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Harmonic oscillators in relativistic quantum mechanics
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For the Dirac equation in one space dimension, we examine the possibility of harmonic oscillator~HO!
potentials. A HO potential is such that it has only bound states and the energy levels are equally spaced.
Regarding their Lorentz transformation properties, there are three types of potentials for the Dirac equation:
vector, scalar, and pseudoscalar. HO potentials are possible for the scalar and pseudoscalar types, but not for
the vector type. We show how HO potentials can be constructed by means of the ‘‘inverse scattering method.’’
We also examine the behavior of a wave packet in the HO potentials so constructed. The behavior is, in most
of the cases, very similar to that of Schro¨dinger’s coherent wave packet of the nonrelativistic harmonic
oscillator.@S1050-2947~99!09802-9#

PACS number~s!: 03.65.Pm
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I. INTRODUCTION

The harmonic oscillator~HO! is one of the most basic an
useful solvable examples in nonrelativistic quantum mech
ics with the Schro¨dinger equation. Among many of its fea
tures, let us focus on the following two.~i! The HO has an
infinite number of bound states whose energies are
equally spaced.~ii ! The HO accommodates a coherent wa
packet that oscillates exactly like its classical counterpart
its shape~in terms of the density profile! remains rigid
throughout its motion@1#. These two features are close
related to each other.

We are interested in relativistic versions of the HO. W
confine ourselves to one space dimension throughout
paper. We seek potentials for the Dirac equation such
feature ~i! mentioned above holds for the positive-ener
states. We expect that such potentials also exhibit feature~ii !
in a good approximation. Regarding their behavior under
Lorentz transformation, there are three types of potentials
the Dirac equation: vector, scalar, and pseudoscalar. By
vector type we actually mean the zeroth component o
vector~such as the Coulomb potential!. Relativistic versions
of the HO can be constructed with potentials of the sca
and pseudoscalar types, but not with a potential of the ve
type. This can be done by means of the ‘‘inverse scatte
method.’’ For a set of given energy levels, the method
ables us to determine a potential that reproduces the s
energy levels.

One can first construct a potential by assumingN equally
spaced energy levels and then lettingN→`. In practice,
however, one stops at a large but finite value ofN. For the set
of assumedN energy levels, we take those of positive en
gies. If we do so, for the Lorentz scalar and pseudosc
potentials, the negative-energy levels also become equ
spaced. However, there is a gap between the lowest pos
energy and the highest negative energy. For this gap
choose a value different from the gap between two adjac
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positive- ~or negative-! energy levels. In this sense we re
quire feature~i! separately for the positive- and negativ
energy levels. In a certain situation of the scalar potentia
complication arises regarding the presence of a zero-en
bound state~‘‘zero mode’’!.

We show how a relativistic HO of the Lorentz scalar ty
can be constructed explicitly in Sec. II. In Sec. III we exam
ine the pseudoscalar type. We give explicit illustrations
HO potentials in Sec. IV. We also examine the tim
dependent behavior of a wave packet in the potentials
summary is given in Sec. V. In the Appendix we point o
that a HO-like potential of the vector type allows no bou
state.

II. SCALAR POTENTIAL

We follow Ref. @2# in which some supersymmetr
~SUSY! aspects of the Dirac equation with a Lorentz sca
potential in one dimension were discussed. Example D
that paper, in particular, gives a prescription for the inve
problem~in which a potential that reproduces a set of giv
energy levels is constructed!. The method can be summa
rized as follows. We use the same notation as in Ref.@2#:
c5\51. The Dirac equation that we consider is

Hc~x!5Ec~x!, H5ap1b@m1S~x!#, ~1!

where p52 i ]/]x, m is the rest mass of the particle, an
S(x) is the scalar potential. Sincem andS(x) are both scalar
quantities, the separation betweenm and S(x) is actually
arbitrary. The wave functionc has two components. We
denote the upper~lower! componentc1 (c2). For the Dirac
matricesa and b, we use the 232 Pauli matricesa5sy
and b5sx . With this choice ofa, the wave functions for
stationary states can be taken as real. Note thatszc(x) sat-
isfies Eq.~1! with E replaced by2E. Hence there is sym-
metry between positive and negative energies. The ortho
nality between the states of6uEu leads to *2`

` c1
2(x)dx

5*2`
` c2

2(x)dx5 1
2 .

