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Quantum nonlocality without entanglement
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We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably
distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even
if the observers are allowed any sequence of local operations and classical communication between the
separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint
measurement on these states and a measurement in which only local actions are permitted. This result implies
the existence of separable superoperators that cannot be implemented locally. A set of states are found involv-
ing three two-state particles that also appear to be nonmeasurable locally. These and other multipartite states
are classified according to the entropy and entanglement costs of preparing and measuring them by local
operations.@S1050-2947~99!00302-9#

PACS number~s!: 03.67.Hk, 03.65.Bz, 03.67.2a, 89.70.1c
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I. INTRODUCTION

The most celebrated manifestations of quantum nonlo
ity arise from entangled states: states of a compound q
tum system that admit no description in terms of states of
constituent parts. Entangled states, by their experimen
confirmed violations of Bell-type inequalities, provide stro
evidence for the validity of quantum mechanics and can
used for different forms of information processing, such
quantum cryptography@1#, entanglement-assisted commun
cation @2,3#, and quantum teleportation@4#, and for fast
quantum computations@5,6#, which pass through entangle
states on their way from a classical input to a classical o
put. A related feature of quantum mechanics, also giving
to nonclassical behavior, is the impossibility of cloning@7#
or reliably distinguishing nonorthogonal states. Quant
systems that for one reason or another behave classi
~e.g., because they are of macroscopic size or are couple
a decohering environment! can generally be described i
terms of a set of orthogonal, unentangled states.

In view of this, one might expect that if the states of
quantum system were limited to a set of orthogonal prod
states, the system would behave entirely classically
would not exhibit any nonlocality. In particular, if a com
pound quantum system consisting of two partsA andB held
by separated observers~Alice and Bob! were prepared by
another party in one of several mutually orthogonal, un
tangled statesc1 ,c2 , . . . ,cn unknown to Alice and Bob,
then it ought to be possible to reliably discover which st
the system was in by locally measuring the separate p
Also, it ought to be possible to clone the state of the wh
by separately duplicating the state of each part. We show
this is not the case by exhibiting sets of orthogonal, un
tangled states$c i% of two-party and three-party systems su
that the states$c i% can be reliably distinguished by a join
measurement on the entire system, but not by any sequ
PRA 591050-2947/99/59~2!/1070~22!/$15.00
l-
n-
e

lly

e
s

t-
e

lly
to

ct
d

-

e
ts.
e
at
-

ce

of local measurements on the parts, even with the help
classical communication between the observers holding
separate parts, and the cloning operationc i→c i ^ c i cannot
be implemented by any sequence of local operations
classical communication. Some of the features of this kind
nonlocality appeared in@8#, which presented a set of or
thogonal states of a bipartite system that cannot be clone
Alice and Bob cannot communicate at all. However, t
states in@8# can be cloned if Alice and Bob use one-wa
classical communication.

Many more of the nonlocal properties considered in
present work were anticipated by the measurement prot
introduced by Peres and Wootters@9#. Their construction in-
dicates the existence of a nonlocality dual to that manifes
by entangled systems: Entangled states must be prep
jointly, but exhibit anomalous correlations when measu
separately; the Peres-Wootters states are unentangled
can be prepared separately, but exhibit anomalous prope
when measured jointly. We note that such anomalies ar
the heart of recent constructions for attaining the highest p
sible capacity of a quantum channel for the transmission
classical data@10–13#.

In the Peres-Wootters scheme, the preparator chooses
of three linear polarization directions0°,60°, or 120° and
gives Alice and Bob each one photon polarized in that dir
tion. Their task is to determine which of the three polariz
tions they have been given by a sequence of separate
surements on the two photons, assisted by class
communication between them, but they are not allowed
perform joint measurements, share entanglement, or
change quantum information.

Of course, because the three two-photon states are no
thogonal, they cannot be cloned or reliably distinguish
even by a joint measurement. However, Peres and Woo
performed numerical calculations that provided eviden
~more evidence on an analogous problem was provided
1070 ©1999 The American Physical Society
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PRA 59 1071QUANTUM NONLOCALITY WITHOUT ENTANGLEMENT
the work of Massar and Popescu@14#! indicating that a
single joint measurement on both particles yielded more
formation about the states than any sequence of local m
surements. Thus unentangled nonorthogonal states appe
exhibit a kind of quantitative nonlocality in their degree
distinguishibility. The discovery of quantum teleportatio
incidentally, grew out of an attempt to identify what oth
resource, besides actually being in the same place, w
enable Alice and Bob to make an optimal measuremen
the Peres-Wootters states.

Another antecedent of the present work is a series of
pers @15–17# resulting in the conclusion@17# that several
forms of quantum key distribution@18# can be viewed as
involving orthogonal states of a serially presented bipar
system. These states cannot be reliably distinguished b
eavesdropper because she must let go of the first half o
system before she receives the second half. In this exam
the serial time ordering is essential: if, for example, the t
parts were placed in the hands of two separate classic
communicating eavesdroppers rather than being serially
sented to one eavesdropper, the eavesdroppers could e
cooperate to identify the state and break the cryptosyste

In this paper we report a form of nonlocality qualitative
stronger than either of these antecedents. We extens
analyze an example in which Alice and Bob are each give
three-state particle and their goal is to distinguish which
nine product statesc i5ua i& ^ ub i&, i 51, . . . ,9, thecom-
posite 333 quantum system was prepared in. Unlike t
Peres-Wootters example, these states areorthogonal, so the
joint state could be identified with perfect reliability by
collective measurement on both particles. However, the n
states are not orthogonal as seen by Alice or Bob alone,
we prove that they cannot be reliably distinguished by a
sequence of local measurements, even permitting an a
trary amount of classical communication between Alice a
Bob. We call such a set of states locally immeasurable
give other examples, e.g., a set of two mixed states of
two-state particles@quantum bits~qubits!# and sets of four or
eight pure states of three qubits, which apparently canno
reliably distinguished by any local procedure despite be
orthogonal and unentangled.

In what sense is a locally immeasurable set of sta
‘‘nonlocal?’’ Surely not in the usual sense of exhibiting ph
nomena inexplicable by any local hidden variable~LHV !
model. Because thec i are all product states, it suffices t
take the local statesa i and b i , on Alice’s and Bob’s side
respectively, as the local hidden variables. The standard
of quantum mechanics~e.g., Malus’s law!, applied separately
to Alice’s and Bob’s subsystems, can then explain any lo
measurement statistics that may be observed. Howeve
essential feature of classical mechanics, not usually m
tioned in LHV discussions, is the fact that variables cor
sponding to real physical properties arenot hidden, but in
principle measurable. In other words, classical mechan
systems admit a description in terms of localunhiddenvari-
ables. The locally immeasurable sets of quantum states
describe here are nonlocal in the sense that, if we bel
quantum mechanics, there is no local unhidden varia
model of their behavior. Thus a measurement of the wh
can reveal more information about the system’s state t
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any sequence of classically coordinated measurements o
parts.

The inverse of local measurement is local preparation,
mapping from a classically provided indexi to the desig-
nated statec i , by local operations and classical communic
tion. If the statesc i are unentangled, local preparation
always possible, but for any locally immeasurable set
states this preparation process is necessarilyirreversible in
the thermodynamic sense, i.e., possible only when accom
nied by a flow of entropy into the environment. Of course
quantum communication or global operations were allow
during preparation, the preparation could be done reversi
provided the states being prepared are orthogonal.

By eliminating certain states from a locally immeasurab
set@such as$c1 , . . . ,c9% in Eq. ~3! below#, we obtain what
appears to be a weaker kind of nonlocality, in which t
remaining subset of states is both locally preparable and
cally measurable, but in neither case~as far as we have bee
able to discover! by a thermodynamically reversible proces
Curiously, in these situations, the entropy of preparation~by
the best protocols we have been able to find! exceeds the
entropy of measurement.

Besides entropies of preparation and measurement
have explored other quantitative measures of nonlocality
unentangled states. One obvious measure is the amou
quantum communication that would be needed to rende
otherwise local measurement process reliable. Another is
mutual information deficit when one attempts to distingu
the states by the best local protocol. Finally, one can quan
the amount of advice, from a third party who knowsi, that
would be sufficient to guide Alice and Bob through an ot
erwise local measurement procedure.

The results of this paper also have a bearing on, and w
directly motivated by, a question that arose recently in
context of a different problem in quantum information pr
cessing. This is the problem ofentanglement purification, in
which Alice and Bob have a large collection of identic
bipartite mixed states that are partially entangled. Their
ject is to perform a sequence of operations locally, i.e.,
doing quantum operations on their halves of the states
communicating classically, and end up with a smaller nu
ber of pure, maximally entangled states. Recently, bounds
the efficiency of this process have been studied by Rains@19#
and Vedral and Plenio@20#; other constraints on entangle
ment purification by separable superoperators have rece
been studied by Horodeckiet al. @21#.

In their work, they represent the sequence of operati
using the theory ofsuperoperators, which can describe any
combination of unitary operations, interactions with an anc
lary quantum system or with the environment, quantum m
surement, classical communication, and subsequent qua
operations conditioned on measurement results. In
operator-sum representation of superoperators develope
Kraus and others, the general final stateS(r) of the density
operator of the system is written as a function of the init
stater as

S~r!5(
k

SkrSk
† . ~1!

The Sk operators appearing in this equation will be referr
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1072 PRA 59CHARLES H. BENNETTet al.
to as ‘‘operation elements.’’ Atrace-decreasingsuperopera-
tor satisfies the condition 0<(kSk

†Sk,1 and is appropriate
for describing the effect of arbitrary quantum measureme
on the system~see@22#, Sec. III!, while a trace-preserving
superoperator specified by(kSk

†Sk51 describes a genera
time evolution of the density operator if a measuremen
not made or its outcomes are ignored@23#. Reference@24#
has a useful general review of the superoperator formali

To impose the constraint that Alice and Bob act only
cally, Rains and Vedral and Plenio restricted their attent
to separablesuperoperators, in which the operation eleme
have a direct product form involving an Alice operation a
a Bob operation:

Sk5Ak^ Bk . ~2!

We will show in Sec. II B~see also@22#, Sec. IX C! that all
operations that Alice and Bob can perform during entang
ment purificationbilocally, in which they can perform loca
quantum operations and communicate classically, can
written in this separable form. This was enough for the de
vation of valid upper bounds on the efficiency of entang
ment purification. However, the natural question that this
to is the converse, that is, can all separable superoperato
implemented by bilocal operations?

The answer to this question is definitelyno, as a result of
the examples that we analyze in this paper. Quantum m
surements are a subset of the superoperators, and mea
ments involving only product states are separable supe
erators. Thus our proof that some unentangled states ca
be distinguished locally shows that some separable supe
erators cannot be implemented by only separate opera
by Alice and Bob with classical communication betwe
them. This indicates that any further investigations of e
tanglement purification protocols involving separable sup
operators will have to be performed with some caution.

This paper is organized as follows. Section II presents
333 example and sketches the proof that these states ca
be distinguished by local measurements. Appendix B gi
many of the important details of this proof and Appendix
supplies a crucial technical detail that all superoperators
be decomposed into a sequence of very weak measurem
Section III shows how the measurement can be done loc
if some states are excluded and presents the best mea
ment strategy we have found for distinguishing~imperfectly!
all nine states. Section IV shows how the measurement
be done for the 333 example if entanglement is supplie
Section V analyzes the thermodynamics of local state m
surement, studying the heat generated in measurement a
state preparation; Appendix C gives some details. Section
analyzes a three-party 23232 example involving eight pure
states. Section VII gives other compact examples~four pure
states in a 23232 system, two mixed states in a 232 sys-
tem! and poses some questions for the future~Appendix D
gives details of a specific problem considered there!.

II. A SEPARABLE MEASUREMENT
THAT IS NOT BILOCAL

A. Ensemble of states in a 333 Hilbert space

We will consider the following complete, orthonormal s
of product statesc i5ua i& ^ ub i&. They exist in a nine-
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dimensional Hilbert space, with Alice and Bob each posse
ing three dimensions. We will use the notationu0&,u1&, and
u2& for the bases of Alice’s and Bob’s Hilbert spaces. T
orthonormal set has the formua&^ub&:

c15u1& ^ u1&,

c25u0& ^ u011&,

c35u0& ^ u021&,

c45u2& ^ u112&,

c55u2& ^ u122&, ~3!

c65u112& ^ u0&,

c75u122& ^ u0&,

c85u011& ^ u2&,

c95u021& ^ u2&.

