Bayes'’s theorem of the probabififys;|m) that
Bn=Brn_1(r1r2, ... r(n—=2))-- the input state wag; :
XBya(r1r2r3)B,,(r1). 9 p(m|¢i)p(¢i)
r4( ) r2( ) ( ) p((/,||m): ! ! ) (11)
Here the laben can be thought of as a concatenation of all E p(m|¢j)p(lﬂj)
the data collected through tmerounds of measurement: .
m=rl:ir2:r3:...:rn. (100 We take all prior probabilitiep( ;) to be equal t¢, so they

will drop out of this equation. The measurement probabilities

Equationg7)—(9) demonstrate the fact that all bilocal opera- p(m|y;) are given by the standard formula
tions are also separable operations. It is the converse state-

ment that we are about to disprove for the operator corre- + +
sponding to the nine-state measurem@it P(M| i) =Tr(Swl i) (il Sp) = (il SuSml 1) (12)
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Here S, is the operation element of E¢7); the quantum the end of this sequence as a confirmati@o the recipient
state in Alice’s and Bob'’s possession has been transformeaf this stream of reports from the outcomes of the weak
to measurements need only wait until they are done to know the
actual (strong measurement outcome in order to proceed
&i m=Sml ). (13)  with the next step of the original protocol. However, except
in cases with vanishingly small probability, the information

We imagine monitoring these prior probabilities eVerycontalned in the accumulating measurement record grows

time a new round is added to the measurement record in EGONtNUOUSy.

(10). We will divide the entire measurement into two stages To conclude this d|scu33|or_1 of the modified measurement
| and II; “stage I” of the measurement is declared to be protocol, we can show how Alice and Bob can be duped into

complete whenp(¢;|m), for somei, equals a particular being_unwitti_ng p_arti_cipa_mts in th_e ”?Odiﬁed protocol, and
value (the choice of this value is discussed in detail in Sec /SO 9ive an |I,I,urrfunhat|ng if colloquial view o{(hovlv the V(\:/?]n' .

IIE). “Stage II" is defined as the entire operation from the tinuumization™ of the measurement can take place. atis
end of stage | to the completion of the protocol. required is a modification of the makeup of the classical

There is a problem with this, however: The mea:suremeni:hannel between Alice and Bob. We imagine that when Al-

record changes by discrete amounts on each round and it ice transmits the results of a measurement, thinking that it is

quite possible for these probabilities to jump discontinuouslyd©ing directly into the classical channel to Bob, it is actually
when a new datum is appended to this measurement recoldt€rcepted by another party (AliGg who performs the nec-

of Eq. (10). Thus it is likely that the probabilitiep(y;|/m) ~ €SSaly sequence of weak measurements. Here is a way that
will never attain any particular value, but will jump past it at Alice can |mplement this operation: She examines the bit
some particular round. The probabilities would evolve con-ransmitted by Alice. If the bit is a 0, she selects a slightly
tinuously only if Alice and Bob agree on a protocol involv- head-biased coin, flips it many times, each tlme' trlansmlttlng
ing only weak measurements, for which all thg, and B, the outcome into t_he classmal_channe!. If_ the bit isal, she
of Egs. (8) and (9) are approximately proportional to the does the same thing with a slightly tail-biased coin. At the
identity operator. However, in an attempt to thwart the proofOther, end of the chann.el there is another 'Utercept”.‘g "’?ge”t
about to be given, Alice and Bob may agree on a protoco(BOb ) th' after stud_ymg a long e_nough string of coin f"PS
that has both weak measurements and strong measuremefifdt Py Alicé, can with high confidence deduce the coin

[for which the operators of Eq€8) and (9) are not approxi- las and report the result to Bob. Alice and Bob are oblivious
mately proportional to the identity to this whole intervening process; nevertheless, as measured

However, such a strategy will never be helpful for Alice PY the data actually passing through the channel, the modi-
and Bob because for any bilocal measurement protocol th4ted Protocol with nearly continuous evolution of the avail-
they formulate involving any combination of weak and &Pl€ information has been achieved.
strong measurements, a modified measurement protocol ex-
ists that involvesonly weak measurements for which the
amount of information extracted by the overall measurement ) ) .
is exactly the same. For this modified protocol an appropriate Having established that no matter what Alice’s and Bob'’s
completion point for stage | of the measurement can alway§€asurement protocol, we can view the probabilities as
be identified. Thus we can prove, by the steps described b&volving continuously in time and we can declare that stage
low, that the modified protocol cannot be completed succesd-of the measurement is complete when
fully by bilocal operations, and we give a bound on the at- 1
tainable mutual information of such a measurement. max p(¢i|m)==+e, (14)
However, since the modified protocol is constructed to have [ 9
the same measurement fidelity as the original one, this
proves thaany protocol, involving any combination of weak

and strong measurements, also cannot attain perfect measuf@at is, after the probabilities have evolved by a small but
ment fidelity. finite amount away from their initial value gf. It should be

The modified protocol is created in a very simple way: It noted that since some measurement outcomes might be much
proceeds through exactly the same steps as the original prgore informative than others, the time of completion of
tocol, except that at the point where the result of a strongtage | is not fixed; it will in general require a greater number
measurement is about to be reported to the other party bg§f rounds for one measurement recongd than for another.
transmission through the classical channel, the strong mea- The € in Eq. (14) should be some definite, small, but
surement record, treated as a quantum-mechanical object, i@ninfinitesimal number. Moreover, we will require that all
itself subjected to a long sequence of very weak measurgposterior probabilitiesp(;|m;) be nonzero. For this any
ments. The outcomes of these weak measurements are nglue smaller thags will be acceptable since
ported, one at a time, to the other party and appended to the
measurement record in E(LO).

The precise construction of this weak-measurement se-
guence is described in Appendix A. The weak measurements
are designed so that in their entirety they give almost perfect
information about the outcome of the strong measurement
(the strong measurement outcome itself can be reported #life now rewrite Bayes’s theorem from Ed.1):

E. State of affairs after stage | of the measurement

1
min p(e;|my) =g - 8e. (15
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<¢i|Em,|¢i> <ai|am||ai><:3i|bm||:8i> This is done in Appendix B, where these corrections are

p(i|m)= derived precisely. The important consequence of this is that
; <¢j|Em,|¢j> 2 <¢j|Em||¢i> <ai|a|ai><
(16) rr:’?x—<aj|a| ) <1+0(J) (22)

Here we have introduced an abbreviated notation for several .
operators that will come up repeatedly in the upcoming deri&nd the same fob. Equations(19) and(21) cannot both be

vations: satisfied unles$=0(¢), that is, unless the residual states
are nonorthogonal by a finite amount.
Em| :STmlsm.:aw@bmw So at this point we can conclude Fhat the measurelrtdgnt
cannot be done bilocally, except with less that 100% accu-
am, :ATm.Aml (17) racy; this is the main result that we set out to prove. We now

proceed to a more quantitative analysis of bilocal approxi-
mations to this measurement.

brm, =B B,
Where there is no risk of confusion we will drop the index F. Information-theoretic analysis of the two-stage measurement
m; from E, ,an,, andby, . We can now perform an analysis of the precise effects of
It is easy to bound the greatest possible spread in thi#is nonorthogonality and derive an upper bound on the in-
probability distribution formation attainable by Alice and Bob from any bilocal pro-
tocol. We will use the standard classical quantifier of infor-
8+72¢ p(ilmy) (ailal a;){Bi|b| Bi) mation, themutual informatior] 26], which gives the amount
8— Q¢ gmaxp(¢-|m|) -n -X<a-|a|a-><ﬁ-|b|,8-> of knowledge of one random variablim our case, the iden-
t . LT AETE tity of quantum statey;) gained by having a knowledge of
1+9¢ another(here, the outcome of the measurement
<1 72 (18 Recall that we have broken the measurement by Alice and

Bob into two stages. We will call the random variable de-
An important technical consequence of declaring stage $cribing the stage-I outcomés, . The outcomes of all sub-
complete at this point is that it is guaranteed that all thesequentstage-l) measurements will be denoted by random
matrix elements«;|ala;) and(Bi|b|B;) are nonzero; this variableM,, . Alice and Bob'’s object is to deduce perfectly
condition will be used repeatedly in the analysis of Appendixthe labeli of one of the nine states; [Eq. (3)]; we will use
B (to be described shortlyThe more crucial condition from the symbolW for this random variablefor “which wave

Eq. (18) is that either the fo||owing equation is true: fUﬂCtiOﬂ”). We quantify the information attainable in the
measurement by the mutual informatio(W; M, ,M,,) be-
(ajlal ) 8+72¢ tweenW and the composite measurement outcoiigsand
X = (19 ; o
y (;]ala;) 8—0¢ M,, . For a perfect measurement, the attainable mutual infor

mation is log9; we will show thatl (W;M,,M,;) must be

or the corresponding equation foris true. This says that €SS than this. We first use the additivity property of mutual
either the operatoa or b differs from being proportional to  information(see[26], p. 123 to write

the identity operator by a finite amount. This will be the key ) _ ) )

fact in the analysis we are about to report. HOWEM M) =T(W M M)+ 1H(WEMY). (22)

_The basic idea is that at the completion of stage |, fromrpis expression introduces the mutual information between
Alice’s and Bob’s points of view there is a nonzero probabil-\y, 44 M, conditional onM,, which can be written as an

ity that the initial state was any one of the nine. In order forg, o 506 over all the possible outconmes of the measure-
Alice and Bob to complete the job of identifying which state

they have been given, with a reliability approaching 100%, itment In stage I:

is necessary that the nine states remaining after stfgq.|

(13)] still be almost perfectly distinguishable. That is, the I(W;M|,|M|)=2 p(M)I(W;M|m,). (23

states must still be nearlgrthogonal However, we can ™

show that, because of E¢L9), these residual states cannot - . I

be sufficiently orthogonal to complete the task. In fact, WeNOW’ cqmblnmg_ Eqs(22) and(23) with the definition of the
: mutual information

will be able to compute exactly to what extent they must be

nonorthogonal. For we can show that if we assume that the L(W;M,)=H(W)—H(W|M),) (24)

overlap of any two of these residual statesSiser less, i.e., ’ '

K uila®b| g and using the fact that the entropy of the initial distribution
[ ] = i

ma><¢i,m,|¢j,m,>=max =5 H(W)=log,9, we obtain

i L V(wilably)(yila® bl y;)

L(W; My, M) =10g;9— 2 p(my)[H(Wm;)
then botha and b will both be almost proportional to the !
identity operator, with relative corrections proportional&to —1(W;M,;|m)]. (25
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To show that Eq.(25 must be less than lg§ it will be
sufficient to show that each member of the sum is strictly (M ;Wy|m)= —Eb: (tr 7Myp)logy(tr 7, My,)
positive. The conditions at the end stage | make it possible
for us to do this. a;

To make things explicit, let us suppose that at the end of + E —'Z (tr piMp)log,(tr p;My),
stage | the residual quantum statgecall Eq. (13)] p; i=151'p
=i m){#im| occur with probabilitiesy; = p(y;|m;) from (29)
Eq. (16). (There will be no confusion from leaving out the
m, label) Moreover, let us suppose that the measurement to ) —
be performed in stage Il corresponds to a positive-operator- (M Wolmy) 2b (trm2Myp)log(tr 72M)
valued measurgM,} fixed by measurement outconm, .

