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Coherent states for the Kepler motion
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The dynamics of the electron wave function in a hydrogen atom is mapped onto that of a two-dimensional
harmonic oscillator. Based on the harmonic-oscillator eigenstates, a coherent state wave function for the atomic
electron is proposedS1050-294{@9)04002-7

PACS numbds): 31.15~p, 03.65.Ge, 03.65.Bz

Since quantum mechanics emerged over seven decadé® Schrdinger equation for the electron wave function in a
ago, the classical limit in its framework has been one of thehydrogen atom can be written as
central issuegl]. Nevertheless, the classical limit of the Ke-
pler motion, which is obviously one of the most fundamental d d
applications of both quantum and classical mechanics, has ' w(’u“ Ve 0)= H(’u’ o’ Yo a )w(’u“ Vel
not been fully understood. The crucial question is whether 2
one can construct a stable wave-packet state that does not
change its shape during the time evolution. This question jghere the Hamiltonian operator [iS]
relevant not only to theoretical arguments but also to experi-
mental preparations. H(,u J 9 9 )

Recently, ten Woldet al. succeeded in observing a radi- o v de
ally localized electron wave packet by coherently exciting

_ 32
Rydberg states of rubidium atoms in a direct pump-probe = f !
experimen{2]. The experiment seems to open the new pos- 2m ptv
sri1bilitly of' exlal.minin? \r/larious theor;tic;al attempts to obtain 2 1 9 1 g2 2 1
) X|=—+— — ===
the classical limit of the quantum Kepler motion P a,u 2952 T 2m w22

As is well known, the quantum harmonic oscillator can
have such a wave-packet solution, i.e., the coherent state
[3,4]. Therefore, it is mathematically natural to map the Ke-
pler motion onto a system of harmonic oscillators. In this
paper, using the theory of Ravndal and Toyoda on the ©)
SU(2)®SU(2) dynamical symmetry of the quantum Kepler
motion[5], we explicitly map the dynamics of the quantum
Kepler motion, i.e., the electron in a hydrogen atom, onto g
two-dimensional quantum harmonic oscillator. Then we pro-,
pose a coherent state that satisfies the constraint due to t

9 +1 a 1 9 2¢?
v’ v v Vz&goz 7’

The added positive constah, is to be fixed depending on

the initial condition. For simplicity we neglect the spin vari-
%bles. Keeping the spatial coordinates unchanged, we change
hhe time variable front to 7, as is defined by

extra degree of freedom and keeps its shape during the time t
evolution with respect to the auxiliary time variable intro- =——. (4)
duced by Duru and Kleinef6,7). pot

Coherent states for the Kepler motion with the auxiliary o .
time of Duru and Kleinert have been considered by GE8t It should be noted that this is essentially the same as the

and by Gerry and Kiefef9]. In Ref.[8] the Kustaanheimo- auxiliary time used in the path-integral formulation of the
Stiefel transformatioi10] is used to introduce the ordinary Nydrogen atom problem by Duru and Kleing8l. In terms
boson coherent states. In RELO] the SA2,1) radial sub- of the new set of the variables, the Sattirgyer equation can
group of the S@,2) dynamical group of the Kepler motion be expressed as

is used to introduce Perelomov’s coherent statdsl12), in
contrast to the S(2)®SU(2) symmetry used in the present
paper. The coherent states considered in R8faand[9] are
clearly different from our coherent states given in this paper. {
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In the squared parabolic coordinatgsv,¢) defined by h ( J 19 19

|+
o oo u?ap?

