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Harmonic oscillators in relativistic quantum mechanics
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For the Dirac equation in one space dimension, we examine the possibility of harmonic os¢Hi@jor
potentials. A HO potential is such that it has only bound states and the energy levels are equally spaced.
Regarding their Lorentz transformation properties, there are three types of potentials for the Dirac equation:
vector, scalar, and pseudoscalar. HO potentials are possible for the scalar and pseudoscalar types, but not for
the vector type. We show how HO potentials can be constructed by means of the “inverse scattering method.”
We also examine the behavior of a wave packet in the HO potentials so constructed. The behavior is, in most
of the cases, very similar to that of Sctioger's coherent wave packet of the nonrelativistic harmonic
oscillator.[S1050-294{®9)09802-9

PACS numbd(s): 03.65.Pm

I. INTRODUCTION positive- (or negativey energy levels. In this sense we re-
quire feature(i) separately for the positive- and negative-
The harmonic oscillatofHO) is one of the most basic and energy levels. In a certain situation of the scalar potential a
useful solvable examples in nonrelativistic quantum mechancomplication arises regarding the presence of a zero-energy
ics with the Schrdinger equation. Among many of its fea- bound statézero mode”).
tures, let us focus on the following twé) The HO has an We show how a relativistic HO of the Lorentz scalar type
infinite number of bound states whose energies are afan be constructed explicitly in Sec. II. In Sec. Il we exam-
equally spacedii) The HO accommodates a coherent waveine the pseudoscalar type. We give explicit illustrations of
packet that oscillates exactly like its classical counterpart antfO potentials in Sec. IV. We also examine the time-
its shape(in terms of the density profieremains rigid dependent behavior of a wave packet in the potentials. A
throughout its motion{1]. These two features are closely summary is given in Sec. V. In the Appendix we point out
related to each other. that a HO-like potential of the vector type allows no bound
We are interested in relativistic versions of the HO. Westate.
confine ourselves to one space dimension throughout this
paper. We seek potentials for the Dirac equation such that II. SCALAR POTENTIAL
feature (i) mentioned above holds for the positive-energy _ _
states. We expect that such potentials also exhibit fegiiore ~ We follow Ref. [2] in which some supersymmetry
in a good approximation. Regarding their behavior under théSUSY) aspects of the Dirac equation with a Lorentz scalar
Lorentz transformation, there are three types of potentials fopotential in one dimension were discussed. Example D of
the Dirac equation: vector, scalar, and pseudoscalar. By thi@at paper, in particular, gives a prescription for the inverse
vector type we actually mean the zeroth component of Froblem(in whiph a potential that reproduces a set of given
vector (such as the Coulomb potentiaRelativistic versions €nergy levels is constructedThe method can be summa-
of the HO can be constructed with potentials of the scalafized as follows. We use the same notation as in R2f.
and pseudoscalar types, but not with a potential of the vectd¥=% =1. The Dirac equation that we consider is
type. This can be done by means of the “inverse scattering

method.” For a set of given energy levels, the method en- Hy(x)=E¢(x), H=ap+p[m+S(x)], (1)
ables us to determine a potential that reproduces the set of ) _ )
energy levels. wherep=—id/dx, m is the rest mass of the particle, and

One can first construct a potential by assundingqually ~ S(X) is the scalar potential. Since andS(x) are both scalar
spaced energy levels and then lettiNg—o. In practice, quantities, the separation betweemand S(x) is actually
however, one stops at a large but finite valu&loFor the set ~ arbitrary. The wave functiony has two components. We
of assumed\ energy levels, we take those of positive ener-denote the uppetower) componenty; (y,). For the Dirac
gies. If we do so, for the Lorentz scalar and pseudoscalamatricese and 8, we use the X2 Pauli matricese= o
potentials, the negative-energy levels also become equalgnd 8= oy. With this choice ofa, the wave functions for
spaced. However, there is a gap between the lowest positivationary states can be taken as real. Note dhg{x) sat-
energy and the highest negative energy. For this gap wisfies Eq.(1) with E replaced by—E. Hence there is sym-
choose a value different from the gap between two adjacerinetry between positive and negative energies. The orthogo-