Here u061& stands for (1/A2)(u0&6u1&), etc. Figure 1
shows a suggestive graphical way to depict the nine state
Eq. ~3! in the 333 Hilbert space of Alice and Bob. The fou
dominoes represent the four pairs of states that involve
perpositions of the basis states. Statec1 is clearly special in
that it involves no such superposition.

B. Measurement

We will show that the separable superoperatorS(r)
5( iSirSi

† consisting of the projection operators

Si5u i &Au i &B^c i u ~4!

cannot be performed by local operations of Alice and Bo
even allowing any amount of classical communication b
tween them. In Eq.~4! the output Hilbert space is differen
from the input; it is a space in which both Alice and Bo
separately have a complete and identical record of the
come of the measurement. See Sec. VII for a discussio

FIG. 1. Graphical depiction of the nine orthogonal states of E
~3! as a set of dominoes.
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PRA 59 1073QUANTUM NONLOCALITY WITHOUT ENTANGLEMENT
why we use the particular form of Eq.~4! for the operator;
note that the input state need not be present at the outp
Eq. ~4!.

Since this superoperator corresponds to a standard
Neumann measurement, we can equally well consider
problem in the form of the following game. Alice and Bo
are presented with one of the nine orthonormal product st
~for the time being, with equal prior probabilities, let us sa!.
This is not important; it is only important that the prior pro
abilities of statesc2 throughc9 be nonzero!. Their job is to
agree on a measurement protocol with which they can de
mine, with vanishingly small error, which of the nine states
is, adhering to a bilocal protocol.

Let us characterize bilocal protocols a little more expl
itly. Our discussion will apply both to bilocal measuremen
and to bilocal superoperators~in which the measurement ou
comes may be traced out!. By prior agreement one of th
parties, let us say Alice, initiates the sequence of operati
The most general operation that she can perform locall
specified by the set of operation elements

Ar1^ I . ~5!

We will immediately specialize to the case where each va
r1 labels a distinct ‘‘round 1’’ measurement outcome th
she will report to Bob, since no protocol in which she wit
held any of this information from Bob could have grea
power. She cannot act on Bob’s state, so her operators
always the identityI on his Hilbert space.Ar1 can also in-
clude any unitary operation that Alice may perform before
after the measurement. Note also that the operatorAr1 may
not be a square matrix; the final Hilbert space dimens
may be smaller~but this would never be useful! or larger
~because of the introduction of an ancilla! than the original.

After the recordr1 is reported to Bob, he does his ow
operation

I ^ Br2~r1!. ~6!

The only change from round 1 is that Bob’s operations c
be explicit functions of the measurements reported in t
round. Now the process is repeated. The overall set of
eration elements specifying the net operation aftern rounds
is given by multiplying out a sequence of these operation

Sm5Am^ Bm , ~7!

Am5Arn„r1,r2, . . . ,r ~n21!… ••• Ar3~r1,r2!Ar1 , ~8!

Bm5Br ~n21!„r1,r2, . . . ,r ~n22!… •••

3Br4~r1,r2,r3!Br2~r1!. ~9!

Here the labelm can be thought of as a concatenation of
the data collected through then rounds of measurement:

m5r1:r2:r3:•••:rn. ~10!

Equations~7!–~9! demonstrate the fact that all bilocal oper
tions are also separable operations. It is the converse s
ment that we are about to disprove for the operator co
sponding to the nine-state measurement~4!.
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We can get some intuitive idea of why it will be hard fo
Alice and Bob to perform Eq.~4! by local operations by
noting the result if Alice and Bob perform simple, local vo
Neumann measurements in any of their rounds. These m
surements can be represented on the ‘‘tic-tac-toe’’ board
Fig. 1 as simple horizontal or vertical subdivisions of t
board. The fact that any such subdivision cuts apart one
the dominoes shows very graphically that after such an
eration the distinguishability of the states is spoiled. T
spoiling occurs in any local bases and is more formally jus
reflection of the fact that the ensemble of states as see
Alice alone, or by Bob alone, is nonorthogonal.

However, it is not sufficient to show the impossibility o
performing Eq.~4! using a succession of local von Neuma
measurements, as Alice and Bob have available to them
infinite set of weak measurement strategies@25#. Much more
careful reasoning is required to rule out any such strategy
the remainder of this section we present the details of
proof, which also results in a computation of an upper bou
on the amount of information Alice can Bob can obtain wh
attempting to perform the nine-state measurement biloca

C. Summary of the proof

We assume that Alice and Bob have settled on a bilo
protocol with which they will attempt to complete the me
surement as well as possible. We identify the moment in
execution of this measurement when Alice and Bob ha
accumulated a specific amount of partial information. W
will have to show that it is always possible to identify th
moment either in Alice and Bob’s protocol or in an equiv
lent protocol that can always be derived from theirs. We th
show, based on the specific structure of the nine states,
at this moment the nine possible input states must have
come nonorthogonal by a finite amount. We then presen
information-theoretic analysis of the mutual information o
tainable in the complete measurement and show, using
accessible-information bound, that the mutual informat
obtainable by Alice and Bob bilocally is less, by a fini
amount, than the information obtained from a complet
nonlocal measurement. Now we present the steps of
proof in detail.

D. Information accumulation and the modified continuous
protocol

If the measurement has proceeded to a point where m
surement recordm has been obtained, an inference can
made using Bayes’s theorem of the probabilityp(c i um) that
the input state wasc i :

p~c i um!5
p~muc i !p~c i !

(
j

p~muc j !p~c j !

. ~11!

We take all prior probabilitiesp(c i) to be equal to1
9 , so they

will drop out of this equation. The measurement probabilit
p(muc i) are given by the standard formula

p~muc i !5Tr~Smuc i&^c i uSm
† !5^c i uSm

† Smuc i&. ~12!
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1074 PRA 59CHARLES H. BENNETTet al.
Here Sm is the operation element of Eq.~7!; the quantum
state in Alice’s and Bob’s possession has been transfor
to

f i ,m[Smuc i&. ~13!

We imagine monitoring these prior probabilities eve
time a new round is added to the measurement record in
~10!. We will divide the entire measurement into two stag
I and II; ‘‘stage I’’ of the measurement is declared to
complete whenp(c i um), for some i, equals a particular
value ~the choice of this value is discussed in detail in S
II E!. ‘‘Stage II’’ is defined as the entire operation from th
end of stage I to the completion of the protocol.

There is a problem with this, however: The measurem
record changes by discrete amounts on each round and
quite possible for these probabilities to jump discontinuou
when a new datum is appended to this measurement re
of Eq. ~10!. Thus it is likely that the probabilitiesp(c i um)
will never attain any particular value, but will jump past it
some particular round. The probabilities would evolve co
tinuously only if Alice and Bob agree on a protocol invol
ing only weak measurements, for which all theArk andBrk
of Eqs. ~8! and ~9! are approximately proportional to th
identity operator. However, in an attempt to thwart the pro
about to be given, Alice and Bob may agree on a proto
that has both weak measurements and strong measurem
@for which the operators of Eqs.~8! and~9! are not approxi-
mately proportional to the identity#.

However, such a strategy will never be helpful for Alic
and Bob because for any bilocal measurement protocol
they formulate involving any combination of weak an
strong measurements, a modified measurement protoco
ists that involvesonly weak measurements for which th
amount of information extracted by the overall measurem
is exactly the same. For this modified protocol an appropr
completion point for stage I of the measurement can alw
be identified. Thus we can prove, by the steps described
low, that the modified protocol cannot be completed succe
fully by bilocal operations, and we give a bound on the
tainable mutual information of such a measureme
However, since the modified protocol is constructed to h
the same measurement fidelity as the original one,
proves thatanyprotocol, involving any combination of wea
and strong measurements, also cannot attain perfect mea
ment fidelity.

The modified protocol is created in a very simple way:
proceeds through exactly the same steps as the original
tocol, except that at the point where the result of a stro
measurement is about to be reported to the other party
transmission through the classical channel, the strong m
surement record, treated as a quantum-mechanical obje
itself subjected to a long sequence of very weak meas
ments. The outcomes of these weak measurements ar
ported, one at a time, to the other party and appended to
measurement record in Eq.~10!.

The precise construction of this weak-measurement
quence is described in Appendix A. The weak measurem
are designed so that in their entirety they give almost per
information about the outcome of the strong measurem
~the strong measurement outcome itself can be reporte
ed
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the end of this sequence as a confirmation!. So the recipient
of this stream of reports from the outcomes of the we
measurements need only wait until they are done to know
actual ~strong! measurement outcome in order to proce
with the next step of the original protocol. However, exce
in cases with vanishingly small probability, the informatio
contained in the accumulating measurement record gr
continuously.

To conclude this discussion of the modified measurem
protocol, we can show how Alice and Bob can be duped i
being unwitting participants in the modified protocol, an
also give an illuminating if colloquial view of how the ‘‘con
tinuumization’’ of the measurement can take place. Wha
required is a modification of the makeup of the classi
channel between Alice and Bob. We imagine that when
ice transmits the results of a measurement, thinking that
going directly into the classical channel to Bob, it is actua
intercepted by another party (Alice8), who performs the nec-
essary sequence of weak measurements. Here is a way
Alice8 can implement this operation: She examines the
transmitted by Alice. If the bit is a 0, she selects a sligh
head-biased coin, flips it many times, each time transmitt
the outcome into the classical channel. If the bit is a 1,
does the same thing with a slightly tail-biased coin. At t
other end of the channel there is another intercepting ag
(Bob8) who, after studying a long enough string of coin flip
sent by Alice8, can with high confidence deduce the co
bias and report the result to Bob. Alice and Bob are oblivio
to this whole intervening process; nevertheless, as meas
by the data actually passing through the channel, the m
fied protocol with nearly continuous evolution of the ava
able information has been achieved.

E. State of affairs after stage I of the measurement

Having established that no matter what Alice’s and Bo
measurement protocol, we can view the probabilities
evolving continuously in time and we can declare that sta
I of the measurement is complete when

max
i

p~c i umI !5
1

9
1e, ~14!

that is, after the probabilities have evolved by a small b
finite amount away from their initial value of1

9 . It should be
noted that since some measurement outcomes might be m
more informative than others, the time of completion
stage I is not fixed; it will in general require a greater numb
of rounds for one measurement recordmI than for another.

The e in Eq. ~14! should be some definite, small, bu
noninfinitesimal number. Moreover, we will require that a
posterior probabilitiesp(c i umI) be nonzero. For this any
value smaller than1

72 will be acceptable since

min
i

p~c i umI !>
1

9
28e. ~15!

We now rewrite Bayes’s theorem from Eq.~11!:
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p~c i umI !5
^c i uEmI

uc i&

(
j

^c j uEmI
uc j&

5
^a i uamI

ua i&^b i ubmI
ub i&

(
j

^c j uEmI
uc j&

.

~16!

Here we have introduced an abbreviated notation for sev
operators that will come up repeatedly in the upcoming d
vations:

EmI
5SmI

† SmI
5amI

^ bmI
,

amI
5AmI

† AmI
, ~17!

bmI
5BmI

† BmI
.

Where there is no risk of confusion we will drop the ind
mI from EmI

,amI
, andbmI

.
It is easy to bound the greatest possible spread in

probability distribution

8172e

829e
<max

i , j

p~c i umI !

p~c j umI !
5max

i , j

^a i uaua i&^b i ubub i&

^a j uaua j&^b j ubub j&

<
119e

1272e
. ~18!

An important technical consequence of declaring stag
complete at this point is that it is guaranteed that all
matrix elementŝ a i uaua i& and ^b i ubub i& are nonzero; this
condition will be used repeatedly in the analysis of Appen
B ~to be described shortly!. The more crucial condition from
Eq. ~18! is that either the following equation is true:

max
i , j

^a i uaua i&

^a j uaua j&
>A8172e

829e
~19!

or the corresponding equation forb is true. This says tha
either the operatora or b differs from being proportional to
the identity operator by a finite amount. This will be the k
fact in the analysis we are about to report.

