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Temporal quantum theory
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We propose a framework for temporal quantum theories for the purpose of describing states and observables
associated with extended regions of space-time quantum mechanically. The proposal is motivated by Isham’s
history theories. We discuss its relation to Isham’s history theories and to standard quantum mechanics. We
generalize the Isham-Linden information entropy to the present context.@S1050-2947~99!07902-0#
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I. INTRODUCTION

Standard nonrelativistic quantum mechanics is based
notions of states and observables at fixed instants of time
Hilbert space quantum mechanics the states at some
time are represented by positive trace class operators
trace one on some Hilbert spaceH and the observables ar
identified with self-adjoint operators onH. The time evolu-
tion is governed by a semigroup$U(t8,t)% of unitary opera-
tors onH.

It has been felt by several authors that the notions
observables and states at a fixed time slice are idealiza
and might be inappropriate when it comes to describing r
tivistic situations quantum mechanically. For instance, in
algebraic approach to quantum field theory, the theory
intrinsically characterized by associating with every open
gionO of space-time an algebraA(O) of operators on some
Hilbert spaceO→A(O) @1#. Hegerfeldt’s works@2# about
localization observables are another example of pap
studying observables associated with bounded region
space-time. However, the notion of an observable associ
with an extended region in space-time is foreign to the c
ceptual framework and formalism of standard quantum m
chanics. Therefore,a priori it is not clear whether and, if so
how the formalism of quantum mechanics has to be chan
to include such space-time observables associated with
tended regions.

A downright investigation to derive the possible structu
of a space-time quantum theory~and in particular the pos
sible notions of temporal state and observable! from the
mathematical structure of standard quantum mechanics
been undertaken by Isham@3#, who laid down a set of axi-
oms forhistory quantum theories. With his history quantum
theories Isham pointed out an intrinsically quantu
mechanical formalism dealing with space-time observab
and states. The main paradigm of the approach is to desc
space-time observables and states by operators on ce
tensor product Hilbert spaces. This is very natural and wo
fine as long as we consider finite-dimensional Hilbert spa
and a discrete set of time points, but when one takes
account infinite-dimensional Hilbert spaces or infinite
many time points or continuous time, the tensor prod
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paradigm is quite unnatural from a mathematical point
view. In particular, the decoherence functional, which rep
sents the state in Isham’s approach, is in general a m
ematically unsatisfactorily behaving object~this will be dis-
cussed in more detail in Sec. II below!. Another problem of
this approach is that the only presently known concrete
ample for a history quantum theory is standard quantum
chanics over a finite-dimensional Hilbert space.

In the present paper we take a fresh look at the probl
The target of the present investigation is to understand
physical significance of the difficulties within the mathema
cal framework in Isham’s program more properly and to p
forth a different, mathematically more natural framework f
space-time quantum theories that on the one hand, is b
enough to embrace Isham’s approach in the fin
dimensional case, but, on the other hand, goes significa
beyond it.

The paper is organized as follows. In Sec. II we give
account of Isham’s program. In Sec. III we put forth o
mathematical framework for space-time quantum mecha
and show that our framework contains all known examp
of well-defined general history quantum theories as a s
class. We shall also discuss in which sense the framew
covers standard quantum mechanics in the infin
dimensional case. In Sec. IV we will discuss the definition
an information entropy for space-time quantum theory tha
a generalization of the Isham-Linden information entropy
our approach. Throughout this work we use the followi
notation.H always denotes the single-time Hilbert space
ordinary quantum mechanics andK always denotes the
‘‘proposition’’ Hilbert space introduced in Sec. III.H or V
denote general Hilbert spaces or tensor product Hilb
spaces. The set of bounded operators on some Hilbert s
H is denoted byB(H), the set of compact operators onH by
K(H), and the set of projection operators on some Hilb
spaceH by P(H). We adopt the convention that all inne
products and sesquilinear forms on Hilbert spaces are lin
in their second variable and conjugate linear in the first va
able.

II. HISTORY QUANTUM THEORIES

A. Generalities

In the mathematical formulation of standard quantum m
chanics every quantum-mechanical system is character
1045 ©1999 The American Physical Society
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1046 PRA 59OLIVER RUDOLPH
by some Hilbert spaceH and some semigroup of unitary tim
evolution operators acting onH. The possible states of th
quantum-mechanical system at some fixed instant of time
identified with the trace class operators onH and the possible
observables are identified with the self-adjoint operators
H. It is well known that according to the spectral theore
every observable can be disintegrated into so-called ye
observables represented by projection operators onH. The
projection operators represent the elementary proposit
about the system. The quantum-mechanical probability
the proposition represented by the projectionP is in the state
r then given by trH(Pr).

As already anticipated above, in the history approach
aims at including space-time observables in the quant
mechanical formalism. In a first moderate step one consid
a finite sequence of projection operatorsPt1

, . . . ,Ptn
associ-

ated with timest1 , . . . ,tn that corresponds to a time se
quence of propositions. Such a sequence is called a hom
neous history. The quantum-mechanical probability of
history h.$Pt1

, . . . ,Ptn
% is given by

trH~Ptn
•••Pt1

rPt1
•••Ptn

!

~notice that we work in the Heisenberg picture and suppr
for notational simplicity the time dependence of the ope
tors!. Slightly abstracting from this expression one defin
thedecoherence functional dr on pairs of homogeneous his
tories by@4,5#

dr~h,k!ªtrH~Ptn
•••Pt1

rQt1
•••Qtn

!, ~1!

where h.$Pt1
, . . . ,Ptn

% and k.$Qt1
, . . . ,Qtn

%. Histories
that differ from each other only by the insertion or the om
sion of the unit operator at intermediate times are physic
equivalent and identified with each other.

The next major step in the construction of a general h
tory theory is to embed the set of all~equivalence classes o!
homogeneous histories injectively into a larger spaceV,
which is endowed with a partially defined sum, such that
decoherence functionaldr can be extended unambiguous
to a bounded biadditive functionalDr :V3V→C subject to
the further conditions~i! Dr(u,v)5Dr(v,u)* for all u,v
PV and ~ii ! Dr(u,u)>0 for all uPV. @In the previous lit-
erature about general history quantum theories the spaV
carried usually some additional structure, e.g., that of a
tice or a unital *-algebra. In the history approach put forth
Gell-Mann and Hartle~see@6–9# and below! the embedding
of the homogeneous histories into the larger space of
called class operatorsis not injective.# The homogeneous
histories are identified with their images inV, which are also
called homogeneous histories. The elements inV that are not
an image of some homogeneous history are calledinhomo-
geneous histories. All elements inV are interpreted as th
general~measurable! space-time propositions in the theory

A subsetV0 of V is called aconsistent set of historiesif
Dr induces a probability measurep:V0→C, p(v0)
ªDr(v0 ,v0) on V0 . The consistent subsets ofV are exactly
those subsetsV0 that can be endowed with a Boolean stru
ture and satisfy ReDr(u0 ,v0)50 for all mutually disjoint
u0 ,v0PV0 . The quantum character of the theory and t
re
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principle of complementarity exhibit themselves in the fa
that there are several mutually inconsistent consistent sub
of V @5#.