nality between the states of |E| leads to [”, y3(x)dx
=750 dx=3.
* Author to whom correspondence should be addressed. FAX: 81 Equation(1) can be reduced to the following SUSY pair
75 705 1914. Electronic address: toyama@ksuvx0.kyoto-su.ac.jp of Schralinger equation$3,4]:
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p? E2—m? ¢, is found, the potentiaB(x) that leads to the assumed
Hii=|\ o, tVildi=epi, e=——, (2)  energy eigenvalues of the Dirac equation is given by(Bx.
A prescription for the above senario goes as follows. In-
wherei=1 or 2, and troduce anN X N matrix A(x) with its marix elements
1 ds . e(Ki+Kj)X
Ui(x)=ﬁ (m+S)2—m21& . 3 Aij(x):(AiAj)llzKiTij €))
The double sign of Eq3) is —(+) fori=1 (2). where A; (? =1,2,. x N_) are arbitrary positive constants.
Consider the Dirac equation f&=0, i.e.,e=—m/2. Let  The potentiall,(X) is given by
the upper(lower) component of a solution of this equation be )
. satisfi 1d R
¢1 (¢,). Theng, satisfies Uy =— apln{de[l LAMTL ©
X
1 d? ~om
T 2m &J’Ui bi=- §¢i ' (4 \wherel stands for theNx N unit matrix. Equation(2) with
the abovel; has the scattering state solution
If Sand ¢; are related b
| g S VAgioes)
x(kx)=| 1+ —————— e/ (10)
1

m+S(x)=1%(ln¢i(x), (5) L
wherek?=E?—m? and gj(x)’s are defined by thé\ linear

Eg. (2) together with Eq(3) is satisfied. The reason why we algebraic equatiofg]

are interested in Eqg4) and (5) is the following. For an N

assumed set of energy levels, we can deterrbinky means A ox

of the Kay-Moses methofb,6]. Then one may try to deter- ]Zl [8+A;(x)]g;(x) + VA*=0. 11

mine S by solving Eq.(3) for unknownS. This is not easy.

However, ¢; can be easily determined as a scattering wavef e setk=im, y(im,x) andy(im,—x) satisfy Eq.(2) with

function for the Kay-Moses potential. Oneg is found,S <= /2. Hence thep, of Eq. (4) can be taken as an arbi-

immediately follows from Eq(5). It is sufficient to usei trary linear combination of(im,x) and x(im,—x). If we

=1 or 2. If the lowest eigenvalue of E() fori=1is above  take y(im,x) or y(im,—x) for ¢,, then the ensuing(x)

—m/2, then we can choosg,; such that it has no node. This pecomes type I. If we combing(im,x) andy(im,—x), we
is true in all the cases that we are going to consider. Then Egyptain anS(x) of type II.

determined, the partner potentid, can be determined by
Eq. (3). Regarding the relative sign between the asymptotic d1(x)=x(im,x). (12

values ofS(e0) andS(—«), we classifyS(x) into two types,

I and II. If S() and S(—<) are of the same sign, we say For an arbitrary choice of;'s, U,(x) and S(x) have no

that S(x) is of type I. If they are of opposite sign§(x) is  symmetry in general. If we choo#g's as

said to be of type Il. Types | and Il are what we referred to

as nontopological and topological, respectively, in R2f. Ai _H Kit K; 13
We are now ready to write down the inverse problem 2K 14 |ki— x| (13

prescription. Assume a sequence of positive-energy eigen-

values ofH, E;<E,<Ez<---<Ey. The following pre-  u,(x) becomes symmetric, i.e., an even functiorxaln this

scription works for anyE,’s as long as they are non- case, however, th&(x) that ensues is not symmetric. A
negative. For the HO that we are interested in, we assume thfiore interesting choice d%; is

equally spaced sequence

12 Ki+KJ'
I1 (14)
J#I

| i = xil”

A
E,=E;+(n—1)w, (6) 2_Ki:

m-— k;
m+ k;

wheren=1,23 ... N and >0 is a constant. Ideall\N
should bex, but in practice we take it to be finite but large.
Define e,’'s and x,,’s such that

which leads toU,(x)=U,(—x) and symmetricS(x). For
the illustrations that we present in Sec. Ill, we use 8d)
for type I.