The basic idea is that at the completion of stage I, fr
Alice’s and Bob’s points of view there is a nonzero probab
ity that the initial state was any one of the nine. In order
Alice and Bob to complete the job of identifying which sta
they have been given, with a reliability approaching 100%
is necessary that the nine states remaining after stage I@Eq.
~13!# still be almost perfectly distinguishable. That is, t
states must still be nearlyorthogonal. However, we can
show that, because of Eq.~19!, these residual states cann
be sufficiently orthogonal to complete the task. In fact,
will be able to compute exactly to what extent they must
nonorthogonal. For we can show that if we assume that
overlap of any two of these residual states isd or less, i.e.,

max
i , j

^f i ,mI
uf j ,mI

&5max
i , j

z^c i ua^ buc j& z

A^c i ua^ buc i&^c j ua^ buc j&
5d,

~20!

then botha and b will both be almost proportional to the
identity operator, with relative corrections proportional tod.
al
i-

e

I
e

x

-
r

it

e
e

This is done in Appendix B, where these corrections
derived precisely. The important consequence of this is t

max
i , j

^a i uaua i&

^a j uaua j&
<11O~d! ~21!

and the same forb. Equations~19! and ~21! cannot both be
satisfied unlessd5O(e), that is, unless the residual stat
are nonorthogonal by a finite amount.

So at this point we can conclude that the measuremen~4!
cannot be done bilocally, except with less that 100% ac
racy; this is the main result that we set out to prove. We n
proceed to a more quantitative analysis of bilocal appro
mations to this measurement.

F. Information-theoretic analysis of the two-stage measurement

We can now perform an analysis of the precise effects
this nonorthogonality and derive an upper bound on the
formation attainable by Alice and Bob from any bilocal pr
tocol. We will use the standard classical quantifier of info
mation, themutual information@26#, which gives the amoun
of knowledge of one random variable~in our case, the iden-
tity of quantum statec i) gained by having a knowledge o
another~here, the outcome of the measurement!.

Recall that we have broken the measurement by Alice
Bob into two stages. We will call the random variable d
scribing the stage-I outcomesMI . The outcomes of all sub
sequent~stage-II! measurements will be denoted by rando
variableMII . Alice and Bob’s object is to deduce perfect
the labeli of one of the nine statesc i @Eq. ~3!#; we will use
the symbolW for this random variable~for ‘‘which wave
function’’!. We quantify the information attainable in th
measurement by the mutual informationI (W;MI ,MII ) be-
tweenW and the composite measurement outcomesMI and
MII . For a perfect measurement, the attainable mutual in
mation is log29; we will show thatI (W;MI ,MII ) must be
less than this. We first use the additivity property of mutu
information ~see@26#, p. 125! to write

I ~W;MI ,MII !5I ~W;MII uMI !1I ~W;MI !. ~22!

This expression introduces the mutual information betwe
W and MII conditional onMI , which can be written as an
average over all the possible outcomesmI of the measure-
ment in stage I:

I ~W;MII uMI !5(
mI

p~mI !I ~W;MII umI !. ~23!

Now, combining Eqs.~22! and~23! with the definition of the
mutual information

I ~W;MI !5H~W!2H~WuMI !, ~24!

and using the fact that the entropy of the initial distributi
H(W)5 log29, we obtain

I ~W;MI ,MII !5 log292(
mI

p~mI !@H~WumI !

2I ~W;MII umI !#. ~25!
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To show that Eq.~25! must be less than log29 it will be
sufficient to show that each member of the sum is stric
positive. The conditions at the end stage I make it poss
for us to do this.

To make things explicit, let us suppose that at the end
stage I the residual quantum states@recall Eq. ~13!# r i
5uf i ,mI

&^f i ,mI
u occur with probabilitiesqi5p(c i umI) from

Eq. ~16!. ~There will be no confusion from leaving out th
mI label.! Moreover, let us suppose that the measuremen
be performed in stage II corresponds to a positive-opera
valued measure$Mb% fixed by measurement outcomemI .
Then the explicit expression for the mutual informati
I (W;MII umI)5I (MII ;WumI) becomes

I ~MII ;WumI !5H~MII umI !2H~MII uW,mI !,

52(
b

~ tr rMb!log2~ tr rMb!

1(
i 51

9

qi(
b

~ tr r iMb!log2~ tr r iMb!, ~26!

wherer5( iqir i . Note thatH(WumI)52( i 51
9 qi log2qi .

Without loss of generality for the present set of manip
lations, let us takef1,mI

and f2,mI
to be the two states en

sured to have a nonvanishing overlap^f1,mI
uf2,mI

&5d
@recall Eq. ~20!#. We may partition the density operatorr
according to the two states that interest us most as follo
Let

t15(
i 51

2
qi

s1
r i , t25(

i 53

9
qi

s2
r i , ~27!

wheres15q11q2 ands2512s1 . We can think of this par-
tition as generating two new ‘‘which-wave function’’ ran
dom variablesW1 andW2 : The probabilities associated wit
these random variables are just the renormalized ones
pearing in Eq.~27!. Note thatr5s1t11s2t2 . Then, by the
classic converse to the concavity of the Shannon entropy~see
@27#, p. 21!, it follows that

2(
b

~ trrMb!log2~ trrMb!

<2s1(
b

~ tr t1Mb!log2~ tr t1Mb!

2s2(
b

~ tr t2Mb!log2~ tr t2Mb!1h~s1!,

~28!

where h(x)52x log2x2(12x)log2(12x) is the binary en-
tropy function. Hence, if we write
y
le

f

to
r-

-

s.

p-

I ~MII ;W1umI !52(
b

~ tr t1Mb!log2~ tr t1Mb!

1(
i 51

2
qi

s1
(

b
~ tr r iMb!log2~ tr r iMb!,

~29!

I ~MII ;W2umI !52(
b

~ tr t2Mb!log2~ tr t2Mb!

1(
i 53

9
qi

s2
(

b
~ tr r iMb!log2~ tr r iMb!,

~30!

it follows that

I ~MII ;WumI !

<s1I ~MII ;W1umI !1s2I ~MII ;W2umI !1h~s1!. ~31!

We can further bound this, so as to remove all depende
on statesf3,mI

throughf9,mI
, by noting that

I ~MII ;W2umI !<H~W2umI !52(
i 53

9
qi

s2
log2

qi

s2
. ~32!

Combining Eqs.~31! and ~32! gives

H~WumI !2I ~W;MII umI !

>2(
i 51

2

qi log2qi1s1log2s12s1I ~MII ;W1umI !. ~33!

Equation~33! can be further bounded so as to remove a
explicit dependence onq1 and q2 by noting that, for fixed
s1 , the first term in the expression on the right-hand side
minimized whenq15q2 . ~One can verify this simply by
taking a derivative respect to one of the free variables.! Mak-
ing that restriction, one can see furthermore that the resul
term is monotonically increasing inq1 . Thus the bound we
are looking for can be found by takingq1 to be its minimal
allowed value, namelyq15b5 1

9 28e @recall Eq.~15!#. With
all that in place, we have that

H~WumI !2I ~W;MII umI !

>2bF11(
b

~ tr t1Mb!log2~ trt1Mb!

2(
i 51

2
1

2(b
~ tr r iMb!log2~ trr iMb!G , ~34!

where nowt15 1
2 (r11r2).

Finally it is a question of removing all dependence on t
quantum measurement$Mb%. This can be obtained by notin
that the two rightmost terms on the right-hand side of E
~34! simply correspond to the mutual information given b
the measurement$Mb% about the two equiprobable nono
thogonal quantum statesf1,mI

andf2,mI
@cf. Eq. ~29!#. Op-

timizing over all quantum measurements, we obtain the



ua

ll
o

he

o
-

nd
re

r-
las-
d

or-
ue
c
rder

the

is-
er.
of

its
ality
te is
ally.
tes
t
o-
t

ob-
-
ob.

ce
cut

ht
2,

ure-

the
te

the
ate
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cessible information of those two states@28#. Inserting that
into Eq. ~34! and recalling Eq.~20! we finally find

H~WumI !2I ~W;MII umI !

>2bhS 1

2
2

1

2
A12d2D5S 2

9
216e DhS 1

2
2

1

2
A12d2D ,

~35!

whereh(x) is again the binary entropy.
The last bound can be made useful by establishing a q

titative link betweene andd in Eq. ~35!. To do this, we must
identify the value ofd for which, given all the constraints
derived in Appendix B, it is first possible to satisfy Eq.~19!
for some values ofi and j. It is this value ofd that must be
used in the bound~35!. We have exhaustively examined a
i , j pairs to determine which one allows the greatest ratio
a ~or b) matrix elements for a given value ofd. We find this
to be the case fori 58 and j 56 in Eq. ~3! ~or other
symmetry-equivalent ones!. For this choice we can write

^x8uaux8&

^x6uaux6&
5

a001a1112 Rea01

a111a2212 Rea12
. ~36!

This ratio attains its maximum value when

a005a11

11d

12d
, a225a11

12d

11d
,

Rea015a11neA11d

12d
, Rea1252a11neA12d

11d
.

~37!

These are the extremal values permitted by Eqs.~B11! and
~B37!. The value this gives is

max
i , j

^a i uaua i&

^a j uaua j&
< f e~d!5S 11d

12d
D 11neA12d2

12neA12d2
. ~38!

The smallest value ofd for which Eqs.~19! and ~38! are
consistent is given by the solution to the equation

f e~d!5A8172e

829e
. ~39!

Using MATHEMATICA , we have found the choice ofe andd
consistent with Eq.~39! that gives the strongest bound on t
mutual information in Eq.~35!. We obtain

I ~W;MI ,MII !< log292D, ~40!

where the mutual-information deficitD50.000 005 31. This
upper bound is attained whene50.008 23, corresponding t
a nonorthogonality parameterd50.003 44 and a minimum
probability parameterb50.045350.408/9. Thus we bound
the information attainable by bilocal operations by Alice a
Bob away from that attainable in a fully nonlocal measu
ment by a minute but finite amount.
n-

f

-

III. SEARCHING FOR OPTIMAL LOCAL
MEASUREMENTS

Equation~40! gives our upper bound on the mutual info
mation one can obtain by means of local operations and c
sical communication. However, it is unlikely that this boun
is a close approximation to the actual optimal mutual inf
mation accessible in this way; most likely the optimal val
is significantly lower. In this section we explore specifi
measurement strategies for our nine-state ensemble in o
to get a sense of how well one can in fact distinguish
states by local means. We will thereby obtain alower bound
on the mutual information.

We begin by considering a simpler problem, namely, d
tinguishing only eight of the nine states from each oth
That is, we consider the case where the prior probability
one of the states is zero.

As we noted earlier, statec1 from Eq. ~3! is special. In
fact, it is never used in the analysis of Appendix B; thus
presence or absence is irrelevant to the nonorthogon
conditions that we have derived. This means that this sta
not necessary to make the measurement undoable biloc
Thus, even if we take the prior probabilities of the sta
such thatp(c1)50, we will still reach the conclusion tha
the full mutual information is unattainable by a bilocal pr
cedure~the quantitative analysis will be different from tha
given above!.

The same is not true for the other states: If the prior pr
ability of any of the statesc2 , . . . ,c9 is zero, then the mea
surement can be completed successfully by Alice and B
Figures 2 and 3 illustrate this for the case when the statec4
is left out. One way of explaining the strategy is that sin
the 4-5 domino of Fig. 2 is no longer complete, it can be
by a von Neumann measurement, which will disturb statec5
but still leave it distinguishable from all the other eig
states. Thus the protocol can begin with cut 1 of Fig.
which corresponds to an incomplete von Neumann meas
ment by Bob that distinguishes his stateu2& from statesu0&
or u1& ~but does not distinguish betweenu0& and u1&). The

FIG. 2. Sequence of measurements performed to distinguish
states of Fig. 1 if the statec4 is excluded. The dashed lines indica
the von Neumann measurements, the italic numbers indicate
order in which they are performed. Dashed-dotted lines indic
measurements in the rotated basis.
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next step to be taken by Alice depends on the reported
come as received by her from Bob, as indicated by the tre
Fig. 3; likewise all four rounds of the measurement are si
larly contingent on the measurement outcomes of prece
rounds. The object at every round is to move towards iso
ing a domino so that its pair of states can be distinguished
a measurement in the rotated basis.