B. Isham’s history theories

In the history approach developed by Isham and
workers@3,10–18# and other authors@19–28# the crucial ob-
servation was that homogeneous histories as above ca
mathematically conveniently described by using a ten
product formalism. Correspondingly, the homogeneous
tory h.$Pt1

, . . . ,Ptm
% is mapped to the projection operato

Pt1
^ ••• ^ Ptm

on the tensor product Hilbert spac

^ t iP$t1 , . . . ,tm%Ht i
whereHt i

5H for all i. It is mathematically
convenient to postulate that the space of all histories is gi
by P( ^ t iP$t1 , . . . ,tn%Ht i

). Some of theinhomogeneousele-

ments withinP( ^ t iP$t1 , . . . ,tn%Ht i
) can be straightforwardly

interpreted as coarse grainings of homogeneous historie~in
the proposition picture these histories represent compo
propositions such as ‘‘h1 or h2 are true,’’ etc.!. However, if
the single-time Hilbert spaceH is infinite dimensional there
are always some elements inP( ^ t iP$t1 , . . . ,tn%Ht i

) that admit
no physical interpretation as coarse graining of homogene
histories.

Again, histories that differ from each other only by th
insertion or the omission of the unit operator at intermedi
times are physically equivalent and identified with ea
other. We shall refer to this natural equivalence relation
tween histories as thecanonical equivalenceand use the
symbol;c in the following. For every historyh defined on
^ t iP$t1 , . . . ,tn%Ht i

, whereHt i
5H for all i, consider its equiva-

lence class«(h) of histories. We say that a finite set of tim
points s5$t1 , . . . ,tm% is the support of hif ~i! there is an
element in«(h) defined on̂ t iPsHt i

and~ii ! for every proper

subset s8 of s there is no element in«(h) defined on
^ t iPs8Ht i

. Mathematically speaking, the syste

$P(Ht1
^ ••• ^ Htn

)u$t1 , . . . ,tn%,R% of sets of projection op-
erators associated with all possible finite sets of time po
forms adirectedor inductive system. The space of all histo-
ries is identified with the disjoint union over the sets ofall
projections on all finite tensor product Hilbert spaces of
form ^ t iP$t1 , . . . ,tn%Ht i

modulo the physical equivalence;c

or, mathematically more precise, with thedirect or inductive
limit of the directed system of histories

$P~Ht1
^ •••^ Htn

!u$t1 , . . . ,tn%,R%

~a proof for the existence of this direct limit can be found, f
instance, in@19#!.

In an important paper Isham, Linden, and Schreckenb
@14# showed that if the single-time Hilbert spaceH is finite
dimensional, the decoherence functionaldr defined on pairs
of homogeneous histories can be unambiguously extende
a bounded biadditive functionalDr on the space of all his-
tories. Moreover, they showed that for fixedn and r there
exists a trace class operatorXr on ^ 2nH such thatDr can be
written as

Dr~u,v !5tr^ 2nH~u^ vXr!
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PRA 59 1047TEMPORAL QUANTUM THEORY
for all u,vPP(Ht1
^ •••^ Htn

).

Abstracting from this result the properties of general d
coherence functionals, Isham@3# arrived at an axiomatic
characterization of general history quantum theories acc
ing to which a general history quantum theory is given by
spaceU of histories and by its spaceD of decoherence func
tionals. The histories inU and the decoherence functionals
D represent the~measurable! propositions and the states
the theory, respectively. The space of historiesU is required
to have a partial sum defined on it and to contain a unit1.
Every decoherence functionaldPD is required to be
bounded and additive in both arguments and has to satisf~i!
d(1,1)51, ~ii ! d(x,x)>0, and~iii ! d(x,y)5d(y,x)* for all
historiesx,yPU.

A choice for the space of histories in a general histo
quantum theory suggesting itself is the set of projection
eratorsP(H) on some Hilbert spaceH or, slightly more
general, the set of projection operatorsP(A) in a von Neu-
mann algebraA. In the case that the space of histories
given byP(H) for some finite-dimensional Hilbert spaceH
Isham, Linden, and Schreckenberg@14# showed that for ev-
ery bounded decoherence functionald on P(H) there exists
a trace class operatorXd onH^H such that

d~x,y!5trH^H~x^ yXd! ~2!

holds for all x,yPP(H). Subsequently, Isham and co
workers studied different aspects of general history quan
theories over finite-dimensional Hilbert spaces in some
tail, buoying up the fruitfulness of the tensor-product-bas
approach.

On the other hand, the use of tensor product space
describe temporarily extended objects has its limitations.
spite some interesting research and progress made rec
@12,15#, the incorporation of continuous histories into th
approach is still a challenge and the tensor-product-ba
approach does not seem to be well adapted to it.

Recently the present author and Wright@24# showed that
if the single-time Hilbert spaceH in standard quantum me
chanics is infinite dimensional, then no decoherence fu
tional dr @corresponding to the initial stater; see Eq.~1!#
defined on homogeneous histories can be extended
bounded or even to a finitely valued functional on the sp
of ‘‘all histories’’ in Isham’s approach. In@24# an example
for an elementh`PP(Ht1

^ •••^ Htn
) was constructed suc

that no decoherence functionaldr assumes a finite value a
h` if extended~see also Appendix B!. One possible way ou
of this dilemma is to allow for decoherence functionals
suming values in the Riemann sphereCø$`%. Historiesh
with d(h,h)5` are then calledsingular histories for the
decoherence functionald. Histories hPP(Ht1

^ •••^ Htn
)

with dr(h,h).1 or dr(h,h)5` are in no consistent set an
represent no physical propositions in the statedr . Adopting
this point of view, one could simply forget about the singu
histories. However, in@24# it has been shown that there a
certain histories inP(Ht1

^ •••^ Htn
) that are singular for

every decoherence functionaldr . Thus these singular histo
ries will be in no consistent set of histories for all statesdr .
This result indicates that in the infinite-dimensional case
spaceP(Ht1

^ •••^ Htn
) contains unphysical elements th
-
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represent no physical histories at all. We shall propose
alternative mathematical framework for the description
temporal quantum theories and we shall show that the de
herence functionaldr of the history version of standar
quantum mechanics~when cast into the present framewor!
is a finitely valued functional.

For the convenience of the reader and for later refere
we cite the following representation of the standard decoh
ence functional as an in general infinite sum. Forn-time
homogeneous historiesp andq and for a finite-dimensiona
or infinite-dimensional single-time Hilbert spaceH @14,24#
we have

dr~p,q!5 (
j 1 , . . . ,j 2n

v j 1
^ẽ j 1 , . . . ,j 2n

,~p^ q!e j 1 , . . . ,j 2n
&,

~3!

where we have introduced the abbreviations

e j 1 , . . . ,j 2n
ªc j 1

^ ej 2n

2n
^ •••^ ej n12

n12
^ ej 2

2
^ •••^ ej n11

n11 ,

ẽ j 1 , . . . ,j 2n
ªej 2n

2n
^ •••^ ej n11

n11
^ c j 1

^ ej 2

2
^ •••^ ej n

n

and $ej k

k % are orthonormal bases ofH for all 2<k<2n,

wherer5( iv i Pc i
denotes the spectral resolution ofr, and

Pc i
denotes the projection operator onto the subspace oH

spanned byc i , andv i>0 for all i. We shall always assum
that the orthonormal system$c i% has been extended to a
orthonormal basis ofH.