2m
? 14 1 aZ)

X=uvcose, y=pvsing, z=3(u*-v?, (1) et —+
v viv 1v? (9(p
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1050-2947/99/5@)/1021(4)/$15.00 PRA 59 1021 ©1999 The American Physical Society



1022
where y denotes the wave function,

P(p,v, 0,0 = g, v, 0, (u*+v2) 1) = x(p,v,0,7). (6)
Then, introducing the auxiliary variables, and ¢, [5], we
can rewrite Eq(5) as
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which is associated with the condition

d
_,\I,(M'(P,LL’V’(PV7T): \P(,U«,(PM,V,(P,,,T). (8)

Ip, do,
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L= —i i —imw(§,£in,) 1,
* 2 mhe 9€,” n, 7
(129
N 'h( T i vima(e, 7 )]
= —In| ——+l— | tiMw(§,+17,)(,
T 2Vmiw agv (97]1/ g
(129
where the new variables are defined by
§u=mcose,, m,=upsing,, §=vcose,,
n,=vsing,, (13
and the parametes denotes
w=+2Ey/m. (14

The only nonvanishing commutators between the operators
defined by Eqs(129—(12d) are

[A, AL 1=[A_,AT]=[B, ,B']=[B_,B']=1, (15

Owing to the above condition the excessive unphysical dewhich show that they are the creation and annihilation op-
grees of freedom emerging from the use of the auxiliaryerators for the harmonic oscillators. In terms of these opera-

variables can be restricted. If we pyf,=¢,= ¢, the new

wave function is reduced to the original wave function
\P(lu“v(p,u1V1€DVvT)|tp‘u=¢V=(p:X(lu‘1V1(P17-)' (9)

The time evolution of the wave function

W(u,¢,,v,¢,,7) With respect to the time is given by the
generator,

- B2 19 1 9 2m 2
2m \ou?  wop  wp? &(pi pZz M=o
%2 a2+1a+1 32 2m2E 0o
2m\ 9?2 " vav 12 9¢? HZ Vo €

(10
which yields

\I}(M,QD#,V,(PV,T):eXF{TTF \P(M,(PM,V,QD,,,O).

11

The operators)/de,, dlde,, and the generatdF can be

simultaneously diagonalized because they commute with e the eigenvaluem
each other. To perform the diagonalization we introduce th o

operatorg5]
.= —ih|—=i—]—im i ,
* 2ymhe €, am,| e e

(129

1 _ ( a 9 ) _ _.
N —in 07_§,L+Im +imo(§,+in,);,
(12b

tors, the generatdf can be expressed as

F=ho{AlA, +ATA_+BIB,+BTB_+21—-2¢e%
(16)

The operatorgl/ d¢,, andd/ ¢, are also expressed as

P
i£=A1A+—AT_A_ and i&‘p =B'B,-B'B_.
(17)

y23
Thus we can rewrite Eq8) as the condition for the physi-
cally allowed states in terms of these operators:

(ATA,—ATA_—B! B, +B"B_)|physica}=0. (18

The relevant eigenstates of the number opera@rAt and
BLB. are defined by

ALA.|Im. ,m_,n; ,n_)=|m, ,m_,n,,n_ym, (19
and
BLB.|m. ,m_,n,,n_)=|m. ,m_,n, ,n_)n., (20)

m_, n., andn_ are non-

fegative integers.

Noting that any linear superposition of the eigenstates
Im.,m_,m,+n_—m_,n_) satisfies the physical state
condition (18), we define a coherent state

W (. B;y))=exd — 3(|a|*+|BI*+][¥|*)]

g i i a™+ ,Bn‘ ym_
X
m;=0n_=0m_=0 ym,! yn_! ym_!
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where the complex numberg B, and y are to be specified i
according to the initial condition. It should be remarked thateXF{ 7 TF) W (a,B;7))
the productsyy and By are the eigenvalues of the operators
A_A, andA_B_ such that i
=expg — Hho(ATA, +ATA_
A_AL|Y(a,Biy)=|V¥(a,Biy))ay (22)
+BLB++BTB_+2)—2e2}) W (a,B;7))
and )
i
=exp( —%T{Zhw(ALAﬁ—BiB_-i— 1)—2e2})
A_B_[W(a,B;7) =¥ (a.B;7)BY, (23
X| ¥ (a, ;7). (24)

which can be straightforwardly obtained from Eg1).
By virtue of the physical state conditiof18), the time
evolution of the coherent state with respect to the time

