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We propose a framework for temporal quantum theories for the purpose of describing states and observables
associated with extended regions of space-time quantum mechanically. The proposal is motivated by Isham’s
history theories. We discuss its relation to Isham’s history theories and to standard quantum mechanics. We
generalize the Isham-Linden information entropy to the present cof&kd50-294709)07902-0

PACS numbds): 03.65.Bz, 04.60-m

I. INTRODUCTION paradigm is quite unnatural from a mathematical point of
view. In particular, the decoherence functional, which repre-
Standard nonrelativistic quantum mechanics is based ogents the state in Isham’s approach, is in general a math-
notions of states and observables at fixed instants of time. lamatically unsatisfactorily behaving objethis will be dis-
Hilbert space quantum mechanics the states at some fixealissed in more detail in Sec. Il belpwAnother problem of
time are represented by positive trace class operators witthis approach is that the only presently known concrete ex-
trace one on some Hilbert spageand the observables are ample for a history quantum theory is standard quantum me-
identified with self-adjoint operators af. The time evolu- chanics over a finite-dimensional Hilbert space.
tion is governed by a semigroypJ(t’,t)} of unitary opera- In the present paper we take a fresh look at the problem.
tors on$). The target of the present investigation is to understand the
It has been felt by several authors that the notions oPhysical significance of the difficulties within the mathemati-
observables and states at a fixed time slice are idealizatior#gl framework in Isham’s program more properly and to put
and might be inappropriate when it comes to describing relaforth a different, mathematically more natural framework for
tivistic situations quantum mechanically. For instance, in thespace-time quantum theories that on the one hand, is broad
algebraic approach to quantum field theory, the theory i€nough to embrace Isham’'s approach in the finite-
intrinsically characterized by associating with every open redimensional case, but, on the other hand, goes significantly
gion O of space-time an algebtd(©) of operators on some beyond it.
Hilbert space®— A(©) [1]. Hegerfeldt's works[2] about The paper is organized as follows. In Sec. Il we give an
localization observables are another example of papergccount of Isham’s program. In Sec. Il we put forth our
studying observables associated with bounded regions d¢pathematical framework for space-time quantum mechanics
space-time. However, the notion of an observable associatend show that our framework contains all known examples
with an extended region in space-time is foreign to the conof well-defined general history quantum theories as a sub-
ceptual framework and formalism of standard quantum meclass. We shall also discuss in which sense the framework
chanics. Thereforeg priori it is not clear whether and, if so, covers standard quantum mechanics in the infinite-
how the formalism of quantum mechanics has to be Change@imensional case. In Sec. IV we will discuss the definition of
to include such space-time observables associated with efn information entropy for space-time quantum theory that is
tended regions. a generalization of the Isham-Linden information entropy to
A downright investigation to derive the possible structureour approach. Throughout this work we use the following
of a space-time quantum theotgind in particular the pos- notation.$y always denotes the single-time Hilbert space in
sible notions of temporal state and observalftem the ordinary quantum mechanics an@ always denotes the
mathematical structure of standard quantum mechanics hagroposition” Hilbert space introduced in Sec. It or V
been undertaken by Ishaf8], who laid down a set of axi- denote general Hilbert spaces or tensor product Hilbert
oms forhistory quantum theoried/ith his history quantum spaces. The set of bounded operators on some Hilbert space
theories Isham pointed out an intrinsically quantum-7 is denoted by3(), the set of compact operators dhby
mechanical formalism dealing with space-time observable& (), and the set of projection operators on some Hilbert
and states. The main paradigm of the approach is to descrilspace by P(H). We adopt the convention that all inner
space-time observables and states by operators on certginoducts and sesquilinear forms on Hilbert spaces are linear
tensor product Hilbert spaces. This is very natural and work# their second variable and conjugate linear in the first vari-
fine as long as we consider finite-dimensional Hilbert spacesble.
and a discrete set of time points, but when one takes into
account infinite-dimensional Hilbert spaces or infinitely Il. HISTORY QUANTUM THEORIES
many time points or continuous time, the tensor product .
A. Generalities
In the mathematical formulation of standard quantum me-
*Electronic address: o.rudolph@ic.ac.uk chanics every quantum-mechanical system is characterized
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by some Hilbert spac® and some semigroup of unitary time principle of complementarity exhibit themselves in the fact
evolution operators acting of). The possible states of the that there are several mutually inconsistent consistent subsets
quantum-mechanical system at some fixed instant of time aref V [5].

identified with the trace class operatorsmand the possible

observables are identified with the self-adjoint operators on B. Isham’s history theories

$. It is well known that according to the spectral theorem, In the history approach developed by Isham and co-

every observable can be disinte_grat'ed into so-called yes'r\ﬁorkers[&lO—la and other author&l9—24 the crucial ob-
obgervables represented by projection operatorﬁofrhe. .__servation was that homogeneous histories as above can be

nr%athematically conveniently described by using a tensor

about the system. The quantum-mechanical probability fo roduct formalism. Correspondinaly. the homoaeneous his-
the proposition represented by the projectidis in the state 'E)ory h={P, P't Vis mgpped ?Oyt’he projectign operator
b oPy

p then given by t(Pp). .
As already anticipated above, in the history approach on&,® " ®Pr,on the tensor product Hilbert space
tm}ﬁti Whereﬁtizs’) for all i. It is mathematically

aims at including space-time observables in the quantum®yeyt,, ...,
mechanical formalism. In a first moderate step one considersonvenient to postulate that the space of all histories is given
a finite sequence of projection operaté¥g, . .. ,Py associ- by P(® y,,...139). Some of theinhomogeneousle-

ated with timestll,_. ..ty that correspond_s to a time se- ments WithinP(®y cqr, ... 119t) can be straightforwardly
quence of propositions. Such a sequence is called a homoggrerpreted as coarse grainings of homogeneous histéries
neous history. The quantum-mechanical probability of &ne proposition picture these histories represent composed
history h={P, , ... P } is given by propositions such ash or h, are true,” etc). However, if

the single-time Hilbert spac$ is infinite dimensional there
are always some eIementsﬁ—T(@tiE{tl _____ tn}sati) that admit

) . , , no physical interpretation as coarse graining of homogeneous
(notice that we work in the Heisenberg picture and suppresgistories.

