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Wave function for smooth potential and mass step
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The one-dimensional Schro¨dinger equation, derived from the general form of the effective-mass Hamil-
tonian (mhpmepmr1mrpmepmh)/41V with h1e1r521, is solved exactly for a system with smooth
potential andmassstep. The wave function depends on the Heun function, which is a generalization of the
hypergeometric function. The effective-mass Hamiltonian and the connection rules for a system with abrupt
heterojunction are deduced from the study of the limiting case when the smooth step potential and mass tend
to an abrupt potential and mass step.@S1050-2947~99!05101-X#

PACS number~s!: 03.65.Ca, 03.65.Db, 03.65.Ge, 03.65.Nk
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I. INTRODUCTION

The study of physical systems with position-depend
mass have known a new development over the last ye
This interest is due to the recent progress of crystal-gro
techniques~molecular-beam-epitaxy technique, for examp!
for the production of a nonuniform semiconductor specim
An important and widely used theory for the determinati
of electronic properties of semiconductors is the effecti
mass approximation@1#. This theory, originally developed to
treat homogeneous crystals, has been extended to no
form materials in which the carrier effective mass depe
on the position.

Since the momentum and the mass operators do not c
mute, a question concerning the correct form of the kine
energy operator of the generalized Hamiltonian has aris
This question is directly related to the connection rules
the wave function across an abrupt heterojunction. Von R
@2# was the first to suggest the following form of the kineti
energy operator:

T̂5 1
4 ~mhpm«pmr1mrpm«pmh!, ~1!

whereh1«1r521. This two-parameter class operator
by construction, a Hermitian quantum-mechanical opera
corresponding to the classical kinetic energy. Various spe
cases of Eq.~1! have appeared in the literature, viz@3–7#,

T̂5
1

4 F 1

m
p21p2

1

mG , ~2!

T̂5
1

2 Fp
1

m
pG , ~3!

T̂5
1

2 F 1

Am
p2

1
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G . ~4!
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To try to limit the choice of theh and« parameters of Eq.
~1!, two strategies have been adopted. The first one con
in calculating, via the effective-mass approximation, so
observables of a particular model. Then, these results
compared either with experimental data, or with exact res
of simple models. Thus, Morrow and Brownstein@8# have
shown thath5r; otherwise, the wave function is forced t
vanish at the heterojunction boundary, which is clearly
unphysical result. Thomsen, Einevoll, and Hemmer@9# reach
the same resulth5r; otherwise, the ground-state energ
diverges in the abrupt limit. Let us point out here that t
h5r restriction excludes the form~2!. Using the restricted
Hamiltonian resulting from theh5r constraint,

H5 1
2 ~mhpm«pmh!1V, ~5!

contradictory choices of the« parameter have been propose
Reformulating the connection rule problem by first extrap
lating the effective-mass wave function on the two sides
the heterojunction across the interface, as if the semicond
tor were homogeneous, Zhu and Kroemer@7# arrive at the
conclusion that«50. Comparing the results of Kroning
Penney’s calculation of electron transmission from a se
d-function scatterers and the transmission coefficient
tained via the effective-mass theory, Morrow@10# arrives at
the same conclusion that«'0. In return, other workers hav
proposed«521: Von Roos and Mavromatis@6#, by using
the Kohn-Luttinger representation and canonical transform
tion, or Galbraith and Duggan@11#, by comparing the calcu-
lated optical transition energies with experimental valu
The study of the matching conditions of the wave functio
across an abrupt heterojunction in three dimensions, has
Morrow @12# to change his first conclusion«'0 @10# to «
521.

The second strategy tries to tackle the problem with
fundamental point of view, i.e., without using a particul
form of potential and mass. Within this frame, and using
107 ©1999 The American Physical Society
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path-integral formalism, Yung and Yee@13# arrive at the
following effective-mass Hamiltonian:

H5
1

2 S p
1

m
pD1

\2

6

m9

m22
\2

4

m82

m3 1V, ~6!

wherem8(x)[dm(x)/dx andm9(x)[d2m(x)/dx2. In a re-
cent work Lévy-Leblond @14#, using the notion of instanta
neous Galilean invariance, reaches form~3!. Moreover, he
shows that not only the use of position-dependent mass g
correct approximation, but it is also a conceptually consist
approach.