C. Gell-Mann–Hartle history theories

The main predecessor to Isham’s history quantum th
ries was the approach put forth by Gell-Mann and Har
@6–9#. In this approach the homogeneous histories
mapped to so-called class operators

h.$Pt1
, . . . ,Ptn

%→C~h!ªPt1
•••Ptn

.

Notice that again we use the Heisenberg picture and supp
the explicit time dependence of the operators. Class op
tors act on the single-time Hilbert spaceH. The inhomoge-
neous histories are indirectly defined by so-calledcoarse
graining prescriptions. An inhomogeneous history in th
Gell-Mann–Hartle approach is in general a sum of class
erators that correspond to mutually exclusive homogene
histories. While the decoherence functionaldr extends to
inhomogeneous class operators straightforwardly~by linear-
ity in both arguments! and the interpretation of the inhomo
geneous histories is equally straightforward, the formali
essentially stays on the level of homogeneous histories
we are lacking a simple and direct characterization of
mathematical structure of the space of class operators, w
makes the Gell-Mann–Hartle approach virtually incomp
hensible to a rigorous mathematical investigation: Given
arbitrary operatorc in the unit sphere ofB(H), we have no
simple criterion to decide whether or notc is a class operato
and if so, whether it is a homogeneous class operator o
inhomogeneous class operator. Moreover, as already m
tioned above, the map of homogeneous histories to class
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1048 PRA 59OLIVER RUDOLPH
erators is by no means injective and in general there is m
than one homogeneous history corresponding to a g
class operator.

III. TEMPORAL QUANTUM MECHANICS

A. General framework

In this section we put forth our framework for space-tim
quantum mechanics. We first state the main principles w
out further motivation and then proceed to show how st
dard quantum mechanics and Isham’s general history th
ries over finite-dimensional Hilbert spaces fit into t
scheme, which serves as ana posteriorimotivation.

The basic ingredient in our framework oftemporal quan-
tum theoriesis a Hilbert spaceK whose elements are inte
preted as the~measurable! space-time propositions about th
system. Actually, not all elements inK represent physically
meaningful propositions; see below. In spite of this we sh
refer to the Hilbert spaceK as the space of propositions an
to the elements ofK simply as propositions. We assume th
there exists one distinguished element inK, denoted bye,
that represents the indifferent proposition that is always tr
The trivial proposition complementary toe that is always
false is identified with the zero vector inK.

We shall argue that the norm induced by the inner prod
^ , & in K subsumes thea priori structural information abou
the propositions that is encoded within the propositions H
bert spaceK. It is a quantitative measure for the fine graine
ness of propositions within the descriptive scheme provi
by K, i.e., the smaller̂b,b& is, the more ‘‘fine grained’’ the
proposition corresponding tobPK is. More specifically, we
shall see below that the amount of information associa
with a propositionbPK is given by2 ln@p(b)/^b,b&# @where
p(b) denotes the probability ofb], which is just the differ-
ence between the information associated with the probab
distribution and the structural information encoded in^ , &.

It is very important not to confuse the ‘‘temporal’’ Hilber
spaceK with the single-time Hilbert spaceH in ordinary
quantum mechanics. The elements of the single-time Hilb
spaceH in ordinary quantum mechanics correspond to
possible purestatesof the system. Hence the two Hilbe
spacesK andH havea priori nothing to do with each other
We shall clarify thea posteriorirelation between the tempo
ral Hilbert spaceK and the single-time Hilbert spaceH be-
low.

We shall see that in Isham’s abstract history quant
theories the propositions Hilbert spaceK in general depends
both on the single-time Hilbert spaceH and on the quantum
state given by some decoherence functionald. Physically this
reflects the fact that the global propositions one may sens
ask about the system can change when the global stated of
the system is changed. We shall see that essentially the
bert spaceK corresponding to a decoherence functionald is
constructed from a larger space of propositions by omitt
some propositions with vanishing probability in the stated.

The quantum-mechanical temporal states of the sys
are given by self-adjoint bounded operatorsT on K such that
^e,Te&51, where^ , & denotes the inner product inK. We
denote the set of all such operators byWe(K). Wright
showed that one can associate a bounded operatorT with
every bounded decoherence functional in a general his
re
n
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quantum theory~see@25# and below!. Thus we shall refer to
the state operatorT also as theWright operatorof the sys-
tem.

Since the bounded, self-adjoint operators onK are in one-
to-one correspondence with bounded sesquilinear forms
K, we can alternatively define the states as bounded ses
linear formss on K satisfyings(e,e)51.

We propose that the expression for the probability fun
tional onK in the state given by the operatorTPWe(K) is
given by

pT~x!5^x,Tx& ~4!

for all xPK. This proposal is motivated by the history fo
mulation of standard quantum mechanics, discussed in
III B. We shall see there that we can find for every fixe
temporal supports a T with ^e,Te&51 such thatpT can be
interpreted as the probability for propositions with tempo
supports. As will also become clear below, in general, how
ever, the probabilities associated with propositions cor
sponding to different temporal supports cannot be prope
normalized. Only the probability density~i.e., the probability
per quantum degree of freedom! and the probabilities for
fixed temporal supports can be brought into the form~4! for
some appropriateT. This substantiates ourproposalthat in a
general theory without ana priori space-time the Wright
operator generates the probability densities via Eq.~4!. Ev-
ery subsystem of the quantum system in question is cha
terized by some subset of all quantum degrees of freed
and the probabilities for propositions corresponding to so
subsystem can be obtained from Eq.~4! by multiplying with
a suitable normalization factor~representing the number o
quantum degrees of freedom corresponding to the subsy
in question!.

From the definition of the ‘‘probability’’ functional
pT :K→R it is obvious thatpT is not necessarily positive
definite and defines no linear functional on all ofK. Thus it
is useful to adopt a consistent-histories-type point of vi
@5#. All propositions yPK with either pT(y),0 or pT(y)
.1 are assumed to be physically meaningless in the s
TPWe(K). We say that a setCª$xi u i PI ,xiPK% is consis-
tent in the stateTPWe(K) if ~i! xi'xj for iÞ j , ~ii ! ( ixi
5e, ~iii ! 0,pT(xi)<1 for all i, and ~iv! ( i pT(xi)
5pT(( ixi)5pT(e)51. Consistent sets of propositions re
resent the analog of sets of commuting, mutually exclus
yes-no observables in standard quantum mechanics and
existence of several mutually inconsistent~complementary!
consistent sets of propositions reflects the quantum chara
of the theory. The space ofall ~measurable! propositions in
our approach carries the structure of a Hilbert space bu
lattice theoretical structure. Only the consistent subsets oK

carry the structure of a Boolean algebra. It is a virtue of
consistent-histories philosophy that it allows us to consi
spaces of propositions without any lattice theoretical str
ture on it and our unifying mathematical treatment of te
poral quantum theories relies heavily upon this feature of
consistent-histories philosophy. Consistent sets of prop
tions are also calledwindowsor frameworksfor the descrip-
tion of a quantum system. Arefinement W2ª$yj% j PJ of a
consistent setW1ª$xi% i PI for T is a consistent set forT such
that each elementxiPW1 can be written as a finite sum o
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PRA 59 1049TEMPORAL QUANTUM THEORY
elements inW2 . A consistent set is said to bemaximally
refinedif it has no consistent refinement.