;I'(f\lz?MtleSiplll(C&Ile;m{ﬁqfilgzcg%etshe mutual information +Z 2_2 (tr p:Mp)l0Gy(tr piM ).
(30)
(M s WIm) =H(M [m) —H(M |W,m,), it follows that
(M, ;W|m,)
== 2 (trpMy)logy(tr pMy) <1 (M) ;Wi |my) 51 (M sWolmp) +h(sp).  (3D)
9 We can further bound this, so as to remove all dependence

+21 qi% (tr piMp)logy(tr piMy), (26) on statesps, through¢glml, by noting that
<

©

Qi
(M, ;W <H(W. — . (32
wherep=72,;q;p; . Note thatH(W|m|)=—E?:lqilogzqi. (M ;Wolmy) (Walmi)= Z’ S2 092 Sz (32
Without loss of generality for the present set of manipu-

lations, let us takep;, and ¢,y to be the two states en- Combining Eqs(31) and(32) gives

sured to have a nonvanishi-n.g 0ver|a(;d>1m|¢2,ml>= é H(W|m))— 1 (W: M, |m;)
[recall Eq.(20)]. We may partition the density operatpr
according to the two states that interest us most as follows.

Let = _zl 0il0g20; + 51109551 — S11 (M ; Wy |my). (33
5 9 Equation(33) can be further bounded so as to remove any
N5 9 N5 9 explicit dependence og; and g, by noting that, for fixed
71‘21 s, P Tz_izza s, @7 s;, the first term in the expression on the right-hand side is

minimized whenqg;=q,. (One can verify this simply by
taking a derivative respect to one of the free variaplekak-
wheres; =q;+0, ands,=1—s;. We can think of this par- ing that restriction, one can see furthermore that the resultant
tition as generating two new “which-wave function” ran- term is monotonically increasing ig, . Thus the bound we
dom variabledV,; andW,: The probabilities associated with are looking for can be found by takirm to be its minimal
these random variables are just the renormalized ones aptiowed value, namely, = 8= 5 — 8¢ [recall Eq.(15)]. With
pearing in Eq.27). Note thatp=s;7,+S,7,. Then, by the all that in place, we have that
classic converse to the concavity of the Shannon entfepy
[27], p. 22, it follows that H(W[m) —1(W;M;|m))

=28 1+, (tr 7yM)log,(trr M)
—; (trpMyp)logy(trpM ) b

222 (tr piMp)logy(trpiMy) |, (34)
—51% (tr 7yM)logy(tr 7,M )

where nowr; = 3(p1+ p,).

_ Finally it is a question of removing all dependence on the

S tr ;,Mp)log,(tr M)+ h(s

22 (tr 72 Mp)logs(tr 7Mp) +h(s,) qguantum measuremefi¥,}. This can be obtained by noting
that the two rightmost terms on the right-hand side of Eq.
(34) simply correspond to the mutual information given by
the measuremertM} about the two equiprobable nonor-
where h(x) = —x logx—(1—X)log,(1—x) is the binary en- thogonal quantum states; ,, and ¢, [cf. Eq.(29)]. Op-
tropy function. Hence, if we write timizing over all quantum measurements, we obtain the ac-

(28)
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cessible information of those two statgZ8]. Inserting that
into Eq. (34) and recalling Eq(20) we finally find

i

whereh(x) is again the binary entropy.

H(W|m)—1(W;M}|m;)
1 1 2 1 1
BZBh(E—Em)Z(g—lﬁé 575

(39

The last bound can be made useful by establishing a quan-

titative link betweere and § in Eq. (35). To do this, we must
identify the value of§ for which, given all the constraints
derived in Appendix B, it is first possible to satisfy EG9)
for some values of andj. It is this value ofé that must be
used in the bound35). We have exhaustively examined all
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i,j pairs to determine which one allows the greatest ratio of g 2. Sequence of measurements performed to distinguish the

a (or b) matrix elements for a given value &f We find this
to be the case foi=8 and j=6 in Eq. (3) (or other
symmetry-equivalent ongsFor this choice we can write

(xgla|xg) _agtayt2Reay

= . 36

(xelalxg) ajtaxpt2Rea, (36)
This ratio attains its maximum value when
1+6 1-6
Apo= allréa A= allm,

1+ 6 1-6
Reao]_: allve 1T6, Rea12= - a.]_lVE m .
37

These are the extremal values permitted by EB41) and
(B37). The value this gives is

1+ v 11— 62
1-p1- &8

The smallest value ob for which Egs.(19) and (38) are
consistent is given by the solution to the equation

8+72¢
fe(0)=\ g9

Using MATHEMATICA , we have found the choice efand &
consistent with Eq(39) that gives the strongest bound on the
mutual information in Eq(35). We obtain

1+6
1-6

(ailala;)

ax————=<
i <aj|a|aj> ‘

m

(39)

(39

(WM ,M;)<log,9—A, (40

where the mutual-information defick =0.000 005 31. This
upper bound is attained whes+ 0.008 23, corresponding to
a nonorthogonality parameté&=0.003 44 and a minimum-
probability paramete3=0.0453=0.408/9. Thus we bound

states of Fig. 1 if the statg, is excluded. The dashed lines indicate
the von Neumann measurements, the italic numbers indicate the
order in which they are performed. Dashed-dotted lines indicate
measurements in the rotated basis.

Ill. SEARCHING FOR OPTIMAL LOCAL
MEASUREMENTS

Equation(40) gives our upper bound on the mutual infor-
mation one can obtain by means of local operations and clas-
sical communication. However, it is unlikely that this bound
is a close approximation to the actual optimal mutual infor-
mation accessible in this way; most likely the optimal value
is significantly lower. In this section we explore specific
measurement strategies for our nine-state ensemble in order
to get a sense of how well one can in fact distinguish the
states by local means. We will thereby obtailoaer bound
on the mutual information.

We begin by considering a simpler problem, namely, dis-
tinguishing only eight of the nine states from each other.
That is, we consider the case where the prior probability of
one of the states is zero.

As we noted earlier, statg; from Eq. (3) is special. In
fact, it is never used in the analysis of Appendix B; thus its
presence or absence is irrelevant to the nonorthogonality
conditions that we have derived. This means that this state is
not necessary to make the measurement undoable bilocally.
Thus, even if we take the prior probabilities of the states
such thatp(¢,)=0, we will still reach the conclusion that
the full mutual information is unattainable by a bilocal pro-
cedure(the quantitative analysis will be different from that
given above

The same is not true for the other states: If the prior prob-
ability of any of the stateg,, .. . ,iJq is zero, then the mea-
surement can be completed successfully by Alice and Bob.
Figures 2 and 3 illustrate this for the case when the state
is left out. One way of explaining the strategy is that since
the 4-5 domino of Fig. 2 is no longer complete, it can be cut
by a von Neumann measurement, which will disturb state
but still leave it distinguishable from all the other eight
states. Thus the protocol can begin with cut 1 of Fig. 2,

the information attainable by bilocal operations by Alice andwhich corresponds to an incomplete von Neumann measure-
Bob away from that attainable in a fully nonlocal measure-ment by Bob that distinguishes his sta® from stateg0)

ment by a minute but finite amount.

or |1) (but does not distinguish betwe¢d) and|1)). The
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""""""""""""""""""""""""""""""""""" each outcome of this measurement rules out one of the col-
umns of Fig. 1; that is, it rules out one of Bob’s stafes or

|2). Once this has been done, Alice may freely cut either the
6-7 domino or the 8-9 domino and from this point Bob and
Alice may proceed as above to find o(with no further
damage in which domino the actual state lies. However,
Bob's initial measurement damages both the 2-3 domino and
the 4-5 domino so that at the end he will not be able to
distinguish perfectly betweett, and /5 or betweeny, and

5. Thus, in order to evaluate the mutual information obtain-
able via this strategy, we need to know the effect of Bob’s
initial POVM on these four states. This effect depends on
what operation elemer8,; we choose to associate with the
POVM elementb,,. Any B,; satisfying B;rle:br1 is al-
lowed, but it is simplest to leB,; be|r1)® \b,;, where|r1)

FIG. 3. Tree depicting the four stages of measurement indicateis the classical record of the outcome. To see how this mea-
in Fig. 2. A andB indicate the party performing the measurement. surement affects the states, let us suppose that the actual state
BO/1 indicates that the 0 and 1 outcomes are not distinguished. Thig ¢,, so that Bob’s part of the system begins in the state
_boldfaced numpers at_the base of the tree indicate the states that q;§>=(1/\/§)(|1>+ |2)). Then if Bob gets the outcomie,
inferred from this chain of measurements. the final state of Bob’s part of the systemot including the

next step to be taken by Alice depends on the reported ouf!@ssical recordis Vb ¢)=z|1); and ifl he gets the out-
come as received by her from Bob, as indicated by the tree ff0Me P2, the final state is Vool ) =311)+(1N2)[2).
Fig. 3; likewise all four rounds of the measurement are simi{These states are automatlcal_ly_subnormallzed o) that their
larly contingent on the measurement outcomes of precedingduared norms are the probabilities of the corresponding out-
rounds. The object at every round is to move towards isolatt©mMes, namelyz and 3.) If the initial state had beegs,

ing a domino so that its pair of states can be distinguished b}j’€" the results would have been the same but {@jhre-
a measurement in the rotated basis. placed by—|2). Thus the first outcome rendegs, and i