Equation~1! can be reduced to the following SUSY pa
of Schrödinger equations@3,4#:
1
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PRA 59 1057HARMONIC OSCILLATORS IN RELATIVISTIC . . .
Hic i5S p2

2m
1Ui Dc i5ec i , e5

E22m2

2m
, ~2!

wherei 51 or 2, and

Ui~x!5
1

2mS ~m1S!22m27
dS

dxD . ~3!

The double sign of Eq.~3! is 2(1) for i 51 ~2!.
Consider the Dirac equation forE50, i.e.,e52m/2. Let

the upper~lower! component of a solution of this equation b
f1 (f2). Thenf i satisfies

S 2
1

2m

d2

dx2
1Ui D f i52

m

2
f i . ~4!

If S andf i are related by

m1S~x!57
d

dx
lnf i~x!, ~5!

Eq. ~2! together with Eq.~3! is satisfied. The reason why w
are interested in Eqs.~4! and ~5! is the following. For an
assumed set of energy levels, we can determineUi by means
of the Kay-Moses method@5,6#. Then one may try to deter
mine S by solving Eq.~3! for unknownS. This is not easy.
However,f i can be easily determined as a scattering w
function for the Kay-Moses potential. Oncef i is found, S
immediately follows from Eq.~5!. It is sufficient to usei
51 or 2. If the lowest eigenvalue of Eq.~2! for i 51 is above
2m/2, then we can choosef1 such that it has no node. Thi
is true in all the cases that we are going to consider. Then
~5! furnishes a nonsingular potentialS(x). For theS(x) so
determined, the partner potentialU2 can be determined by
Eq. ~3!. Regarding the relative sign between the asympto
values ofS(`) andS(2`), we classifyS(x) into two types,
I and II. If S(`) and S(2`) are of the same sign, we sa
that S(x) is of type I. If they are of opposite signs,S(x) is
said to be of type II. Types I and II are what we referred
as nontopological and topological, respectively, in Ref.@2#.

We are now ready to write down the inverse proble
prescription. Assume a sequence of positive-energy eig
values of H, E1,E2,E3,•••,EN . The following pre-
scription works for anyEn’s as long as they are non
negative. For the HO that we are interested in, we assume
equally spaced sequence

En5E11~n21!v, ~6!

where n51,2,3, . . . ,N and v.0 is a constant. IdeallyN
should bè , but in practice we take it to be finite but larg

Defineen’s andkn’s such that

en52
kn

2

2m
5

En
22m2

2m
. ~7!

Then, following Kay and Moses@5–7#, we can find the po-
tential U1(x) such that the Schro¨dinger equation~2! for i
51 has eigenvaluesen . Actually, there is an infinite family
of such potentials. For such aU1 we can findf1 . When the
e

q.

ic

n-

he

f1 is found, the potentialS(x) that leads to the assume
energy eigenvalues of the Dirac equation is given by Eq.~5!.

A prescription for the above senario goes as follows.
troduce anN3N matrix Â(x) with its marix elements

Âi j ~x!5~AiAj !
1/2

e~k i1k j !x

k i1k j
, ~8!

where Ai ( i 51,2, . . . ,N) are arbitrary positive constants
The potentialU1(x) is given by

U1~x!52
1

m

d2

dx2
ln$det@ I 1Â~x!#%, ~9!

whereI stands for theN3N unit matrix. Equation~2! with
the aboveU1 has the scattering state solution

x~k,x!5S 11(
i 51

N AAigi~x!ek i x

ik1k i
D eikx, ~10!

wherek25E22m2 and gi(x)’s are defined by theN linear
algebraic equation@8#

(
j 51

N

@d i j 1Âi j ~x!#gj~x!1AAie
k i x50. ~11!

If we setk5 im, x( im,x) andx( im,2x) satisfy Eq.~2! with
e52m/2. Hence thef1 of Eq. ~4! can be taken as an arb
trary linear combination ofx( im,x) and x( im,2x). If we
take x( im,x) or x( im,2x) for f1 , then the ensuingS(x)
becomes type I. If we combinex( im,x) andx( im,2x), we
obtain anS(x) of type II.

Let us first take type I~nontopological!. Assume that

f1~x!5x~ im,x!. ~12!

For an arbitrary choice ofAi ’s, U1(x) and S(x) have no
symmetry in general. If we chooseAi ’s as

Ai

2k i
5)

j Þ i

k i1k j

uk i2k j u
, ~13!

