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Wave function for smooth potential and mass step
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The one-dimensional Schdimger equation, derived from the general form of the effective-mass Hamil-
tonian (M”7pm‘pm?+ mPpmpm7)/4+V with n+e+p=—1, is solved exactly for a system with smooth
potential andmassstep. The wave function depends on the Heun function, which is a generalization of the
hypergeometric function. The effective-mass Hamiltonian and the connection rules for a system with abrupt
heterojunction are deduced from the study of the limiting case when the smooth step potential and mass tend
to an abrupt potential and mass stEp1050-294{@9)05101-X

PACS numbsg(s): 03.65.Ca, 03.65.Db, 03.65.Ge, 03.65.Nk

[. INTRODUCTION To try to limit the choice of they ande parameters of Eq.
1), two strategies have been adopted. The first one consists

The study of physical systems with posmon-dependenfn calculating, via the effective-mass approximation, some

m have known a new development over the last r .
ass have known a new development over the last yea dbservables of a particular model. Then, these results are

This Interest Is due to the recent progress of CryStaI'gro"\lﬂgompared either with experimental data, or with exact results
techniguegmolecular-beam-epitaxy technique, for example of simple models. Thus, Morrow and Brownstd®] have

for the production of a nonuniform semiconductor specimen, e ! L
An important and widely used theory for the determinationShOWn thaty=p; othr_arW|s_e , the wave funct|_on 'S forced to
f electronic properties of semiconductors is the effective-vamSh at the heterojunction poundary, which is clearly an
° S . - unphysical result. Thomsen, Einevoll, and Hemfi¥§rreach
mass approximatiofil]. This theory, originally developed to he same resulty=p: otherwise, the ground-state ener
treat homogeneous crystals, has been extended to nonu@. n the ab p,t limit. L t, 9 t out h th tt%y
form materials in which the carrier effective mass depends |\ierges N the abrupt imit. LEL us point out nere that the
on the position. n=p res_trlcnon excludes the forr®). Usmg the restricted
Since the momentum and the mass operators do not con'?'—amIItOnIan resulting from the;=p constraint,
mute, a question concerning the correct form of the kinetic- H=1(m"’pmpm”)+V, 5)
energy operator of the generalized Hamiltonian has arisen. i _
This question is directly related to the connection rules forcontradictory choices of theparameter have been proposed.
the wave function across an abrupt heterojunction. Von Roo§eformulating the connection rule problem by first extrapo-
[2] was the first to suggest the following form of the kinetic- lating the effective-mass wave function on the two sides of

energy operator: the heterojunction across the interface, as if thg semiconduc-
tor were homogeneous, Zhu and Kroemef arrive at the
1’=%(m’7pmspm”+ m’pmepm?), (1) conclusion thate =0. Comparing the results of Kroning-

Penney’s calculation of electron transmission from a set of
where 7+ &+ p=— 1. This two-parameter class operator is, &-function scatterers and the transmission coefficient ob-
by construction, a Hermitian quantum-mechanical operatofdin€d via the effective-mass theory, Morr¢t0] arrives at
corresponding to the classical kinetic energy. Various specidN€ same conclusion that=0. In return, other workers have

cases of Eq(1) have appeared in the literature, V&-7], proposeds = —1: Von Roos and Mavromati], by using
the Kohn-Luttinger representation and canonical transforma-

~ 171 1 tion, or Galbraith and Duggdri. 1], by comparing the calcu-
T:Z m pe+p ml’ 2 lated optical transition energies with experimental values.
The study of the matching conditions of the wave function,
1l 1 across an abrupt heterojunction in three dimensions, has led
T=§[p P } (3 Morrow [12] to change his first conclusion~0 [10] to &
=-1.
The second strategy tries to tackle the problem with a
o fund | point of view, i.e., with i icul
T=2| —=p2—= (4) undamental point of view, i.e., without using a particular
2| ym" ym form of potential and mass. Within this frame, and using the
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path-integral formalism, Yung and Ydd3] arrive at the d?¥(x) m’(x) d¥(x)

following effective-mass Hamiltonian: & mx)  dx
H—1< ! >+ﬁ2 A m’2+v (6) m’%(x)
2 PmPT e e Y H 3lp(pte= 1)+ m(n+e—1)] s

wherem’ (x)=dm(x)/dx andm”(x)=d?m(x)/dx?. In a re-
cent work Levy-Leblond[14], using the notion of instanta-
neous Galilean invariance, reaches fof®&. Moreover, he
shows that not only the use of position-dependent mass giv
correct approximation, but it is also a conceptually consisten
approach.