We now turn to our original problem of distinguishing completely indistinguishable, while the second merely makes
optimally among all nine states, assumed to have equal prighem nonorthogonal. In the latter case Bob can, at the end,
probabilities. The measurement strategy just described is &Y to determine whether the original state wasor ¢ by
reasonable one to pursue even when all nine states aRgrformlng the optimal measurement for cﬁstmgwshmg two
present. It accurately distinguishes statgs ; ands_o and equally likely nonorthogqnal stat¢28]. In this case the op-
it distinguishes these states fragp and ys; it fails only to timal measurement is simply the orthogorjal_ measur_ement
distinguish these last two states from each otfierapplying ~ Whose outcomes aig(1+2) andB(1—2). Similar consid-

Fig. 3 to this case, one should imagine replacing “5” with €rations apply to the stateg, or 5. One finds that this
“4 or 5.”) Thus, if Alice and Bob use this measurement, strqtegy yields a mutual information 0f_2.9964 bits, which is
then with probabilityZ they obtain the full logd bits of &N improvement over the strategy of Fig. 3. o
information and with probabilitg they are left one bit shor; A further improvement is gained by replacing Bob's ini-
so the mutual information is lo§—2=2.9477 bits. One can, tial POVM by a less informative and less destructive one
however, do better, and we now present a series of improvevhose elements arfp,3,1—p} and{1-p,3,p}, where;
ments over the above strategy. <p<1. The rest of the measurement is left unchanged. Op-

We may express the improved measurements as séimizing overp, one finds that this strategy can yield 3.009
guences of positive-operator-valued measyiPE8VMs). For  bits of mutual information. Note, however, that in this case
example, Bob could start with a POVM consisting of ele-Bob’s initial measurement does not rule out any column of
mentsb,; (these are &3 matrices that must satisfy the con- Fig. 1, so that when Alice later cuts a domino, she may be
straint =,,b,,=1), after which Alice will perform a mea- cutting the actual state, in which case her action will cost
suremen{a,,} and so on. As it happens, all of our improved them one bit. One may suspect that Alice should be more
measurements can be represented in terms of POVMs whosareful and indeed the mutual information is improved if she
elements are diagonal in the standard bases for Alice anthakes a weaker measurement. In fact, the best strategy we
Bob. It is therefore convenient to represent these POVM elhave found delays until the fourth round a measurement that
ements by their diagonal values. For example, in the meaguarantees the complete cutting of a domino.
surement described above, Bob’s opening POVIM this This best strategy consists of the following steps, in which
case a von Neumann measuremewhich distinguishes his the values of the parametepsq,r,s, andt are to be deter-
state|2) from |0) and |1), has two elements, which we mined by optimization.
represent a$1,1,0¢ and{0,0,1}. _ (i) Bob: {p,%,1—p} vs{1—p,%,p}. Let us assume that

Our first improvement is to replace this von Neumannpop gets the first outcoméln the other case all the POVM
measurement by a more symmetric POVM whose elemenigiements appearing in the succeeding steps have their diag-
areb,={1,5,0} andb,={0,3,1}. (If Bob were to perform onal values reversed; that is, the roles of sté@dsand|2)
this measurement when his part of the system was in thare interchanged.
central statd1), the outcome would be randomNote that (i) Alice: {0,2—q,1-r} vs{1,9,r}. The first outcome

_________________ PP AR S SR VO
6 7 1 5
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cuts the 8-9 domino and we go directly to step. The )
secqnd outcome makes it safe“r. for Bob to risk cutting the 4-5 Ifr;mAtoB
domino, so we proceed to stéji ).

(iii) Bob: {1—s,1-t,0} vs{s,t,1}. The first outcome cuts 4\
the 4-5 domino and we go directly to stép. The second A2B(1+2) all other
outcome makes it safer for Alice to cut the 6-7 domino, so ; /AZ.B(1-2)
we proceed to stefiv). " g

(iv) Alice: {1,1,0} vs{0,0,1}. Either outcome cuts the 6-7

. B2

domino. BO/1

(v) At this point some domino has been cut, so that Alice e

and Bob can proceed as above to determine in which domino
the actual state lies. If this domino contains two states that
have not been collapsed into the same state, Alice and Bob
then perform a measurement to try to distinguish them.
Optimizing over the values of the parameters, we find that
the mutual information is lo®—0.1575=3.0125 bits.(One
set of parameter values giving this result is=0.726, « . e
g=0.395,r=0.312,s=0.071, andt=0.104.) Moreover,
numerical evidence indicates that no further advantage is
gained by allowing another round before making a firm cut
(it would be a cut of the 2-3 domino as we proceed clock- 4
wise around the grid Thus it is conceivable that this value A(1+2) A(1-2)
of the mutual information is indeed optimal, though we can- ¢ ¢
not rule out an entirely different strategy that does better.
Summarizing the results of this section and Sec. Il, we FIG. 4. Modification of the tree of Fig. 3 that shows how all
have nine states can be reliably distinguished with some quantum com-
munication from Alice to Bob. The wavy lines indicate the episodes
log, 9—0.1575<1(W;M, ,M,;)<log,9—A. (41 of quantum transmission; the first transmission permits Bob to lo-
cally do a measurement involving bothandB pieces of the Hil-
Note that the results presented in this section can be seen bg't space.
a realization of the ideas behind our proof in Sec. Il. Alice
and Bob begin by performing a sequence of POVMs aimederfect protocol involving only classical communication just
at determining in which domino the actual state lies; thisdiscussedFig. 4) and adds a part to permit states 4 and 5 to
sequence can be thought of as stage | of the measurement. fé perfectly distinguished. This will require onhy(%)+ 2
this point, just as in our proof, the states remaining to be<1 14152 qubits(over many repetitions of the measure-
distinguished have become nonorthogonal, so that the fingheny. For the eight-state case the protocol will actually be

mutual information must fall short of 1g§ bits. worse than the straightforward one, requirifig3)+ 2
~1.20443 qubits of transmission. In neither case do we
IV. REALIZATION OF THE TWO-PARTY SEPARABLE know that the procedures that we discuss here are optimal.
SUPEROPERATOR WITH SHARED QUBITS The modified protocol for the nine-state case begins with

Having established that the measurement can only bélice transmitting thg2) component of her Hilbert space to

done approximately if Alice and Bob only communicate _Bob. It is obvious that she could do this by sending one qubit

classically, it is natural to ask what quantum resources would She adopts a three-qubit unary encoding of her Hilbert
permit them to complete the measurement. It is obvious thazpace,’ "e'L0>ﬁ|1OQ>’|1>H|010>' ‘f’md|2>ﬂ|00]>' In fact,
they can do it if Alice ships her entire three-state system tghe third qubit in this representation has less than maximal
Bob and he performs the full operation in his laboratory,entropy, having entropki(3) [it has higher entropy(3) for
reporting the result classically back to Alice. In the case ofthe eight-state cageThus, again using Schumacher’s theo-
all nine states having equal prior probability, this requires theem [29], the transmission can be compressed over many
transmission of log~1.584 96 qubits. If state; is left out  realizations of the measurement so that dm{y) of a qubit
and the other eight states are equiprobable, the density MBer measurement needs to be transmitted.
trix of the state held by Alice has less than maximal entropy; As indicated by the tree in Fig. 4, Bob’s possession of
in fact, it hashs(3,5,2)=4% —10g,3~1.16504 bits of en- |2), permits him to immediately do a measurement that dis-
tropy. Using the Schumacher compression thedr@®h this  tinguishes whether the stateds, 5, or one of the others.
means that if Alice and Bob are performing many shots ofAfter this has been done the sequence of measurements pro-
the same measurement on states drawn from the same eteeds identically as in the classical proto@eig. 4), except
semble, then the quantum transmission from Alice and Bolthat some possibilities can be pruned off as they correspond
can be compressed to 1.165 04 qubits per shot. to ¢, and 5 cases, which have already been distinguished.
However, in the nine-state case we can exhibit a protocaBefore completing round 4, Alice must be again in posses-
for completing the measurement which requires a smallesion of|2),, which requires a qubit transmission back from
overall number of qubits transmitted. It starts with the im-Bob. This qubit is not compressible, but this transmis-

A(0-1) A@+D)
eeemen P S, ;

6 7



1080 CHARLES H. BENNETTet al. PRA 59

sion will only be required if the state igg or ¢, which will It appears that reversible measurements are only possible
only happen3 of the time, and will count ag qubits of if the set of states can be progressively dissected by Alice
o ; and Bob without breaking any dominoes. To formalize this
trazzrg}ssmn t ;Or thi.elght-sta.te F:ajse he beginni d;otion, we introduce a few definitions. L& {y;} be a set
Ing up the qubit transmissions at the beginning andy; 1 re product states shared between Alice and Bob, where
the end of Fig. 4 giveh(3)+5~1.14152 qubits as men- ,=;® B;. Given such a set, we definesalitting of S by
tioned above. This transmission can be made unidirectionahlice as a partition ofS into two nonempty disjoint subsets
since a qubit sent in one direction, if it is entangled with aS=S,US, such that for ally;eS; and for all ¢; in
qubit left behind, may always be used to teleport a qubit inS2,  {@i|a;)=0. A splitting by Bob is defined similarly. A
the opposite directiofd]. Note that even with the assistance setSis dissectibleif there is a tree, each of whose interior

of qubit transmissions, this protocol requires several roundQ.Odes is a splitting by AI'CG.’ or Bob and V\_/hose leaves are
: R » ., Singletons. For example, using the numbering of Byand
of classical transmission; it is a true “two-way” protocol