for nota_tional simplicit_y the time glependenge of the Opera-  again, histories that differ from each other only by the
tors). Slightly abstracting from this expression one definegpsertion or the omission of the unit operator at intermediate
the decoherence functional,con pairs of homogeneous his- times are physically equivalent and identified with each

tro(Py - Py pPy - Py )

tories by[4,5] other. We shall refer to this natural equivalence relation be-

tween histories as theanonical equivalencand use the
d,(h,k) =trg( Pi. - PupQu - Q) @ symbol ~ in the following. For every historyr defined on
Ot elty,...; tn}ﬁti' whereﬁtizﬁ for all i, consider its equiva-

where h={Py, ... P} andk={Q, ....Q}. Histories |ence class:(h) of histories. We say that a finite set of time
that differ from each other only by the insertion or the omis-points s={t,, ... t,} is the support of hif (i) there is an
sion of the unit operator at intermediate times are physicallyelement ins(h) defined onwy, <y, and(ii) for every proper
equivalent and identified with each other. _ subsets’ of s there is no element irs(h) defined on

The next major step in the construction of a general h|s-®t_ 9. Mathematically speaking the  system

tory theory is to embed the set of é&iquivalence classes)of o

homogeneous histories injectively into a larger spage 7 (u® @ l{ty, ... L} CR} of sets of projection op-

which is endowed with a partially defined sum, such that theerators associated with all possible finite sets of time points

decoherence functional, can be extended unambiguously forms adirectedor inductive systemrhe space of all histo-

to a bounded biadditive function&,:Vx V—C subject to ries is identified with the disjoint union over the setsatif

the further conditiongi) D, (u U):I’:’) (v,u)* for all u,v projections on all finite tensor product Hilbert spaces of the

P ’ P ’ ’ . .

eV and (i) D,(u,u)=0 for all ue V. [In the previous lit- form ®y cp,, -_--ytn}ﬁti modulo .the physwfall equwalencgc

erature about general history quantum theories the space or, mathematically more precise, with thegect or inductive

carried usually some additional structure, e.g., that of a latlimit of the directed system of histories

tice or a unital *-algebra. In the history approach put forth by

Gell-Mann and Hartlésee[6—9] and belovy the embedding {P(f%@ Y ®Y)tn)|{t1’ +- -t CRY

of the homogeneous histories into the larger space of so- ) o o

called class operatorsis not injective] The homogeneous (a proof for the existence of this direct limit can be found, for

histories are identified with their images¥h which are also  instance, i 19)). .

called homogeneous histories. The elements ihat are not In an important paper Isham, Linden, and Schreckenberg

an image of some homogeneous history are cati@dmo- [1_4] showed that if the single-time Hilbert spaggeis finite

geneous historiesAll elements in)’ are interpreted as the dimensional, the decoherence functiodgldefined on pairs

general(measurablespace-time propositions in the theory. ©f homogeneous histories can be unambiguously extended to
A subsetV, of V is called aconsistent set of historic¢ @ Pounded biadditive function&, on the space of all his-

D, induces a probability measure:V,—C, p(vo) tories. Moreover, they showed that for fixedand p there

=D ,(vg,v0) 0N V,. The consistent subsets Bfare exactly ~ EXIStS a trace class operatdf on ® % such thaD , can be
those subset¥), that can be endowed with a Boolean struc-Written as
ture and satisfy Re,(ug,vo)=0 for all mutually disjoint

Ug.voeV,. The quantum character of the theory and the Dy(up)=trs, s(UBVX,)
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for all u,v eP(thl®- . ~®5§tn). represent no physical histories at all. We shall propose an
alternative mathematical framework for the description of
Abstracting from this result the properties of general detemporal quantum theories and we shall show that the deco-
coherence functionals, Ishafi] arrived at an axiomatic herence functionald, of the history version of standard
characterization of general history quantum theories accorcquantum mechanicevhen cast into the present framewprk
ing to which a general history quantum theory is given by itsjs a finitely valued functional.
spacé/ of histories and by its spad® of decoherence func-  For the convenience of the reader and for later reference
tionals. The histories itY and the decoherence functionals in we cite the following representation of the standard decoher-
D represent thémeasurablepropositions and the states in ence functional as an in general infinite sum. Fetime
the theory, respectively. The space of histotiéis required  homogeneous historigsandq and for a finite-dimensional
to have a partial sum defined on it and to contain a @nit or infinite-dimensional single-time Hilbert space [14,24]
Every decoherence functionadeD is required to be we have
bounded and additive in both arguments and has to satjsfy
d(1,1)=1, (i) d(x,x)=0, and(iii) d(x,y)=d(y,x)* for all ~
historiesx,y e U. dp(p,q) = zj O (€)1, e (PRAE ),
A choice for the space of histories in a general history z 3)
guantum theory suggesting itself is the set of projection op-
eratorsP(H) on some Hilbert spacé{ or, slightly more  where we have introduced the abbreviations
general, the set of projection operat@§A4) in a von Neu-
mann algebrad. In the case that the space of histories is €,
given by P(H) for some finite-dimensional Hilbert spagé
Isham, Linden, and Schreckenbégfgl] showed that for ev- ~ on N4l
ery bounded decoherence functiodabn P(7H) there exists =€, 0 O
a trace class operatéy on H®H such that

p+2®e2®___®en+l

=i 2N oL r
'_"lel®e12n® ®eJn+2 I2 In+1’

2 n
®¢j1®ej2®---®e-

""" J.2n:_ j2n In

and {e}‘k} are orthonormal bases df for all 2<k=<2n,
d(X,y) =ye (XY X) 2) wherep=Z2;w;P, denotes the spectral resolution @f and

holds for all x,yeP(H). Subsequently, Isham and co- P, denotes the projection operator onto the subspacg of
workers studied different aspects of general history quanturspanned byy; , andw;=0 for all i. We shall always assume
theories over finite-dimensional Hilbert spaces in some dethat the orthonormal systedn;} has been extended to an
tail, buoying up the fruitfulness of the tensor-product-basechrthonormal basis ofy.

approach.