U1(x) becomes symmetric, i.e., an even function ofx. In this
case, however, theS(x) that ensues is not symmetric. A
more interesting choice ofAi is

Ai

2k i
5S m2k i

m1k i
D 1/2

)
j Þ i

k i1k j

uk i2k j u
, ~14!

which leads toU1(x)5U2(2x) and symmetricS(x). For
the illustrations that we present in Sec. III, we use Eq.~14!
for type I.

For type II ~topological!, we can assume that

f1~x!5x~ im,x!1x~ im,2x!. ~15!

This f1(x) is an even function ofx. Thenm1S(x) becomes
an odd function ofx. The U1(x) and U2(x) both become
even functions ofx, irrespective of the choice ofAi ’s. In the
illustrations of Sec. III we use Eq.~13!.
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1058 PRA 59F. M. TOYAMA AND Y. NOGAMI
Now that the potentialS(x) is determined and the as
sumed positive-energy eigenvalues are reproduced, one
rally asks if theS(x) leads to any other eigenvalues ofH. It
can be shown that there are no other positive-energy bo
states @2#. There is symmetry between positive- an
negative-energy spectra. The negative-energy eigenva
are 2E1.2E2.2E3.•••.2EN . The corresponding
wave functions are, as we pointed out below Eq.~1!, given
by szc. If S(x) is type I, there is no bound state ofE50.

If S(x) is type II, however, there is a bound state w
E50 @9#. The wave function of the bound state ofE50 is
given by

c1~x!50, c2~x!5N0expS E
0

x

@m1S~x!#dxD , ~16!

whereN0 is an appropriate normalization constant. It is u
derstood thatm1S(x),0 (.0) for x→` (2`). It can be
shown thatc2(x)51/f1(x), wheref1(x) is that of Eq.~15!.
Alternatively, one can includeE50 in the set of assume
energy levels and determinec2(x) as one of the Kay-Mose
wave functions. In the actual calculations we found this
ternative method more straightforward. This concludes
prescription of the inverse method for the Lorentz scalar
tential.

Before ending this section let us mention special ca
with m50. Assume thatS(x) is an infinite square well po
tential of type I:

S~x!5H ` if uxu.a

0 if uxu,a.
~17!

Then we obtain

E56
~2n21!p

4a
, ~18!

wheren51,2, . . . . Theentire ~positive- and negative-! en-
ergy spectrum is equally spaced. The reason why ther
only one value of energy separation is that the model c
tains only one parameter with dimension, i.e.,a.

For an infinite potential of type II,

S~x!5H 7` if uxu.a

0 if uxu,a,
~19!

where the double sign is minus~plus! for x.0 (x,0), we
obtain

E5
np

2a
, ~20!

where n50,61,62, . . . . All energy levels are equall
spaced, including the zero mode.

III. PSEUDOSCALAR POTENTIAL

The Dirac equation that we consider is

Hc~x!5Ec~x!, H5a@p2 ib f ~x!#1bm. ~21!
tu-

nd

es

-

l-
e
-

s

is
-

Note thatc†abc is a pseudoscalar quantity. For the Dira
matricesa and b, we usea5sy and b5sz . This b is
different from what we used in Sec. II. Again let the upp
~lower! component ofc be c1 (c2). Then Eq.~21! can be
manipulated into the SUSY pair of the Schro¨dinger equa-
tions

Hic i5S p2

2m
1Wi Dc i5ec i , e5

E22m2

2m
, ~22!

Wi~x!5
1

2mS f 27
d f

dxD , ~23!

wherei 51 or 2 and the double sign in Eq.~23! is 2(1) for
i 51 ~2!. It is known thate is non-negative. Consider th
Dirac equation forE5m ande50. Let the upper componen
of the wave function bef1 . Thef1 satisfies

2
1

2m

d2f1

dx2
1W1f150. ~24!

The f1 and f are related by

f ~x!52
d

dx
lnf1~x!. ~25!

In the special case off (x)5mvx, we obtain

Wi~x!5
1

2
~mv2x27v!, ~26!

where the double sign is the same as that of Eq.~23!. This
case is known as the Dirac oscillator@10–12#. The SUSY
Schrödinger equations and hence the Dirac equation are a
lytically solvable. The eigenvalues ofHi are equally spaced
but those ofH are not. This is not the HO that we are inte
ested in now. As shown in Refs.@11,12# in detail, the behav-
ior of a wave packet in the Dirac oscillator potential is ve
different from that of Schro¨dinger’s coherent wave packet.