We call K the space of propositions about the syste
However, notice that there are in general many elementsK

that are in no consistent set for some stateT. The Hilbert
spaceK serves as a mathematically nice space into which
propositions are embedded. The example of standard q
tum mechanics discussed in Sec. III B will clarify this poin
The consistency condition for every physical state sing
out the elements that can be interpreted as physically m
ingful propositions in the respective state of the system.

The framework for temporal quantum theories introduc
above must not be considered as a fixed, rigid set of axio
but should be viewed as a set ofcum grano salisworking
hypotheses that might be in need for change in the future
fact, we shall see that the history version of standard qu
tum mechanics over infinite-dimensional Hilbert spaces
only into the framework when one allows for elements
infinite norm in the Hilbert spaceK. We shall call such Hil-
bert spacesimproper Hilbert spaces; see Appendix A.~We
mention that there is an alternative formulation of the hist
version of standard quantum mechanics over an infin
dimensional Hilbert space as a temporal quantum theory
tained in @24# in which all information about probabilities
and the quantum state is thrown into the propositions Hilb
spaceK.) At the basis of the present investigation is t
~tacit! assumption that essential features of a mathema
framework for temporal quantum mechanics can be read
a temporal reformulation of ordinary quantum mechani
Infinite-dimensional Hilbert spaces are needed in ordin
quantum mechanics to describe observables with a con
ous spectrum such as position and momentum observa
Thus it can be argued that the mathematical difficulties in
history version of quantum mechanics over infinit
dimensional Hilbert spaces are connected with the fact
standard quantum mechanics involves the concept of an
derlying space-time continuum~or involves other observ
ables with continuous spectrum!. An appealing idea put for-
ward by many authors is that in a quantum theory of spa
time observables the underlying concept of space-t
should, in one way or another, be of a discrete nature. Mo
over, the form of the canonical decoherence functiona
standard quantum mechanics is based on the idealized
tions of states and observables at a fixed time instant an
intrinsically nonrelativistic~in that the prescription for the
computation of probabilities involves a series ofpro forma
global reductions of the state!. Accordingly, we cannot ex-
pect that the mathematical structure of a quantum theor
space-time events can be fully derived from standard qu
tum mechanics. In particular we feel that the appearanc
‘‘infinitely’’ coarse grained histories in the history version o
standard quantum mechanics is a reflection of the fact
the theory is based on overidealized notions such as obs
ables and states at some instant of time. Therefore, argu
it is inappropriate to base our mathematical framework
temporal quantum theories upon the concept of impro
Hilbert space.

B. Examples

1. Isham’s history quantum theories

As a first example we consider Isham’s abstract hist
quantum theories over some finite- or infinite-dimensio
.
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Hilbert spaceV ~with dimension greater than 2!. In this ap-
proach the space of histories is identified with the setP(V)
of projections onV and the state is given by some bound
decoherence functionald, i.e., by some bounded biorthoad
ditive functional d:P(V)3P(V)→C satisfying ~i! d(1,1)
51, ~ii ! d(p,q)5d(q,p)* , and ~iii ! d(p,p)>0 for all p,q
PP(V).

We appeal now to an important result of Wright@25#,
Corollary 4, according to which there exists a Hilbert spa
K, a self-adjoint bounded operatorT on K, and a mapx
→@x# from B(V) into a dense subspace ofK such that
D:B(V)3B(V)→C,D(x,y)5^@x#,T@y#& is an extension of
d. With eª@1# it follows that ^e,Te&51. Thus Wright’s
result implies that a general history quantum theory can
ways be brought into the form of a space-time quant
theory. IfV is finite dimensional, then it is possible to sho
that the Hilbert spaceK can be chosen independently ofd
and may be identified withB(V); see Remark~v! in Sec. III
in @25#.

Wright’s result depends crucially on the fact th
D:B(V)3B(V)→C satisfies a Haagerup-Pisier-Grothendie
inequality, i.e., that there exists a positive linear functionaf
on B(V) with f(1)51 and a constantC.0 such that

uD~x,y!u2<Cf~xx†1x†x!f~yy†1y†y!

for all x,yPB(V). The semi-inner product onB(V) is then
constructed fromf as ^y,x&f5 1

2 f(xy†1y†x). Let Nf be
the corresponding null space; thenK is chosen as the
completion ofB(V)/Nf with respect to the inner produc
induced byf. The functionalf is not unique. For everyf
there exists a trace class operatortf on V such thatf(x)
5trV(xtf) for all xPB(V). Thus the Hilbert spaceK de-
pends ond. As just explained, the spaceK is always~the
completion of a space! of the formB(V)/N, whereN is a set
of elements ofB(V) with D(n,n)50 for nPN. Loosely
speaking, one may think ofK as a subspace ofB(V) in which
some unphysical elements with vanishing probability ha
been dismissed. The different choices off correspond to
different null spacesNf . The probabilities for physica
propositions do not change for different choices off, but the
number of unphysical propositions with probability zero inK

changes. That is, changingf amounts to changing the num
ber of redundant propositions inK. Wright’s result also ap-
plies to arbitrary von Neumann algebras with no typeI 2
direct summand.

2. The history version of standard quantum mechanics

As before, we denote the single-time Hilbert space byH

and the decoherence functional associated with the stater by
dr . Consider first the case thatH is finite dimensional. As
discussed above, the homogeneous histories associated
the times$t1 , . . . ,tn% are identified with homogeneous pro
jection operators of the formPt1

^ •••^ Ptn
on Ht1

^ •••

^ Htn
. The space of all histories is identified with the dire

limit of the directed system of histories

$P~Ht1
^ •••^ Htn

!u$t1 , . . . ,tn%,R%,
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1050 PRA 59OLIVER RUDOLPH
as discussed earlier. Consider some fixedn and some fixed
set of times $t1 , . . . ,tn% and write Vt1 , . . . ,tn

ªHt1
^ •••

^ Htn
. Consider the restriction ofdr to P(Vt1 , . . . ,tn

). Isham,
Linden, and Schreckenberg have shown that there exis
trace class operatorXd on Vt1 , . . . ,tn

^Vt1 , . . . ,tn
such that

dr~p,q!5trVt1 , . . . ,tn
^Vt1 , . . . ,tn

~p^ qXd!

for all p,qPP(Vt1 , . . . ,tn
). From this it is obvious thatdr can

be extended to a bounded functional on all ofB(Vt1 , . . . ,tn
).