On the other hand, the use of tensor product spaces to
describe temporarily extended objects has its limitations. De-
spite some interesting research and progress made recently The main predecessor to Isham’s history quantum theo-
[12,15, the incorporation of continuous histories into the fies was the approach put forth by Gell-Mann and Hartle
approach is still a challenge and the tensor-product-basd®—9l. In this approach the homogeneous histories are
approach does not seem to be well adapted to it. mapped to so-called class operators

Recently the present author and Wrig@#] showed that
if the single-time Hilbert spac# in standard quantum me- h={Py, ... P }=C(h)=Py---Py.
chanics is infinite dimensional, then no decoherence func- ) ) )
tional d,, [corresponding to the initial state; see Eq.(1)] Notice tha_t again we use the Heisenberg picture and suppress
defined on homogeneous histories can be extended to the explicit time dependence of the operators. Class opera-
bounded or even to a finitely valued functional on the spacéors act on the single-time Hilbert spage The inhomoge-
of “all histories” in Isham’s approach. Ifi24] an example Neous histories are indirectly defined by so-caltemhrse
for an elemenh.. e P(§), ® - - ®H, ) was constructed such graining prescriptions. An inhomogeneous history in the

that no decoherence functiond assumes a finite value at Gell-Mann—Hartle approach is in general asum of class op-
. . . erators that correspond to mutually exclusive homogeneous
h., if extended(see also Appendix B One possible way out

of this dilemma is to allow for decoherence functionals aS__hlstorles. While the decoherence funcﬂomi;,l extends 1o

g e i o R (-] Hsonean - ISTEBEnEoss casssperlrs sughionatinar
with d(h,h)== are then calledsingular histories for the '~ g P

i R geneous histories is equally straightforward, the formalism
decoherence functiona. Histories he (5, ®---® %) essentially stays on the level of homogeneous histories and

with d,(h,h)>1 ord,(h,h) = are in no consistent set and \ye are lacking a simple and direct characterization of the
represent no physical propositions in the stife Adopting  mathematical structure of the space of class operators, which
this point of view, one could simply forget about the singularmakes the Gell-Mann—Hartle approach virtually incompre-
histories. However, ifi24] it has been shown that there are pensible to a rigorous mathematical investigation: Given an
certain histories infP($, @ ---®% ) that are singular for  arpjtrary operator in the unit sphere o3(£)), we have no
every decoherence functiond) . Thus these singular histo- simple criterion to decide whether or nois a class operator
ries will be in no consistent set of histories for all staigs  and if so, whether it is a homogeneous class operator or an
This result indicates that in the infinite-dimensional case thénhomogeneous class operator. Moreover, as already men-
spaceP($,®---®$H ) contains unphysical elements that tioned above, the map of homogeneous histories to class op-

C. Gell-Mann—Hartle history theories
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erators is by no means injective and in general there is morguantum theorysee[25] and below. Thus we shall refer to
than one homogeneous history corresponding to a givethe state operatof also as thenright operatorof the sys-

class operator. tem.
Since the bounded, self-adjoint operatorsfare in one-
Il. TEMPORAL QUANTUM MECHANICS to-one correspondence with bounded sesquilinear forms on

R, we can alternatively define the states as bounded sesqui-
linear formss on K satisfyings(e,e)=1.

In this section we put forth our framework for space-time We propose that the expression for the probability func-
guantum mechanics. We first state the main principles withtional on 8 in the state given by the operatdre W,(R) is
out further motivation and then proceed to show how stangiven by
dard quantum mechanics and Isham’s general history theo-
ries over finite-dimensional Hilbert spaces fit into the Pr(x)=(x,TX) (4)
scheme, which serves as arposteriorimotivation.

The basic ingredient in our framework tfmporal quan-  for all xe &. This proposal is motivated by the history for-
tum theoriess a Hilbert space? whose elements are inter- mulation of standard quantum mechanics, discussed in Sec.
preted as thémeasurablespace-time propositions about the [11B. We shall see there that we can find for every fixed
system. Actually, not all elements if represent physically temporal suppors a T with (e,Te)=1 such thatp; can be
meaningful propositions; see below. In spite of this we shalinterpreted as the probability for propositions with temporal
refer to the Hilbert spacg& as the space of propositions and supports. As will also become clear below, in general, how-
to the elements af simply as propositions. We assume thatever, the probabilities associated with propositions corre-
there exists one distinguished elementdn denoted bye,  sponding to different temporal supports cannot be properly
that represents the indifferent proposition that is always truenormalized. Only the probability densitise., the probability
The trivial proposition complementary te that is always per quantum degree of freedprand the probabilities for
false is identified with the zero vector . fixed temporal supports can be brought into the fa¢dnfor

We shall argue that the norm induced by the inner producsome appropriat&. This substantiates ogroposalthat in a
(,) in & subsumes tha priori structural information about general theory without am priori space-time the Wright
the propositions that is encoded within the propositions Hil-operator generates the probability densities via @y. Ev-
bert spaceR. It is a quantitative measure for the fine grained-ery subsystem of the quantum system in question is charac-
ness of propositions within the descriptive scheme providederized by some subset of all quantum degrees of freedom
by &, i.e., the smalle(b,b) is, the more “fine grained” the and the probabilities for propositions corresponding to some
proposition corresponding toe £ is. More specifically, we subsystem can be obtained from E4). by multiplying with
shall see below that the amount of information associatead suitable normalization factdrepresenting the number of
with a propositionb e £ is given by —In[p(b)/(b,b)] [where  quantum degrees of freedom corresponding to the subsystem
p(b) denotes the probability df], which is just the differ- in question.
ence between the information associated with the probability From the definition of the *probability” functional
distribution and the structural information encoded in). pr:R—R it is obvious thatpt is not necessarily positive

It is very important not to confuse the “temporal” Hilbert definite and defines no linear functional on allsf Thus it
spacef with the single-time Hilbert spac# in ordinary is useful to adopt a consistent-histories-type point of view
guantum mechanics. The elements of the single-time Hilbefft5]. All propositionsy e & with either pr(y)<0 or p1(y)
space$) in ordinary quantum mechanics correspond to the>1 are assumed to be physically meaningless in the state
possible purestatesof the system. Hence the two Hilbert TeW,(R). We say that a sef:={x;|i e |,X; € &} is consis-
spacesi and$) havea priori nothing to do with each other. tentin the stateT e We(R) if (i) xLx; for i#j, (i) Zix;

A. General framework

We shall clarify thea posteriorirelation between the tempo- =e, (i) 0<pi(x;))<1 for all i, and (iv) Z;pt(x)
ral Hilbert spacef and the single-time Hilbert spacge be- =p1(2;x;)=pr(e)=1. Consistent sets of propositions rep-
low. resent the analog of sets of commuting, mutually exclusive