For type Il (topologica), we can assume that

“="Zm~ zm “ $100 = xX(im,x) + x(im, ). 19

Then, following Kay and Moseg5—7], we can find the po- This ¢,(x) is an even function of. Thenm+ S(x) becomes
tential U;(x) such that the Schdinger equation(2) for i an odd function ofx. The U;(x) and U,(x) both become
=1 has eigenvalues, . Actually, there is an infinite family even functions ok, irrespective of the choice @;’s. In the
of such potentials. For suchldy we can find¢,. When the illustrations of Sec. Ill we use Eq13).
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Now that the potentiaS(x) is determined and the as- Note thaty a8y is a pseudoscalar quantity. For the Dirac
sumed positive-energy eigenvalues are reproduced, one natmatricese and 3, we usea=o, and f=o,. This 8 is
rally asks if theS(x) leads to any other eigenvalueshkdf It  different from what we used in Sec. Il. Again let the upper
can be shown that there are no other positive-energy boundower) component of be ¢, (#,). Then Eq.(21) can be
states [2]. There is symmetry between positive- and manipulated into the SUSY pair of the ScHinger equa-
negative-energy spectra. The negative-energy eigenvalug¢isns

are —E;>—-E,>—E;>..-->—Ey. The corresponding

2 2 2

wave functions are, as we pointed out below Ek, given p —m

by o,. If S() is type I, there is no bound state BE=0. Hi‘/’i:(ﬁJrWi pi=ehi, e=——. (22
If S(x) is type Il, however, there is a bound state with

E=0 [9]. The wave function of the bound state B0 is 1 df

given by Wi(x)= ﬁ( fz_d_x>’ (23

, (16  Wwherei=1 or 2 and the double sign in E(R3) is —(+) for
i=1 (2). It is known thate is non-negative. Consider the
Dirac equation foE=m ande=0. Let the upper component

whereN, is an appropriate normalization constant. It is un-of the wave function bep,. The ¢, satisfies

derstood tham+ S(x) <0 (>0) forx—o (—«). It can be

shown thatiy,(x) = 1/¢1(x), whereg,(x) is that of Eq.(15). 1 d?¢p,

Alternatively, one can includ&=0 in the set of assumed

energy levels and determing(x) as one of the Kay-Moses

wave functions. In the actual calculations we found this aI-_I_h ndf are related b

ternative method more straightforward. This concludes the € ¢, andf are related by

prescription of the inverse method for the Lorentz scalar po- d

tential. 0=~ Ing1(x). (25)

Before ending this section let us mention special cases dx
with m=0. Assume thaB(x) is an infinite square well po-
tential of type I

Yr(X)=0, wz<x>=Noexp( f:[m+5<x>]dx

oM g +W;¢,=0. (29

In the special case df(x)=mwx, we obtain

o if |x|>a Wi(x)=l(mw2X21w), (26)
=10 i x<a. @9 2
i where the double sign is the same as that of 8). This
Then we obtain case is known as the Dirac oscillati®0—12. The SUSY
Schralinger equations and hence the Dirac equation are ana-
E= iw, (18) Iytically solvable. The eigenvalues bf; are equally spaced,
4a but those ofH are not. This is not the HO that we are inter-
ested in now. As shown in Refkl1,12 in detail, the behav-
wheren=1,2, .. .. Theentire (positive- and negativg-€n-  ior of a wave packet in the Dirac oscillator potential is very