Thus, opinions were divided on the choice of the« pa-
rameter, although the majority of these works incline to fo
~3!. Besides, in a preceding paper@15#, we have used this
form ~3! to calculate the Green’s function, via the path in
gral formalism, for step and rectangular-barrier potenti
and masses. It is to be noticed that, practically, in all
above-mentioned works, applications are made for piecew
flat potential and mass. Nevertheless, models with cont
ous smoothly variable potential and mass are also interes
to study. In a recent work@16#, we have proposed a solutio
of the one-dimensional Schro¨dinger equation resulting from
the kinetic-energy operator~3! for a system with smooth po
tential and mass step. We have also shown that the beha
of the transmission coefficient, as a function of the energy
similar to that of the case of an abrupt potential and m
step.

The approach of the present paper is quite different fr
the two above-mentioned strategies. The one-dimensi
Schrödinger equation, derived from the generalized kinet
energy operator~1!, is considered without any restriction i
the values of theh and« parameters. This generalized Schr¨-
dinger equation is solved for a system with continuous a
smoothly variable potential and mass, namely, for poten
and mass with smooth step shape. Assuming the valuesh,
r, and« to be universal, and by studying the limiting cas
when the smooth potential and mass step tend to an ab
potential and mass step, we will arrive at the conclusion t
the correct kinetic Hamiltonian for an abrupt heterojuncti
is form ~3!. This form~3! implies that the connection rules o
the wave function across abrupt interface are the contin
of C(x) and @1/m(x)#@dC(x)/dx#.

In Sec. II we solve the generalized Schro¨dinger equation.
In Sec. III we study two limiting cases, namely, when t
smooth potential and mass tend to an abrupt potential
mass step, and when the width of the mass step is vanish
The conclusion is given in Sec. IV

II. GENERALIZED SCHRO¨ DINGER EQUATION

The one-dimensional time-independent Schro¨dinger equa-
tion, derived from the generalized kinetic-energy opera
~1!, can be written

2
\2

4
mh~x!

d

dx H m«~x!
d

dx
@mr~x!C~x!#J 2

\2

4
mr~x!

d

dx

3H m«~x!
d

dx
@mh~x!C~x!#J 1@V~x!2E#C~x!50,

~7!
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d2C~x!

dx2 2
m8~x!

m~x!

dC~x!

dx

1H 1
2 @r~r1«21!1h~h1«21!#

m82~x!

m2~x!

1
~r1h!

2

m9~x!

m~x!
1

2m~x!

\2 @E2V~x!#J C~x!50. ~8!

The smooth potential and mass step are chosen equal to

V~x!5
V0

2 S 11th
x

2r D , ~9!

m~x!5m̄1
Dm

2
th

x

2r
, ~10!

where m̄5(m11m2)/2, Dm5m22m1 , V0 and r are posi-
tive constants. The potential increases from the valueV50
for x52` to the valueV5V0 for x51`. The mass in-
creases~decreases! if m1,m2 ~if m1.m2), from the value
m5m1 for x52` to the valuem5m2 for x51`. The
significant variations are occurring in the rangexP
] 22r ,2r @ :

V~22r !>0.119V0 , m~22r !>0.119Dm,

V~2r !>0.889V0 , m~2r !>0.889Dm.

The change of the independent variable

z5 1
2 S 12th

x

2r D ~11!

transforms the coefficients of Eq.~8! into rational functions
of the newz variable, and maps the original intervalxP
] 2`,1`@ to zP]0,1@ . Potential~9! and mass~10! then take
the forms V(z)52V0(z21) and m(z)52Dm(z2a),
where

a5
m2

m22m1
. ~12!

With the abbreviations

n25
2m2r 2

\2 ~V02E!, m252
2m1r 2E

\2 , v25
2Dmr2V0

\2 ,

~13!

the generalized Schro¨dinger equation becomes

d2C~z!

dz2 1F1

z
1

1

~z21!
2

1

~z2a!G dC~z!

dz

1H ~a21!u2w1n22m21av21~u12w2v2!z

2
an2

z
1

~a21!m2

~z21!
1

a~a21!u

~z2a! J C~z!

z~z21!~z2a!

50, ~14!

where

u52~r1h1rh!, w5
r1h

2
52

~11«!

2
. ~15!
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Equation ~14! is a Heun-type equation in its general for
@17–19#, i.e., a second-order linear homogeneous differen
equation with four singularitiesz50, 1, a, `, all regular.
Since all the singularities are regular, Eq.~14! belongs to the
class of Fuchsian equations. The change of the depen
variable

C~z!5zn~z21!m~z2a!12A12u f ~z! ~16!

transforms Eq.~14! into the normal form of a Heun equatio

d2f ~z!

dz2 1F ~2n11!

z
1

~2m11!