We shall see that in Isham’s abstract history quantunyes-no observables in standard quantum mechanics and the
theories the propositions Hilbert spagdn general depends existence of several mutually inconsisténbmplementary
both on the single-time Hilbert spaggand on the quantum consistent sets of propositions reflects the quantum character
state given by some decoherence functighdthysically this  of the theory. The space @il (measurablepropositions in
reflects the fact that the global propositions one may sensibleur approach carries the structure of a Hilbert space but no
ask about the system can change when the global dtafe lattice theoretical structure. Only the consistent subset$ of
the system is changed. We shall see that essentially the Hitarry the structure of a Boolean algebra. It is a virtue of the
bert space’ corresponding to a decoherence functiothd  consistent-histories philosophy that it allows us to consider
constructed from a larger space of propositions by omittingspaces of propositions without any lattice theoretical struc-
some propositions with vanishing probability in the stdte  ture on it and our unifying mathematical treatment of tem-

The quantum-mechanical temporal states of the systerporal quantum theories relies heavily upon this feature of the
are given by self-adjoint bounded operat®ren £ such that consistent-histories philosophy. Consistent sets of proposi-
(e,Te)=1, where(, ) denotes the inner product i. We tions are also calledindowsor frameworksfor the descrip-
denote the set of all such operators by,(£). Wright tion of a quantum system. Aefinement W:={y,};.; of a
showed that one can associate a bounded opeTateith consistent seiV, :={x;};, for T is a consistent set faF such
every bounded decoherence functional in a general historthat each element;e W; can be written as a finite sum of
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elements inW,. A consistent set is said to b@aximally  Hilbert spaceV (with dimension greater than).2In this ap-

refinedif it has no consistent refinement. proach the space of histories is identified with the BEY)
We call & the space of propositions about the systemof projections orl and the state is given by some bounded

However, notice that there are in general many elements in gecoherence functiond, i.e., by some bounded biorthoad-

that are in no consistent set for some stateThe Hilbert  yitive functional d:P(V) X P(V)—C satisfying (i) d(1,1)
spaces serves as a mathematically nice space into which the. ; (i) d(p,q)=d(q,p)*, and i) d(p,p)=0 for all p,q

propositions are embedded. The example of standard quan-
tum mechanics discussed in Sec. Il B will clarify this point €P). : :
) > ' ; " We appeal now to an important result of Wrigt#5],
The consistency condition for every physical state single lary 4 ding to which th ists a Hilbert
out the elements that can be interpreted as physically meaE—oro ary 4, according to which there exists a Hilbert space
ingful propositions in the respective state of the system. , a self-adjoint l:_)ounded operatdr on &, and a mapx
The framework for temporal quantum theories introduced—[X] from B()) into a dense subspace of such that
above must not be considered as a fixed, rigid set of axiom®:B(V) X B(V)—C,D(x,y)=([x],T[y]) is an extension of
but should be viewed as a set aim grano salisvorking ~ d- With e:==[1] it follows that (e,Te)=1. Thus Wright's
hypotheses that might be in need for change in the future. Ifesult implies that a general history quantum theory can al-
fact, we shall see that the history version of standard quarways be brought into the form of a space-time quantum
tum mechanics over infinite-dimensional Hilbert spaces fitgheory. IfV is finite dimensional, then it is possible to show
only into the framework when one allows for elements ofthat the Hilbert spac& can be chosen independently af
infinite norm in the Hilbert spac&. We shall call such Hil- and may be identified witl8())); see Remarkv) in Sec. llI
bert spacesmproper Hilbert spacessee Appendix A(We  in [25].
mention that there is an alternative formulation of the history Wright's result depends crucially on the fact that
version of standard quantum mechanics over an infiniteD;B(V)XB(V)_,C satisfies a Haagerup-Pisier-Grothendieck

dimensional Hilbert space as a temporal quantum theory olnequality, i.e., that there exists a positive linear functiopal
tained in[24] in which all information about probabilities B(V) with ¢(1)=1 and a constant>0 such that
and the quantum state is thrown into the propositions Hilbert

spacef.) At the basis of the present investigation is the , fLot -

(tacit) assumption that essential features of a mathematical ID(x,Y)[°<Co(xx"+x"x)p(yy' +y'y)
framework for temporal quantum mechanics can be read off

a temporal reformulation of ordinary quantum mechanicssy, 4 x,y e B(V). The semi-inner product oB()) is then

Infinite-dimensional Hilbert spaces are needed in ordinar f _1 Trviy) Let N
guantum mechanics to describe observables with a continxl%? en S:::;Jr(;;es?)ornod% arsujﬁ/ ,);i)(gc;'(bt(r): gﬁ] isy )éz].os:; a¢s bterz] e

ous spectrum such as position and momentum observables,

Thus it can be argued that the mathematical difficulties in th&odmple(;uct))n of?ﬁV)§N¢twlthlre§peci to_the |r|1:ner product
history version of quantum mechanics over infinite- Nduced by¢. The functional is not unique. For every

dimensional Hilbert spaces are connected with the fact tth‘ere exists a trace class operatgy on V' such thatg(x)

standard quantum mechanics involves the concept of an unz AX7y) for all xe B(V). Thus the Hilbert space de-

derlying space-time continuurtor involves other observ- pends qnd. As just explained, the space is alwa_ys(the
ables with continuous spectrymAn appealing idea put for- comPpletion of a spageof the formB(V)/N, whereN is a set
ward by many authors is that in a quantum theory of spacle ele_ments of5(V) \.N'th D(n,n)=0 for neN. .LOO‘Q’.er
time observables the underlying concept of space-tim&P€aking, one may think of as a subspace &(V) in which
should, in one way or another, be of a discrete nature. MoreS°Me unphysical elements with vanishing probability have
over, the form of the canonical decoherence functional irP€€n dismissed. The different choices ¢fcorrespond to
standard quantum mechanics is based on the idealized ngifferent null spacesN,. The probabilities for physical
tions of states and observables at a fixed time instant and RrOPositions do not change for different choicesfofbut the
intrinsically nonrelativistic(in that the prescription for the number of unphysical propositions with probability zerodin
computation of probabilities involves a seriespyb forma ~ ¢hanges. That is, changirg amounts to changing the num-
global reductions of the stateAccordingly, we cannot ex- Per of redundant propositions #®. Wright's result also ap-
pect that the mathematical structure of a quantum theory dflies to arbitrary von Neumann algebras with no tyige
space-time events can be fully derived from standard quarflirect summand.

tum mechanics. In particular we feel that the appearance of

“infinitely” coarse grained histories in the history version of 2. The history version of standard quantum mechanics

standard quantum mechanics is a reflection of the fact that As before, we denote the single-time Hilbert spacesby

the theory is based on overidealized notions such as obsery: 4 the decoherence functional associated with the staye
ables and states at some instant of time. Therefore, arguably, ~ ~qnsider first the case that is finite dimensional. As

abies . . ]
it is inappropriate to base our mathematical framework foryis. ssed above, the homogeneous histories associated with
temporal quantum theories upon the concept of IMPropefhe times(t,, ... t,} are identified with homogeneous pro-