. . R ) . ' Fig. 1, the sef i, , g, is dissectible, b g,
that is, requiring bidirectional classical communicat{&a]. isgnot. The di{sﬁzeé/;isbillipt?} of an arbitrary Suétl’%a;{/ 4bék %lg'?ir-

mined by examining finitely many possible splitting trees.
Clearly any subset of a dissectible set is dissectible. It is
V. THERMODYNAMICS OF NONLOCAL evident that if an ensemble of staiés {p;,«;} has support
MEASUREMENTS AND STATE PREPARATION only on a dissectible set, then both its entropy of preparation
and entropy of measurement are zero. It is tempting to argue
that, conversely, nondissectible sets, if they are locally mea-
We now explore another information-theoretic feature ofsurable at all, have positive entropies of measurement, but to
our two-party measurement that illustrates in another waye sure of this, one would have to exclude thmlikely
the nonlocality of this orthogonal measurement. If the part$seeming possibility of multistep measurement procedures
of the quantum states are assembled in one location, thent@at, while not strictly reversible for any finitg would suc-
doable with 100% fidelity, can be domeversibly That is,  With error probability and entropy production both tending to
the quantum state can be converted into classical data wit2 in the limit of largen. - .
out any discarding of information to the environment. There- A further analysis .Of th|_s |rrgver5|b|l|ty rev_eals that it can
fore, by Landauer's principlg31] no heat is generated dur- be thought _of as originating in the necessity for classical
ing the measurement. The reversible method can b ommunication between Alice and Bob. In order to ensure
illustrated by a simple qubit example: If the measurement | at the channel between them can convey only classical and

to distinguish|0) from |1) and the classical record of the bit no quantum !nformau_on, the channel itself must POSSESS a
is to be stored in the macrostatg®)=|000...) and|1) quantum environmen@in order to dephase the data passing
—|111.. ) (containing, say, 18 qubits théﬁ.the proce- though i). This raises the possibility that Alice or Bob will

: . : be obliged to become entangled with the environment of the
dure involves starting the macro system in a standard stateh . S

S .channel in the course of communicating the necessary clas-
(so that the initial states of the system to be measured 'ical information, thereby causing themselves to have a finite
either |0000 . ..) or [1000...)) and then performing re- ’ y g

. . ; amount of entropy. Exactly the same amount must also ap-
peated quantum XOR operatiofGO] W't.h the qubit io be pear in the channel environment. When, for example, Alice
measured as the source and all the qubits of the macrostate as,'o "o oo state=|2)® (|1)+|2)) and Bob
the targets. In the end, the measured qubit may as well be 9

. 7 sends the result of his first measurement in Figcd@lapsing
c_on5|dered to be part of the macrosystem containing the CI"?‘%'is state to a mixture dfL) and|2)) to Alice, he has created
sical answer. Note that no Interaction with any other erW"entanglement between the measurement ’outcome and the en-
rﬁnmentl Is necessary to complete this or any other local OVironment so that the joint system of message and environ-
thogonal measurement. .

The situation is rather different for our two-party orthogo- ment is left an entangled state of the fofit)®e, +|2)

X . . wher n re two orthogonal stat f the en-
nal measurement. Suppose that we consider a case in Wh'%ﬁ)zr;men? ee; ande;, are two orthogonal states of the e

the measurement can be achieved by Alice and Bob, fo Note that measurement protocols requiring classical com-
example, the case in which stafg is promised not to be munication are not inevitab? irreversib?e Fc?r example, for
present. Although Alice and Bob can perform this measures i o ctible sebify, e }yconsidered ' reviousl pa iait
ment, they clearly cannot do so reversibly, i.e., as a finite f communication frczn’*n 6B’okfto Alice is re IlDJil‘ed to c{),m lete
sequence of local reversible operations and classical comm Se measurement: still no entropy is eqnerated Thispis <o
nications. In the protocol described in Fig. 2, the irreversibil—becéluse this bit is, Laranteed tgybe ir? one of tﬁe computa-
ity arises in the first step, where, if the statedfs, it is tional basis statesg recisely the states with Whichpthe
irreversibly transformed to either sta{@)|1) or |2)|2). ; P Y : Lo
ephasing channel does not entangle. It is the necessity, in

Thus, in this case one bit of entropy is produced. If each o L . .
the eight permitted states occurs with equal probability, thenhe above example, of delivering a bit to the channel that is

; . in a superposition of basis states that leads to the entangle-

the average entropy generated isf a bit. We cannot prove . o
) C o ment and the irreversibility.

that this entropy of measurement is minimal, though we have
found no more efficient protocol. Many other cases can be
easily worked out; for example, if it is promised that the state
is only one of four(say, g, 1, g, andiy,), then; of a bit For dissectible sets of states, such{@s, s, s}, the
of entropy will be generated by the obvious protocol. mapping

A. Irreversibility of measurement

B. Irreversibility of state preparation
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B when viewed from a global perspective, including Bob, Al-
I ice, and the environment. In the preparation protocol we
( h have just described this global reversibility arises because
0 2 the waste classical informatidi{i) discarded into the envi-
ronment in the last step is not random, but instead is entirely
~ : determined by the joint statg of Alice and Bob. Therefore,
—_— discarding it, though it increases the entropy of the environ-
A ment, does not increase the entropy of the universe. The
1 global reversibility of the measurement protocol for this
same set of four states arises because the information dis-
- carded into the environment in the final stage is merely the
) other half of the entanglement created at an earlier stage of
) the protocol, when one of the dominoes might have been
collapsed. Thus the final act of discarding restores the envi-
ronment to a pure state.
When speaking of the thermodynamic costs of local
FIG. 5. Set of four states, shown in the domino notation, whichPréparation and local measurement, it should be recalled
can be prepared locally by Alice and Bob in a reversible fashion. that, although any set of product states can be locally pre-
pared, not all sets can be locally measured. The full set of
nine stateq ¢, . .. o} of EQ. (3), for example, is not lo-
cally measurable at all, no matter how much heat generation

. . L . is allowed. Conversely, there are sets of pure bipartite states
[using the notation of Eq.3)] between classical instructions that cannot bereparediocally, even with the generation of

and the state desc_ribe_d is Io_cally reversible an_d can be PeHeat, because one or more states in the set is entangled. The
formed in either direction Wlthou_t the generation of WasteCOnCeptS of entropy of preparation and entropy of measure-
information. - Conversely, nondissectible sets, such ag,ant can nevertheless be extended to such sets, indeed to
{02,404, 6,5}, cannot be prepared by any finite sequence,,y orthogonal set of pure bipartite states, by allowing Alice
of reverslble o_perat|0ns and we conjecture th_at eVerynd Bob to draw on a reservoir of prior entanglemi@ng.,
asymptotic mult!step protocols could not reduce either thestandard singIetsP*:(ll\/i)dOl)—|10>) shared between
heat of preparation or the heat of measurement to zero. I:’etrﬁem] to help perform actions, such as teleportatidp that
haps surprisingly, the heats of preparation and measurement, 14 not otherwise be done locally. In this fashion one can
by the best protocols we have been able to discover, aifqfing an entanglement-assisted entropy of local preparation
unequa_l. . . . and an entanglement-assisted entropy of local measurement.
. To give an e>_<ample of irreversible state preparation, cony, entanglement-assisted measurement, an otherwise immea-
s!der the following method for thg preparation for the NON"syrable set such as the original set of nine states is rendered
dissectible sefy, 44,1, ¥} mentioned above. The proto- e raple by teleporting quantum information as required,
col, which is the best we know, will produdg(;)~0.811  say, in the protocol of Fig. 4. However, each teleportation
bits of entropy, considerably more than the entropy of meagenerates two bits of waste classical information per qubit
surement. The procedure works as follows. First, Bob comteleported, thereby contributing to the entropy of measure-
putes a functior of the preparation instructionthat records  ment. Again we can calculate the amounts of entanglement
whether the state to be synthesizedJis [f(4)=1] or one  consumed and entropy produced by simple protocols, with-
of the otherq f(2,6,8)=0], saving the result in a work bit. out knowing whether more efficient ones exist. The protocols
Then Alice and Bob reversibly prepare the modified fourdescribed earlier give an entanglement-assisted entropy of
states of Fig. 5; that is, if the instruction is to preparemeasurement of 2.283 04 bits for the equiprobable nine-state
Y4, Y4 is prepared, and in the other three cases exactly thensemble and 2.408 86 bits for the eight-state ensemble
desired state is produced. (omitting the central stajein each case twice the amount of
This preparation can be carried out reversibly because thentanglement consumed, because the protocols generate no
modified set{,,,, s, s} is dissectible. Next Bob per- other waste information aside from that associated with the
forms a Hadamard rotation on his stat@)—|1+2),|]1) teleportations. Turning now to entanglement-assisted prepa-
—|1-2), and|0)—|0)) conditional upon the state ¢{i),  ration, a typical set of states requiring entanglement to pre-
which transforms 4 into 4 and leaves the other three statespare from classical directions is the set of four Bell states
unchanged as desired. Finally, Bob erases his work(bjt ~ [30] {®*,®~, %", ¥ ~}. The entropy of preparation by the
which requires discarding(2) bits of entropy into the en- obvious protocol in th.is case is. two bits per state prepared
vironment. Similar reasoning shows that the equiprobablB0P reads the classical directions, applies an appropriate

. tat bl b d at h(3 Pauli rotation to the standantt~ to make the desired Bell
nine-state ensemble can be prepared at a cosh(§)  giate and then throws away the classical directions

~0.764 and the equiprobable eight-state enserahithout Finally, suppose Alice and Bob are given an unknown
the center stajeat a cost ofh(2)~0.811 bits of entropy. member of the nine-state s@r some other locally immea-

It should perhaps be noted that the local preparation andurable sgtand wish to determine which state they have
measurement protocols we have described, while irreversibleithout the help of entanglement, but with some hints from a
from the viewpoint of Alice and Bob, become reversible person who knows which state they have been given. We

li)y®li)—|a)®|Bi) (42)
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TABLE |. Entropies, entanglements, and advice for non-Bell ensembles are upper bounds from known
protocols, actual values could be less. The entropies of measurement for nine-state and four-Bell ensembles
are for entanglement-assisted measurement since these ensembles are otherwise not locally measurable. The
nine-state ensemble consists of nine equiprobable states. . ,iy of Eq. (3) and Fig. 1. The 2468 and 246
ensembles are equiprobable distributions dvlt, 14, s, g} and{ i, , ¥4, w6}, respectively. The four-Bell
ensemble consists of four equiprobable Bell std®s,®~, ¥ ", ¥~} and the two-Bell ensemble of two
equiprobable Bell states, e.g®*,¥*}.