Thus, opinions were divided on the choice of thea-
rameter, although the majority of these works incline to form
(3). Besides, in a preceding papl5], we have used this m(x) =+ A_m th X (10
form (3) to calculate the Green'’s function, via the path inte- 2 2r’
gral formalism, for step and rectangular-barrier potentials _ )
and masses. It is to be noticed that, practically, in all thevherem=(m;+m,)/2, Am=m,—m;, V, andr are posi-
above-mentioned works, applications are made for piecewiséve constants. The potential increases from the vaieed
flat potential and mass. Nevertheless, models with continufor x=— to the valueV=V, for x=+c«. The mass in-
ous smoothly variable potential and mass are also interestingjeasesdecreasegsif m;<m, (if m;>m;), from the value
to study. In a recent workL6], we have proposed a solution M=m; for x=—« to the valuem=m; for x=+w. The
of the one-dimensional Schdimger equation resulting from significant variations are occurring in the ranges
the kinetic-energy operat@8) for a system with smooth po- 1—2r,2r[:
tential and mass step. We have also shown that the behavior V(-2r)=0.11%,, m(—2r)=0.11%Am,
of the transmission coefficient, as a function of the energy, is
similar to that of the case of an abrupt potential and mass V(2r)=0.88%/,, m(2r)=0.88Am.
step. . )

The approach of the present paper is quite different from "€ change of the independent variable
the two above-mentioned strategies. The one-dimensional X
Schralinger equation, derived from the generalized kinetic- z= %( 1—-th or
energy operatofl), is considered without any restriction in
the values of they ands parameters. This generalized Schro transforms the coefficients of E¢g) into rational functions
dinger equation is solved for a system with continuous anghf the newz variable, and maps the original intervak

smoothly variable potential and mass, namely, for potential — . 1 o[ t0z<]0,1[. Potential(9) and mas$10) then take
and mass with smooth step shape. Assuming the valugs of the forms V(z)=—V,(z—1) and m(z)=—Am(z—a),
p, ande to be universal, and by studying the limiting case,\yhere
when the smooth potential and mass step tend to an abrupt
potential and mass step, we will arrive at the conclusion that a= m; (12)
the correct kinetic Hamiltonian for an abrupt heterojunction m,—my’
is form (3). This form(3) implies that the connection rules of
the wave function across abrupt interface are the continuityVith the abbreviations
of ¥ (x) and[ 1/m(x)][d¥ (x)/dx]. 2m,r?

In Sec. Il we solve the generalized Sctlimger equation.  v?=
In Sec. Il we study two limiting cases, namely, when the
smooth potential and mass tend to an abrupt potential and
mass Step, and when the width of the mass Step is Vanishing}e genera"zed Schddnger equation becomes

The conclusion is given in Sec. IV )
d“¥(z) |1 1 1 d¥(z)

_+ —
Il. GENERALIZED SCHRO DINGER EQUATION dz z (z-1) (z-a)] dz

(p+ ) M9 2m(x)
5 oot A [E—V(X)]J‘I’(X)=O- ®

e smooth potential and mass step are chosen equal to

Y,
V(X)= 70

4
1+thz , 9)

(11)

2myr?E 2Amr3v,
hZ (VO_E)! IU“ZZ_ ﬁZ ’ wZZTI

The one-dimensional time-independent Sclimger equa-
tion, derived from the generalized kinetic-energy operator

(1), can be written ) )
52 5 av® (a—1l)u° a(a—1)60 ¥(z)

~ o M) dix [m*’(x) dix [m%x)\lf(xn] - % mP(x) dix Z ") Tz | 2z Dz-a)
=0, (14

+

(a—1)0— @+ 1?— u’+aw’+(0+2¢— w?)z

d
Xym*(x) = M)W O] +[V(X) —E]¥ (%) =0,

(@)