For what follows it is convenient to introduce thedensity

dr~p,q!ª
trVt1 , . . . ,tn

^Vt1 , . . . ,tn
~p^ qXd!

trVt1 , . . . ,tn
~1!

for all p,qPP(Vt1 , . . . ,tn
). The quantitydr(p,p) is then a

probability per quantum~space-time! degree of freedom.
One can look upondr and the space of all histories from

a slightly different perspective. To this end consider the
rected system$B(Ht1

^ •••^ Htn
)u$t1 , . . . ,tn%,R% and its

direct limit, which we denote byB ~the existence of this
direct limit as aC* -algebra follows, e.g., from Propositio
11.4.1 in@29#!. Consider the mapp that maps every homo
geneous bounded operatorbªbt1

^ •••^ btn
onB(Vt1 , . . . ,tn

)

to p(b)ªbt1
•••btn

PB(H). From Proposition 11.1.8~ii ! in

@29# it follows that p can be uniquely extended to a line
map fromB to B(H), which we will also denote byp. Every
dr can be extended to a sesquilinear formDr onB such that
this extension can then be written as

Dr :B3B→C,Dr~b1 ,b2!ªtrH@p~b1!†rp~b2!#.

The corresponding extension ofdr will be denoted byDr .
Consider some fixed set of time points$t1 , . . . ,tn%. We de-
fine an inner product onB by

^b1 ,b2&ª
trHt1

^ •••^ Htn
~b1

†b2!

trHt1
^ •••^ Htn

~1!

for all b1 ,b2PB, where$t1 , . . . ,tn% denotes the support o
b1

†b2 . We shall denote the norm induced by the inner pro
uct ^ , & by i i2 for reasons to become clear below. The fac
trHt1

^ •••^ Htn
(1) in needed to ensure the additivity of^ , & on

all of B. Denote byK the Hilbert space completion ofB with
respect tô , &. Notice that althoughH is finite dimensional,
B and K are infinite dimensional. Since the trace is
bounded linear functional onB(Ht1

^ •••^ Htn
) and sinceDr

is bounded with respect to the ordinary operator norm
follows that Dr extends uniquely to a bounded sesquiline
form on K. So there exists a bounded, self-adjoint opera
tr in B(K) such thatDr(x,y)5^x,try& for all x,yPK. Let
bPB and let$t1 , . . . ,tm% denote the temporal support ofb.
Define

Trbª~dimH!mtrb.

ThenTr is an unbounded operator onK whose~dense! do-
main of definition isB. Tr is not self-adjoint on all ofB.
a

i-

-
r

it
r
r

However, the restriction ofTr to a subset ofB containing
only elements with fixed support is bounded and self-adjo
Then the sesquilinear formDr obviously satisfiesDr(b,b)
5^b,Trb& for all bPB. Since sesquilinear forms ar
uniquely determined by their quadratic forms we fin
Dr(b1 ,b2)5^b1 ,Trb2& for all b1 ,b2PB for which the sup-
ports of b1 and b2 are equal. Let, finally,eª1 denote the
indifferent proposition that is always true; thenTr satisfies
^e,Tre&51.

This shows that the history version of standard quant
mechanics over a finite-dimensional single-time Hilb
spaceH can indeed be brought into the form of a space-ti
quantum theory as formulated in Sec. III A. Here the prop
sitions Hilbert spaceK is independent of the initial quantum
stater and only the temporal quantum stateTr depends on
r.

In the operator formulation of the history version of qua
tum mechanics propositions are identified with projecti
operators andconsistent setsof propositions are defined with
the help ofdr as those exhaustive setsC of mutually perpen-
dicular projections for which Redr(p,q)50 for all p,q
PC. Comparing this with our definition of consistent sets
propositions in the propositions Hilbert spaceK given in Sec.
III A, we see that, in the case of finite-dimensional stand
quantum mechanics, every consistent set of propositionsK

corresponds, when pulled back to the standard operator
mulation, to a consistent set of projection operators.

Given now some propositionp̄PK corresponding, on the
operator level, to some projection operatorp, the larger the
space on whichp projects is, the larger the norm of th
image p̄ of p in K is. This substantiates our physical inte
pretation ofibi2

25^b,b& as a quantitative measure of ho
coarse grained the propositionbPK is.

We notice in passing that for anypPR with p>1 we can
define a norm onB by

ibipªS trHt1
^ •••^ Htn

@~b†b!p/2#

trHt1
^ •••^ Htn

~1! D 1/p

~5!

for all bPB, where $t1 , . . . ,tn% denotes the support ofb.
For a proof see for instance,@30#, Sec. V.6. The normi i2
induced by the inner product^ , & obviously corresponds to
p52. ~Notice thati ip defines no crossnorm onB.)

Next consider the case that the single-time Hilbert sp
H is infinite dimensional. To simplify notation we assume
the following thatH is separable. The extension of our r
sults to nonseparable Hilbert spaces is obvious. We proc
in analogy with the finite-dimensional case. The algebr
tensor product ofB(Ht1

), . . . ,B(Htn
) is the set of all finite

linear combinations of homogeneous operators

b1^ •••^ bn ,

wherebiPB(Ht i
) and is denoted by

B~Ht1
! ^ alg•••^ algB~Htn

!.

Consider the directed system
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$B~Ht1
! ^ alg•••^ algB~Htn

!u$t1 , . . . ,tn%,R%

and its direct limit, which we denote byBalg ~its existence as
a C* -algebra follows again by Proposition 11.4.1 in@29#!.
Define the mapp on homogeneous elements ofBalg as in the
finite-dimensional case byp(b1^ •••^ bn)5b1•••bn; then
it follows by Proposition 11.1.8 in@29# that p can be
uniquely extended to a linear map onBalg . Again we denote
the extension ofp also byp ~slightly abusing the notation!.
As in the finite-dimensional case the decoherence functio
dr associated withr can be extended to a sesquilinear fo
defined on all ofBalg and the extensionDr of dr can be
written as

Dr :Balg3Balg→C, Dr~b1 ,b2!5trH@p~b1!†rp~b2!#.

We remark that the representation equation~3! is also valid
for Dr on all of Balg ~this follows by linearity!.