Now assume a sequence of positive-energy eigenvalue
H, E1,E2,•••,EN . The Ei ’s can take any positive val
ues not smaller thanm. In the actual calculation, we take th
equally spaced positive-energy levels of Eq.~6!. Assume that
W1(x) is given by

W1~x!5
k1

2

2m
1U1~x!, ~27!

whereU1(x) is that of Eq.~9!. Then Eq.~22! for c1 hasN
bound states withN eigenvalues@13#:

e i5
Ei

22m2

2m
5

k1
22k i

2

2m
. ~28!

There are no other positive-energy bound states. For
assumed eigenvalues ofH, i.e., Ei ’s, thek i ’s can be chosen
arbitrarily as long as they are related to theEi ’s through Eq.
~28!. Apart from a constant factor,f1 can be taken as

f1~x!5x~ ik1 ,x!, ~29!
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wherex( ik1 ,x) is thex(k,x) of Eq. ~10! with k5 ik1 . Now
that the f1 is known, the potential functionf (x) can be
determined by Eq.~25!. Then we can go on to determine th
SUSY partnerW2 . About the symmetry ofW1 andW2 , let
us chooseAi ’s according to Eq.~13! so thatW1(x) is sym-
metric. It then follows thatf (x) is an odd function ofx and
W2(x) an even function ofx. Note that there was an add
tional parameterl in Ref. @13#. We have chosenl51 so
that U2(x) becomes symmetric.

The negative-energy eigenvalues are2E2.2E3.•••.
These are all less than2m. Note also that there is no boun
state with2E1 . Let us examine the relation between t
wave functions of a pair of bound states of energiesEn and
2En,0. Let the upper~lower! component of the normalize
wave function of the positive-energy state bec1 (c2) and
those of the negative-energy statew1 (w2). Then we find
that c i}w i for both of i 51 and 2. This can be shown b
operatingsx on the Dirac equation~21! from the left and
then replacingf (x) with 2 f (x). Note that whenf (x)→
2 f (x), i 51↔2 in Eqs.~22! and~23!. It is convenient to
introduce functionsx i such that

x i~x!}c i~x!, E
2`

`

x i
2~x!dx51. ~30!

It then follows from Eq.~21! that the components of th
wave functions of a pair of positive- and negative-ene
states~of 6En) can be expressed as

c i~x!5cix i~x!, w i~x!5ci8x i~x!, ~31!

where

ci5AEn6m

2En
, ci856AEn7m

2En
. ~32!

For the double sign we take the upper~lower! one for i 51
~2!. Finally, if we setm50, the model becomes equivalent
that of the scalar potential of type II withm50, which we
discussed at the end of Sec. II.

FIG. 1. The solid line shows the scalar HO potentialS(x), type
I, constructed in Sec. IV. Units are such thatc5\5m51. The
dashed line shows the nonrelativistic HO potential1

2 mv2x2 with
m51 andv5DE50.03.
y

IV. HO POTENTIALS: ILLUSTRATIONS

In this section we explicitly construct scalar HO potentia
of types I and II and also a pseudoscalar HO potential.
then examine the behavior of wave packets in the potent
We will show eleven figures, four each for types I and II
the scalar, and three for the pseudoscalar. We setm51
throughout this section.

For the type I scalar, we assume the lowest positive
ergy E150.4, the energy separationDE5v50.03, and the
number of positive-energy levelsN520. In addition, there
are 20 negative-energy states. In somewhat similar but n
relativistic inverse problems, Schonfeldet al. took N58 and
Asthan and Kamal tookN55 @6#. With N520 we obtain far
better convergence. Figure 1 showsS(x). It fluctuates. This
is becauseN is finite. The fluctuations will disappear asN
→`. The dashed line shows the nonrelativistic HO poten
1
2 mv2x2 with m51 andv50.03. The relativistic HO poten
tial is flatter at the bottom than its nonrelativistic counterpa
If we let m→0 and N→`, S(x) approaches the infinite
square well potential of Eq.~17!.

FIG. 2. Expansion coefficients of Eq.~33! for the wave packet
in the scalar HO potential of type I. Units are such thatc5\5m
51. The dots are forC1

(n) and the triangles are forC2
(n) .