We now turn to our original problem of distinguishin
optimally among all nine states, assumed to have equal p
probabilities. The measurement strategy just described
reasonable one to pursue even when all nine states
present. It accurately distinguishes statesc123 andc629 and
it distinguishes these states fromc4 andc5 ; it fails only to
distinguish these last two states from each other.~In applying
Fig. 3 to this case, one should imagine replacing ‘‘5’’ wi
‘‘4 or 5.’’ ! Thus, if Alice and Bob use this measureme
then with probability 7

9 they obtain the full log29 bits of
information and with probability29 they are left one bit short
so the mutual information is log2922

952.9477 bits. One can
however, do better, and we now present a series of impro
ments over the above strategy.

We may express the improved measurements as
quences of positive-operator-valued measures~POVMs!. For
example, Bob could start with a POVM consisting of e
mentsbr1 ~these are 333 matrices that must satisfy the co
straint ( r1br15I ), after which Alice will perform a mea-
surement$ar2% and so on. As it happens, all of our improve
measurements can be represented in terms of POVMs w
elements are diagonal in the standard bases for Alice
Bob. It is therefore convenient to represent these POVM
ements by their diagonal values. For example, in the m
surement described above, Bob’s opening POVM~in this
case a von Neumann measurement!, which distinguishes his
state u2& from u0& and u1&, has two elements, which w
represent as$1,1,0% and$0,0,1%.

Our first improvement is to replace this von Neuma
measurement by a more symmetric POVM whose elem

are b15$1,1
2 ,0% and b25$0,1

2 ,1%. ~If Bob were to perform
this measurement when his part of the system was in
central stateu1&, the outcome would be random.! Note that

FIG. 3. Tree depicting the four stages of measurement indic
in Fig. 2. A andB indicate the party performing the measureme
B0/1 indicates that the 0 and 1 outcomes are not distinguished.
boldfaced numbers at the base of the tree indicate the states th
inferred from this chain of measurements.
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each outcome of this measurement rules out one of the
umns of Fig. 1; that is, it rules out one of Bob’s statesu0& or
u2&. Once this has been done, Alice may freely cut either
6-7 domino or the 8-9 domino and from this point Bob a
Alice may proceed as above to find out~with no further
damage! in which domino the actual state lies. Howeve
Bob’s initial measurement damages both the 2-3 domino
the 4-5 domino so that at the end he will not be able
distinguish perfectly betweenc2 andc3 or betweenc4 and
c5 . Thus, in order to evaluate the mutual information obta
able via this strategy, we need to know the effect of Bo
initial POVM on these four states. This effect depends
what operation elementBr1 we choose to associate with th
POVM elementbr1 . Any Br1 satisfyingBr1

† Br15br1 is al-
lowed, but it is simplest to letBr1 be ur1& ^ Abr1, whereur1&
is the classical record of the outcome. To see how this m
surement affects the states, let us suppose that the actual
is c4 , so that Bob’s part of the system begins in the st
uf&5(1/A2)(u1&1u2&). Then if Bob gets the outcomeb1 ,
the final state of Bob’s part of the system~not including the
classical record! is Ab1uf&5 1

2 u1&; and if he gets the out-
come b2 , the final state isAb2uf&5 1

2 u1&1(1/A2)u2&.
~These states are automatically subnormalized so that
squared norms are the probabilities of the corresponding
comes, namely,14 and 3

4 .) If the initial state had beenc5 ,
then the results would have been the same but withu2& re-
placed by2u2&. Thus the first outcome rendersc4 and c5
completely indistinguishable, while the second merely ma
them nonorthogonal. In the latter case Bob can, at the e
try to determine whether the original state wasc4 or c5 by
performing the optimal measurement for distinguishing t
equally likely nonorthogonal states@28#. In this case the op-
timal measurement is simply the orthogonal measurem
whose outcomes areB(112) andB(122). Similar consid-
erations apply to the statesc2 or c3 . One finds that this
strategy yields a mutual information of 2.9964 bits, which
an improvement over the strategy of Fig. 3.

A further improvement is gained by replacing Bob’s in
tial POVM by a less informative and less destructive o

whose elements are$p, 1
2 ,12p% and $12p, 1

2 ,p%, where 1
2

,p,1. The rest of the measurement is left unchanged.
timizing overp, one finds that this strategy can yield 3.00
bits of mutual information. Note, however, that in this ca
Bob’s initial measurement does not rule out any column
Fig. 1, so that when Alice later cuts a domino, she may
cutting the actual state, in which case her action will c
them one bit. One may suspect that Alice should be m
careful and indeed the mutual information is improved if s
makes a weaker measurement. In fact, the best strateg
have found delays until the fourth round a measurement
guarantees the complete cutting of a domino.

This best strategy consists of the following steps, in wh
the values of the parametersp,q,r ,s, and t are to be deter-
mined by optimization.

~i! Bob: $p, 1
2 ,12p% vs $12p, 1

2 ,p%. Let us assume tha
Bob gets the first outcome.~In the other case all the POVM
elements appearing in the succeeding steps have their d
onal values reversed; that is, the roles of statesu0& and u2&
are interchanged.!

~ii ! Alice: $0,12q,12r % vs $1,q,r %. The first outcome

d
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are
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PRA 59 1079QUANTUM NONLOCALITY WITHOUT ENTANGLEMENT
cuts the 8-9 domino and we go directly to step~v!. The
second outcome makes it safer for Bob to risk cutting the
domino, so we proceed to step~iii !.

~iii ! Bob: $12s,12t,0% vs $s,t,1%. The first outcome cuts
the 4-5 domino and we go directly to step~v!. The second
outcome makes it safer for Alice to cut the 6-7 domino,
we proceed to step~iv!.

~iv! Alice: $1,1,0% vs $0,0,1%. Either outcome cuts the 6-
domino.

~v! At this point some domino has been cut, so that Al
and Bob can proceed as above to determine in which dom
the actual state lies. If this domino contains two states
have not been collapsed into the same state, Alice and
then perform a measurement to try to distinguish them.

Optimizing over the values of the parameters, we find t
the mutual information is log2920.157553.0125 bits.~One
set of parameter values giving this result isp50.726,
q50.395, r 50.312, s50.071, and t50.104.) Moreover,
numerical evidence indicates that no further advantag
gained by allowing another round before making a firm
~it would be a cut of the 2-3 domino as we proceed clo
wise around the grid!. Thus it is conceivable that this valu
of the mutual information is indeed optimal, though we ca
not rule out an entirely different strategy that does better

Summarizing the results of this section and Sec. II,
have

log2 920.1575<I ~W;MI ,MII !< log292D. ~41!

Note that the results presented in this section can be see
a realization of the ideas behind our proof in Sec. II. Ali
and Bob begin by performing a sequence of POVMs aim
at determining in which domino the actual state lies; t
sequence can be thought of as stage I of the measureme
this point, just as in our proof, the states remaining to
distinguished have become nonorthogonal, so that the
mutual information must fall short of log29 bits.

IV. REALIZATION OF THE TWO-PARTY SEPARABLE
SUPEROPERATOR WITH SHARED QUBITS

Having established that the measurement can only
done approximately if Alice and Bob only communica
classically, it is natural to ask what quantum resources wo
permit them to complete the measurement. It is obvious
they can do it if Alice ships her entire three-state system
Bob and he performs the full operation in his laborato
reporting the result classically back to Alice. In the case
all nine states having equal prior probability, this requires
transmission of log23'1.584 96 qubits. If statec1 is left out
and the other eight states are equiprobable, the density
trix of the state held by Alice has less than maximal entro

in fact, it hash3( 3
8 , 2

8 , 3
8 )5 11

4 2 log23'1.165 04 bits of en-
tropy. Using the Schumacher compression theorem@29#, this
means that if Alice and Bob are performing many shots
the same measurement on states drawn from the same
semble, then the quantum transmission from Alice and B
can be compressed to 1.165 04 qubits per shot.

However, in the nine-state case we can exhibit a proto
for completing the measurement which requires a sma
overall number of qubits transmitted. It starts with the im
5
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perfect protocol involving only classical communication ju
discussed~Fig. 4! and adds a part to permit states 4 and 5

be perfectly distinguished. This will require onlyh( 1
3 )1 2

9

'1.141 52 qubits~over many repetitions of the measur
ment!. For the eight-state case the protocol will actually

worse than the straightforward one, requiringh( 3
8 )1 2

8

'1.20443 qubits of transmission. In neither case do
know that the procedures that we discuss here are optim

The modified protocol for the nine-state case begins w
Alice transmitting theu2& component of her Hilbert space t
Bob. It is obvious that she could do this by sending one qu
if she adopts a three-qubit unary encoding of her Hilb
space, i.e.,u0&→u100&,u1&→u010&, andu2&→u001&. In fact,
the third qubit in this representation has less than maxi

entropy, having entropyh( 1
3 ) @it has higher entropyh( 3

8 ) for
the eight-state case#. Thus, again using Schumacher’s the
rem @29#, the transmission can be compressed over m

realizations of the measurement so that onlyh( 1
3 ) of a qubit

per measurement needs to be transmitted.
As indicated by the tree in Fig. 4, Bob’s possession

u2&A permits him to immediately do a measurement that d
tinguishes whether the state isc4 , c5 , or one of the others
After this has been done the sequence of measurements
ceeds identically as in the classical protocol~Fig. 4!, except
that some possibilities can be pruned off as they corresp
to c4 andc5 cases, which have already been distinguish
Before completing round 4, Alice must be again in poss
sion of u2&A , which requires a qubit transmission back fro
Bob. This qubit is not compressible, but this transm

FIG. 4. Modification of the tree of Fig. 3 that shows how a
nine states can be reliably distinguished with some quantum c
munication from Alice to Bob. The wavy lines indicate the episod
of quantum transmission; the first transmission permits Bob to
cally do a measurement involving bothA andB pieces of the Hil-
bert space.
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sion will only be required if the state isc6 or c7 , which will
only happen2

9 of the time, and will count as29 qubits of

transmission (28 for the eight-state case!.
Adding up the qubit transmissions at the beginning a

the end of Fig. 4 givesh( 1
3 )1 2

9 '1.141 52 qubits as men
tioned above. This transmission can be made unidirectio
since a qubit sent in one direction, if it is entangled with
qubit left behind, may always be used to teleport a qubi
the opposite direction@4#. Note that even with the assistanc
of qubit transmissions, this protocol requires several rou
of classical transmission; it is a true ‘‘two-way’’ protoco
that is, requiring bidirectional classical communication@30#.

V. THERMODYNAMICS OF NONLOCAL
MEASUREMENTS AND STATE PREPARATION

A. Irreversibility of measurement

We now explore another information-theoretic feature
our two-party measurement that illustrates in another w
the nonlocality of this orthogonal measurement. If the pa
of the quantum states are assembled in one location, th
measurement in any orthogonal basis, in addition to be
doable with 100% fidelity, can be donereversibly. That is,
the quantum state can be converted into classical data w
out any discarding of information to the environment. The
fore, by Landauer’s principle@31# no heat is generated du
ing the measurement. The reversible method can
illustrated by a simple qubit example: If the measuremen
to distinguishu0& from u1& and the classical record of the b
is to be stored in the macrostatesu0&[u000 . . .& and u1&
[u111 . . .& ~containing, say, 1023 qubits!, then the proce-
dure involves starting the macro system in a standard s
~so that the initial states of the system to be measure
either u0000 . . .& or u1000 . . .&) and then performing re
peated quantum XOR operations@30# with the qubit to be
measured as the source and all the qubits of the macrosta
the targets. In the end, the measured qubit may as we
considered to be part of the macrosystem containing the c
sical answer. Note that no interaction with any other en
ronment is necessary to complete this or any other local
thogonal measurement.