Let b1 ,b2PBalg; then we define

^b1 ,b2&5trHt1
^ •••^ Htn

~b1
†b2!,

where$t1 , . . . ,tn% is the support ofb1
†b2 . This expression is

not well defined for arbitraryb1 and b2 . If it is not well
defined, then we formally set^b1 ,b2&ª`. It is clear that the
elementsbPBalg with finite norm ibi25^b,b&,` are ex-
actly the Hilbert-Schmidt operators inBalg . In particular,
ibi50 for bPBalg implies thatb50. It is well known that
every trace class operatortPBalg satisfies tr@(t†t)1/2#,`.
r

s
ed
p

al

We interpret^ , & as an improper inner product onBalg
~see Appendix A!. This implies in particular that additivity
is only required in the finite sectors ofBalg . Thus the factor
tr(1) appearing in the definition of̂ , & in the finite-
dimensional case is not only not well defined but also
needed to ensure additivity in the finite sectors ofBalg . The
completion ofBalg with respect tô , & is an improper Hilbert
space that we denote byK. We interpretK as in the finite-
dimensional case as our propositions Hilbert space.~The
main reason for completingBalg here is to get a mathemat
cally nicer space of propositions.! We find that the decoher
ence functionaldr associated withr can be uniquely ex-
tended to a bounded sesquilinear formD̂r on K. To see that
Dr is indeed bounded with respect to the norm induced
the inner product̂ , &, recall the Cauchy-Schwarz inequalit
for Dr ,

uDr~b1 ,b2!u2<Dr~b1 ,b1!Dr~b2 ,b2!,

for all b1 ,b2PBalg . WhenbPBalg is a Hilbert-Schmidt op-
erator withn-time support, it follows that there is a consta
C.0 such that

uDr~b,b!u<CibiHS
2 ,

where i iHS denotes the Hilbert-Schmidt norm. To see th
recall the representation Eq.~3! and apply the Cauchy
Schwarz inequality
uDr~b,b!u< (
j 1 , . . . ,j 2n51

`

v j 1
u^ej 2n

2n
^ •••^ ej n11

n11
^ c j 1

^ •••^ ej n

n ,~b†
^ b!~c j 1

^ ej 2n

2n
^ •••^ ej n12

n12
^ ej 2

2
^ •••^ ej n11

n11 !&u

< (
j 1 ,•••, j 2n51

`

u^ej 2n

2n
^ •••^ ej n11

n11
^ c j 1

^ •••^ ej n

n ,~b†
^ b!~c j 1

^ ej 2n

2n
^ •••^ ej n12

n12
^ ej 2

2
^ •••^ ej n11

n11 !&u

< (
j 1 ,•••, j 2n51

`

u^ej 2n

2n
^ •••^ ej n11

n11
^ c j 1

^ •••^ ej n

n ,~b†b^ bb†!~ej 2n

2n
^ •••^ ej n11

n11
^ c j 1

^ •••^ ej n

n !&u1/2

5 (
j 1 ,•••, j n51

`

u^c j 1
^ •••^ ej n

n ,~b†b!~c j 1
^ •••^ ej n

n !&u5ibiHS
2 5i@b#2i1 ,
-
e

tum
be

of
of

il-
the
e-
the

uct
where i i1 denotes the trace class norm and@b#ª(b†b)1/2.
From the definition of a Cauchy sequence~see Appendix A!
it follows that for every Cauchy sequence$un% there exists
an N such thatn,m.N implies thatun2um is a Hilbert-
Schmidt operator and@un2um#25(un2um)†(un2um) is a
trace class operator converging to 0 in the trace class no
Thus it follows from the above inequalities thatDr can be
uniquely extended to a finitely valued sesquilinear formD̂r
on K.

We denote the subset ofK of all elements with finite norm
by Kf in . The spaceKf in is a union of proper Hilbert space
~the Hilbert spaces of Hilbert-Schmidt operators with fix
temporal support!. Consequently there exists a bounded o
erator T̂r,i on each Hilbert spaceKi,Kf in such that
m.

-

D̂r(x,x)5^x,T̂r,ix& for all xPKi . The sesquilinear formD̂r

also satisfiesD̂r(e,e)51, whereeª1 again denotes the in
different proposition that is always true. Summarizing, w
have shown that also the history version of standard quan
mechanics over an infinite-dimensional Hilbert space can
brought into the form of a temporal quantum theory.

The reader might wonder whether the history version
standard quantum mechanics can be brought into the form
a temporal quantum theory with a proper propositions H
bert space. The answer is yes with the restriction that
sesquilinear forms~which are the states in the present fram
work! are then either only defined on a dense subset of
propositions Hilbert space or coincide with the inner prod
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1052 PRA 59OLIVER RUDOLPH
of the propositions Hilbert space. The latter natural repres
tation of the standard decoherence functional~in infinite di-
mensions! as an inner product of a Hilbert space has be
derived in@24#. In this formulation all probabilistic informa-
tion is completely encoded within the inner product of t
propositions Hilbert space and there is no additional not
of a state. Accordingly, the information entropy to be defin
in Sec. IV is always zero for this representation. Otherwi
every positive linear functionalf with f(1)51 induces a
semi-inner product onBalg by ^x,y&f5 1

2 f(y†x1xy†). It
has been shown in@24# that Dr is not bounded with respec
to the norm induced bŷ, &f ~see also Appendix B! and that
Dr is unbounded with respect to anyC* -norm on Balg .
ThusDr cannot be extended to the Hilbert space complet
of Balg /Nf with respect tô , &f , whereNf denotes the null
space of̂ , &f . Moreover, in general, the setNf may contain
physical histories with nonvanishing probability. Therefo
for this construction to make sense one has to ensure thaNf
contains no elements with nonvanishing probability. For
tails the reader is referred to@24#.

IV. INFORMATION ENTROPY

In this section we study the problem of defining an info
mation entropy within our framework of temporal quantu
theories. We adopt the point of view that, loosely speaki
the information entropy measures the lack of informat
and is a quantitative measure of the total amount of miss
information on the ultramicroscopic structure of the syste

The problem of defining an information entropy for tem
poral quantum theories was addressed in the framewor
Isham’s history quantum theories by Isham and Linden@13#.
They restricted themselves, however, to history theories o
finite-dimensional Hilbert spaces. They considered the c
that the space of histories is given by the setP(H) of pro-
jections on some finite-dimensional Hilbert spaceH and that
the state is given by some bounded decoherence functi
onP(H). Recall that to every decoherence functionald there
is a unique trace class operatorXd onH^H such that Eq.~2!
holds. They proceeded as follows. First they observed
there seems to be no straightforward simple way to gene
ize the expression for the information entropy in single-tim
quantum mechanicsI s2t52trH(r ln r) to history quantum
theories sinceXd is in general neither self-adjoint nor pos
tive. Thus they defined in a first step an information entro
with respect to a consistent set of histories~a window! W by
replacing the decoherence functionald by another decoher
ence functionaldW such thatdW coincides withd on W and
such that the operatorXdW

associated withdW is self-adjoint
and positive. The information entropy with respect tod and
W was defined as

I d,Wª2tr~XdW
ln XdW

!2 ln dimH 2.

The term2 ln dimH 2 is added to ensure that the informatio
entropy is invariant under refinement. Isham and Linden a
showed thatI d,W decreases~or remains constant! under con-
sistent fine graining ofW. An information entropyI d associ-
ated withd can then be defined by
n-

n

n
d
,

n

,

-

,

g
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of
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y

o

I dªmin
W

I d,W ,

where the minimum is taken over all consistent setsW of d.
There are alternative possibilities to define an informat
entropy; see@13#. One important feature of the informatio
entropy I d,W with respect tod and the windowW such de-
fined is that its definition involves explicitly the dimension
the underlying history Hilbert spaceH and the dimension of
the projections inW. Thus the definitions ofI d,W andI d have
no straightforward finite extensions to infinite-dimension
history Hilbert spaces.