FIG. 3. Density profile of the wave packet as a function ofx and
t in the scalar HO potential of type I. Units are such thatc5\
5m51.
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1060 PRA 59F. M. TOYAMA AND Y. NOGAMI
For the wave packet, we start~at t50) with the lowest
positive-energy state that is shifted such that its center i
x0510. The time-dependent wave functionc(x,t) of the
wave packet can be written as a superposition of station
states

c~x,t !5(
n

C1
~n!c1

~n!~x,t !1(
n

C2
~n!c2

~n!~x,t !, ~33!

where the subscript1 or 2 refers to the sign of the energy
The coefficients are all real. In principle, we should inclu
continuum states. Figure 2 shows the coefficients. WithN
520 the expansion has converged very well, which me
that the continuum contribution is negligible. Figure 3 sho
the density profile of the wave packet as a function ofx and
t. This is very much like that of Schro¨dinger’s nonrelativistic
coherent wave packet. The shape of the wave packet is
~but not exactly! maintained. Figure 4 compares the moti
of the centroid̂ x& of the wave packet andx0 cosvt. These
two are almost indistinguishable. The centroid mov
smoothly.Zitterbewegungis not noticeable.

FIG. 4. Comparison of the motion of the centroid^x& ~solid
line! in the scalar HO potential of type I andx0 cosvt, wherex0

510 and v5DE50.03 ~dotted line!. The two lines are almos
indistinguishable. Units are such thatc5\5m51.

FIG. 5. Scalar HO potentialS(x), type II, constructed in Sec
IV. Units are such thatc5\5m51.
at

ry

s
s

ell
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For type II we assume the same positive- and negat
energy states as we did for type I. In addition, there is a z
mode. Figure 5 showsS(x). As x→6`, m1S(x)→7k1
57m. We construct a wave packet in the same way as
type I, but we include the zero mode. Figure 6 shows
expansion coefficients. Note that the amplitude for the z
mode (n50) is substantial. Figure 7 shows the density p
file of the wave packet as a function ofx andt. The shape of
the wave packet is not well maintained. This is probably d
to the admixture of the zero mode that does not oscilla
Figure 8 compares the motion of the centroid^x& and
x0 cosvt. These two are fairly close to each other except t
the centroid oscillates with small amplitude. By magnifyin
the graph, we find that the period of oscillations is appro
mately 7. These oscillations can be interpreted asZitter-
bewegungthat is due to the admixture of negative-ener
states.~See the last paragraph of this section.!

Let us now turn to the pseudoscalar case. We again
sume the lowest positive energyE150.4, the energy separa
tion DE5v50.04, and the number of positive-energy leve

FIG. 6. Expansion coefficients for the wave packet in the sca
HO potential of type II. The dots are forC1

(n) and the triangles are
for C2

(n) . The coefficient for the zero mode (n50) is shown with a
square. Units are such thatc5\5m51.

FIG. 7. Density profile of the wave packet as a function ofx and
t in the scalar HO potential of type II. Units are such thatc5\
5m51.
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PRA 59 1061HARMONIC OSCILLATORS IN RELATIVISTIC . . .
N520. Thek1 of Eq. ~28! can be chosen arbitrarily, but th
degree of localization of the wave packet is sensitive tok1 .
We takek151.46. We have chosen this value ofk1 so that
the wave packet is well localized. Figure 9 showsf (x). As
x→6`, f (x)→6k1 .

We construct a wave packet in the same way as in Sec
except that we choosex055 this time. Figure 10 shows th
expansion coefficients. WithN520 the expansion has con
verged well.~The stationary state of energy2E1 is absent.!
Figure 11 shows the density profile of the wave packet a
function of x and t. This is again very much like that o
Schrödinger’s nonrelativistic coherent wave packet and
shape of the wave packet is well~but not exactly! main-
tained. The centroid̂x& closely followsx0 cosvt, wherev
5DE. The centroid exhibits slightZitterbewegungwith a
period of about 3.

In order to confirm that the small oscillations are a ma
festation ofZitterbewegung, we repeated the calculation fo
the pseudoscalar potential in the Foldy-Wouthuysen re
sentation@14,12#. In this representation the positive- an
negative-energy states are separated. The wave functio

FIG. 8. Comparison of the motion of the centroid^x& ~solid
line! in the scalar HO potential of type II andx0 cosvt, wherex0

510 and v5DE50.03 ~dotted line!. Units are such thatc5\
5m51.