~z21!
1

~122A12u!

~z2a!
G d f~z!

dz

1$a@v22~n1m!~n1m11!#1n~2A12u21!2w21

1A12u1@~n1m112A12u!2

2v212w1u#z%
f ~z!

z~z21!~z2a!
50. ~17!

With the following abbreviations,

a5Av222w2u1n1m112A12u,

b52Av222w2u1n1m112A12u,

g52n11, d5122A12u,

b5a@v22~n1m!~n1m11!#1n~2A12u21!2w21

1A12u, ~18!

the solution of Eq.~17!, which is regular in the vicinity of
z50 and belongs to the exponentzero, is the Heun function
defined by the series@20#

f 1~z!5CF~a,b;a,b,g,d;z![CH 12
b

ga
1(

s52

`

csz
sJ ,

~19!

where thecs coefficients of the series are determined by
difference equation

~s12!~s111g!acs125$~s11!2~a11!1~s11!

3@g1d211~a1b2g!a#2b%

3cs112~s1a!~s1b!cs, ~20!
l

ent

e

with the initial conditionsc051, c152b/ga, andcs50 if
s,0. ConstantC will be fixed by the boundary conditions
Series~19! converges inside a circle centered at the orig
z50 and whose radius is the distance from the origin to
nearer of the two singular pointsz51 andz5a. Thus, series
~19! converges foruzu,1 if uau.1, i.e., if m1,2m2 and
m1Þm2 . In the case whereuau,1, i.e., if m1.2m2 , series
~19! converges foruzu,uau. In the latter case an analyti
continuation to ensure convergence foruzu,1 may be ob-
tained by introducing, into the differential equation~17!, the
change of the independent variablez8512z.

The wave function~16! becomes

C~z!5Czn~z21!m~z2a!12A12uF~a,b;a,b,g,d;z!.
~21!

We study now the asymptotic behavior, whenx→6`, of
the wave function ~21!. First, when x→1`, or z'
exp(2x/r)→0, the Heun function is equal to 1 whenz50;
then we have

C~z!→
z→0

Ceip~m112A12u!a12A12uexpS 2
nx

r D
5C8expS 2

nx

r D . ~22!

Two cases have to be considered.~a! E,V0 , n.0 is real.
The wave function vanishes exponentially as would be
pected whenE,V0 . We obtainC→C8 exp(2Kx), where

K25
n2

r 2 5
2m2

\2 ~V02E!. ~23!

~b! E.V0 , n52 ik2r is imaginary, thenC→C8 exp(ik2x),
where

k2
25

2m2

\2 ~E2V0!. ~24!

For the limit when x→2`, or z→1, we have 12z
'exp(x/r)→0; we use the following formula, which links th
z and 12z argument functions,
F~a,b;a,b,g,d;z!5F~a,b;a,b,g,d;1!

3F~12a,2b2ab;a,b,11a1b2g2d,d;12z!

1~12z!g1d2a2bF~a,b2ag@g1d2a2b#;g1d2a,g1d2b,g,d;1!

3F~12a,2b2ab2@g1d2a2b#@g1d2ag#;g1d2a,g1d2b,11g1d2a2b,d;12z!.

~25!

We have established this formula in Appendix A of@16#. The wave function~21! is then transformed into

C~z!5Czn~z21!m~z2a!12A12u$F~a,b;a,b,g,d;1!F~12a,2b2ab;a,b,11a1b2g2d,d;12z!

1~12z!g1d2a2bF~a,b2ag@g1d2a2b#;g1d2a,g1d2b,g,d;1!

3F~12a,2b2ab2@g1d2a2b#@g1d2ag#;g1d2a,g1d2b,11g1d2a2b,d;12z!%. ~26!
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Thus, whenx→2`, or z→1, the wave function has the following behavior:

C ——→
x→1`

C9$em/xr1Re2m/xr%, ~27!

where the quantityuRu2 is the reflection coefficient given by

uRu25UF~a,b2ag@g1d2a2b#;g1d2a,g1d2b,g,d;1!

F~a,b;a,b,g,d;1!
U2

. ~28!
av

o
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al

tia
,

an

e

us

ns.
w-
to
The wave function~21! can finally be written

C~x!5F1

2 S 12th
x

2r D G
nF1

2 S 11th
x

2r D G
m

3F1

2 S 122a2th
x

2r D G
12A12u

3

FXa,b;a,b,g,d;
1

2 S 12th
x

2r D C
F~a,b;a,b,g,d;1!

. ~29!