The situation is rather different for our two-party orthog
nal measurement. Suppose that we consider a case in w
the measurement can be achieved by Alice and Bob,
example, the case in which statec4 is promised not to be
present. Although Alice and Bob can perform this measu
ment, they clearly cannot do so reversibly, i.e., as a fin
sequence of local reversible operations and classical com
nications. In the protocol described in Fig. 2, the irreversib
ity arises in the first step, where, if the state isc5 , it is
irreversibly transformed to either stateu2&u1& or u2&u2&.
Thus, in this case one bit of entropy is produced. If each
the eight permitted states occurs with equal probability, th
the average entropy generated is1

8 of a bit. We cannot prove
that this entropy of measurement is minimal, though we h
found no more efficient protocol. Many other cases can
easily worked out; for example, if it is promised that the st
is only one of four~say,c6 ,c2 ,c8 , andc4), then 1

4 of a bit
of entropy will be generated by the obvious protocol.
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It appears that reversible measurements are only pos
if the set of states can be progressively dissected by A
and Bob without breaking any dominoes. To formalize th
notion, we introduce a few definitions. LetS5$c i% be a set
of pure product states shared between Alice and Bob, wh
c i5a i ^ b i . Given such a set, we define asplitting of S by
Alice as a partition ofS into two nonempty disjoint subset
S5S1øS2 such that for all c iPS1 and for all c j in
S2 , ^a i ua j&50. A splitting by Bob is defined similarly. A
set S is dissectibleif there is a tree, each of whose interio
nodes is a splitting by Alice or Bob and whose leaves
singletons. For example, using the numbering of Eq.~3! and
Fig. 1, the set$c2 ,c6 ,c8% is dissectible, but$c2 ,c4 ,c6 c8%
is not. The dissectibility of an arbitrary setS can be deter-
mined by examining finitely many possible splitting tree
Clearly any subset of a dissectible set is dissectible. I
evident that if an ensemble of statesE5$pi ,c i% has support
only on a dissectible set, then both its entropy of prepara
and entropy of measurement are zero. It is tempting to ar
that, conversely, nondissectible sets, if they are locally m
surable at all, have positive entropies of measurement, bu
be sure of this, one would have to exclude the~unlikely
seeming! possibility of multistep measurement procedur
that, while not strictly reversible for any finiten, would suc-
ceed in identifying each of the states in the nondissectible
with error probability and entropy production both tending
0 in the limit of largen.

A further analysis of this irreversibility reveals that it ca
be thought of as originating in the necessity for classi
communication between Alice and Bob. In order to ens
that the channel between them can convey only classical
no quantum information, the channel itself must posses
quantum environment~in order to dephase the data passi
though it!. This raises the possibility that Alice or Bob wi
be obliged to become entangled with the environment of
channel in the course of communicating the necessary c
sical information, thereby causing themselves to have a fi
amount of entropy. Exactly the same amount must also
pear in the channel environment. When, for example, Al
and Bob have been given statec55u2& ^ (u1&1u2&) and Bob
sends the result of his first measurement in Fig. 3~collapsing
his state to a mixture ofu1& andu2&) to Alice, he has created
entanglement between the measurement outcome and th
vironment so that the joint system of message and envir
ment is left an entangled state of the formu1& ^ e11u2&
^ e2 , wheree1 and e2 are two orthogonal states of the e
vironment.

Note that measurement protocols requiring classical co
munication are not inevitably irreversible. For example,
the dissectible set$c2 ,c6 ,c8% considered previously, a bi
of communication from Bob to Alice is required to comple
the measurement; still no entropy is generated. This is
because this bit is guaranteed to be in one of the comp
tional basis states, precisely the states with which
dephasing channel does not entangle. It is the necessit
the above example, of delivering a bit to the channel tha
in a superposition of basis states that leads to the entan
ment and the irreversibility.

B. Irreversibility of state preparation

For dissectible sets of states, such as$c2 ,c6 ,c8%, the
mapping
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u i & ^ u i &↔ua i& ^ ub i& ~42!

@using the notation of Eq.~3!# between classical instruction
and the state described is locally reversible and can be
formed in either direction without the generation of was
information. Conversely, nondissectible sets, such
$c2 ,c4 ,c6 ,c8%, cannot be prepared by any finite sequen
of reversible operations and we conjecture that e
asymptotic multistep protocols could not reduce either
heat of preparation or the heat of measurement to zero.
haps surprisingly, the heats of preparation and measurem
by the best protocols we have been able to discover,
unequal.

To give an example of irreversible state preparation, c
sider the following method for the preparation for the no
dissectible set$c2 ,c4 ,c6 ,c8% mentioned above. The proto

col, which is the best we know, will produceh( 1
4 )'0.811

bits of entropy, considerably more than the entropy of m
surement. The procedure works as follows. First, Bob co
putes a functionf of the preparation instructioni that records
whether the state to be synthesized isc4 @ f (4)51# or one
of the others@ f (2,6,8)50#, saving the result in a work bit
Then Alice and Bob reversibly prepare the modified fo
states of Fig. 5; that is, if the instruction is to prepa
c4 , c48 is prepared, and in the other three cases exactly
desired state is produced.

This preparation can be carried out reversibly because
modified set$c2 ,c48 ,c6 ,c8% is dissectible. Next Bob per
forms a Hadamard rotation on his state (u2&→u112&,u1&
→u122&, andu0&→u0&) conditional upon the state off ( i ),
which transforms 48 into 4 and leaves the other three sta
unchanged as desired. Finally, Bob erases his work bitf ( i ),

which requires discardingh( 1
4 ) bits of entropy into the en-

vironment. Similar reasoning shows that the equiproba

nine-state ensemble can be prepared at a cost ofh( 2
9 )

'0.764 and the equiprobable eight-state ensemble~without

the center state! at a cost ofh( 2
8 )'0.811 bits of entropy.

It should perhaps be noted that the local preparation
measurement protocols we have described, while irrevers
from the viewpoint of Alice and Bob, become reversib

FIG. 5. Set of four states, shown in the domino notation, wh
can be prepared locally by Alice and Bob in a reversible fashio
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when viewed from a global perspective, including Bob, A
ice, and the environment. In the preparation protocol
have just described this global reversibility arises beca
the waste classical informationf ( i ) discarded into the envi-
ronment in the last step is not random, but instead is enti
determined by the joint statec i of Alice and Bob. Therefore,
discarding it, though it increases the entropy of the envir
ment, does not increase the entropy of the universe.
global reversibility of the measurement protocol for th
same set of four states arises because the information
carded into the environment in the final stage is merely
other half of the entanglement created at an earlier stag
the protocol, when one of the dominoes might have be
collapsed. Thus the final act of discarding restores the e
ronment to a pure state.

When speaking of the thermodynamic costs of lo
preparation and local measurement, it should be reca
that, although any set of product states can be locally p
pared, not all sets can be locally measured. The full se
nine states$c1 , . . . ,c9% of Eq. ~3!, for example, is not lo-
cally measurable at all, no matter how much heat genera
is allowed. Conversely, there are sets of pure bipartite st
that cannot bepreparedlocally, even with the generation o
heat, because one or more states in the set is entangled
concepts of entropy of preparation and entropy of meas
ment can nevertheless be extended to such sets, inde
any orthogonal set of pure bipartite states, by allowing Al
and Bob to draw on a reservoir of prior entanglement@e.g.,
standard singletsC25(1/A2)(u01&2u10&) shared between
them# to help perform actions, such as teleportation@4#, that
could not otherwise be done locally. In this fashion one c
define an entanglement-assisted entropy of local prepara
and an entanglement-assisted entropy of local measurem
In entanglement-assisted measurement, an otherwise im
surable set such as the original set of nine states is rend
measurable by teleporting quantum information as requir
say, in the protocol of Fig. 4. However, each teleportat
generates two bits of waste classical information per qu
teleported, thereby contributing to the entropy of measu
ment. Again we can calculate the amounts of entanglem
consumed and entropy produced by simple protocols, w
out knowing whether more efficient ones exist. The protoc
described earlier give an entanglement-assisted entrop
measurement of 2.283 04 bits for the equiprobable nine-s
ensemble and 2.408 86 bits for the eight-state ensem
~omitting the central state!, in each case twice the amount o
entanglement consumed, because the protocols genera
other waste information aside from that associated with
teleportations. Turning now to entanglement-assisted pre
ration, a typical set of states requiring entanglement to p
pare from classical directions is the set of four Bell sta
@30# $F1,F2,C1,C2%. The entropy of preparation by th
obvious protocol in this case is two bits per state prepa
~Bob reads the classical directions, applies an appropr
Pauli rotation to the standardC2 to make the desired Bel
state, and then throws away the classical directions!.

Finally, suppose Alice and Bob are given an unknow
member of the nine-state set~or some other locally immea
surable set! and wish to determine which state they ha
without the help of entanglement, but with some hints from
person who knows which state they have been given.

h
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TABLE I. Entropies, entanglements, and advice for non-Bell ensembles are upper bounds from
protocols, actual values could be less. The entropies of measurement for nine-state and four-Bell en
are for entanglement-assisted measurement since these ensembles are otherwise not locally measu
nine-state ensemble consists of nine equiprobable statesc1 , . . . ,c9 of Eq. ~3! and Fig. 1. The 2468 and 24
ensembles are equiprobable distributions over$c2 ,c4 ,c6 ,c8% and$c2 ,c4 ,c6%, respectively. The four-Bell
ensemble consists of four equiprobable Bell states$F1,F2,C1,C2% and the two-Bell ensemble of two
equiprobable Bell states, e.g.,$F1,C1%.

Ensemble nine-state 2468 246 four-Bell two-Bell

Locally preparable yes yes yes no no
Locally measurable no yes yes no yes
Dissectible no no yes no no
Entropy of preparation 0.764 0.811 0 2 1
Entropy of measurement 2.283 0.250 0 2 1
Entanglement of preparation 0 0 0 1 1
Entanglement of measurement 1.142 0 0 1 0
Advice of measurement 0.1575 0 0 1 0
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define the ‘‘advice of measurement’’ as the minimal amo
of advice needed~in conjunction with their own local ac
tions! to guide Alice and Bob to the right answer. As w
have seen above, a negative hint such as ‘‘the state is
c4’’ is sufficient. This might appear to be a lot of advice~as
much as a totally informative positive hint such as ‘‘the st
is c3’’ !, but in fact such negative hints can be highly co
pressed by classical hashing techniques, asymptotically

quiring only 8
9 log2

8
7'0.171 bits per hint in the nine-stat

case. Appendix C gives details of the compression of th
types of hints.

We note, however, that the non–von Neumann meas
ments discussed at the end of Sec. III allow an even m
efficient form of advice. There it was shown that an app
priate POVM yields 3.01255 log2920.1575 bits of informa-
tion about the unknown state in the nine-state case; there
after Alice and Bob have performed their POVM, on
0.1575 bits of additional information need be provided
ymptotically for them to identify the state exactly.

As an aside, we note that the value of advice, and
amount needed, may depend on its timing. Although in
nine-state measurement problem the most efficient advice
know of can safely be given at the end, after the POVM h
been completed, there are other situations in quantum in
mation theory, not to mention in everyday life, when ea
advice is more useful than late advice. In Bennett’s and B
sard’s quantum key distribution protocol@18#, for example,
the basis information may be regarded as a form of adv
that is delayed to make it less useful to the eavesdroppe
a deterministic setting, where the adviser can foresee al
ture events, nothing is lost by giving all necessary advice
the beginning. However, when unforeseen events are
sible, the most efficient kind of advice, better than prior
posterior advice, may be as-needed or concurrent adv
Suppose Alice and Bob are about to begin a long car t
They ask their more experienced friend Eve which route
take. A few days later they telephone again, asking her h
to repair a flat tire. To be helpful, the route advice must
given at the beginning, but it would be wasteful to give t
repair advice then because the flat tire might not have h
pened. The prominent role of measurements, whether
Neumann or POVM, with unpredictable outcomes, in o
t
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analysis of the nine-state problem suggests that as-ne
advice might be the optimal kind here also.

The notion of advice of measurement can be extende
sets of entangled states as well, for example, the set of
Bell states. Here one bit of advice is sufficient~e.g., whether
the unknown Bell state is of the1 or 2 type! since the other
bit (F vs C) can be learned by comparing the results
local measurements in thez basis. Table I summarizes th
various measures of nonlocality for some of the ensemb
we have been considering.