Hilbert space. jection operators of the fornP, ®---®P; on §; ®- -
B. Examples ® % . The space of all histories is identified with the direct

N : limit of the directed system of histories
1. Isham’s history quantum theories
As a first example we consider Isham’s abstract history

quantum theories over some finite- or infinite-dimensional PG5y ®: 0 )l{t, - .t} CRY,
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as discussed earlier. Consider some firegnd some fixed However, the restriction of, to a subset of3 containing
set of times{t;, ... ty} and write Vi ;=9 ,® -+ only elements with fixed support is bounded and self-adjoint.
Ry . Consider the restriction af,, to 7>(Vtl ,,,,, tn). Isham,  Then the sesquilinear for@, obviously satisfiedD ,(b,b)
Linden, and Schreckenberg have shown that there exists @(b,T,b) for all beB. Since sesquilinear forms are

trace class operatoty on V), = . such that uniquely determined by their quadratic forms we find
v D,(by,b,)=(b;,T,by) for all b;,b,e B for which the sup-
d,(p,q) My, eon ln(p® qXy) ports ofb; andb, are equal. Let, finallyg:=1 denote the

indifferent proposition that is always true; th@n satisfies

forall p,ge 73(1)tl ,,,,, tn). From this it is obvious thad,, can (e,Tp@: 1. ] ]
be extended to a bounded functional on all&gh;, ;). This shows that the history version of standard quantum
10t mechanics over a finite-dimensional single-time Hilbert

For what follows it is convenient to introduce tkensity space) can indeed be brought into the form of a space-time
quantum theory as formulated in Sec. lll A. Here the propo-
sitions Hilbert spaceR is independent of the initial quantum
(1) statep and only the temporal quantum staftg depends on

p

In the operator formulation of the history version of quan-
tum mechanics propositions are identified with projection
operators andonsistent setsf propositions are defined with
_the help ofd, as those exhaustive sétof mutually perpen-
dicular projections for which Ré,(p,q)=0 for all p,q

for all p,qu(th ,,,,, tn). The quantitys,(p,p) is then a

probability per quantunispace-timg degree of freedom.
One can look upom, and the space of all histories from

a slightly different perspective. To this end consider the di

r?Cted _SY_Ste”’{_B(ﬁtl®' - @f )t - ’t”}_CR} and 'ts_ e C. Comparing this with our definition of consistent sets of
d!rect I_|m_|t, Wh'dl we denote byB (the existence of t_h_|s propositions in the propositions Hilbert spaggiven in Sec.
direct limit as aC* -algebra follows, e.g., from Proposition | o' we see that, in the case of finite-dimensional standard
11.4.1 in[29)). Consider the mapr that maps every hOmo- 4 .antym mechanics, every consistent set of propositiofts in
geneous bounded operatpe=by, ® - - - @by onBV, .. 4,) corresponds, when pulled back to the standard operator for-
to m(b):=by ---b;_eB($). From Proposition 11.1.8i) i mulation, to a consistent set of projection operators.

[29] it follows that 7r can be uniquely extended to a linear  Given now some propositiope & corresponding, on the

map fromB to B($), which we will also denote byr. Every  operator level, to some projection operapprthe larger the
d, can be extended to a sesquilinear fddpon B such that  space on whichp projects is, the larger the norm of the

this extension can then be written as imagep of p in & is. This substantiates our physical inter-
. 2 . .
D :BXB—C.D.(by.by)=tr by or(ba) . pretation of|bl|5=(b,b) as a quantitative measure of how
s p(D1,Do) =t mr(Dy) p (D) coarse grained the proposititne R is.
The corresponding extension &, will be denoted byA , . We notice in passing that for amye R with p=1 we can
Consider some fixed set of time poidts, . .. t,}. We de-  define a norm o8 by

fine an inner product o§ by

®)

trf)t1®- . ~®f31n[(bTb) p/Z] e
[[ollp:=

trf)t1® - ®5’)tn( 1)

for all be B, where{t,, ... t,} denotes the support df.
foTr all by,bye B, wherefty, ... t,} denotes the support of por 5 proof see for instancg30], Sec. V.6. The nornf |,
b,b,. We shall denote the norm induced by the inner prodinduced by the inner produét, ) obviously corresponds to
uct(, ) by| |, for reasons to become clear below. The factorp=2. (Notice that]| I, defines no crossnorm of.)
s =5 (1) in needed to ensure the additivity ©f) on Next consider the case that the single-time Hilbert space
all of B. Denote byﬁ the Hilbert space Comp|etion of with 9 is infinite dimensional. To Slmpllfy notation we assume in
respect tq , ). Notice that althougts is finite dimensional, the following that$) is separable. The extension of our re-
B and £ are infinite dimensional. Since the trace is aSults to nonseparable Hilbert spaces is obvious. We proceed
bounded linear functional of($); ® - - - ®H; ) and sinced,, in analogy with the finite-dimensional case. The algebraic

is bounded with respect to the ordinary operator norm, it€NSOr product oB(%,,), ... .B($ ) is the set of all finite
follows thatA, extends uniquely to a bounded sesquilinearlinear combinations of homogeneous operators
form on K. So there exists a bounded, self-adjoint operator

7, In B(K) such thatA ,(x,y)=(x,7,y) for all x,y e &. Let b,®---®by,
be B and let{t,, ... t,} denote the temporal support bf
Define whereb; e B(ﬁti) and is denoted by

T, b:=(dim§)™r b. B($,) ®aig* @aigB(Hy).

ThenT, is an unbounded operator shwhose(densg do-
main of definition isB. T, is not self-adjoint on all of3. Consider the directed system
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and its direct limit, which we denote W,q (its existence as
a C*-algebra follows again by Proposition 11.4.1[i29]).
Define the mapr on homogeneous elementsifq4 as in the
finite-dimensional case by(b;®---®b,)=b,---b,; then
it follows by Proposition 11.1.8 inf29] that = can be
uniquely extended to a linear map 8g,4. Again we denote

the extension ofr also by (slightly abusing the notatign
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We interpret(,) as an improper inner product dfyq
(see Appendix A This implies in particular that additivity
is only required in the finite sectors 6%,,. Thus the factor
tr(1) appearing in the definiton of ,) in the finite-
dimensional case is not only not well defined but also not
needed to ensure additivity in the finite sectord3gf,. The
completion off3,4 with respect td , ) is an improper Hilbert
space that we denote by. We interpretf as in the finite-
dimensional case as our propositions Hilbert spddée

As in the finite-dimensional case the decoherence functionanain reason for completin§,q here is to get a mathemati-
d, associated witlp can be extended to a sesquilinear formcally nicer space of propositionsie find that the decoher-

deflned on all ofB,4 and the extensio®, of d, can be
written as

D, BaigX Baig—C, D ,(by,by)=trg[m(by) pm(by)].
We remark that the representation equati@his also valid
for D, on all of B4 (this follows by linearity.