It is the purpose of this section to define a correspond
notion of information entropy for our scheme of space-tim
quantum theories using the techniques described by Is
and Linden. Consider a space-time quantum theory as in
III A over some Hilbert spaceK of propositions and some
state given by the operatorTPWe(K). SinceT is not posi-
tive, in general the expression2trH(TlnT) is not well de-
fined. We proceed in analogy with Isham and Linden a
pick some setW5$xi% i PI of propositions inK that is consis-
tent with respect toT. We define a positive self-adjoint op
eratorT̃W by

T̃Wª(
i PI

^xi ,Txi&

^xi ,xi&
Pi ,

where Pi denotes the projection inK onto the subspace
spanned byxi . The operatorT̃W is again a state operator i
We(K), i.e., satisfieŝ e,Te&51. To see this, we recall tha
e5( i PIxi . Thus ^e,T̃We&5(m,l^xm ,T̃Wxl&
5(m^xm ,T̃Wxm&5(m^xm ,Txm&, where we have used tha

^xm ,T̃Wxm&5^xm ,Txm& for xmPW. Since$xi% i PI is a con-
sistent set forT, it follows that (m^xm ,Txm&5^e,Te&51.
Thus ^e,T̃We&51 and T̃WPWe(K). For T̃W the expression
2trH(T̃W ln T̃W) is well defined and this motivates the de
nition of the information entropy for the stateT and the
window W,

I T,Wª2trH~ T̃W ln T̃W!52(
i PI

^xi ,Txi& ln
^xi ,Txi&

^xi ,xi&
. ~6!

An argument as in@13# shows thatI T,W decreases or remain
constant under refinements as it should. To this end, we
notice that for 1<q,`

a lnS a

bqD 2~11a!lnS ~11a!

~11b!qD >0 ~7!

for all 0<a,` and 0,b,`. To see this letf q(a,b)
[aln(a/bq)2(11a)ln@(11a)/(11b)q#. The function
b° f q(a,b) assumes for every fixed 0,a,` a minimum at
b5a. The value of this minimum satisfiesf q(a,a)>0 for all
0,a,`, which proves the inequality~7!. Now consider a
window W15$x0 ,x1 ,x2 , . . . ,xn% and a refinementW2
5$y0 ,z0 ,x1 ,x2 , . . . ,xn% of W1 , wherex05y01z0 . We de-
fine aª^z0 ,Tz0&/^y0 ,Ty0& and bª^z0 ,z0&/^y0 ,y0&. A
straightforward computation shows
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I T,W1
2I T,W2

5^y0 ,Ty0&Fa lnS a

bD2~11a!lnS ~11a!

~11b! D G>0,

where we have used that^x0 ,x0&5^y0 ,y0&1^z0 ,z0& since
W2 is a consistent set forT. Thus the information entropy fo
T and W decreases~or remains constant! under any refine-
ment of the window.

The information entropy for the Wright operatorT can
then be defined as the minimum over all consistent sets,

I Tªmin
W

I T,W ,

where the minimum is over all consistent sets ofT.
It is instructive to compare the expression for the info

mation entropyI T,W for T andW given above with the cor-
responding expression for the Isham-Linden information
tropy for a decoherence functionald and a windowV for d in
history quantum theories, which was proposed in@13#

I d,V
IL

ª2 (
a iPV

d~a i ,a i !ln
d~a i ,a i !

~dima i /dimH!2
,

whereH is the finite-dimensional Hilbert space on which t
operatorsa i act. The factor dimH is included to ensure the
invariance of the information entropy upon refinement of
consistent set. Recalling that alla i are projections, we se
that the expression for the Isham-Linden entropy can be w
ten with the normi i1 from Eq. ~5! as

I d,V
IL

ª2 (
a iPV

d~a i ,a i !ln
d~a i ,a i !

ia i i1
2

52 (
a iPV

^a i ,Ta i& ln
^a i ,Ta i&

ia i i1
2

,

whereT is the Wright operator associated withd. We see that
for any 1<p,` there is an Isham-Linden-type informatio
entropy given by

I d,V,p
IL

ª2 (
a iPV

d~a i ,a i !ln
d~a i ,a i !

ia i ip
2

.

All these expressions standa priori on an equal footing.
However, an argument as above shows thatI d,V,p

IL decreases
or remains constant under refinement of the consistent s
and only if 1<p<2. The proof is analogous to the proo
given above for the information entropyI T,W and makes use
of the general inequality~7!. Obviously, the information en
tropy I T,W defined above in Eq.~6! corresponds top52 and
the Isham-Linden entropyI d,V

IL corresponds top51. The case
p52 is somewhat preferred since only in this case the g
eral construction given in Sec. III applies.

In the case of the history version of standard quant
mechanics over infinite-dimensional Hilbert spaces we
that the expression for the information entropyI T,W might
become infinite when the windowW involves coarse grained
propositionsu with ^u,u&5`. When we recall that the in
formation entropy is a measure for the amount of miss
information, it is perhaps not too surprising that in t
e.,

-

-

e

it-

t if

n-

e

g

infinite-dimensional case~corresponding to an infinite vari
ety of possible measurement outcomes! the missing informa-
tion becomes infinite for certain windows involving ‘‘too’
coarse grained propositions. An alternative approach
~somewhat in the spirit of the topos theoretic approach to
histories approach put forth by Isham@10#! to define the
information entropy by

Ĩ T,Wªsup
W0

I T,W0
,

where the supremum runs over all consistent refinementsW0

of W such thatI T,W0
is finite. Notice, however, thatĨ T,W

might also be infinite.

V. SUMMARY

In this paper we have put forth a mathematical framew
for temporal quantum theories involving observables ass
ated with extended regions of space time. The main ingre
ents of the framework is a Hilbert spaceK that contains the
physical ~measurable! propositions about the system. Th
norm of an element inK is interpreted as a quantitativ
measure of the structural information about the correspo
ing proposition encoded within the spaceK and, more spe-
cifically, as a quantitative measure of the coarse grainedn
of the corresponding proposition within the descripti
scheme provided byK. There is one distinguished elemente
in K identified with the completely indifferent propositio
that is always true. The states are given by bounded, s
adjoint, but not necessarily positive operatorsT on K such
that ^e,Te&51. The expression for the probability of
propositionxPK is given by ^x,Tx& provided xPK. This
prescription makes sense when one adopts a consis
histories-type point of view according to which the assig
ment of a probability to a propositionx is unambiguously
possible only with respect to a consistent set of propositi
containingx.

Our proposal is motivated by recent developments in
so-called histories approach to quantum mechanics and
have seen that the history version of standard quantum
chanics can be brought into the required form in the fini
dimensional case. In the infinite-dimensional case one ha
allow for a slightly more general framework in which th
propositions Hilbert spaceK is an improper Hilbert space or
alternatively, in which the states are given by densely
fined unbounded sesquilinear forms on the propositions
bert space.