Ensemble nine-state 2468 246 four-Bell two-Bell
Locally preparable yes yes yes no no
Locally measurable no yes yes no yes
Dissectible no no yes no no
Entropy of preparation 0.764 0.811 0 2 1
Entropy of measurement 2.283 0.250 0 2 1
Entanglement of preparation 0 0 0 1 1
Entanglement of measurement 1.142 0 0 1 0
Advice of measurement 0.1575 0 0 1 0

define the “advice of measurement” as the minimal amountanalysis of the nine-state problem suggests that as-needed
of advice neededin conjunction with their own local ac- advice might be the optimal kind here also.

tions) to guide Alice and Bob to the right answer. As we  The notion of advice of measurement can be extended to
have seen above, a negative hint such as “the state is neets of entangled states as well, for example, the set of four
" is sufficient. This might appear to be a lot of advites  Bell states. Here one bit of advice is sufficiéatg., whether
much as a totally informative positive hint such as “the statethe unknown Bell state is of thé or — type) since the other

is 3" ), but in fact such negative hints can be highly com-bit (® vs ¥) can be learned by comparing the results of
pressed by classical hashing techniques, asymptotically rédeacal measurements in thebasis. Table | summarizes the
quiring only £log,2~0.171 bits per hint in the nine-state vVarious measures of nonlocality for some of the ensembles

case. Appendix C gives details of the compression of thes@® have been considering.
types of hints.

We note, however, that the non—von Neumann measure- VI. THREE-PARTY SEPARABLE SUPEROPERATOR
ments discussed at the end of Sec. Il allow an even more
efficient form of advice. There it was shown that an appro-
priate POVM yields 3.0125109,9—0.1575 bits of informa-
tion about the unknown state in the nine-state case; therefor:
after Alice and Bob have performed their POVM, only
0.1575 bits of additional information need be provided as

We shall now show another example of a separable von
Neumann measurement, this time involving three parties, Al-
ice, Bob, and Carol, each holding just a qultito-state sys-

Fem). While we have not performed a full analysis of this
case, it appears to have the same properties as the nine-state
ymptotically for them to identify the state exactly. measurement abouvghat partial measurement causes indis

. 4 tinguishability of the residual statgssuggesting that this is
As an aside, we note that the value of advice, an_d th%mother case in which the measurement cannot be done lo-

amount needed, may depend on its timing. Alt'hough In th‘?:ally by the three parties, even if the three can partake in any
nine-state measurement problem the most efficient advice wi ount of classical communication among themselves. The

Enow of car|1 fa;eltyhbe given :ﬁ the_tencti_, afte_r the P?VM. r1fa‘";superoperator involves a complete orthonormal set of eight
een completed, there are other Situations in quantum in Or|5rodu<:t states existing in the eight-dimensional Hilbert

mation _theory, hot to mention in e_veryday lite, vyhen earlyspace. This appears to be the smallest possible Hilbert space
advice is more useful than late advice. In Bennett's and Brasmat still presents such behavi6it is easy to show, using a
sard's q.“"’!”t“m key distribution protocd8], for example, ._simple elimination process, that a qubit-qutrit systequatrit

the basis information may be regarded as a form of advice

X . = three-state systenor a qubit-qubit system is not suffi-
that is delayed to make it less useful to the eavesdropper. IE'ienD. The eight states are for Alice, Bob, and Carol, respec-

a deterministic setting, where the adviser can foresee all fuﬁvely

ture events, nothing is lost by giving all necessary advice at '

the beginning. However, when unforeseen events are pos- $1=10)®]0)®|0)=000,
sible, the most efficient kind of advice, better than prior or

posterior advice, may be as-needed or concurrent advice. $o=|1)®|1)®|1)=111,
Suppose Alice and Bob are about to begin a long car trip.

They ask their more experienced friend Eve which route to $3=|0+1)®|0)®|1)=+01,
take. A few days later they telephone again, asking her how

to repair a flat tire. To be helpful, the route advice must be $,=]0-1)®|0)®|1)=—01, (43
given at the beginning, but it would be wasteful to give the

repair advice then because the flat tire might not have hap- $5=10)®|1)®|0+1)=01+,

pened. The prominent role of measurements, whether von
Neumann or POVM, with unpredictable outcomes, in our $6=10)®|1)®|0—1)=01—,
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$7,=]|1)®|0+1)®|0)=1+0, 2
$s=]1)®|0-1)®]0)=1-0 .

(leaving out normalizationsOn the right-hand side of these
equations we introduce an obvious shorthand for these states
which we will use in Sec. VII. We will indicate the evidence
that the separable superoperator consisting of the projection
operators

Si=li)ali)sli)c(4il (44) 000 A 1

cannot be performed by three-local operations, in which Al- FIG. 6. Layout of the eight states of EG13) in the 2x2x2
ice, Bob, and Carol can only perform local quantum operaHilbert space. The “dumbbells” have a meaning similar to the
tions and broadcast classical information to each other.  dominoes in Fig. 1.

The arguments are equivalent to those in the two-trit ex-
ample and again rely on considering any measurement as(éi) Takingi=7 andj=8 gives
two-stage process. In the case where all prior probabilities

are equal § in this casg we declare stage | to be complete

when (iv) Now we write the four orthogonality conditions coming
from all combinations of = 3,4 andj=5,6:

boo=Db11- (51)

1
max iim)==+e, 45
: p(¢ilmy) 8" ¢ 49 (agotagy)Ppa(C10t€11) =0,
with some positivee smaller than. It is again simple to — (@gota1)bo1(C10— €11 =0,
bound the greatest possible spread of the probability distri-
bution (20— ap1)boa(C10t €1 =0,
7+56e<max p(i|m)) _ X(¢i|E|¢>i>< 1+8e —(ago— @01 Po1(C10~ €11) =0. (52
7=8e i p(glm) T (i[El¢y) 1_565( | Adding these four equations gives
46

: : . . 4apbo1€11=0. (53
As before, this equation guarantees that all diagonal matrix
elements ofE, (¢;i|E|¢;)=(pi|la®b®c|¢;), are nonzero Sinceay#0 andcy;#0, we conclude that
and it also guarantees that the maximum and minimum ma-
trix elements are different. Also as before, we can show that Po1=0=Dbyo. (54
the states after stage | become nonorthogonal, which shou

[ . . . y
permit us to derive a definite mutual-information deficit. We &) Doing the same for the equations involving 3,4 and

will not develop this proof here, but we will give a simple =178 gives
sketch of how we prove that the states are nonorthogonal. co=0=c (55)
We will just show here that the states cannotebactlyor- 01 10-
thogonal: (vi) Finally, from the equations involving=5,6 and j
o =7,8, we get
Keilawbsclg)l=0 V i#]. (47 J
This proof can be generalized step by step into a full analysis 301 =0=ao. (56)
as in Appendix B. _ . _ _ Putting observation§)—(vi) together, we conclude that
(i) Writing the orthogonality condition fof=3 andj 1, andc must be proportional to the identity operator. How-
=4 gives the condition that ever, this is inconsistent with E¢46), which established that
o b —0 48 the different diagonal matrix elements Bfmust differ by a
(800 + 801~ 810~ 811)PoC11=0. 48 finite amount. When developed more fully, this result should

contradict the assumption that the measurement could be
done even approximately by three-local operations.

Note that nothing in the argument involves the simple
product stategp, or ¢,. We conclude that the measurement
(49) s still not doable locally even if these two states are prom-

ised to be absent. On the other hand, it is easy to show that
(i) Taking takingi=5 andj=6 and applying the same rea- €liminating any one of the stateg;_g would permit the
soning gives measurement to be done. The layout of these states in the
Hilbert space shown in Fig. 6 gives some intuition for why
Coo=C11- (500  these should be true, as in the two-party case: Any simple

Since diagonal matrix elements bfandc must be nonzero
by the arguments from Ed46), the a factor must be zero;
taking the real part gives

Qgo=ajy-
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von Neumann involves cutting one of these “dumbbells” |0)®(|0)+|+)]; no separable superoperator can do this. It will
and making those pairs of states indistinguishable. be interesting to understand the minimum degree of nonlo-
Finally, the most economical technique that we havecality needed to perform this measurement.
found for making the measurement doable with quantum A nonlocal measurement would yield one bit of informa-
communication is for a whole qubit to be sent from one partytion sincepy andp; are orthogonal. It would be interesting
to another. That is, no compression of the quantum informat0 try to apply the techniques developed in this paper to
tion seems to be possible in this case, whether or not statéketermine a bound on the attainable mutual information by a
b, or ¢, are excluded. It is easy to show that the resultingPilocal approximation to this measurement.

two-party measurement that is required after this qubit trans- | €ré are other multiparty examples for which such
mission is doable by local actions. proofs would also be desirable. A modified version of the

2X2X2 example above involves just four states
VII. DISCUSSION 01+, 1+0, +01, ——-—. (59

The results of this paper, extensive as they are, raise markhese states have other interesting propeft3. For ex-
additional fundamental questions about multipartite quantunample, the subspace complementary to them contains no
measurements, most of which we have only incomplete anseparable pure state. Nevertheless, this can be viewed as a
swers to at this time. We would indeed be pleased if theneasurement game in which Alice, Bob, and Carol are
ambitious reader has a notion of how to attack any of thé°romised that they are given one of these four states and
following puzzles. their object is to distinguish, with only classical communica-

There are a variety of simple variants on the separabl80ns, which state it is. We suspect that they cannot, but we

measurements presented in this paper for which we do ndt2ve not been able to prove it.
know how to prove or disprove bilocality. One is a very An even more exotic set of orthogonal states that we have

obvious generalization of the nine-state example considered is one involving ten parties, each with a qubit.
This set of states again only involves basis vectors 0,1,

Pi=1)®|1), and— locally, so that a typical one of the 1024 basis states is

1+ —+0——110. This construction emerges from a coun-

¥, =10)®C0S0,40) + Sin 0,4 1), terexample of a proposition in tiling theory, the Keller con-
jecture[33]. The violation of this conjecture means that the
,=10Y® — SiN B,40) + cOSB,4 1), 1024 states do not conform to the domino or dumbbell layout

of the examples in this paper, where pairs of dimensions of
the Hilbert space are covered by pairs of orthogonal states.
We have not attempted to prove non-10-locality for this ex-

ample, but we note that there is no simple von Neumann
measurement that will distinguish them.