VI. THREE-PARTY SEPARABLE SUPEROPERATOR

We shall now show another example of a separable
Neumann measurement, this time involving three parties,
ice, Bob, and Carol, each holding just a qubit~two-state sys-
tem!. While we have not performed a full analysis of th
case, it appears to have the same properties as the nine
measurement above~that partial measurement causes ind
tinguishability of the residual states!, suggesting that this is
another case in which the measurement cannot be don
cally by the three parties, even if the three can partake in
amount of classical communication among themselves.
superoperator involves a complete orthonormal set of e
product states existing in the eight-dimensional Hilb
space. This appears to be the smallest possible Hilbert s
that still presents such behavior~it is easy to show, using a
simple elimination process, that a qubit-qutrit system~qutrit
5 three-state system! or a qubit-qubit system is not suffi
cient!. The eight states are for Alice, Bob, and Carol, resp
tively,

f15u0& ^ u0& ^ u0&5000,

f25u1& ^ u1& ^ u1&5111,

f35u011& ^ u0& ^ u1&5101,

f45u021& ^ u0& ^ u1&5201, ~43!

f55u0& ^ u1& ^ u011&5011,

f65u0& ^ u1& ^ u021&5012,
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f75u1& ^ u011& ^ u0&5110,

f85u1& ^ u021& ^ u0&5120

~leaving out normalizations!. On the right-hand side of thes
equations we introduce an obvious shorthand for these s
which we will use in Sec. VII. We will indicate the evidenc
that the separable superoperator consisting of the projec
operators

Si5u i &Au i &Bu i &C^f i u ~44!

cannot be performed by three-local operations, in which
ice, Bob, and Carol can only perform local quantum ope
tions and broadcast classical information to each other.

The arguments are equivalent to those in the two-trit
ample and again rely on considering any measurement
two-stage process. In the case where all prior probabili

are equal (18 in this case!, we declare stage I to be comple
when

max
i

p~f i umI !5
1

8
1e, ~45!

with some positivee smaller than 1
56 . It is again simple to

bound the greatest possible spread of the probability di
bution

7156e

728e
<max

i , j

p~f i umI !

p~f j umI !
5max

i , j

^f i uEuf i&

^f j uEuf j&
<

118e

1256e
.

~46!

As before, this equation guarantees that all diagonal ma
elements ofE, ^f i uEuf i&5^f i ua^ b^ cuf i&, are nonzero
and it also guarantees that the maximum and minimum
trix elements are different. Also as before, we can show
the states after stage I become nonorthogonal, which sh
permit us to derive a definite mutual-information deficit. W
will not develop this proof here, but we will give a simp
sketch of how we prove that the states are nonorthogo
We will just show here that the states cannot beexactlyor-
thogonal:

z^f j ua^ b^ cuf i& z50 ; iÞ j . ~47!

This proof can be generalized step by step into a full anal
as in Appendix B.

~i! Writing the orthogonality condition fori 53 and j
54 gives the condition that

~a001a012a102a11!b00c1150. ~48!

Since diagonal matrix elements ofb andc must be nonzero
by the arguments from Eq.~46!, the a factor must be zero
taking the real part gives

a005a11. ~49!

~ii ! Taking takingi 55 and j 56 and applying the same rea
soning gives

c005c11. ~50!
tes
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~iii ! Taking i 57 and j 58 gives

b005b11. ~51!

~iv! Now we write the four orthogonality conditions comin
from all combinations ofi 53,4 andj 55,6:

~a001a01!b01~c101c11!50,

2~a001a01!b01~c102c11!50,

~a002a01!b01~c101c11!50,

2~a002a01!b01~c102c11!50. ~52!

Adding these four equations gives

4a00b01c1150. ~53!

Sincea00Þ0 andc11Þ0, we conclude that

b01505b10. ~54!

~v! Doing the same for the equations involvingi 53,4 and
j 57,8 gives

c01505c10. ~55!

~vi! Finally, from the equations involvingi 55,6 and j
57,8, we get

a01505a10. ~56!

Putting observations~i!–~vi! together, we conclude thata,
b, andc must be proportional to the identity operator. How
ever, this is inconsistent with Eq.~46!, which established tha
the different diagonal matrix elements ofE must differ by a
finite amount. When developed more fully, this result sho
contradict the assumption that the measurement could
done even approximately by three-local operations.

Note that nothing in the argument involves the simp
product statesf1 or f2 . We conclude that the measureme
is still not doable locally even if these two states are pro
ised to be absent. On the other hand, it is easy to show
eliminating any one of the statesf328 would permit the
measurement to be done. The layout of these states in
Hilbert space shown in Fig. 6 gives some intuition for wh
these should be true, as in the two-party case: Any sim

FIG. 6. Layout of the eight states of Eq.~43! in the 23232
Hilbert space. The ‘‘dumbbells’’ have a meaning similar to t
dominoes in Fig. 1.
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1084 PRA 59CHARLES H. BENNETTet al.
von Neumann involves cutting one of these ‘‘dumbbell
and making those pairs of states indistinguishable.

Finally, the most economical technique that we ha
found for making the measurement doable with quant
communication is for a whole qubit to be sent from one pa
to another. That is, no compression of the quantum inform
tion seems to be possible in this case, whether or not st
f1 or f2 are excluded. It is easy to show that the result
two-party measurement that is required after this qubit tra
mission is doable by local actions.

VII. DISCUSSION

The results of this paper, extensive as they are, raise m
additional fundamental questions about multipartite quan
measurements, most of which we have only incomplete
swers to at this time. We would indeed be pleased if
ambitious reader has a notion of how to attack any of
following puzzles.

There are a variety of simple variants on the separa
measurements presented in this paper for which we do
know how to prove or disprove bilocality. One is a ve
obvious generalization of the nine-state example

c185u1& ^ u1&,

c285u0& ^ cosu23u0&1sinu23u1&,

c385u0& ^ 2sinu23u0&1cosu23u1&,

c485u2& ^ cosu45u2&1sinu45u1&,

c585u2& ^ 2sinu45u2&1cosu45u1&, ~57!

c685cosu67u2&1sinu67u1& ^ u0&,

c7852sinu67u2&1cosu67u1& ^ u0&,

c885cosu89u0&1sinu89u1& ^ u2&,

c9852sinu89u0&1cosu89u1& ^ u2&.

That is, each of the domino pair is rotated by a differe
angle. While we strongly doubt that the case of generalus is
any different from the caseu5p/4 that we have analyzed
we have no proof that these general states specify a non
measurement.

We have noted that, although there is no 232 pure-state
example that involves pure states of a separable but non
superoperator, there is a mixed-state measurement tha
some very curious properties. It is a measurement to dis
guish two density matricesr0 andr1 , wherer0 is an equal
mixture of the pure product states 01 and 10 @we use the
notation introduced in Eq.~43!# andr1 is an equal mixture of
11 and22. It appears that, despite the fact that this m
surement involves distinguishing two separable, orthogo
states, nevertheless, the measurement cannot be done
cally; indeed, the measurement apparently cannot be don
any separable superoperator. It is easy to show that the
jection measurement into these states can produce an
tangled output from an unentangled input@for instance,
e
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u0&^~u0&1u1&#; no separable superoperator can do this. It w
be interesting to understand the minimum degree of non
cality needed to perform this measurement.

A nonlocal measurement would yield one bit of inform
tion sincer0 andr1 are orthogonal. It would be interestin
to try to apply the techniques developed in this paper
determine a bound on the attainable mutual information b
bilocal approximation to this measurement.

There are other multiparty examples for which su
proofs would also be desirable. A modified version of t
23232 example above involves just four states

011, 110, 101, 222. ~58!

These states have other interesting properties@32#. For ex-
ample, the subspace complementary to them contains
separable pure state. Nevertheless, this can be viewed
measurement game in which Alice, Bob, and Carol
promised that they are given one of these four states
their object is to distinguish, with only classical communic
tions, which state it is. We suspect that they cannot, but
have not been able to prove it.

An even more exotic set of orthogonal states that we h
considered is one involving ten parties, each with a qu
This set of states again only involves basis vectors 0, 1,1,
and2 locally, so that a typical one of the 1024 basis state
1121022110. This construction emerges from a cou
terexample of a proposition in tiling theory, the Keller co
jecture@33#. The violation of this conjecture means that th
1024 states do not conform to the domino or dumbbell lay
of the examples in this paper, where pairs of dimensions
the Hilbert space are covered by pairs of orthogonal sta
We have not attempted to prove non-10-locality for this e
ample, but we note that there is no simple von Neuma
measurement that will distinguish them.

Curiously, despite the complexity of the example, we a
able to show that just two copies of any state are suffici
for the ten parties to be able to locally distinguish the st
with classical communication, as in all the examples cons
ered in Sec. IV. The procedure is simple: Measure one c
in the 0/1 basis and the second in the1/2 basis. This has
raised another question@34#: Are there any sets of states
entangled or not, for which some finite number~greater than
2! of copies of the state is necessary for distinguishing
states reliably? So far we have found no examples wh
more than two copies of the unknown state are needed
deed we know of no examples of two orthogonal pure sta
product or entagled, which require more thanonecopy to be
reliably distinguished. Earlier in this section we noted a
of two orthogonalmixedstates of two qubits, which appea
to be locally immeasurable. But here too, two copies
sufficient to make the states distinguishable. It would app
that further work on the tiling problems could produce oth
interesting examples for numbers of parties between 3
10.

The domino representation of two-party quantum sta
bears some resemblance to an approach taken in clas
communication complexity problems to finding the most
ficient interactive scheme for evaluating a function of da
held by both Alice and Bob with the minimum classic
communication@35#. The resemblance comes when the on
bit output of the function is depicted in a two-dimension
table; then the most efficient communication is determin
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by a recursive subdivision of such a table into unanimo
blocks. It remains to be seen whether this observation wo
lead to more examples of interesting separable quantum
erations.

The present investigation has required a very precise
tinction between different types of quantum operations t
are normally considered identical. Returning to the nine-s
calculation, we can consider two different quantum ope
tions related to the measurement operation of Eq.~4! ~re-
peated here!:

u i &Au i &B^c i u, ~59!

uc ic i&^c i u, ~60!

uc i&^c i u. ~61!

We have disproved the existence of Eq.~59!. We can from
this disprove the existence of Eq.~60!, which is a cloning
operator: We just note that Alice and Bob could perform t
cloning many times and then perform measurements to
duce with very high confidence the state labeli, thus per-
forming Eq. ~59!. We can also rule out any form of wea
cloning @36#. The case for Eq.~61! is more subtle since we
normally think of these projection operators as precis
what we mean by the measurement~59!. This is true in a
one-party world, since performing the projection means t
a classical record of the state is available somewhere in
world. However, in a multiparty situation, this record cou
be in a form that is split between the parties in a way t
would require quantum communication to unravel. The
fore, we emphatically state that Eqs.~59! and ~61! are not
generally identical in a multiparty scenario. Indeed, we n
that there is another case in which two such operators
completely different. For Bell states, the measurement op
tor ~59! cannot be done bilocally because of the entang
ment of the states, but the dephasing operator~61! for the
Bell states can be done bilocally; it has been described as
‘‘twirling’’ operation of Ref. @30#.

Nevertheless, we have been able to prove that Eq.~61! is
not doable for the nine-state examples, but by quite differ
arguments from those given for Eq.~59!, presented in Ap-
pendix D. However, the issue of approximations to Eq.~61!
or ~60! remains unsettled. That is, we do not know how
quantify the precision with which Alice and Bob could d
these operations approximately. A large part of the difficu
is that we cannot use a simple, classical measure of infor
tion such as the mutual information, which was possible
Eq. ~59! because the output is a classical record. For E
~60! and ~61! an operator measure, involving a notion
distance between two quantum operators, would have to
used. The theory of such operator measures is consider
less well developed@37#.