Settingm5 ik1r , where

k1
25

2m1

\2 E, ~30!

we can summarize the limits of the wave function

C~x!5H eik1x1Re2 ik1x

Ce2Kx if E.V0

Ceik2x if E,V0

for x→2`
for x→1`
for x→1`.

~31!

Thus, we recover the asymptotic behavior of a plane w
coming from the left side. Moreover, ifE,V0 , m5 ik1r is
imaginary andn.0 is real, the numerator and denominat
of the reflection coefficient~28! are complex conjugates, an
then we haveuRu251. We also recover this case of tot
reflection whenE5V0 , n50.

III. LIMITING CASES

A. Abrupt potential and mass step

We consider the limiting case when the smooth poten
and mass step tend to an abrupt potential and mass step
when ther parameter of Eqs.~9!–~11! tends to 0. For this
purpose, and using the fact that Heun’s function is invari
e

r

l
i.e.,

t

by interchange ofa and b argument, we can rewrite th
reflection coefficient~28! in the following equivalent form:

uRu25UF~a,b̃;ã,b̃,g,d;1!F~a,b̃;b̃,ã,g,d;1!

F~a,b;a,b,g,d;1!F~a,b;b,a,g,d;1!
U, ~32!

where

ã5g1d2a, b̃5g1d2b, b̃5b2ag@g1d2a2b#.

~33!

We use, now, the following relation between two contiguo
Heun functions:

~b2g2d!F„a,b112a1~a21!b

1aa2ad;a,b21,g,d11;z)

5~az1b2g2d!F~a,b;a,b,g,d;z!1z~z21!

3
dF~a,b;a,b,g,d;z!

dz
. ~34!

The establishment of this relation needs lengthy calculatio
We do not give here the details of these calculations. Ho
ever, the method for obtaining this relation is equivalent
that of Appendix B of Ref.@16#. Particularly, forz51 rela-
tion ~34! becomes

F~a,b;a,b,g,d;1!

5
~b2g2d!

~a1b2g2d!
F„a,b112a

1~a21!b1aa2ad;a,b21,g,d11;1…. ~35!

We now transform each Heun’s function of expression~32!
by the intermediary of Eq.~35!,
the

en
uRu25U~ b̃2g2d!~ã2g2d!

~b2g2d!~a2g2d!
UU~a1b2g2d!2

~ ã1b̃2g2d!2UUF„a,b̃112a1~a21!b̃1aã2ad;ã,b̃21,g,d11;1…

F„a,b112a1~a21!b1aa2ad;a,b21,g,d11;1…
Z

3ZF„a,b̃112a1~a21!ã1ab̃2ad;b̃,ã21,g,d11;1…

F„a,b112a1~a21!a1ab2ad;b,a21,g,d11;1…
U . ~36!

The assumption that the values ofh, r, and« are universal, implies that, in our case, these values are independent ofr

parameter. Substituting in this last expression thea, b, g, d, andb parameters by their values in Eq.~18!, and theã, b̃, and
b̃ parameters by Eq.~33!, we find that the second term of Eq.~36! is equal to 1, and the last two terms tend to 1 wh
r→0. Finally, we arrive at
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lim
r→0

uRu25 lim
r→0

U@~a21!n1am#212a~a21!~n1m!~12A12u!12a~a21!~11w2A12u!

@~a21!n2am#212a~a21!~n2m!~12A12u!12a~a21!~11w2A12u!
U. ~37!

We see that if 11w2A12uÞ0, we have limr→0uRu251, which corresponds to a completely reflective barrier. Furtherm
to avoid this unphysical result we must have 11w2A12u50, or with help of Eq.~15!,

12A11r1h1rh1
r1h

2
50. ~38!

Under this last condition, Eq.~37! reduces to

lim
r→0

uRu25 lim
r→0

U@~a21!n1am#212a~a21!~n1m!~12A12u!

@~a21!n2am#212a~a21!~n2m!~12A12u!
U. ~39!
s

an

n-
h an

e-
r the
a
ials,
ice,

ell.

ls,

e
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ing

of
We remark that ifuÞ0, Eq. ~39! tends to

lim
r→

uRu25
n1m

n2m
[

k12k2

k11k2
, ~40!

and furthermore, ifa→`, i.e., when the width of the mas
step is vanishing (m15m25m), we will have

lim
r→0
a→`

uRu25
k̃12 k̃2

k̃11 k̃2

ÞS k̃12 k̃2

k̃11 k̃2

D 2

[uRu0
2, ~41!

wherek̃15A2mE/\2, k̃25A2m(E2V0)/\2, anduRu0
2 is the

reflection coefficient of an abrupt potential step with const
mass. Thus, in order that

lim
r→0
a→`

uRu25uRu0
2,

we must haveu50, or with the help of Eq.~15!,

2~r1h1rh!50. ~42!