ptm (1+e)
o=—(ptntpn), ¢=—F=——7%— (19

or
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Equation(14) is a Heun-type equation in its general form with the initial conditionscy=1, c;=—b/vya, andc,=0 if
[17-19, i.e., a second-order linear homogeneous differentiab<0. ConstantC will be fixed by the boundary conditions.
equation with four singularitieg=0, 1, a, «, all regular.  Series(19) converges inside a circle centered at the origin
Since all the singularities are regular, Efj4) belongs to the z=0 and whose radius is the distance from the origin to the
class of Fuchsian equations. The change of the dependengarer of the two singular points=1 andz=a. Thus, series
variable (19 converges folz|<1 if |a|>1, i.e., if m;<2m, and
PR T = m;#m,. In the case wherfa|<1, i.e., if m;>2m,, series
V(@)=2(z-Dfz-a) @) (16 (19 converges foriz|<|a|. In the latter case an analytic

transforms Eq(14) into the normal form of a Heun equation continuation to ensure convergence faf<<1 may be ob-
tained by introducing, into the differential equatiiv), the

2
d*f(z) |(2v+1)  (2p+1) (1-2V1-6)| df(2) change of the independent varialafe=1-z.
dz z (z—1) (z—a) dz The wave function(16) becomes
+Halw?—(v+p)(r+u+D)]+v(2V1-6-1)-e—1 W(z)=Cz"(z—1)*(z—a)* "I ?F(a,b;a,B,7,5;2).
V1= 0+[(v+pu+l1-1-06)? @)
f(z) We study now the asymptotic behavior, when * oo, of

—w?+2¢+ 0]z} (17 the wave function(21). First, when x—+o, or z=~

—F— =0.
Az=1)(z-2) exp(—x/r)—0, the Heun function is equal to 1 whem0;

With the following abbreviations, then we have
_ 2_o __ _J1=
a=\Jo —2¢—0+v+u+l—+1-0, q,(z)_)Ceiﬂ-(,u+l—\lT0)al—\1T0eXF<_v_x)
B=—Vw’—2¢— 6+ v+u+l—y1-9, 20 r
=2v+1, 6=1-2y1—-9, VX
yTev ZC’exp<——). (22)
b=alw?— (v+u)(v+u+1)]+v(2yl-6-1)—¢—1
+1-6, (18)  Two cases have to be considereda) E<V,, »>0 is real.

The wave function vanishes exponentially as would be ex-
the solution of Eq(17), which is regular in the vicinity of pected wherE<V,. We obtain¥ —C’ exp(—Kx), where
z=0 and belongs to the exponezdrq is the Heun function

defined by the serie®0 v 2my
y e20] ] K2=r—2= -7 (Vo—E). (23
b
fl(z)=CF(a,b;a,,[>’,y,é;z)EC{ 1-—+ cszs] ,
ya s=2 (b) E>Vq, v=—ikyr is imaginary, ther — C’ exp(k,X),
(19 where
where thec, coefficients of the series are determined by the 2m,
difference equation k§:? (E—Vy). (24)

(s+2)(s+1+y)acs ,={(s+1)%(a+1)+(s+1)

X[y+8—1+(a+pB—y)a]—b} For the limit when x——«, or z—1, we have %z
~expl/r)—0; we use the following formula, which links the

XCgyi1— (St a)(s+B)cs, (20 z and 1-z argument functions,

F(a,b;e,B,y,6,2)=F(a,b;a,B,v,6;1)
XF(l-a,—b—apB;a,B,1+a+B—y—6,5,1-2)
+(1-2)""° * PF(a,b—ay[y+ 6—a—B];y+ 6—a,y+ 56— B,7,5;1)
XF(l-a,—~b—aB—[y+6—a—Bllyt+d—ayl;yté—a,y+5—B,1+y+6—a—B,51-2).
(25

We have established this formula in Appendix A[@B]. The wave function(21) is then transformed into
¥(2)=Cz(z—1)*(z—a)' T %F(a,b;a,B,y,81)F(1-a,—b—aB;a,B.1+ a+ f—y—8,81-2)
+(1-2)""° " PF(a,b—ay[ y+ 6—a—B];y+6—a,y+ 56— B,7,51)
XF(l—a,—b—aB—[y+é—a—-Blly+ts—ayl;y+é—a,y+6—B,1+ y+é—a—B,5,1-2)}. (26)
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Thus, whernx— —o, or z—1, the wave function has the following behavior:
) Cu{e,u/xr+ Re—,u/xr}' (27)