ergy spectrum is equally spaced. The reason why there igifferent from that of Schidinger’'s coherent wave packet.
only one value of energy separation is that the model con- Now assume a sequence of positive-energy eigenvalues of

tains only one parameter with dimension, iz., H, E;<E,<---<Ey. TheE;'s can take any positive val-
For an infinite potential of type II, ues not smaller tham. In the actual calculation, we take the
it 1] equally spaced positive-energy levels of E). Assume that
+oo IF [X|>a W, (X) is given by
= . 19 !
SX) 0 if |x|<a, 19 )
K1
where the double sign is minygplus) for x>0 (x<0), we W10 = 50+ Ui, @9
obtain
whereU,(x) is that of Eq.(9). Then Eq.(22) for ¢, hasN
_nm 20 bound states wittN eigenvalue$13]:
==
Eiz— m? Ki— Ki2 08
where n=0,+1,£2,.... All energy levels are equally “772m 2m (28)

spaced, including the zero mode.
There are no other positive-energy bound states. For the

Ill. PSEUDOSCALAR POTENTIAL assumed eigenvalues Hf i.e., E;'s, the k;'s can be chosen
' arbitrarily as long as they are related to tBés through Eq.
The Dirac equation that we consider is (28). Apart from a constant factogp, can be taken as

Hy(X)=E¢(x), H=a[p—ipf(x)]+pm. (21 $1(X) = x(1 k1,X), (29
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FIG. 1. The solid line shows the scalar HO poten8éX), type
I, constructed in Sec. IV. Units are such thetn=m=1. The
dashed line shows the nonrelativistic HO potenfiatw?x? with
m=1 ando=AE=0.03.

wherex (i k1,X) is the y(k,x) of Eq. (10) with k=ik;. Now
that the ¢, is known, the potential functiori(x) can be
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FIG. 2. Expansion coefficients of E(33) for the wave packet
in the scalar HO potential of type I. Units are such thatZz=m
=1. The dots are fo€(" and the triangles are fa@" .

IV. HO POTENTIALS: ILLUSTRATIONS

In this section we explicitly construct scalar HO potentials

determined by Eq(25). Then we can go on to determine the of types | and Il and also a pseudoscalar HO potential. We

SUSY partnelW,. About the symmetry oW, andW,, let
us choosé;’s according to Eq(13) so thatW,(x) is sym-
metric. It then follows thaf(x) is an odd function ok and
W,(x) an even function ok. Note that there was an addi-
tional parametei in Ref.[13]. We have chosen=1 so
that U,(x) becomes symmetric.

The negative-energy eigenvalues aré&,>—Ez>---.

then examine the behavior of wave packets in the potentials.
We will show eleven figures, four each for types | and Il of
the scalar, and three for the pseudoscalar. Wensetl
throughout this section.

For the type | scalar, we assume the lowest positive en-
ergy E;=0.4, the energy separaticdkE= »=0.03, and the
number of positive-energy leveld=20. In addition, there

These are all less thaam. Note also that there is no bound are 20 negative-energy states. In somewhat similar but non-
state with—E;. Let us examine the relation between therelativistic inverse problems, Schonfedtial. took N=8 and

wave functions of a pair of bound states of enerdiesand
—E,<0. Let the uppetlower) component of the normalized
wave function of the positive-energy state ¥e (#,) and
those of the negative-energy state (¢,). Then we find
that ¢; < ¢; for both ofi=1 and 2. This can be shown by
operatingo, on the Dirac equatior§21) from the left and
then replacingf(x) with —f(x). Note that whenf(x)—
—f(x), i=1<2in Egs.(22) and(23). It is convenient to
introduce functionsy; such that

Xi(X) = i(X), f:)(iz(X)dF 1 (30)

It then follows from Eq.(21) that the components of the

wave functions of a pair of positive- and negative-energy

states(of +E,) can be expressed as

Bi(X)=cixi(x), @i(X)=¢ xi(x), (31)
where
B E,=m - E,+m
ci=1\/ 2E, cl=%1/ 2E, (32

For the double sign we take the uppgéwer) one fori=1

(2). Finally, if we setm=0, the model becomes equivalent to

that of the scalar potential of type Il wittn=0, which we
discussed at the end of Sec. Il.