In short, in order that

lim
r→0

uRu2Þ1

and

lim
r→0
a→`

uRu25uRu0
2,

the two conditions~38! and ~42! must be verified simulta-
neously,

r1h1rh50

and

222A11r1h1rh1r1h50. ~43!

This system has the unique solution

r5h50, ~44!

which, with help of the conditionh1«1r521, gives

«521. ~45!
t

We then arrive at the conclusion that form~3! is the correct
form of the effective-mass Hamiltonian for an abrupt pote
tial and mass step. Other works have presented, throug
exact model calculation, arguments in favor of form~3!. We
can quote the work of Thomsen, Einevoll, and Hemmer@9#,
where ad-function potential, situated at the interface b
tween two materials, has been used as a test case fo
Hamiltonian~5!. In @21#, Einevoll and Hemmer have used
heterostructure consisting of two homogeneous mater
both described by one-dimensional Kroning-Penney latt
and the local potential has been taken to be a square w
Finally, the work of Einevoll, Hemmer, and Thomsen@22#
with superlattices, quantum wells, and localized potentia
has been taken as a test model.

Form ~3! implies @8,14# that the connection rules of th
wave function across abrupt interface are the continuity
C(x) and@1/m(x)#@dC(x)/dx#. Lévy-Leblond@23#, apply-
ing these connection rules to a one-dimensional system
an abrupt potential and mass step, has found the follow
reflection coefficient:

uRu25S k1

m1
2

k2

m2

k1

m1
1

k2

m2

D 2

. ~46!

We can observe that, under conditions~38! and ~42!, the
reflection coefficient~37! reduces to

lim
r→0

uRu25 lim
r→0

U@~a21!n1am#2

@~a21!n2am#2U, ~47!

which, after substitutinga by Eq. ~12!, n and m by their
definitions in Eq.~13!, is exactly equal to Eq.~46!.

B. Smooth potential step with constant mass

The second limiting case considered is when the width
the mass step is vanishing (m15m25m), i.e., when the pa-
rametera defined by Eq.~12! tends to infinity. For this pur-
pose, we appeal to the following limit@24#

lim
a→`

F~a,ac;a,b,g,d;z!52F1~h1Ah21c,h

2Ah21c;g;z! ~48!
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where

h5
a1b2d

2
, gÞ2n~n50,1,2, . . .!.

This limit ~48! gives the case where the Heun function d
generates, by confluence of the singular pointsa and`, into
a hypergeometric function. Applying this limit~48! for the
Heun functions contained in the expression of the reflec
coefficient~28!, we find

lim
a→`

uRu25U 2F1~ n̄2m̄,n̄2m̄11;2n̄11;1!

2F1~ n̄1m̄,n̄1m̄11;2n̄11;1!
U2

5UG~12m̄ !G~ n̄2m̄ !G~ n̄2m̄11!

G~22m̄ !G~ n̄1m̄ !G~ n̄1m̄11!
U2

5uR̄u2,

~49!

where

n̄25
2mr2

\2 ~V02E!, m̄252
2mr2E

\2 , ~50!

and uR̄u2 is the reflection coefficient for a system with
constant mass and potential smooth step obtained in@25#.
We have used the relation
et
e,

.

ys
-

n

2F1~a,b;g;1!5
G~g!G~g2a2b!

G~g2a!G~g2b!
~51!

to transform the hypergeometric functions contained in E
~49! into a gamma function.

IV. CONCLUSION

In the present paper we have proposed a solution of
Schrödinger equation, derived from the generaliz
effective-mass Hamiltonian Hgen5(mhpm«pmr

1mrpm«pmh)/41V with h1«1r521, without any re-
striction in theh and « parameters, for a one-dimension
system with smooth potential and mass step. Assuming
values ofh, r, and « to be universal, and by studying th
limiting case when the smooth potential and mass step t
to an abrupt potential and mass step, we have shown tha
parameters must take the valuesh5r50, «521, which
suggests that the appropriate form of the effective-m
Hamiltonian for an abrupt heterojunction is the formHabrupt
5@pm21p#/21V. This form implies that the connectio
rules of the wave function across abrupt interface are
continuity of C(x) and @1/m(x)#@dC(x)/dx#.
p-

,

i,

to
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