X— + %

where the quantityR|? is the reflection coefficient given by

Ri2— F(a,b—ay[y+6—a—Bliy+o—a,y+6-B,v,81)|? -
R F(a,b;a,B,7,6,1) | 28)
|
The wave function21) can finally be written by interchange ofe and 8 argument, we can rewrite the
1 x \ 1771 x | & reflection coefficient28) in the following equivalent form:
V0= (1 " 2_” PAR 2_f) RJ= F(ab;@B,7.6,1F(ab;Bd7.51) 32
| 11T F(a,b;a,B,y,8,1)F(a,b;8,a,vy,8,1)|’
5 1=2a-th E” where
X G=vy+dé—a, PB=y+6—B, b=b- +6—a—Bl.
(aba,By, 5; (1—th—)) a=y a, p=vy B ayly a—p]
33
F(a,b;a,B,7,5,1) (29 (33)
. ) We use, now, the following relation between two contiguous
Settingu=ikyr, where Heun functions:
2m
k%:ﬁ_zl E, (30) (ﬂ—y—&)F(a,b-l-l—a-i-(a—l),B

+aa—asd;a,B—1,v,6+1;2)

we can summarize the limits of the wave function
ekX+Re kX for x— —oo

T(x)={ Ce ™ if E>V, for x—+% (31 (AF(@abia,B,y,82)

cekX if E<V, for x— -+, dz '

=(az+B—y—06)F(a,b;a,B,v,6,2) +2(z—1)

(39

Thus, we recover the asymptotic behavior of a plane wav&he establishment of this relation needs lengthy calculations.
coming from the left side. Moreover, E<V,, u=ik.r is  We do not give here the details of these calculations. How-
imaginary andv>0 is real, the numerator and denominator ever, the method for obtaining this relation is equivalent to
of the reflection coefficien{28) are complex conjugates, and that of Appendix B of Ref[16]. Particularly, forz=1 rela-
then we havgR|?=1. We also recover this case of total tion (34) becomes

reflection wherE=V,, »=0. Flabia.8,7y,5:1)

Il LIMITING CASES (B—vy—9)
=———F(a,b+1l-a
A. Abrupt potential and mass step (atB—vy—9)
We consider the limiting case when the smooth potential +(a—-1)B+aa—ad;a,B—1,y,6+1;1). (35

and mass step tend to an abrupt potential and mass step, i.e.,
when ther parameter of Eqs(9)—(11) tends to 0. For this We now transform each Heun’s function of expressi8B)
purpose, and using the fact that Heun’s function is invarianby the intermediary of Eq.35),

By~ )@y~ 9)
(B— 7= 8)(a—y-9)|

(atB—y=9)7
(@+B— -5

F(a,b+1l-a+(a—1)B+aa—ada,B—1,,46+1;1)
F(ab+l-a+(a—1)B+aa—ada,f—1,,56+1;1)

R|?= ‘

F(ab+1 a+t(a—l)a+ap—ad B,a—1,y,56+1; 1)’
" |Fabr1-a+ (a1 atap—as B.a— 1Ly o+1: 1|

(36)

The assumption that the values gf p, ande are universal, implies that, in our case, these values are independentrof the
parameter. Substituting in this last expressiondhg, y, 5, andb parameters by their values in Ed.8), and thew, 3, and

b parameters by Eq33), we find that the second term of E(B6) is equal to 1, and the last two terms tend to 1 when
r—0. Finally, we arrive at
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lim|R|?=lim

WAVE FUNCTION FOR SMOOTH POTENTIAL AND MASS STEP 111
[(a—1)v+au]?+2a(a—1)(v+pu)(1- V1 6)+2a(a—1)(1+¢—1-0)| @7

r—0 r—0

[(a—1)v—aul?+2a(a—1)(v—u)(1-V1-6)+2a(a—1)(1+¢o—1-0)|

We see that if # ¢—1— 6#0, we have lim_ o|R|?=1, which corresponds to a completely reflective barrier. Furthermore,
to avoid this unphysical result we must have &—+/1— 6=0, or with help of Eq.(15),

Under this last condition, Eq37) reduces to

1- 1+p+77+p77+p+T77=O. (39
[(a—1)v+au]®+2a(a—1)(v+p)(1-1-0)| 39

lim|R|2= lim
r—0

We remark that ifd# 0, Eq.(39) tends to
V+M _ kl_ k2

. 2: =
lim|R v—u  kit+ky'

r—

(40

and furthermore, ii—, i.e., when the width of the mass
step is vanishingrg;=m,=m), we will have