Hence the dynamics is equivalent to that of the two-
dimensional harmonic oscillator.
Furthermore, substituting the explicit forf@1) into Eq.

given by (24), we obtain

exp( —;L—T{Zhw(AiA++ B*_B_+1>—2e2}) (W (. 87))

©

*© *© am+ﬂn,,ym,
> > Y =
my=0m_=0n_=0 ym,!n_Im_!

exp —i2orm )exp —i2w7h_)

1
x| 5 o+ 18I+ 117

e2
xexr{iz(%—w
=exp(— 3{|a(7)|>+|B(1)*+]¥]?})

« al 7)™ B(7)"- M-
> (D™ By
my=0m_=0n_=0 YmiIn_Im_!

2
=I‘I’(a(r),ﬁ(f);y)>exr{i2(%—w)T

7{lmy,m_,m,+n_—m_,n_)

o

e2
Im,,m_,m,+n_—m_ ,n)exp{iZ(X—w)r

, (29

where the time-dependent eigenvalues, elliptic Kepler motion, the orbit in the spherical polar coor-
_ dinates (, 6, ¢) is given by the equation
ae 1297=qg(7) (269

I

r=——m-—,
1+ecos¢

(27)

and

where 2 is the length of the latus rectum ards the eccen-
tricity [15]. The elliptic orbit means €e<1. If we intro-
have been definefd.3]. Equation(25) shows the modulus of duce a parametes, which is called the averaged length in
the wave function does not change its shape during the timastronomy, the relatio =a(1—€?) holds. As is well
evolution with respect to the auxiliary time variabte As known, the eccentric anomaly that satisfies the relation
long as the modulus of the wave function is concerned; the [15]
dependence appears only through the complex eigenvalues,
which correspond to the classical orbit. If the corresponding
classical orbit is elliptic, the complex eigenvalues change
with respect to the original time Nevertheless, the change
is periodic so that the change of the modulus of the wavenaps the location of the Kepler particle on the elliptic orbit
function is also periodic and its minimum wave-packet prop-onto a point on the auxiliary circle with radias Obviously,
erty is periodically retained. the speed of the mapped point on the auxiliary circle is not
It is of some interest to see the classical analogue of theonstant. In order to map the nonconstant circular motion
auxiliary time variabler [14]. In the case of the classical onto the uniform circular motion, we note the relation

Be'27=p(7), (26b)

tan§= V(1+e)/(1l—e) tan; (28
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d 1 d -
ai e a” 2

and that in the Kepler motion, the angular momentum

r2(2¢> =consth (30
dt

This implies that if the eccentric anomaly is adopted as the
time variable, the mapped motion on the auxiliary circle be-
comes uniform circular motion, which has obviously the
symmetry of the two-dimensional harmonic oscillator. Be-
causer =1 (u?+ v?) in our formulation, the auxiliary time
variable 7 defined by Eq.(4) corresponds to the eccentric
anomalyu except a constant factor.

Concluding this paper let us make a brief remark on the
classical limit of the radiation damping of the atomic elec-

is conserved. Using this constant value for the classical anyon, It has been shown that the classical limit of the charged

gular momenturh, we find

d = n = t 31
A ae o
which yields
d h d_ d o
"dt ali—e2du_ Mgy (32

quantized harmonic oscillator interacting with the quantized
radiation field can be obtained based on the generalized Hill-
Wheeler method with the von Neumann lattice coherent
stateqg16,17. The theory can be applied to the present for-
mulation of the atomic electron with slight modification. The
details will be discussed in a forthcoming paper.

One of us(T.T.) thanks Professor T. AkamatgDepart-
ment of Mathematics, Tokai Universjtyfor critical com-
ments on the change of the time variable.
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