Curiously, despite the complexity of the example, we are

able to show that just two copies of any state are sufficient
for the ten parties to be able to locally distinguish the state

P4 =|2)®C0OSO45/2) +SiN O4g 1),
P5=12)® —SiN 045 2) + COSO4e 1), (57

W= C0S0672) +sin g7 1) ®|0),

¥y = —Sin 67 2) + cose7| 1) ®|0), with classical communication, as in all the examples consid-
ered in Sec. IV. The procedure is simple: Measure one copy
g =C0S0gd 0) +iNfgg 1) ®|2), in the 0/1 basis and the second in thé— basis. This has
raised another questioi84]: Are there any sets of states,
g= —Sin fgg 0) + CcOShgy 1) ® | 2). entangled or not, for which some finite numlggreater than

2) of copies of the state is necessary for distinguishing the

That is, each of the domino pair is rotated by a differentstates reliably? So far we have found no examples where
angle. While we strongly doubt that the case of gen@sak  more than two copies of the unknown state are needed. In-
any different from the casé= /4 that we have analyzed, deed we know of no examples of two orthogonal pure states,
we have no proof that these general states specify a nonlocgtoduct or entagled, which require more tharecopy to be
measurement. reliably distinguished. Earlier in this section we noted a set

We have noted that, although there is n& 2 pure-state  of two orthogonaimixedstates of two qubits, which appears
example that involves pure states of a separable but nonloca be locally immeasurable. But here too, two copies are
superoperator, there is a mixed-state measurement that hasfficient to make the states distinguishable. It would appear
some very curious properties. It is a measurement to distinthat further work on the tiling problems could produce other
guish two density matrices, andp;, wherep, is an equal interesting examples for numbers of parties between 3 and
mixture of the pure product states-Oand +0 [we use the 10.
notation introduced in Eq43)] andp; is an equal mixture of The domino representation of two-party quantum states
11 and— —. It appears that, despite the fact that this meabears some resemblance to an approach taken in classical
surement involves distinguishing two separable, orthogonatommunication complexity problems to finding the most ef-
states, nevertheless, the measurement cannot be done bifigient interactive scheme for evaluating a function of data
cally; indeed, the measurement apparently cannot be done Ihyeld by both Alice and Bob with the minimum classical
any separable superoperator. It is easy to show that the pregemmunicatior{35]. The resemblance comes when the one-
jection measurement into these states can produce an eit output of the function is depicted in a two-dimensional
tangled output from an unentangled inpidor instance, table; then the most efficient communication is determined
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by a recursive subdivision of such a table into unanimousould not be performed bilocally, with the restriction that
blocks. It remains to be seen whether this observation wouldnly one round of measuremefune transmission from Al-

lead to more examples of interesting separable quantum ojice to Boh would be permitted. The nine states that we have
erations. analyzed have this property. However, given that Eve can
The present investigation has required a very precise didiave a quantum memory, the problem is a bit different, cor-
tinction between different types of quantum operations thatesponding to there being some restricted form of quantum
are normally considered identical. Returning to the nine-stateommunication between Alice and Bob in the measurement
calculation, we can consider two different quantum operagprotocol. In the cryptographic application, of course, Eve has
tions related to the measurement operation of @f.(re- more work to do: She must determine the identity of the state
peated here and provide it undisturbed, at the appropriate times, to Bob
. [38]. Thus a separate study is required to establish that the

i) ali)e(wil, (59 nine states form a good basis for orthogonal quantum cryp-

tography(which, however, is easily provided by the analysis

i)l (60) of [17]). At the same time, we may imagine that the nine

states might provide a stronger cryptographic primitive for
i)l (62) some purposes, given that they cannot be identified even by

We have disproved the existence of E§9). We can from repeated communication between Alice and Bob. Another
this disprove the existence of E¢60), which is a cloning useful feature of the states as a cryptographic primitive might

operator: We just note that Alice and Bob could perform thisbe the fact that two copies of them can be identified exactly.
cloning many times and then perform measurements to dé-OWeVer, \a’.e havi? no concr.etrt]e EOIIOI’]S of what these new
duce with very high confidence the state labethus per- cryptographic applications might be.

forming Eq. (59). We can also rule out any form of weak . Finally, we note that the basic. question that began our
cloning [36]. The case for Eq(61) is more subtle since we investigation remains unanswered: What is a compact math-
normally think of these projection operators as preciseI)Fm""t'c"’II descrlptlon ofasu_per_operator that can be p.erformed
what we mean by the measuremé&b®). This is true in a by only cIa§5|caI communication between_ the parties? We

pave only disproved one natural hypothesis, that this set co-

one-party world, since performing the projection means tha id ith th ¢ of bl ¢ No alt
a classical record of the state is available somewhere in the¢/9€S Wi € set of separable superoperators. No alterna-

world. However, in a multiparty situation, this record could t|vilf|1y|?(t)rt]he3|s hast_pres_er:jt_edtltself. think. that il h
be in a form that is split between the parties in a way that ortnese questions indicate, we think, that we still have

would require quantum communication to unravel. ThereMany Very basic questions about the structure of quantum

fore, we emphatically state that Eq&9) and (61) are not mechanics and about the nature of quantum nonlocality and
generally identical in a multiparty scenario. Indeed, we noteenta_n_glemen_t, questions whose answers will be of c_entr_al
that there is another case in which two such operators a gnlﬂcancg In our quest to e_mploy_ quantum mechanics in
completely different. For Bell states, the measurement operd/'€ transmission and processing of information.

tor (59) cannot be done bilocally because of the entangle-

ment of the states, but the dephasing operéidj for the ACKNOWLEDGMENTS
Bell states can be done bilocally; it has been described as the ] ]
“twirling” operation of Ref. [30]. Part of this work was completed during the Elsag-

Nevertheless, we have been able to prove that(&h.is Bailey—ISI Foundation research meeting on quantum com-
not doable for the nine-state examples, but by quite differenputation. C.A.F. has been supported by the Lee A. DuBridge
arguments from those given for E€s9), presented in Ap- Foundation and by DARPA through the Quantum Informa-
pendix D. However, the issue of approximations to E)  tion and ComputingQUIC) Institute, administered by the
or (60) remains unsettled. That is, we do not know how toU-S. Army Research Office. We thank Michat Horodecki,
quantify the precision with which Alice and Bob could do Peter Hger, N. David Mermin, Sandu Popescu, Barbara
these operations approximately. A large part of the difficultyTerhal, and Reinhard Werner for very helpful discussions.
is that we cannot use a simple, classical measure of informa-

tion such as the mutual information, which was possible for,ppeENDIX A: DECOMPOSITION OF ARBITRARY POVM
Eq. (59) because the output is a classical record. For EQs. |\To A SERIES OF VERY WEAK MEASUREMENTS
(60) and (61) an operator measure, involving a notion of

distance between two quantum operators, would have to be Any superoperator acting on a system of dimensiaan
used. The theory of such operator measures is consideradbe replacednonuniquely by the following procedure: ap-
less well developefi37]. pending an ancilla of dimension,, performing a unitary

It seems likely that the states we have explored in thidgransformation, tracing out a subsystem of dimensign
paper would be usable for quantum cryptography, but weind measuringusing a standard and complete measurement
also have more questions than answers on this point. It ia subsystem of dimensiam;, which we call a probe. As a
now clear[17] that bipartite orthogonal states are generallyresult, the state of remaining systefof dimension m
useful for cryptography when one particle in the state is re=nn;/n,n3) can be calculated and it is uniquely determined
ceived by Bob before the other has been launched by Alicefor any given superoperator despite the nonuniqueness of the
This forces Eve to measure one particle at a time. If Eve hagrocedure. In cases where there is no probe to be measured
no gquantum memory, then the security of the cryptography{n,=1), this is the so-called trace-preserving superoperator.
protocol would be ensured if the measurement of the statHf instead the trace-out step is eliminated, this is the most
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general POVM. In our case, where all information is used forwhere the two possible states of tkih WQMD, |0'), and

the optimal extraction of information, we are interested in|1’),, are highly overlapping. We can always choose them
this second case. Thus the most general POVM can be rés be

placed by the three operations: the appending of an ancilla,

the unitary transformation, and the standard measurement of |0)=cos6|0) +sind|1),
a subsystem. , . (A4)
Suppose we are given a state on which we will obtain 1) =sin6|0)+cosd|1),

some information using a POVM. We will show how to . . .

approximate this POVM by a continuous process. The adgiMith 0= m/A—e with small positivee. If the state we start
tion of ancilla does not influence the state; the unitary transVIth 1S ), thgn the pr.czba}blhty to obtain a correct result
formation can be done as continuously as we wish. We shal[o™ @ probe in a statg’) is

now show that a standard complete measurement can be re- cog6="1/21+sin(2¢)]. (A5)
placed by a continuous proceés any desired approxima-

tion). As a result of the above discussion, any POVM can beye approximate

approximated in the same way.