It seems likely that the states we have explored in t
paper would be usable for quantum cryptography, but
also have more questions than answers on this point.
now clear@17# that bipartite orthogonal states are genera
useful for cryptography when one particle in the state is
ceived by Bob before the other has been launched by Al
This forces Eve to measure one particle at a time. If Eve
no quantum memory, then the security of the cryptograp
protocol would be ensured if the measurement of the s
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could not be performed bilocally, with the restriction th
only one round of measurement~one transmission from Al-
ice to Bob! would be permitted. The nine states that we ha
analyzed have this property. However, given that Eve
have a quantum memory, the problem is a bit different, c
responding to there being some restricted form of quan
communication between Alice and Bob in the measurem
protocol. In the cryptographic application, of course, Eve h
more work to do: She must determine the identity of the st
and provide it undisturbed, at the appropriate times, to B
@38#. Thus a separate study is required to establish that
nine states form a good basis for orthogonal quantum cr
tography~which, however, is easily provided by the analys
of @17#!. At the same time, we may imagine that the ni
states might provide a stronger cryptographic primitive
some purposes, given that they cannot be identified even
repeated communication between Alice and Bob. Anot
useful feature of the states as a cryptographic primitive mi
be the fact that two copies of them can be identified exac
However, we have no concrete notions of what these n
cryptographic applications might be.

Finally, we note that the basic question that began
investigation remains unanswered: What is a compact m
ematical description of a superoperator that can be perfor
by only classical communication between the parties?
have only disproved one natural hypothesis, that this set
incides with the set of separable superoperators. No alte
tive hypothesis has presented itself.

All of these questions indicate, we think, that we still ha
many very basic questions about the structure of quan
mechanics and about the nature of quantum nonlocality
entanglement, questions whose answers will be of cen
significance in our quest to employ quantum mechanics
the transmission and processing of information.
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APPENDIX A: DECOMPOSITION OF ARBITRARY POVM
INTO A SERIES OF VERY WEAK MEASUREMENTS

Any superoperator acting on a system of dimensionn can
be replaced~nonuniquely! by the following procedure: ap
pending an ancilla of dimensionn1 , performing a unitary
transformation, tracing out a subsystem of dimensionn2 ,
and measuring~using a standard and complete measureme!
a subsystem of dimensionn3 , which we call a probe. As a
result, the state of remaining system~of dimension m
5nn1 /n2n3) can be calculated and it is uniquely determin
for any given superoperator despite the nonuniqueness o
procedure. In cases where there is no probe to be meas
(n251), this is the so-called trace-preserving superopera
If instead the trace-out step is eliminated, this is the m
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general POVM. In our case, where all information is used
the optimal extraction of information, we are interested
this second case. Thus the most general POVM can be
placed by the three operations: the appending of an anc
the unitary transformation, and the standard measureme
a subsystem.

Suppose we are given a state on which we will obt
some information using a POVM. We will show how t
approximate this POVM by a continuous process. The ad
tion of ancilla does not influence the state; the unitary tra
formation can be done as continuously as we wish. We s
now show that a standard complete measurement can b
placed by a continuous process~to any desired approxima
tion!. As a result of the above discussion, any POVM can
approximated in the same way.

In order to measure the probe~a subsystem of dimensio
n3) using a complete standard measurement in a basisu i &,
we write the combined state of the remaining system and
probe~of dimensionsnn15mn3) after the unitary interaction
as

uc&5 (
i 50

n321

a i uf i&u i &, ~A1!

where ( i 50
n321ua i u251 and uf i& are normalized states~not

necessarily orthogonal! of the remainingm-dimensional sub-
system. Without loss of generality we can assume that
probe is a qubit since any other measurement can be repl
by a set of yes/no questions, thusn352.

In a standard measurement we apply the projection p
tulate directly on the probe to yield a classical resulti with
probability ua i u2 and a remaining subsystem in a stateuf i&.
In a nondemolition measurement@39# a stateu i & is trans-
formed to u i &u i &1 and the new system (u i &1) is measured
instead of the probe; hence a probe in a stateu i & is not de-
molished by this measurement. AttachingK such devices to
uc&, the measurement of the probe can be done in a n
demolition way using a unitary transformation to a state

uF&5(
i 50

1

a i uf i&u i &u i &1u i &2•••u i &K , ~A2!

where now the measurement postulate can be applied on
~or on all! of the additional ‘‘quantum measuring devices
u i &k , where 1<k<K. We use the term quantum measuri
device~QMD! to say that no classical measurement~no ac-
tual ‘‘printout’’ ! was performed at that stage. As a result, t
measurement process is reversible until we apply the pro
tion postulate on one of these QMDs and the stateuc& can be
reproduced fromuF& with perfect fidelity. Measuring any o
these QMDs is equivalent to performing a standard meas
ment onu i &.

To obtain an approximation using a continuous measu
ment we replace the QMDs by ‘‘weak QMDs’’~WQMDs!,
meaning that we replace a standard measurement by a
quence of weak measurements.~Weak measurements wer
discussed by Aharonov and others@25#.! The unitary trans-
formation producing Eq.~A2! is replaced by one leading to

uC&5a0uf0&u0&u08&1•••u08&K1a1uf1&u1&u18&1•••u18&K ,

~A3!
r

re-
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where the two possible states of thekth WQMD, u08&k and
u18&k , are highly overlapping. We can always choose th
to be

u08&5cosuu0&1sinuu1&,
~A4!

u18&5sinuu0&1cosuu1&,

with u5p/42e with small positivee. If the state we start
with is u i &, then the probability to obtain a correct resulti
from a probe in a stateu i 8& is

cos2u51/2@11sin~2e!#. ~A5!

We approximate

cosu'~1/A2!@11sin~2e!/2#'~1/A2!@11e#,
~A6!

sinu'~1/A2!@12e#.

For any stateuc&, if only one WQMD is measured~in the
computation basis!, the effect of this measurement on th
rest of the system is weak and the state of the original sys
can be reproduced with high fidelity, which approaches o
ase approaches zero. For instance, if a result 0 is obtain
we can reproduce an unnormalized state of the remain
system and the probe

ucout&5a0cosuuf0&u0&1a1sinuuf1&u1&, ~A7!

yielding a modification ofuc& of ordere:

ucout&5uc&1e@a0uf0&u0&2a1uf1&u1&]. ~A8!

Thus, measuring each such QMD one at a time, we obta
process that is as close to continuous as we want since
can choosee as small as we want.

The last thing to verify is that we can chooseK big
enough in order to yield the same probability of obtaini
the resulti as in a standard measurement. If the state of
probe isu i &, then each of the WQMDs is in pure stateu i 8&.
When we measureK WQMDs their outcomes are indepen
dent and identically distributed according to a binomial d
tribution with probability cos2u to obtain the correct resulti
for each one. Let us assume thatK is odd. When we look at
K such WQMDs and take a majority vote, the probability
obtain a correct result is given by

(
k51

~K21!/2 S K

k D cos2~K2k!u sin2ku. ~A9!

~Note that this expression can also be calculated by expa
ing

uf i&u i & u i 8&1•••u i 8&K

5uf i&u i &@cosKuu i ••• i &1cosK21u sinu u i i ••• i j &

1sinKuu j j ••• j &], with j 50, ~A10!

if i 51 and vice versa, and calculating the probability of ea
string.!

This is equivalent to a classical problem of having a
ased coin with a known bias cos2u and trying to guess
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whether it is biased to give more heads or more tails. O
can bound the above sum directly or approximate it us
some central limit theorem~since it is a random walk!.

Alternatively, one can use a strong version of the law
large numbers, which tells us that we can guess the direc
of the bias with probability exponentially close to one. Su
pose one throws a biased coin, so that in one try it gi
Prob(x51)5p and Prob(x50)512p. According to the
Bernstein law of large numbers@40#, when throwing the
same coin K times the actual average of theK trials
( i 51

K xi /K is very close to the expectation valuep, except
with probability

ProbFU 1
K (

i 51

K

xi 2pU>dG<2e2Kd2
~A11!

for any K and ford smaller thanp(12p).
To apply this law to our case recall cos2u51/21sin 2e/2

and sin2u51/22sin 2e/2, so that the Bernstein law applie
for any d,1/42sin22e. For smalle ~e.g., less than 1/8! we
choosed5sin 2e/2, which is in the appropriate range. No
the probability of observing( i 51

K xi /K>1/2 when the
Prob(x51)5sin2u is less than or equal to

ProbFU 1
K (

i 51

K

xi 2pU>sin 2e/2G<2e2K sin22e/4. ~A12!

Since K can be chosen independently ofe, any K
@4/sin22e will do.

This means that for suchK the expression

S5 (
k51

~K21!/2 S K

k D cos2~K2k!u sin2ku ~A13!

is exponentially close to 1 and its complement

12S5 (
k51

~K21!/2 S K

k D sin2~K2k!u cos2ku ~A14!

is exponentially small.
In the general case of a stateuC&, we need to expand th

state ~as was done above! and calculate the probability o
each string in order to take a majority vote as before. T
process yields~assuming as before oddK) a probability of

ua i u2 (
k51

~K21!/2 S K

k D cos2~K2k!u sin2ku

1~12ua j u2! (
k51

~K21!/2 S K

k D sin2~K2k!u cos2ku ~A15!

to obtain the correct result. UsingS we get

ua i u2S1~12ua j u2!~12S!, ~A16!

so the result is obtained with the correct probabilityua i u2S.
~This is equivalent to obtaining a coin with bias cos2u with
probability ua0u2 or with another bias sin2u with probability
e
g

f
on
-
s

is

12uau2 and throwing it as many times as we want in ord
to learn which coin we received with any desired probabil
of success.!

APPENDIX B: CONSTRAINTS FROM APPROXIMATE
ORTHOGONALITY OF RESIDUAL STATES

According to Eq.~20!, the overlaps between the residu
statesf i ,mI

after stage I@Eq. ~13!# are all bounded byd:

z^f i uf j& z5
u^c i ua^ buc j&u

A^c i ua^ buc i&^c j ua^ buc j&
<d ,

~B1!
; iÞ j .

The task here is to use these inequalities to derive var
constraints on the matrix elements of the operatorsa andb in
Eq. ~17!.

We note before we begin that during the completion
stage I, Alice and Bob may each have augmented their
bert spaces beyond their original three dimensions. T
might do this, for instance, as part of a strategy that requ
retaining some of the quantum ancillae from one round
the protocol to the next. Such a strategy finds its express
in the fact that theSmI

operators need not be square matric
so that the states of Eq.~13! will exist in a Hilbert space
larger than the original nine-dimensional one. Fortunate
this contingency has no relevance for the constraints we
about to derive: It is only the algebraic properties ofE
5S†S5a^ b that concern us, anda andb are always square
matrices whose dimensions are determined by the size o
initial Hilbert space.

Let us use the notation̂i uau j &5ai j and ^ i ubu j &5bi j and
note the following preliminary things. Recall thata andb are
both positive semidefinite operators so that, for ea
i , ^c i ua^ buc i&.0. Recall that, from Eq.~18!, we have for
eachi and j

0,
^c i ua^ buc i&

^c j ua^ buc j&
<

119e

1272e
. ~B2!

Thus it follows thata00,a22,b00, andb22 are all strictly posi-
tive. Moreover, looking ati 52 andj 53, for instance, in Eq.
~B2! gives

0,
b001b1112 Reb10

b001b1122 Reb10
<

119e

1272e
. ~B3!

From this and thei 53, j 52 condition

u2 Reb10u<
81e

2263e
~b111b00!. ~B4!

In a similar fashion, taking$ i , j %5$2k,2k11% for k52,3,4,
we have

u2 Reb21u<
81e

2263e
~b221b11!, ~B5!

u2 Rea21u<
81e

2263e
~a221a11!, ~B6!
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u2 Rea10u<
81e

2263e
~a111a00!. ~B7!

We can now bound the relative variations among the
agonal elements ofa and b in terms ofd in the following
way. Takingi 52 and j 53, Eq. ~B1! looks like

a00ub002b011b102b11u

Aa00~b001b011b101b11!a00~b002b012b101b11!
<d

~B8!

and simplifies to

ub002b1112i Im b10u

A~b001b11!
22~2 Reb10!

2
<d. ~B9!

Therefore it follows that

ub002b11u
b001b11

<d. ~B10!

In similar fashion we get

ub112b22u
b111b22

<d,
ua112a22u
a111a22

<d,
ua002a11u
a001a11

<d.

~B11!