We have also seen that Isham’s general history quan
theories can be brought into the form of a temporal quant
theory. Moreover, we have defined an information entro
generalizing the Isham-Linden information entropy for h
tory theories.

The examples discussed in Sec. III B make clear t
our approach is not in contradiction to the history approa
by Ishamet al. but rather~in a sense! a complementary for-
mulation of temporal quantum theories. In the case of st
dard quantum mechanics we still can think of the space
propositionsK essentially as a set of operators on ten
product Hilbert spaces. In this sense our approach m
loosely speaking, be looked upon as a compromise betw
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the formulations of history quantum theories due
Gell-Mann and Hartle, on the one hand, and Isham, on
other hand.

However, as already discussed above, the history the
due to Gell-Mann and Hartle stays essentially on the leve
homogeneous histories and represents only a very mo
generalization of standard quantum mechanics. Isham’s
stract history quantum theories represent a much more
stantial generalization of standard quantum mechanics. H
ever, it is an open problem if and how standard quant
mechanics can be recovered from them in some approp
limit. Specifically, it is not clear at all in which limit a
Hamiltonian operator can be recovered within the framew
of an abstract history theory. In contrast to these two de
opments, the approach developed in the present paper o
a generalization of standard quantum mechanics for wh
there is hope that the issue of recovering standard quan
mechanics can be successfully tackled. A possibility sugg
ing itself is, for example, to study propositions Hilbert spac
carrying a unitary representation of the Poincare´ group in
which case a Hamiltonian operator can be obtained as on
the generators of the representation. These topics will
discussed elsewhere.
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APPENDIX A: IMPROPER HILBERT SPACES

Consider a vector spaceV equipped with an imprope
inner product ^ , &V :V3V→Cø$`% such that ~i!
^w,au1bv&V5a^w,u&V1b^w,v&V , ~ii ! ^u,v&V5^v,u&V

* ,
~iii ! ^u,u&V>0, and ~iv! ^u,u&V50 only if u50 for all
a,bPC and u,v,wPV whenever all expressions are finit
We denote the subspace of elements inV with finite norm by
Vf in . A sequence$ununPN,unPV% converges touPV if
^un2u,un2u&V→0. A sequence$ununPN,unPV% is a
Cauchy sequenceif ^un2um ,un2um&V→0. Notice that for
any Cauchy sequence$un% there is anN such thatn,m.N
impliesun2umPVf in . The spaceV is said to becompleteif
every Cauchy sequence converges. An orthonormal basis
set$yi u i PI,yiPV% such that~i! ^yi ,yj&V5d i j for all i , j , ~ii !
^u,yi&V,` for all i anduPV, and~iii ! ^u,yi&50 for all i if
and only ifu50. An improper Hilbert spaceis now a linear
spaceV with an improper inner product^ , &V such that~i! V

is complete and~ii ! V has an orthonormal basis$yi%. Then
every elementuPV can be formally expanded asu
5( i^u,yi&Vyi . In contrast to ordinary Hilbert spaces, how
ever, the sumiui5( i u^u,yi&Vu2 does not converge for al
uPV. We do not want to develop here a theory of improp
Hilbert spaces, but it is important to notice that many resu
of the theory of Hilbert spaces are not valid for improp
Hilbert spaces. Notice, however, that there always res
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some~nonunique! proper Hilbert space within an imprope
Hilbert space.

APPENDIX B: THE DECOHERENCE FUNCTIONAL
IN STANDARD QUANTUM MECHANICS

In @24# the present author and Wright studied the analy
cal properties of the standard decoherence functionaldr as-
sociated with the initial stater. Among others we proved
that if the single-time Hilbert space is infinite dimension
then ~i! the standard decoherence functionaldr defined on
homogeneous histories by Eq.~1! cannot be extended to
finitely valued functional on the set of all projection oper
tors on the tensor product Hilbert space and~ii ! the extension
Dr of dr to Balg is unbounded with respect to anyC* -norm
onBalg . The latter assertion, together with Theorem 4.3.2
@29#, implies thatDr is also unbounded with respect to th
norm induced by the inner product^ , &f defined at the end o
Sec. III. ~Theorem 4.3.2 in@29# states that every positive
linear functionalf on Balg is bounded with respect to an
C* -norm onBalg .) We are not going to reproduce the ge
eral considerations undertaken in@24# here, but for the con-
venience of the reader we give two counterexamples sh
ing ~i! and ~ii !, respectively. We assume for simplicity th
the single-time Hilbert space is separable.

~i! Consider the representation~3!. For simplicity of no-
tation we consider the casen52,

Dr~p,q!5 (
j 1 , . . . ,j 451

dimH

v j 1
^ej 4

4
^ ej 3

3
^ c j 1

^ ej 2

2 ,~p^ q!

3~c j 1
^ ej 4

4
^ ej 2

2
^ ej 3

3 !&, ~B1!

for all historiesp,qPP(Ht1
^ Ht2

) for which the sum con-

verges. We assume that the single-time Hilbert spaceHt is
separable. Now chooseej

45ej
35ej

25c j for all j. Fix i 1 and
let w iª(1/A2)(uc i ^ c i 1

&1uc i 1
^ c i&) for every i PN\$ i 1%.

Then clearly w i'w j if iÞ j . Set f j 1 , j 2 , j 3
(q)5

^c j 1
^ c j 2

,q(c j 2
^ c j 3

)&; then an easy computation show
that

Dr~Pw i
,q!5

1

2(j 2

@v i 1
f i 1 , j 2 ,i 1

~q!1v i f i , j 2 ,i~q!#

for iÞ i 1 , wherePw i
denotes the projection operator onto t

subspace spanned byw i . SetP5( iÞ i 1
Pw i

; then clearly the

expression~B1! for Dr(P,q) does not converge for arbitrar
q.

~ii ! Consider againn52 and the operator

h5 (
k1,k4

1

k11k4
uek4

4
^ ck1

&^ck1
^ ek4

4 u.

Thenh is a compact operator in the completion of the alg
braic tensor productK(Ht1

) ^ algK(Ht2
). „A Cauchy se-

quence$hn% in K(Ht1
) ^ algK(Ht2

) converging toh is given,
for example, by
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hn5(
l 52

n

(
k1k4

k11k45 l

@1/~k11k4!#uek4

4
^ ck1

&^ck1
^ ek4

4 u.

Then ihn2hmi<max(1/n,1/m).… Moreover, the sum in
Eq. ~B1! for Dr(h,1) is equal to (k ,k @vk /(k11k4)#
1 4 1

-
re

e

c

and thus is clearly divergent. This shows that the can
ical extensionDr of dr on Balg is not bounded onK(Ht1

)
^ algK(Ht2

) with respect to the ordinary operator norm
Since, by nuclearity, allC* -norms onK(Ht1

) ^ algK(Ht2
)

coincide,Dr is unbounded with respect to anyC* -norm on
Balg .
hys.
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