In order to measure the prolfea subsystem of dimension cosO~ (1\2)[1+sin(2€)/2]~(112)[ 1+ €],
ng) using a complete standard measurement in a Basis (AB)
we write the combined state of the remaining system and the sin 6~ (1/y2)[1-€].
probe(of dimensionsin;=mnyg) after the unitary interaction
as For any staté), if only one WQMD is measure(in the

computation basjs the effect of this measurement on the
_ . rest of the system is weak and the state of the original system
ly)= ion ailppi), (A1) can be reproduced with high fidelity, which approaches one
as e approaches zero. For instance, if a result 0 is obtained,
where 3™ *|a;|2=1 and |¢;) are normalized state;ot ~We can reproduce an unnormalized state of the remaining

i=0
necessarily orthogoniabf the remainingn-dimensional sub-  SyStem and the probe
| Wour) = @0COSH| 0)|0) + assin | p1)[1), (A7)

system. Without loss of generality we can assume that the
probe is a qubit since any other measurement can be replaced

ng—1

by a set of yes/no questions, thoig=2. o yielding a modification of ) of ordere:
In a standard measurement we apply the projection pos-
tulate directly on the probe to yield a classical resultith | hout) = | ¥) + €l ao| P0)|0) — 1| 1) | 1)]. (A8)

probability |a;|? and a remaining subsystem in a sthdg).
In a nondemolition measuremef89] a stateli) is trans-  Thus, measuring each such QMD one at a time, we obtain a
formed to|i)|i); and the new system|if,) is measured Process that is as close to continuous as we want since we
instead of the probe; hence a probe in a slités not de- can choose as small as we want.
molished by this measurement. Attachiligsuch devices to The last thing to verify is that we can choose big
|¢), the measurement of the probe can be done in a norehough in order to yield the same probability of obtaining
demolition way using a unitary transformation to a state  the resulti as in a standard measurement. If the state of the
probe is|i), then each of the WQMDs is in pure stdté).
! When we measur& WQMDs their outcomes are indepen-
|)=2 ail)|i)]idali)e- - [i)k. (A2)  dent and identically distributed according to a binomial dis-
=0 tribution with probability co$d to obtain the correct resuit
where now the measurement postulate can be applied on a{ﬁ/ each one. Let us assume tiats odd. When we look at
(or on al) of the additional “quantum measuring devices” K Such WQMDs and take a majority vote, the probability to
i}, where k=K. We use the term quantum measuring ©Ptain a correct result is given by

device(QMD) to say that no classical measuremémt ac- (K=1)/2
tual “printout” ) was performed at that stage. As a result, this 2 co2K—K g sirzkp (A9)
measurement process is reversible until we apply the projec- k=1 \k ’

tion postulate on one of these QMDs and the sftétdecan be _ _
reproduced fromj®) with perfect fidelity. Measuring any of _(Note that this expression can also be calculated by expand-
these QMDs is equivalent to performing a standard measuréfd

ment on|i). R .
To obtain an approximation using a continuous measurel? 1) 111+ 11"k
ment we replace the QMDs by “weak QMDSWQMDSs), =| i)Y cod|i---i)+coX 1asing |ii---ij)
meaning that we replace a standard measurement by a se-
quence of weak measurement#/eak measurements were +singljj---j)], with j=0, (A10)

discussed by Aharonov and othg¢&5].) The unitary trans- ) . .
formation producing Eq(A2) is replaced by one leading to if |=1) and vice versa, and calculating the probability of each
string,
| Y= ag|hp)|0)]0" )1+ - |0 Y+ ar| p1)| 1YL )1 - |17 )k, This is equivalent to a classical problem of having a bi-
(A3) ased coin with a known bias c@sand trying to guess
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whether it is biased to give more heads or more tails. Ond —|«|? and throwing it as many times as we want in order
can bound the above sum directly or approximate it usingo learn which coin we received with any desired probability

some central limit theorerfsince it is a random waj)k

of success.

Alternatively, one can use a strong version of the law of
large numbers, which tells us that we can guess the direction APPENDIX B: CONSTRAINTS FROM APPROXIMATE

of the bias with probability exponentially close to one. Sup-

ORTHOGONALITY OF RESIDUAL STATES

pose one throws a biased coin, so that in one try it gives

Probx=1)=p and Probx=0)=1-p. According to the

Bernstein law of large numbeigt0], when throwing the

same coinK times the actual average of th€ trials
EiK: 1% /K is very close to the expectation valype except
with probability

Prot{

for any K and for § smaller thanp(1—p).
To apply this law to our case recall ¢@s=1/2+ sin 2¢/2

K
%;1 X, —p|= 6| <2e 7K (A11)

and siff=1/2—sin 2¢/2, so that the Bernstein law applies

for any 6<1/4— sir2e. For smalle (e.g., less than 1)j8ve

chooses=sin 2¢/2, which is in the appropriate range. Now

the probability of observingEiK:lxi /IK=1/2 when the
Probx=1)=sir? is less than or equal to

Prot{

Since K can be chosen independently of any K
> 4/sirf2e will do.
This means that for sucK the expression

>sin 2¢/2|<2e~Ksif2e4  (A12)

K
%E Xi—p
i=1

(K=1)/2
S= > ( k)co§<Kk>asin2k0 (A13)
k=1
is exponentially close to 1 and its complement
(K=D)12 /e
1-S= >, ( ‘ sitK—k g cogkg (A14)
k=1

is exponentially small.

According to Eq.(20), the overlaps between the residual
statesg; o, after stage [Eq. (13)] are all bounded by:

[(wila®b|y;)]
[ il &)= <0
\/(¢i|a®b|l/fi><l/fj|a®b|¢j>

Vi#j.

(B1)

The task here is to use these inequalities to derive various
constraints on the matrix elements of the operascaadb in
Eq. (17).

We note before we begin that during the completion of
stage |, Alice and Bob may each have augmented their Hil-
bert spaces beyond their original three dimensions. They
might do this, for instance, as part of a strategy that requires
retaining some of the quantum ancillae from one round of
the protocol to the next. Such a strategy finds its expression
in the fact that theS,, operators need not be square matrices,

so that the states of Eq13) will exist in a Hilbert space
larger than the original nine-dimensional one. Fortunately,
this contingency has no relevance for the constraints we are
about to derive: It is only the algebraic properties ©Bf
=S'S=a®b that concern us, anaandb are always square
matrices whose dimensions are determined by the size of the
initial Hilbert space.

Let us use the notatiofi|a|j)=a;; and(i|b|j)=h;; and
note the following preliminary things. Recall thmaindb are
both positive semidefinite operators so that, for each
i, (¢ila®b|y;)>0. Recall that, from Eq.18), we have for
eachi andj

(gila®b|y) _ 1+9e¢
(fla®bly;) ~1-72€

(B2)

Thus it follows thatayg,a,,,bqq, andb,, are all strictly posi-

In the general case of a stdt), we need to expand the tive. Moreover, looking at=2 andj =3, for instance, in Eq.
state (as was done aboyend calculate the probability of (B2) gives

each string in order to take a majority vote as before. This

process yield¢assuming as before od¢)) a probability of

(K—1)/2

|ai]? kz,l <k>co§('<k)asin2ko9

(K=1)/2
+(1-|a]? kZ (k)sinZ(K‘k>0co§k0 (A15)
=1

to obtain the correct result. Usirfgwe get

|| 28+ (1= a|*)(1-9), (A16)
so the result is obtained with the correct probabiisy|2S.
(This is equivalent to obtaining a coin with bias €ésvith
probability |ao|? or with another bias sf® with probability

b00+ b11+2 Reblo 1+9e¢

b00+ bll_ 2 Reblos 1_ 726 ) (Bs)
From this and thé=3, j=2 condition
8le
|2 Rebg < 5 63 636(b11+ boo)- (B4)

In a similar fashion, takindi,j}={2k,2k+1} for k=2,3,4,
we have

8le
|2 Reb,,|=< 2——635(b22+ b4, (BS)

81e
|2 Reay| < m(azz“‘ a), (B6)
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81le
|2 Read < m(au"‘ agp)- (B7)

We can now bound the relative variations among the di-

agonal elements o and b in terms of § in the following
way. Takingi=2 andj=3, Eq.(B1) looks like

00l Poo— b1t b1o— b1yl

<
\/aoo( boot Do1+ b1gtb11)ag(bgo—bo1—b1gtb11)
(B8)
and simplifies to
|b00_ b11+ 2| Im b10|
</. (B9)
\/( boo+b11)%— (2 Reby)?
Therefore it follows that
|boo— by
—— <. B10
Poot D11 (B10)
In similar fashion we get
|b11— by _ lag—ay) _ |ago—ayl _
by1+ by, " oaptay " agetan '
(B11)
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L (3)
g —boz— Doyt byt by)=D_, y¥e *Y (B17)

agboy—bo1—bio+bi)=D__y'¥e +Y (B19)
where eachy() and ¢V satisfy the same constraints as in
Eqg. (B15). Adding Egs.(B14) and(B16)—(B18) together and
taking the absolute value of the resultant, we get

4laghy<8(D, +D, +D_,+D__). (B19

Now suppose that Rg=0 and Ré,,=0 and set
z=14 o 25 (820)

2—-63¢ 2—63¢
Then it follows from Eqs(B4) and (B5) that

D? , <Z%a0@,4 boot b11) (011 b)), (B2
D% _<zay@ys( oot b1n)(biatbyp),  (B22)
D2, <zays( oot b1n) (biatbyp),  (B23)
D2 _<ag@zlboot b11) (b11+b2). (B24)

Combining this with Eq(B19), we find

lagd

Vaoged22

IR

=

1
5<z+2ﬁ+1>b—11 V(bgo+ 1) (by3+byy).
(B25)

These inequalities help us bound the off-diagonal matrix
elements of andb in terms of 5. Consider the combination Note that Eq.(B25) remains true regardless of the signs of

of the conditions from Eq(B1) given by takingi =2,3 and
j=4,5. Thei=2, j=4 inequality, for instance, is

|aga(boat bos+ byt byg)l

<.