~ ~ 2
k,—k k,—k
Hm|m2;f'~2¢<~laf)zﬂRﬁ

a—®

wherek, = 2mE/A?, k,=\2m(E—V,)/4?, and|R|3 is the

(41)

rol[(a—1)v—aul®+2a(a—1)(v—p)(1-V1-6)|

We then arrive at the conclusion that fok®) is the correct
form of the effective-mass Hamiltonian for an abrupt poten-
tial and mass step. Other works have presented, through an
exact model calculation, arguments in favor of fof@n We

can quote the work of Thomsen, Einevoll, and Hemf®dy
where aé&function potential, situated at the interface be-
tween two materials, has been used as a test case for the
Hamiltonian(5). In [21], Einevoll and Hemmer have used a
heterostructure consisting of two homogeneous materials,
both described by one-dimensional Kroning-Penney lattice,
and the local potential has been taken to be a square well.
Finally, the work of Einevoll, Hemmer, and Thomsgz2]

with superlattices, quantum wells, and localized potentials,

reflection coefficient of an abrupt potential step with constanhas been taken as a test model.

mass. Thus, in order that
lim [R]2=|R]g,

r—0
a—w

we must haved=0, or with the help of Eq(15),
—(ptntpn)=0. (42)

In short, in order that

lim|R|?#1
r—0
and
lim |R|2=|R|2,
r—0

a—w

the two conditions(38) and (42) must be verified simulta-
neously,

pt+n+pn=0
and
2-2\1+p+ptpy+p+n=0. (43
This system has the unique solution
p=7n=0, (44)

which, with help of the conditiom+¢+p=—1, gives
e=—1. (45)

Form (3) implies [8,14] that the connection rules of the
wave function across abrupt interface are the continuity of
W (x) and[1/m(x)][d¥ (x)/dx]. Levy-Leblond[23], apply-
ing these connection rules to a one-dimensional system with
an abrupt potential and mass step, has found the following
reflection coefficient:

ki ko 2
m; m;
IR|?= PR (46)
L2
m; my

We can observe that, under conditio(®8) and (42), the
reflection coefficient37) reduces to

[((@a-1)v+aul?

lim|R|2=lim [a-Dr—anl

r—0 r—0

: (47)

which, after substitutinga by Eq. (12), » and u by their
definitions in Eq.(13), is exactly equal to Eq46).

B. Smooth potential step with constant mass

The second limiting case considered is when the width of
the mass step is vanishingh(=m,=m), i.e., when the pa-
rametera defined by Eq(12) tends to infinity. For this pur-
pose, we appeal to the following lini24]

lim F(a,ac;a,B,7,8,2)=,F1(np+Vn?+c,n

a—ow
—\rP+civ2)

(48)
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where F(y)I'(y—a—p)

- 2Fale,Byi1)= w—— —
nzﬁTB&, y#-n(n=0,12...). Foy=al(y=4)

(51

This limit (48) gives the case where the Heun function de-to transform the hypergeometric functions contained in Eq.
generates, by confluence of the singular pom&nd, into  (49) into a gamma function.

a hypergeometric function. Applying this lim{@8) for the

Heun functions contained in the expression of the reflection

coefficient(28), we find IV. CONCLUSION

lim [R|?= Fi(v—pv—p+1;2v+1;1)|? In the present paper we have proposed a solution of the
oo SF (vt w, v+t p+1:2v+1;1) Schralinger equation, derived from the generalized
effective-mass Hamiltonian H gen= (M”7pm*pm?®
F'(+2) T (v—w) I (v—pm+1)|? . +m’pm?pm?)/4+V with n+e+p=—1, without any re-
T2 T v+ T (v+ m+1) =IRI%, striction in the » and ¢ parameters, for a one-dimensional
system with smooth potential and mass step. Assuming the
(49 values ofx, p, and e to be universal, and by studying the
where limiting case when the smooth potential and mass step tend

to an abrupt potential and mass step, we have shown that the
_, 2mr? _,  2mr’E parameters must take the valugs=p=0, eé=—1, which
vi=7z VomB), pwi=m—m, (50 suggests that the appropriate form of the effective-mass
o Hamiltonian for an abrupt heterojunction is the fokip,
and |R|? is the reflection coefficient for a system with a =[pm~'p]/2+V. This form implies that the connection
constant mass and potential smooth step obtaing®%h  rules of the wave function across abrupt interface are the
We have used the relation continuity of W(x) and[1/m(x)][d¥(x)/dx].
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