Let by,by e B,g; then we define

(b1,bz) :trﬁtlw : ‘®5ln(b41rb2),

where{t,, ... t.} is the support oblb,. This expression is
not well defined for arbitraryb, and b,. If it is not well
defined, then we formally sé€b,,b,):=. Itis clear that the
elementsb e B4 with finite norm||b|?=(b,b)<= are ex-
actly the Hilbert-Schmidt operators iBa,g. In particular,
[bl[=0 for be By4 implies thatb=0. It is well known that
every trace class operatok B,q satisfies (7' 7)¥2]<eo.

ence functionald, associated withp can be uniquely ex-
tended to a bounded sesquilinear dep on K. To see that
D, is indeed bounded with respect to the norm induced by
the inner product , ), recall the Cauchy-Schwarz inequality
forD,,

|Dp(bl!b2)|2$Dp(bl1bl)Dp(b21b2)1
for all by,b, e B, g Whenb e B4 is a Hilbert-Schmidt op-
erator withn-time support, it follows that there is a constant
C>0 such that
D, (b,b)|<Clblls.
where|| |y4s denotes the Hilbert-Schmidt norm. To see this,

recall the representation Eq3) and apply the Cauchy-
Schwarz inequality

|Dp(b,b)|$j1w2‘j2n wj (e -ael oy @ o (beb)(y el e -ve el o - ol )
sjl“g}z_ (el ®---oe loy ® - o6 (b'eb)(y cel o - ce] ’ee’ - ¢ )|
ﬁz,l (e o) loy o o6 (bbobb (e’ - oe loy o o))
=]_1’£jnl (v, @ @€ (bD)(y,® - @] )| =[blEs=I[b1*1,

where| ||; denotes the trace class norm grid:=(b'b)2.

From the definition of a Cauchy sequer(see Appendix A
it follows that for every Cauchy sequenge,} there exists
an N such thatn,m>N implies thatu,,— um is a Hilbert-
Schmidt operator anflu,,—u,,]?=(u,—Uu,) (u,—u,,) is a

D,(x,x)=(x,T,;x) for all xe & . The sesquilinear ford,,

also satisfiesﬁp(e,e)= 1, wheree:=1 again denotes the in-
different proposition that is always true. Summarizing, we
have shown that also the history version of standard quantum

trace class operator converging to O in the trace class nornrmechanics over an infinite-dimensional Hilbert space can be

Thus it follows from the above inequalities that, can be
uniquely extended to a finitely valued sesquilinear fddm
on R.

We denote the subset gfof all elements with finite norm

brought into the form of a temporal quantum theory.

The reader might wonder whether the history version of
standard quantum mechanics can be brought into the form of
a temporal quantum theory with a proper propositions Hil-

by &fin . The spaceiy;, is a union of proper Hilbert spaces bert space. The answer is yes with the restriction that the
(the Hilbert spaces of Hilbert-Schmidt operators with fixedsesquilinear formgwhich are the states in the present frame-
temporal suppoyt Consequently there exists a bounded op-work) are then either only defined on a dense subset of the
erator 'Al'p,i on each Hilbert spacef C s, such that propositions Hilbert space or coincide with the inner product
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of the propositions Hilbert space. The latter natural represen- lgz=minlgyw,

tation of the standard decoherence functiaialinfinite di-

mension$ as an inner product of a Hilbert space has been

derived in[24]. In this formulation all probabilistic informa- where the minimum is taken over all consistent #tsf d.

tion is completely encoded within the inner product of theThere are alternative possibilities to define an information

propositions Hilbert space and there is no additional notiorentropy; sed13]. One important feature of the information

of a state. Accordingly, the information entropy to be definedentropy| 4y with respect tod and the windoww such de-

in Sec. IV is always zero for this representation. Otherwisefined is that its definition involves explicitly the dimension of

every positive linear functiona$ with ¢(1)=1 induces a the underlying history Hilbert spade and the dimension of

semi-inner product o3, by (X,y) 4= $o(y"™x+xy". It the projections itW. Thus the definitions ofy w andl 4 have

has been shown if24] thatD, is not bounded with respect no straightforward finite extensions to infinite-dimensional

to the norm induced by, ), (see also Appendix Band that  history Hilbert spaces.

D, is unbounded with respect to ar@*-norm on B,q. It is the purpose of this section to define a corresponding

ThusD,, cannot be extended to the Hilbert space completiomotion of information entropy for our scheme of space-time

of B,1q/N, with respect td , ) 5, whereN , denotes the null  quantum theories using the techniques described by Isham

space of , ) 4. Moreover, in general, the shit, may contain ~ and Linden. Consider a space-time quantum theory as in Sec.

physical histories with nonvanishing probability. Therefore,lll A over some Hilbert space’ of propositions and some

for this construction to make sense one has to ensurd\that state given by the operatdre W,(£). SinceT is not posi-

contains no elements with nonvanishing probability. For detive, in general the expressioftry(TInT) is not well de-

tails the reader is referred {@4. fined. We proceed in analogy with Isham and Linden and
pick some seW={x;}; ., of propositions inf that is consis-
tent with respect td. We define a positive self-adjoint op-

IV. INFORMATION ENTROPY erator:l"w by

In this section we study the problem of defining an infor-
mation entropy within our framework of temporal quantum (Xi -TX>
theories. We adopt the point of view that, loosely speaking, Twi= =1 (X ,x)
the information entropy measures the lack of information
and is a quantitative measure of the total amount of missingvhere P, denotes the projection iR onto the subspace
information on the ultramicroscopic structure of the SyStemspanned by . The operatoﬁ'w is again a state operator in

The problem of defining an information entropy for tem- Wa(8), ie., satisfiege, Te)=1. To see this, we recall that
poral quantum theories was addressed in the framework of ©