Asthan and Kamal took =5 [6]. With N= 20 we obtain far
better convergence. Figure 1 sho®(x). It fluctuates. This

is becauseN is finite. The fluctuations will disappear &6
—oo0, The dashed line shows the nonrelativistic HO potential
$mw?x? with m=1 andw = 0.03. The relativistic HO poten-
tial is flatter at the bottom than its nonrelativistic counterpart.
If we let m—0 and N—o, S(x) approaches the infinite
square well potential of Eq17).
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FIG. 3. Density profile of the wave packet as a functiox ahd
t in the scalar HO potential of type I. Units are such that#
=m=1.
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FIG. 6. Expansion coefficients for the wave packet in the scalar
| HO potential of type Il. The dots are f(ﬁ(f) and the triangles are
0 10 o 10 for C' . The coefficient for the zero mode £ 0) is shown with a

X square. Units are such thata=m=1.

FIG. 4. Comparison of the motion of the centrgid) (solid
line) in the scalar HO potential of type | ang coswt, wherex,
=10 and w=AE=0.03 (dotted ling. The two lines are almost
indistinguishable. Units are such thatA=m=1.

For type Il we assume the same positive- and negative-
energy states as we did for type I. In addition, there is a zero
mode. Figure 5 showS§(x). As Xx— £, m+ S(X)— * «;
=Fm. We construct a wave packet in the same way as for
type |, but we include the zero mode. Figure 6 shows the
Eﬁxpansion coefficients. Note that the amplitude for the zero
mode (1=0) is substantial. Figure 7 shows the density pro-
rfile of the wave packet as a function xfindt. The shape of
the wave packet is not well maintained. This is probably due
to the admixture of the zero mode that does not oscillate.
Figure 8 compares the motion of the centrdid) and

px)=> CPVyV(x, )+ > CVyM(x,t), (33  Xocoset. These two are fairly close to each other except that
n n the centroid oscillates with small amplitude. By magnifying
] ] the graph, we find that the period of oscillations is approxi-
where the subscript or — refers to the sign of the energy. mately 7. These oscillations can be interpretedZitter-
The coefficients are all real. In principle, we should i”dUdebewegungthat is due to the admixture of negative-energy
continuum states. Figure 2 shows the coefficients. With states(See the last paragraph of this sectjon.
=20 the expansion has converged very well, which means | et us now turn to the pseudoscalar case. We again as-
that the continuum contribution is negligible. Figure 3 showsg;me the lowest positive ener§y = 0.4, the energy separa-

the density profile of the wave packet as a functioxahd  tjon AE = =0.04, and the number of positive-energy levels
t. This is very much like that of Schdinger’s nonrelativistic

coherent wave packet. The shape of the wave packet is well : , .

For the wave packet, we stait t=0) with the lowest
positive-energy state that is shifted such that its center is
Xo=10. The time-dependent wave functiaf(x,t) of the
wave packet can be written as a superposition of stationa
states

(but not exactly maintained. Figure 4 compares the motion 550

of the centroid(x) of the wave packet ang, coswt. These

two are almost indistinguishable. The centroid moves —
smoothly.Zitterbewegunds not noticeable. N

|2(x,t)?