These inequalities help us bound the off-diagonal ma
elements ofa andb in terms ofd. Consider the combination
of the conditions from Eq.~B1! given by takingi 52,3 and
j 54,5. Thei 52, j 54 inequality, for instance, is

ua02~b021b011b121b11!u

Aa00a22~b001b1112 Reb10!~b221b1112 Reb21!
<d.

~B12!

It will be convenient to introduce the notation

D66
2 5a00a22@~b001b11!62 Reb10#@~b111b22!

62 Reb21#. ~B13!

With this, we see that we can write

a02~b021b011b121b11!5D11g~1!eif~1!
, ~B14!

whereg (1) is a small amplitude andf (1) is an appropriately
chosen phase that satisfies the constraints

0<g~1!<d, 0<f~1!,2p. ~B15!

In a similar fashion, taking the remaining combinations oi
52,3 andj 54,5 we arrive at

a02~2b021b012b121b11!5D12g~2!eif~2!
, ~B16!
i-

x

a02~2b022b011b121b11!5D21g~3!eif~3!
, ~B17!

a02~b022b012b121b11!5D22g~4!eif~4!
, ~B18!

where eachg ( i ) and f ( i ) satisfy the same constraints as
Eq. ~B15!. Adding Eqs.~B14! and~B16!–~B18! together and
taking the absolute value of the resultant, we get

4ua02b11u<d~D111D121D211D22!. ~B19!

Now suppose that Reb10>0 and Reb21>0 and set

z511
81e

2263e
5

2118e

2263e
. ~B20!

Then it follows from Eqs.~B4! and ~B5! that

D11
2 <z2a00a22~b001b11!~b111b22!, ~B21!

D12
2 <za00a22~b001b11!~b111b22!, ~B22!

D21
2 <za00a22~b001b11!~b111b22!, ~B23!

D22
2 <a00a22~b001b11!~b111b22!. ~B24!

Combining this with Eq.~B19!, we find

ua02u

Aa00a22

<
1

4
d~z12Az11!

1

b11
A~b001b11!~b111b22!.

~B25!

Note that Eq.~B25! remains true regardless of the signs
Reb10 and Reb21. This is because Eq.~B19! remains invari-
ant under a change of sign for either or both of these ter
Now it is just a question of using the previously derive
constraints for the diagonal elements ofa andb to put a limit
on how large the right-hand side of this can be. With so
play, one sees that this occurs when

b005b225b11

11d

12d
~B26!

and, at that point, one has

ua02u

Aa00a22

<
1

2
~z12Az11!

d

12d
. ~B27!

Alternatively takingi 56,7 andj 58,9 in Eq.~B1! and run-
ning through a set of steps analogous to those in Eqs.~B12!–
~B27!, one finds

ub02u

Ab00b22

<
1

2
~z12Az11!

d

12d
. ~B28!

By a slightly more elaborate strategy, we can now fi
bounds on all the remaining off-diagonal terms. Let us co
sider the inequalities derived from Eq.~B1! for i 54,5 and
j 58,9. These can all be written in a compact notation as
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u@a201~21!s1a21#@b221~21!s2b12#u

Aa22@a001a111~21!s12 Rea01#@b221b111~21!s22 Reb12#b22

<d. ~B29!
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The sign bits150,1 corresponds toj 58,9; the bits250,1
corresponds toi 54,5. Let us focus on only one of these fo
equations, one for which

~21!s1Rea01<0, ~B30!

~21!s2Reb12>0. ~B31!

It is clear that at least one of the four sign choices will sati
these conditions. In that case it follows that

ua201~21!s1a21u

Aa22~a001a11!
<dA 1

b22
@b221b111~21!s22 Reb12#.

~B32!

Using Eq.~B5!, this implies

ua201~21!s1a21u

Aa22~a001a11!
<AzdA 1

b22
~b221b11!. ~B33!

Maximizing the right-hand side of this subject to the co
straint Eq.~B11! gives

a201~21!s1a21

Aa22~a001a11!
5n1eif~5!

, 0<n1<dA 2z

12d
.

~B34!

Hence, using Eq.~B27!,

ua21u

Aa22~a001a11!
<dA 2z

12d
1

ua20u

Aa22~a001a11!
~B35!

<dA 2z

12d
1

1

2
~z12Az11!

3
d

12d
A a00

a001a11
. ~B36!

Finally, optimizing the left- and right-hand sides of this su
ject to the constraints imposed ona00 by Eq. ~B11!, we ob-
tain

a21

Aa22a11

5n2eif~6!
,

~B37!

0<n2<ne5
2d

12dSAz1
1

4
~z12Az11!A11d

12d D .

This is the desired bound. Applying exactly the same reas
ing to Eq. ~B1! with i 56,7 and j 54,5, we find the same
bound onub10u/Ab11b00. Doing the same withi 52,3 and j
y

-

-

n-

56,7, we find it for ua01u/Aa00b11; finally, with i 58,9 and
j 52,3, we find it forub12u/Ab11b22.

APPENDIX C: COMPRESSIBILITY OF CLASSICAL
ADVICE

To see how negative advice of the form ‘‘not statej ’’ can
be asymptotically compressed, consider first the simple c
of the equiprobable eight-state ensemble. Suppose Alice
Bob are faced with the task of performing a large numben
of the eight-state measurements; they are promised thac1
does not occur and all other states are equiprobable~this is
the simplest case!. Then they must ultimately distinguish 8n

possible outcomes. However, one single string ofn hints
~e.g., state 1 is notc2 , state 2 is notc9 , state 3 is notc2 ,
etc.! successfully covers 7n of the possible outcomes. Thu

only approximately (87 )n distinct hint strings need ever b
used to help Alice and Bob with their measurements. If A
ice, Bob, and the hint-giver preagree on which hint strin
are to be used and agree on a numbering of them~which
amounts to the selection of an expanding hash functio!,

then the hint can be conveyed innlog2
8
7 bits, or log2

8
7

'0.193 bits per measurement.
For general, not necessarily equal, prior probabilitiespi of

the nine states, more sophisticated counting methods ar
quired to calculate compressibility of the hints. LetX be a
typical sequence ofn states chosen independently with pro
abilities $pi ,i 51, . . . ,9%, having aboutnpi states of typei
for eachi. Let Y be a sequence ofn hints of the form ‘‘the
state is not statej ’’ is chosen independently with probabili
ties $qj , j 52, . . . ,9%. A hint sequenceY is valid for a state
sequenceX if none of the hints is false~e.g., if X5136, then
Y5353 is valid butY5356 is not, because the last hint
false!. The probability that the hint sequenceY will be a
valid for state sequenceX is P i 52

9 pi
n(12qi ) ; therefore, using

an expanding hash function from an appropriate stron
two-universal class@41#, one can show that2( i 52

9 pi log2(1
2qi) bits of advice per state are asymptotically necessary
sufficient to specify a valid hint sequence for a typicalX. The
optimal compression for hints of this sort can then be o
tained by varying the probabilitiesqi to minimize the above
expression. When this is done, it turns out that if one or m
of the statespi occurs with probability significantly highe
than average, the corresponding hint ‘‘notpi ’’ should never
be used, i.e., the corresponding hint probabilityqi vanishes.

APPENDIX D: DEPHASING SUPEROPERATOR RULED
OUT BY THE INVERTIBILITY RESULT

In this appendix we show that the superoperator t
dephases in the nine-state basis~61! cannot be implemented
bilocally by Alice and Bob. As a preliminary, we prove th
this superoperator cannot be performed with no class
communication between Alice and Bob. Consider two p
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sible input states to the superoperator, (1/A2)(c82c9) and
c1 @see Eq.~3!#. These states have the same reduced den
operator for Alice, so if there is no communication the outp
states must have the same reduced density operator, bu
dephasing superoperator requires that they be differen@in
the first case1

2 (u0&^0u1u1&^1u) and in the secondu1&^1u#.
Thus the superoperator is not doable without commun
tion.

Now we consider the case where some data streamm @see
Eq. ~10!# has passed between Alice and Bob. Without loss
generality, we can assume that all the data transmission
curs before Alice and Bob trace out any of the ancilla Hilb
spaces that they have introduced@recall that the output spac
of Eq. ~61! must be the same 333 space as the input#. Now,
adopting the ‘‘continuumized’’ view of superoperators th
involve channel transmissions introduced in Sec. II D,
proceed with the proof by considering two separate cases~i!
If the input to the superoperator is one of the nine statesc i ,
the set of residual statesSmuc i& @Eq. ~13!# at a certain instan
become nonorthogonal, without any of the states being a
hilated ~non-annihilation is an obvious requirement of t
dephasing superoperator!. ~ii ! The residual states always re
main orthogonal.

~i! Disproving the bilocality of the dephasing superope
tor in the case where residual states become nonorthogon
accomplished by the following discussion ofinvertibility for
superoperators.

Definition. A superoperatorS5$Si% is weakly invertible
relative to a set of pure states$uvk&% if there exist superop-
eratorsTi5$Ti j % for each i such that the superoperatorU
5$Ti j Si% satisfies

U~ uvk&^vku!5uvk&^vku ~D1!

for all k. Note that the conventional projection superopera
of Eq. ~61! is one such operator of the formU.

Since the dephasing operator~61! is an example of an
operator of the form ofU in Eq. ~D1!, any partial completion
of the superoperator up to some instant, in particular
instant at which the residual states become nonorthogo
must be weakly invertible. However, we can easily cont
dict this with the following lemma.

Lemma. If the superoperatorS5$Si% is weakly invertible
relative to the setV of pure states, then for alluv1&, uv2&
PV, if uv1& and uv2& are orthogonal, then so areSi uv1& and
Si uv2& for all i.

Proof. Let Ti be superoperators demonstrating the we
invertibility of S. Then, by definition, for alluv& in V,

(
i , j

Ti j Si uv&^vuSi
†Ti j

† 5uv&^vu. ~D2!

This implies that for alli , j ,
ity
t
the

-

f
c-
t

t
e

i-

-
l is

r

e
al,
-

k

Ti j Si uv&5a i j ~v !uv& ~D3!

for some scalara i j (v). However, then

~Ti j Si uv2&)
†~Ti j Si uv1&)5a i j ~v1!@a i j ~v2!#* ^v2uv1&50,

~D4!

so

(
j

~Ti j Si uv2&)
†~Ti j Si uv1&)5^v2uSi

†Si uv1&50. ~D5!

~ii ! Disproving the bilocality of the dephasing superope
tor in the case where residual states always remain ortho
nal throughout the period when Alice and Bob are comm
nicating through the channel requires a different line
argument from case~i!. First, we note that the calculation o
Appendix B shows that if the states remain exactly ortho
nal @cf. Eq. ~B1!#, then each operatoram and bm must be
exactly proportional to the identity operator; this in turn im
plies that each operation element is proportional to a prod
of an Alice and a Bob unitary operator,

Sm5amUmA^ UmB . ~D6!

Note that by the conditions of Appendix B, the posteri
probabilities must remain finite for this result to hold; how
ever, as noted before, if this condition were not satisfied
could be immediately argued that the superoperator co
never result in the desired dephasing operator. In fact
course, using Eqs.~11! and~12!, it is straightforward to show
that the posterior probabilitiesp(c i um) remain identical to
the prior probabilitiesp(c i); no information about the state
ever flows through the classical channel.

Given that the superoperator is constrained to be of
form Eq. ~D6!, it is easy to complete the proof. Equatio
~D6! implies, for each statec i of Eq. ~3!,

UmA^ UmBua i ^ b i&5eiu iua i ^ b i&. ~D7!

This implies

UmAua i&5eiu iAua i& ~D8!

and a similar relation forB. ~It is this last step that cannot b
taken for the Bell-state dephasing case mentioned in
text.! Now, referring to Eq.~3!, considering casesi 51,2,4
shows thatUmA is diagonal in theu0,1,2& basis; theni 58,9
shows that^0uUmAu0&5^1uUmAu1& and i 56,7 shows that
^1uUmAu1&5^2uUmAu2&. Thus UmA and similarly UmB are
proportional to the identity operator. However, the ident
superoperator can be done without any classical commun
tion and the argument at the beginning of this appen
shows how this possibility is excluded.

This completes the proof for both cases.
ing
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