Isham'’s history quantum theories by Isham and Linfs]. €~ ZiciXi- Thus (eTwe)= Z i, {Xm Twx)
They restricted themselves, however, to history theories oveF Zm(Xm: TwXm) = Em(Xm, TXm), Where we have used that
finite-dimensional Hilbert spaces. They considered the casgy, TuXm)={(Xm,TXn) for xn,e W. Since{x};., is a con-
that the space of histories is given by the ®#) of pro-  sistent set forT, it follows that Em(xm,Txm) (e, Te)=1.
jections on some finite-dimensional Hilbert spd¢eand that Thus(e,Twe)=1 andTye Ws(R). For Ty, the expression
the state is given by some bounded decoherence funct|onaltrH(-|-WIn T, is well defined and this motivates the defi-
on(H). Recall that to every decoherence functioidhere yion of the information entropy for the stafé and the

is a unigue trace class operafy on H® H such that Eq(2) window W,

holds. They proceeded as follows. First they observed that

there seems to be no straightforward simple way to general- (X, TX)

ize the expression for the information entropy in single-time It wi= —trH('TWm TrW): — Z (X, Tx)In ; (6)
guantum mechanics,_;= —trg(p In p) to history quantum iel (Xi X

theories sinceXy is in general neither self-adjoint nor posi-

tive. Thus they defined in a first step an information entropyAn argument as if13] shows that \, decreases or remains
with respect to a consistent set of historiasvindow Wby  constant under refinements as it should. To this end, we first
replacing the decoherence functiomhby another decoher- notice that for kq<o

ence functionatl,, such thatd,, coincides withd on W and

such that the operatdty associated witlyy, is self-adjoint I ( (1+a)
aln

(1+b)d

=0 W)

—(1+a)ln

and positive. The information entropy with respectdtand
W was defined as

for all 0s<a<e and O0<b<«. To see this letfy(a,b)
lgwi=—tr(Xg, InXq )—IndimH 2, =aln(a/b%)—(1+a)In[(1+a)/(1+b)9]. The function
b—f,(a,b) assumes for every fixed<Oa<<e a minimum at
b=a. The value of this minimum satisfidg(a,a)=0 for all
The term—In dim+ 2 is added to ensure that the information 0<a<, which proves the inequalit§7). Now consider a
entropy is invariant under refinement. Isham and Linden alsavindow W;={xg,X{,X5, ... X,} and a refinementW,
showed that 4 \y decreasesor remains constaptinder con-  ={y,,Z,X;,X2, . . . Xp} Of Wl, wherex,=Yyo+2o. We de-
sistent fine graining ofV. An information entropyl 4y associ-  fine a:=(zy,TZ)/(Y,TYo) and b:=(zy,zp)/{yo,Yo). A
ated withd can then be defined by straightforward computation shows
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(1+a)
(1+b)

} infinite-dimensional casécorresponding to an infinite vari-
aln

ety of possible measurement outcopg®e missing informa-
tion becomes infinite for certain windows involving “too”
where we have used thakg,Xo)=(Yo,Yo)+(Z.20) since coarse grained propositions. An alternative approach is
W, is a consistent set foF. Thus the information entropy for (Somewnhat in the spirit of the topos theoretic approach to the
T and W decreasegor remains constanunder any refine- histories approach put forth by Ishafti0]) to define the

a
lrw, = Trw, = (Yo, TYo) )_(1+ a)ln

ment of the window. information entropy by
The information entropy for the Wright operatdr can -
then be defined as the minimum over all consistent sets, i.e., I+ w:=supl T, Wy
Wo
|-|-==min|-|-’W,
w where the supremum runs over all consistent refinemafgts

of W such thatIT,W0 is finite. Notice, however, thaNIT,W

where the minimum is over all consistent setsTof . o
might also be infinite.

It is instructive to compare the expression for the infor-
mation entropyl 1  for T andW given above with the cor-
responding expression for the Isham-Linden information en- V. SUMMARY
tropy for a decoherence functiorchbnd a windowV for d in

history quantum theories, which was proposedif] In this paper we have put forth a mathematical framework

for temporal quantum theories involving observables associ-
ated with extended regions of space time. The main ingredi-
M ents of the framework is a Hilbert spagethat contains the
(dim ai/dimH)z’ physical (measurable propositions about the system. The
norm of an element inkR is interpreted as a quantitative
where’H is the finite-dimensional Hilbert space on which the measure of the structural information about the correspond-
operatorsa; act. The factor dindt is included to ensure the ing proposition encoded within the spa@eand, more spe-
invariance of the information entropy upon refinement of thecifically, as a quantitative measure of the coarse grainedness
consistent set. Recalling that alf are projections, we see of the corresponding proposition within the descriptive
that the expression for the Isham-Linden entropy can be writscheme provided bg. There is one distinguished element

dv— 2 d(a;,aj)n

ten with the norm| ||, from Eq. (5) as in & identified with the completely indifferent proposition
that is always true. The states are given by bounded, self-
d(a;,a;) adjoint, but not necessarily positive operatdr®n £ such
E d(aj,a)In———

that (e,Te)=1. The expression for the probability of a

laillF propositionx e & is given by(x,Tx) providedxe &. This
(a,,Ta,) prescription makes sense when one adopts a consistent-
== 2 (ai Taj)ln———mr3— |2 ' histories-type point of view according to which the assign-
aill1

ment of a probability to a propositior is unambiguously
possible only with respect to a consistent set of propositions
containingx.

Our proposal is motivated by recent developments in the
so-called histories approach to quantum mechanics and we
have seen that the history version of standard quantum me-
. chanics can be brought into the required form in the finite-
[ |||2 dimensional case. In the infinite-dimensional case one has to
) o _ allow for a slightly more general framework in which the
All these expressions staral priori on an equal footing. propositions Hilbert spac is an improper Hilbert space or,
However, an argument as above shows thfat, decreases alternatively, in which the states are given by densely de-
or remains constant under refinement of the conS|stent set fined unbounded sesquilinear forms on the propositions Hil-
and only if 1sp<2. The proof is analogous to the proof pert space.
given above for the information entropy,, and makes use ~ We have also seen that Isham’s general history quantum
of the general inequality7). Obviously, the information en- theories can be brought into the form of a temporal quantum
tropy I+ defined above in EG6) corresponds tp=2 and  theory. Moreover, we have defined an information entropy,
the Isham-Linden entrom%j"v corresponds tp=1. The case generalizing the Isham-Linden information entropy for his-
p=2 is somewhat preferred since only in this case the gentory theories.
eral construction given in Sec. Il applies. The examples discussed in Sec. IlIB make clear that

In the case of the history version of standard quantunour approach is not in contradiction to the history approach
mechanics over infinite-dimensional Hilbert spaces we seby Ishamet al. but rather(in a sensga complementary for-
that the expression for the information entrofy,, might  mulation of temporal quantum theories. In the case of stan-
become infinite when the windoW involves coarse grained dard quantum mechanics we still can think of the space of
propositionsu with (u,u)=o. When we recall that the in- propositionsf essentially as a set of operators on tensor
formation entropy is a measure for the amount of missingproduct Hilbert spaces. In this sense our approach may,
information, it is perhaps not too surprising that in theloosely speaking, be looked upon as a compromise between

whereT is the Wright operator associated widhWe see that
for any 1= p<x there is an Isham-Linden-type information
entropy given by

d(aj,a)

Iy, p= 2 d(a;,a;)In———=
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the formulations of history quantum theories due tosome(nonuniqué proper Hilbert space within an improper
Gell-Mann and Hartle, on the one hand, and Isham, on thélilbert space.
other hand.