0 e e S
-40 0 40
X

FIG. 7. Density profile of the wave packet as a functiox ahd
FIG. 5. Scalar HO potentigb(x), type Il, constructed in Sec. t in the scalar HO potential of type Il. Units are such tlat#
IV. Units are such that=A=m=1. =m=1.
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FIG. 10. Expansion coefficients for the wave packet in the pseu-
doscalar HO potential. The dots are 6" and the triangles are
for (" . Units are such that=A=m=1.

|
-10 0 10

FIG. 8. Comparison of the mation of the centrdi®) (solid the positive-energy states Cor_1$ist of only the upper compo-
line) in the scalar HO potential of type Il and, cosat, wherex, nents. We found that the trajectory of the centroid in that

=10 and w=AE=0.03 (dotted lind. Units are such that=#  fepresentation is indeed smooth and indistinguishable from
—m=1. Xo coswt. For the scalar potenial it is difficult to work out the
Foldy-Wouthuysen representation, but we believe that the

N=20. Thex, of Eq.(28) can be chosen arbitrarily, but the ©Scillations that we have seen in Fig. 8 are dueZitter-
degree of localization of the wave packet is sensitivafo ~ PEWegung
We takex;=1.46. We have chosen this value of so that

the wave packet is well localized. Figure 9 shof{g). As

X—*o, f(X)— k.

We construct a wave packet in the same way as in Sec. lll We constructed relativistic versions of the HO potential
except that we choose,=5 this time. Figure 10 shows the for the Dirac equation in one dimension. They are character-
expansion coefficients. Withl=20 the expansion has con- ized by the positive-energy levels that are equally spaced. As
verged well.(The stationary state of energyE; is absem).  far as we know, this is the first time that such potentials are
Figure 11 shows the density profile of the wave packet as @resented. We did this by means of the “inverse scattering
function of x andt. This is again very much like that of method.” We considered Lorentz scalar and pseudoscalar
Schralinger’'s nonrelativistic coherent wave packet and thepotentials. If the potential i§the zeroth component pfa
shape of the wave packet is welbut not exactly main-  Lorentz vector, it is not possible to construct a HO potential.
tained. The centroidx) closely followsx, coswt, wherew  There are two types of the scalar potential, tydedntopo-
=AE. The centroid exhibits slighZitterbewegungwith a  logical) and type Il (topologica). The relativistic HO of
period of about 3.

In order to confirm that the small oscillations are a mani-

V. SUMMARY

T I T
festation ofzitterbewegungwe repeated the calculation for
I 550
the pseudoscalar potential in the Foldy-Wouthuysen repre- 7=
sentation[14,12. In this representation the positive- and =228
negative-energy states are separated. The wave functions of /j@
t
T ! T
2 - H — }\ @&*
o B
2 A=
E //*&
A
-2 — 0 T A T
s | . -40 0 40
X

-40 0 40

FIG. 11. Density profile of the wave packet as a functiorxof
FIG. 9. Pseudoscalar HO potentiglx) constructed in Sec. IV. andt in the pseudoscalar HO potential. Units are such tat
Units are such that=A=m=1. =m=1.
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the type | scalar is a very natural extension of the nonrela- 1, )
tivistic HO. > Ma’X if |x|<a
We examined the behavior of a wave packet in the rela- V(X)= (A2)

tivistic HO potentials. We started with the wave function that
was obtained by shifting the state of the lowest positive en-
ergy to a certain position. In the type | scalar and pseudo- . o
scalar potentials, the wave packet behaves much like Schrd the region ofix|>a where thei XOtent'f‘Lx'S a constant, the
dinger's coherent wave packet. In the scalar potential of typd/ave function is of thze forzm o™ or e~** depending on
II, the behavior of the wave packet is somewhat complicatedt"€ Sign of[E—V(a)]”—m?". A bound state can bez found
As we discussed, this is related to the presence of the ze@Y if its energyE is in the range of E—V(a)]*—m"<0,
mode. The wave packet exhibitterbewegungin particu- €+

lar, in the type Il scalar and the pseuo!oscalar cases. If we m+\V(a)>E>—m+V(a). (A3)
take the Foldy-Wouthuysen representation, howeverZitie

terwebegungshould disappear. We confirmed this for the There exist continuum states wihthat is outside the range