Vagezn Doot bys+2 Rebyo) (byptbyy+2 Rebyy) o1
Bl

It will be convenient to introduce the notation

D2 . = apazd (Dot b11) 2 Rebygl[ (byy+byy)

+2 Reb,,]. (B13)
With this, we see that we can write
oo Doyt byt b1+ b)) =D,y Pe ¢(l), (B14)

wherey(!) is a small amplitude ang*) is an appropriately
chosen phase that satisfies the constraints
0<¢ V<27

0<yWV=sy, (B15)

In a similar fashion, taking the remaining combinations of

=2,3 andj=4,5 we arrive at

o)
aga —boz+ b= byt by) =D, _y?e'?”, (B16)

Reb,oand Ré,,. This is because E¢B19) remains invari-

ant under a change of sign for either or both of these terms.
Now it is just a question of using the previously derived
constraints for the diagonal elementsacdindb to put a limit

on how large the right-hand side of this can be. With some
play, one sees that this occurs when

1+6
bo=2,= bllm (B26)
and, at that point, one has
ER 1 )
<—(z4+2\z+1)—. (B27)
Vagaz, 2 1-¢

Alternatively takingi=6,7 andj=8,9 in Eq.(B1) and run-
ning through a set of steps analogous to those in Bf2)—
(B27), one finds

< (z+2\z+ 1)%. (B28)

N| =

By a slightly more elaborate strategy, we can now find
bounds on all the remaining off-diagonal terms. Let us con-
sider the inequalities derived from E(B1) for i=4,5 and
j=8,9. These can all be written in a compact notation as
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[[aget (—1)%tay ][ byt (—1)%2by,]|
\/a22[ agot Ayt (—1)%12 Reag|[ byt byyt+ (—1)%22 Reby,]by,

<. (B29)

The sign bits;=0,1 corresponds tp=28,9; the bits,=0,1  =6,7, we find it for|agy,|/Vasd,; finally, with i=8,9 and
corresponds t0=4,5. Let us focus on only one of these four j=2,3, we find it for|b,,|/vb;10,.
equations, one for which

APPENDIX C: COMPRESSIBILITY OF CLASSICAL

__1\S
(—1)*1Reay;<0, (B30) ADVICE

(—1)%2Reb;,>0. (B31) To see how negative advice of the form “not statecan
) ) _ ) ~ be asymptotically compressed, consider first the simple case
Itis clear that at least one of the four sign choices will satisfysf the equiprobable eight-state ensemble. Suppose Alice and

these conditions. In that case it follows that Bob are faced with the task of performing a large nuniber
of the eight-state measurements; they are promisedythat
|azot (—1)S1ay| \/ 1 s does not occur and all other states are equiprobébis is
<o b_[b22+ b1yt (—1)%22 Rebyy). the simplest cageThen they must ultimately distinguist' 8
Vagy(agot asy) 22

(B32) possible outcomes. However, one single stringnohints
(e.g., state 1 is nof,, state 2 is noify, state 3 is noty,,
Using Eq.(B5), this implies etc) successfully covers™of the possible outcomes. Thus,

only approximately £)" distinct hint strings need ever be
|azet (—1)51ay 1 used to help Alice and Bob with their measurements. If Al-
—F———S=V20 b—(b22+ biy). (B33) ice, Bob, and the hint-giver preagree on which hint strings
Vago(@ootain) 22 are to be used and agree on a numbering of tltetrich
amounts to the selection of an expanding hash fungtion

then the hint can be conveyed imog,? bits, or log?2
~0.193 bits per measurement.

ay+ (—1)%a,, e F Fo_r general, not necessgrily equal, prior probabilifeef
—_——=y,e O=s1m<dé\/—— the nine states, more sophisticated counting methods are re-
Vazy(agotagy) 1-4 quired to calculate compressibility of the hints. Détbe a
(B34) typical sequence af states chosen independently with prob-
abilities {p;,i=1,...,%, having abounnp; states of typd

for eachi. Let Y be a sequence af hints of the form “the

Maximizing the right-hand side of this subject to the con-
straint Eq.(B11) gives

Hence, using Eq(B27),

|2y 27 |y state is not stat¢” is chosen independently with probabili-
21 <51 / n 20 ties{q;,j=2,....9. A hint sequencé is valid for a state
Vagy(ago+ a1g) 1-6 \a,agyt+ayy) sequenc« if none of the hints is falsée.qg., if X=136, then

(B35)  Y=353 is valid butY=356 is not, because the last hint is
false. The probability that the hint sequendewill be a
2z 1 valid for state sequencé is IT2_,pI'™ % therefore, using
<S5\t 5 (z+2\z+1) : : ' i
1-6 2 an expanding hash function from an appropriate strongly
two-universal clas§41], one can show that =}_,p;log,(1
% 6 8oo (B36) —(;) bits of advice per state are asymptotically necessary and
1-6 Vagtag sufficient to specify a valid hint sequence for a typigalThe
optimal compression for hints of this sort can then be ob-
Finally, optimizing the left- and right-hand sides of this sub-tained by varying the probabilitieg; to minimize the above
ject to the constraints imposed agy by Eq.(B11), we ob-  expression. When this is done, it turns out that if one or more

tain of the stateg; occurs with probability significantly higher
than average, the corresponding hint “nit should never
a ol 6® be used, i.e., the corresponding hint probabitjtyvanishes.
=v, ,
azoAa
22 (B37) APPENDIX D: DEPHASING SUPEROPERATOR RULED

OUT BY THE INVERTIBILITY RESULT

26 1 [1+6
Osvo=ve=7—5 \/E+Z(Z+2\/E+ DV175 In this appendix we show that the superoperator that
dephases in the nine-state ba&$) cannot be implemented
This is the desired bound. Applying exactly the same reasorbilocally by Alice and Bob. As a preliminary, we prove that
ing to Eq. (B1) with i=6,7 andj=4,5, we find the same this superoperator cannot be performed with no classical
bound on|b;g|/y/b1;bge Doing the same with=2,3 andj communication between Alice and Bob. Consider two pos-
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sible input states to the superoperator@Y(i5— ) and TijSilv)=ajj(v)|v) (D3)
1 [see Eq(3)]. These states have the same reduced density

operator for Alice, so if there is no communication the outputfor some scalaw;;(v). However, then

states must have the same reduced density operator, but the

dephasing superoperator requires that they be diffdiiant (TijSiv2)) (T Slv1) = aij (vl aij(v2) 1* (v2lv1) =0,
the first case; (]0)(0]+|1)(1]) and in the secondil)(1]]. (D4)
Thus the superoperator is not doable without communicagg

tion.

Now we consider the case where some data stradsee + +
Eq.(10)] has passed between Alice and Bob. Without loss of 2 (TijSlv2) '(Ti;Slv1)) =(v2lS'Slv1)=0. (D5)
generality, we can assume that all the data transmission oc-
curs before Alice and Bob trace out any of the ancilla Hilbert (i) Disproving the bilocality of the dephasing superopera-
spaces that they have introdudeelcall that the output space tor in the case where residual states always remain orthogo-
of Eq. (61) must be the same>33 space as the inputNow,  nal throughout the period when Alice and Bob are commu-
adopting the “continuumized” view of superoperators thatnicating through the channel requires a different line of
involve channel transmissions introduced in Sec. Il D, weargument from casé). First, we note that the calculation of
proceed with the proof by considering two separate cdbes. Appendix B shows that if the states remain exactly orthogo-
If the input to the superoperator is one of the nine stgigs nal [cf. Eq. (B1)], then each operatax,, and b,, must be
the set of residual stat&,| ;) [Eq. (13)] at a certain instant  exactly proportional to the identity operator; this in turn im-
become nonorthogonal, without any of the states being annplies that each operation element is proportional to a product
hilated (non-annihilation is an obvious requirement of the of an Alice and a Bob unitary operator,
dephasing superoperatofii) The residual states always re-
main orthogonal. Sh=amUma®Ung. (D6)

(i) Disproving the bilocality of the dephasing superopera-
tor in the case where residual states become nonorthogonal
accomplished by the following discussioniafrertibility for
superoperators.

Definition. A superoperatolS={S;} is weakly invertible
relative to a set of pure stat¢h,)} if there exist superop-
erators7;={T;;} for eachi such that the superoperatif
={T;;S;} satisfies

I\I,Lote that by the conditions of Appendix B, the posterior
probabilities must remain finite for this result to hold; how-
ever, as noted before, if this condition were not satisfied, it
could be immediately argued that the superoperator could
never result in the desired dephasing operator. In fact, of
course, using Egq$l1) and(12), it is straightforward to show
that the posterior probabilitiep(;|m) remain identical to
the prior probabilitiep(#;); no information about the states
Ui v)=]vid (vl (D1)  ever flows through the classical channel.

Given that the superoperator is constrained to be of the

for all k. Note that the conventional projection superoperatoform Eq. (D6), it is easy to complete the proof. Equation

of Eq. (61) is one such operator of the forth (D6) implies, for each state; of Eq. (3),
Since the dephasing operat(@1) is an example of an ”
operator of the form off in Eq. (D1), any partial completion Uma®Unglai® Bi) =€ a;® B;). (D7)

of the superoperator up to some instant, in particular th
instant at which the residual states become nonorthogonal,
must be weakly invertible. However, we can easily contra- Umal @) =€'%] a;) (D8)
dict this with the following lemma.

Lemma If the superoperataf={S} is weakly invertible ~and a similar relation foB. (It is this last step that cannot be
relative to the se¥ of pure states, then for alby), |v,) taken for the Bell-state dephasing case mentioned in the
eV, if lv,) and|v,) are orthogonal, then so aBjv,) and  text) Now, referring to Eq.(3), considering cases=1,2,4

his implies

Slv,) for all i. shows thatU 4 is diagonal in thg0,1,2) basis; theri=8,9
Proof. Let 7 be superoperators demonstrating the weakshows that(0|U ns/0)=(1|Unmal1) andi=6,7 shows that
invertibility of S. Then, by definition, for allv) in V, (1|Umal1)=(2|Ual2). ThusU 4 and similarlyU g are

proportional to the identity operator. However, the identity
superoperator can be done without any classical communica-

Tt _
IEJ: TiiSilvXelSTi=[v)(v]. (D2) tion and the argument at the beginning of this appendix
shows how this possibility is excluded.
This implies that for alli,j, This completes the proof for both cases.
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