However, as already discussed above., the history theory APPENDIX B: THE DECOHERENCE EUNCTIONAL
due to GeII-Mann anq Hartle stays essentially on the level of IN STANDARD QUANTUM MECHANICS
homogeneous histories and represents only a very modest
generalization of standard quantum mechanics. Isham’s ab- In [24] the present author and Wright studied the analyti-
stract history quantum theories represent a much more suleal properties of the standard decoherence functidpais-
stantial generalization of standard quantum mechanics. Howsociated with the initial statp. Among others we proved
ever, it is an open problem if and how standard quantumhat if the single-time Hilbert space is infinite dimensional,
mechanics can be recovered from them in some appropriatien (i) the standard decoherence functiodgldefined on
limit. Specifically, it is not clear at all in which limit a homogeneous histories by E€l) cannot be extended to a
Hamiltonian operator can be recovered within the frameworkKinitely valued functional on the set of all projection opera-
of an abstract history theory. In contrast to these two develtors on the tensor product Hilbert space dingthe extension
opments, the approach developed in the present paper offeDsp of d, to 13,4 is unbounded with respect to af -norm
a generalization of standard quantum mechanics for whiclan 3,,,. The latter assertion, together with Theorem 4.3.2 in
there is hope that the issue of recovering standard quantuf9], implies thatD , is also unbounded with respect to the
mechanics can be successfully tackled. A possibility suggeskorm induced by the inner produ<c1)¢ defined at the end of
ing itself is, for example, to study propositions Hilbert spacessec. IlI. (Theorem 4.3.2 if29] states that every positive
carrying a unitary representation of the Poincgreup in  Jinear functional¢ on B,4 is bounded with respect to any
which case a Hamiltonian operator can be obtained as one @f* -norm onB,,.) We are not going to reproduce the gen-

the generators of the representation. These topics will bgral considerations undertaken[@4] here, but for the con-

discussed elsewhere. venience of the reader we give two counterexamples show-
ing (i) and (ii), respectively. We assume for simplicity that
ACKNOWLEDGMENTS the single-time Hilbert space is separable.
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X (;,0€ o€ ®e)), (B1)

for all historiesp,qu(ﬁtl@éﬁtz) for which the sum con-

APPENDIX A: IMPROPER HILBERT SPACES verges. We assume that the single-time Hilbert spaces
_ _ _ _ separable. Now choos# =e’=e’=y; for all j. Fix i; and
~ Consider a vector .spac‘E equipped with an Improper et o..=(1/\2)(|¢i® ;) +| i @ ) for everyie Nfi,}.
inner product (, )y UXY—CU{»} such that (i) Th P N
. * en clearly ¢ile¢; if i#j. Set f ()=
(w,au+bv)g=a(w,u)yg+b(w,v)y, (i) (U,v)y=(v,u)y;, ! l12:13
(iii) (u,u)y=0, and (iv) (u,u)y=0 only if u=0 for all  (¥1,®¥i,,4(¥j,®¢;;)); then an easy computation shows
a,beC andu,v,we Y whenever all expressions are finite. that
We denote the subspace of element¥jiwith finite norm by
Vsin . A sequencgu,|neN,u,e U} converges taie Y if 1
(Up—U,Uuy—U)y—0. A sequence{u,/neN,u,e U} is a Dy(Py.a)= 5,2 [oi fiy i, (@ +oifij, i(a)]
Cauchy sequencié (U,—Uy,,U,—Un)y— 0. Notice that for 2
any Cauchy sequendel,} there is anN such thain,m>N
impliesu,—uy, € Vs, - The spacés is said to becompletef
every Cauchy sequence converges. An orthonormal basis isSAPSpace spanned kyy . SetP=2%,; P : then clearly the
set{y;|i e l,y; e U} such thati) (y; y;)u= & foralli,j, (ii) expressior(B1) for D ,(P,q) does not converge for arbitrary
(u,y;)y<oe for all i andu e W, and(iii) (u,y;)=0 for alliif ¢
and only ifu=0. Animproper Hilbert spaces now a linear (i) Consider agaim=2 and the operator
spacel with an improper inner produgt, )g; such thati) U
is complete andii) U has an orthonormal basfy;}. Then 1 4 4
every elementue®l can be formally expanded as h:kZ«( m|ek4® l//kl><'lfkl®ek4|-
=3i(u,y)yYi. In contrast to c;rdinary Hilbert spaces, how- e T4
ever, the sum|u|=Z=;|{u,y; does not converge for all . . .
Ue . We dgdLOHt waln|t<toyézal\i/|elop here a theory gf improperThetnh is a compact operator in the completion of the alge-
Hilbert spaces, but it is important to notice that many result&’raIC tensor prOdUCﬂC(ﬁtlma'gK(ﬁtz)' (A Cauchy se-
of the theory of Hilbert spaces are not valid for improperduence{hy} in K($; ) ®agK($;,) converging toh is given,
Hilbert spaces. Notice, however, that there always residefor example, by

fori#iq, whereP«,i denotes the projection operator onto the
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n and thus is clearly divergent. This shows that the canon-
ho=2, 2 [Ukit+kg)llek,@ i )¢, @€ |- ical extensionD,, of d, on Byyg is not bounded ork($,)
=2 k151||:::| ®algl () with respect to the ordinary operator norm.

Since, by nuclearity, alC*-norms onlC(ﬁtl)®a|gIC(5§t2)

Then |lh,—hyl[<max(1h,1/m).) Moreover, the sum in coincide,D, is unbounded with respect to a*-norm on
Eq. (B1) for D,(h,1) is equal tOEkl,k4[wkl/(k1+k4)] Bag -
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