1 .
V(a)= imwza2 if |x|>a.

pseudoscalar HO potential. of Eq. (A3). Therefore, when we keegpfinite, we can have
discrete stategbut only finite in number In addition, there
ACKNOWLEDGMENTS are continuum states. If we lat—«, the energy of a bound

] o ] state (if any) becomes infinite. This implies that ¥ (x)
This work was supported by the Ministry of Education of — 11,242 in the entire space, the Hamiltonian with the

Japan and the Natural Sciences and Engineering Researgiix) has no finite, discrete eigenvalues. It is clear that in
Council of Canada. either case of finite or infinite, we cannot have featur®),
which characterizes the HO potential.

APPENDIX In the above we assumed a specific form of E&R) for
V(x), but exactly the same situation obtains whéfx) is
replaced by any confining potential such the(x)|—o as
|x|—. Such aV(x) allows no discrete eigenstates. The
epotential may try to confine a particle, but the particle will
eventually leak out to infinity. This must have been known to
many people, in particular to those who considered models
of quark confinement. Let us also add that, as far as we
know, the inverse scattering problem is possible only for the

We show why it is not possible to have a HO potential of
the Lorentz vector type. Recall featuii¢ that we require for
a HO potential (See the beginning of Sec) The spectrum
of the HO potential consists of an infinite number of discret
states and no continuum states.

Consider the Dirac equation with a potential that is the
zeroth component of a Lorentz vector,

Hy(X)=Ey(x), H=ap+pm+V(X). (A1) Lorentz scalar and pseudoscalar potentials, but not for a
vector-type potential. This is probably related to the “impos-

Let us start withV(x) defined by sibility” of the HO potential in the vector case.

[1] E. Schrainger, Naturwissenshaftet4, 664 (1926; Ann. dropped. Also, the right-hand side of E@.16 of Ref. [2]
Phys.(Leipzig) 79, 489 (1926. should be multiplied by 12.

[2] Y. Nogami and F. M. Toyama, Phys. Rev.4X, 1708(1993. [9] R. Jackiw and C. Rebbi, Phys. Rev.13, 3398(1976; F. A.

[3] F. Cooper, A. Khare, R. Musto, and A. Wipf, Ann. Phys. B. Coutinho, Y. Nogami, and F. M. Toyama, Am. J. Phys,
(N.Y.) 187, 1 (1987. 904 (1988.

[4] For SUSY of nonrelativistic quantum mechanics see, e.g., Rf10] D. Ito, K. Mori, and J. Carriere, Nuovo Cimento 81, 119
Dutt, A. Khare, and U. P. Sukhatme, Am. J. Phg§, 163 (1967; P. A. Cook, Lett. Nuovo Cimentd, 419 (1971); M.
(1988. Moshinsky and A. Szczepaniak, J. Phys22 L817 (1989;

[5] I. Kay and H. E. Moses, J. Appl. Phy27, 1503(1956.

[6] J. F. Schonfeld, W. Kwong, J. L. Rosener, C. Quigg, and H. B.
Thacker, Ann. Phys(N.Y.) 128 1 (1980; P. Asthana and A.
N. Kamal, Z. Phys. A9, 37 (1983.

[7] F. M. Toyama, Y. Nogami, and Z. Zhao, Phys. Rev4A 897
(1993.

[8] Equation (10) corresponds to Eq(3.20 of Ref. [2]. In the
latter the inhomogeneous ternfA;e“* was inadvertently

M. Moreno and A. Zentellaibid. 22, L82 (1989.

[11] Y. Nogami and F. M. Toyama, Can. J. Phy4, 114(1996.

[12] F. M. Toyama, Y. Nogami, and F. A. B. Coutinho, J. Phys. A
30, 2585(1997.

[13] Y. Nogami and F. M. Toyama, Phys. Rev.5, 93 (1998.

[14] L. L. Foldy and S. A. Wouthuysen, Phys. ReV8, 29
(1950.