FIG. 9. Pseudoscalar HO potentialf (x) constructed in Sec. IV.
Units are such thatc5\5m51.
III

a

e

-

e-

of

the positive-energy states consist of only the upper com
nents. We found that the trajectory of the centroid in th
representation is indeed smooth and indistinguishable f
x0 cosvt. For the scalar potenial it is difficult to work out th
Foldy-Wouthuysen representation, but we believe that
oscillations that we have seen in Fig. 8 are due toZitter-
bewegung.

V. SUMMARY

We constructed relativistic versions of the HO potent
for the Dirac equation in one dimension. They are charac
ized by the positive-energy levels that are equally spaced
far as we know, this is the first time that such potentials
presented. We did this by means of the ‘‘inverse scatter
method.’’ We considered Lorentz scalar and pseudosc
potentials. If the potential is~the zeroth component of! a
Lorentz vector, it is not possible to construct a HO potent
There are two types of the scalar potential, type I~nontopo-
logical! and type II ~topological!. The relativistic HO of

FIG. 10. Expansion coefficients for the wave packet in the ps
doscalar HO potential. The dots are forC1

(n) and the triangles are
for C2

(n) . Units are such thatc5\5m51.

FIG. 11. Density profile of the wave packet as a function ox
and t in the pseudoscalar HO potential. Units are such thatc5\
5m51.
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1062 PRA 59F. M. TOYAMA AND Y. NOGAMI
the type I scalar is a very natural extension of the nonre
tivistic HO.

We examined the behavior of a wave packet in the re
tivistic HO potentials. We started with the wave function th
was obtained by shifting the state of the lowest positive
ergy to a certain position. In the type I scalar and pseu
scalar potentials, the wave packet behaves much like Sc¨-
dinger’s coherent wave packet. In the scalar potential of t
II, the behavior of the wave packet is somewhat complica
As we discussed, this is related to the presence of the
mode. The wave packet exhibitsZitterbewegung, in particu-
lar, in the type II scalar and the pseudoscalar cases. If
take the Foldy-Wouthuysen representation, however, theZit-
terwebegungshould disappear. We confirmed this for th
pseudoscalar HO potential.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education
Japan and the Natural Sciences and Engineering Rese
Council of Canada.

APPENDIX

We show why it is not possible to have a HO potential
the Lorentz vector type. Recall feature~i! that we require for
a HO potential.~See the beginning of Sec. I.! The spectrum
of the HO potential consists of an infinite number of discr
states and no continuum states.

Consider the Dirac equation with a potential that is t
zeroth component of a Lorentz vector,

Hc~x!5Ec~x!, H5ap1bm1V~x!. ~A1!

Let us start withV(x) defined by
s.

, R

B

-

-
t
-
-

ro
e

d.
ro

e

rch

f

e

V~x!5H 1

2
mv2x2 if uxu,a

V~a!5
1

2
mv2a2 if uxu.a.

~A2!

In the region ofuxu.a where the potential is a constant, th
wave function is of the form ofeikx or e6kx depending on
the sign of@E2V(a)#22m2. A bound state can be foun
only if its energyE is in the range of@E2V(a)#22m2,0,
i.e.,

m1V~a!.E.2m1V~a!. ~A3!

There exist continuum states withE that is outside the range
of Eq. ~A3!. Therefore, when we keepa finite, we can have
discrete states~but only finite in number!. In addition, there
are continuum states. If we leta→`, the energy of a bound
state ~if any! becomes infinite. This implies that ifV(x)
5 1

2 mv2x2 in the entire space, the Hamiltonian with th
V(x) has no finite, discrete eigenvalues. It is clear that
either case of finite or infinitea, we cannot have feature~i!,
which characterizes the HO potential.

In the above we assumed a specific form of Eq.~A2! for
V(x), but exactly the same situation obtains whenV(x) is
replaced by any confining potential such thatuV(x)u→` as
uxu→`. Such aV(x) allows no discrete eigenstates. Th
potential may try to confine a particle, but the particle w
eventually leak out to infinity. This must have been known
many people, in particular to those who considered mod
of quark confinement. Let us also add that, as far as
know, the inverse scattering problem is possible only for
Lorentz scalar and pseudoscalar potentials, but not fo
vector-type potential. This is probably related to the ‘‘impo
sibility’’ of the HO potential in the vector case.
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