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Coherent states for the Kepler motion

Tadashi Toyoda* and Sumiko Wakayama
Department of Physics, Tokai University, Kitakaname 1117, Hiratsuka, Kanagawa, 259-1292 Japan
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The dynamics of the electron wave function in a hydrogen atom is mapped onto that of a two-dimensional
harmonic oscillator. Based on the harmonic-oscillator eigenstates, a coherent state wave function for the atomic
electron is proposed.@S1050-2947~99!04002-0#

PACS number~s!: 31.15.2p, 03.65.Ge, 03.65.Bz
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Since quantum mechanics emerged over seven dec
ago, the classical limit in its framework has been one of
central issues@1#. Nevertheless, the classical limit of the K
pler motion, which is obviously one of the most fundamen
applications of both quantum and classical mechanics,
not been fully understood. The crucial question is whet
one can construct a stable wave-packet state that does
change its shape during the time evolution. This questio
relevant not only to theoretical arguments but also to exp
mental preparations.

Recently, ten Woldeet al. succeeded in observing a rad
ally localized electron wave packet by coherently exciti
Rydberg states of rubidium atoms in a direct pump-pro
experiment@2#. The experiment seems to open the new p
sibility of examining various theoretical attempts to obta
the classical limit of the quantum Kepler motion.

As is well known, the quantum harmonic oscillator c
have such a wave-packet solution, i.e., the coherent s
@3,4#. Therefore, it is mathematically natural to map the K
pler motion onto a system of harmonic oscillators. In th
paper, using the theory of Ravndal and Toyoda on
SU~2!^SU~2! dynamical symmetry of the quantum Kepl
motion @5#, we explicitly map the dynamics of the quantu
Kepler motion, i.e., the electron in a hydrogen atom, ont
two-dimensional quantum harmonic oscillator. Then we p
pose a coherent state that satisfies the constraint due t
extra degree of freedom and keeps its shape during the
evolution with respect to the auxiliary time variable intr
duced by Duru and Kleinert@6,7#.

Coherent states for the Kepler motion with the auxilia
time of Duru and Kleinert have been considered by Gerry@8#
and by Gerry and Kiefer@9#. In Ref. @8# the Kustaanheimo-
Stiefel transformation@10# is used to introduce the ordinar
boson coherent states. In Ref.@10# the SO~2,1! radial sub-
group of the SO~4,2! dynamical group of the Kepler motio
is used to introduce Perelomov’s coherent states@11,12#, in
contrast to the SU~2!^SU~2! symmetry used in the presen
paper. The coherent states considered in Refs.@8# and@9# are
clearly different from our coherent states given in this pap

In the squared parabolic coordinates~m,n,w! defined by

x5mn cosw, y5mn sinw, z5 1
2 ~m22n2!, ~1!
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the Schro¨dinger equation for the electron wave function in
hydrogen atom can be written as

i\
]

]t
c~m,n,w,t !5HS m,

]

]m
,n,

]

]n
,

]

]w Dc~m,n,w,t !,

~2!

where the Hamiltonian operator is@5#

HS m,
]

]m
,n,

]

]n
,

]

]w D
5

2\2
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1

m21n2

3S ]2

]m2 1
1

m

]

]m
1

1

m2

]2

]w2D2
\2

2m

1

m21n2

3S ]2

]n2 1
1

n

]

]n
1

1

n2

]2

]w2D2
2e2

m21n2 1E0 .

~3!

The added positive constantE0 is to be fixed depending on
the initial condition. For simplicity we neglect the spin var
ables. Keeping the spatial coordinates unchanged, we ch
the time variable fromt to t, as is defined by

t5
t

m21n2 . ~4!

It should be noted that thist is essentially the same as th
auxiliary time used in the path-integral formulation of th
hydrogen atom problem by Duru and Kleinert@6#. In terms
of the new set of the variables, the Schro¨dinger equation can
be expressed as

i\
]

]t
x~m,n,w,t!

5F2\2

2m S ]2

]m2 1
1

m

]

]m
1

1

m2

]2

]w2

1
]2

]n2 1
1

n

]

]n
1

1

n2

]2

]w2D
22e21~m21n2!E0Gx~m,n,w,t!, ~5!
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wherex denotes the wave function,

c~m,n,w,t !5c„m,n,w,~m21n2!t…5x~m,n,w,t!. ~6!

Then, introducing the auxiliary variableswm andwn @5#, we
can rewrite Eq.~5! as

i\
]

]t
C~m,wm ,n,wn ,t!

5F2\2

2m S ]2

]m2 1
1

m

]

]m
1

1

m2

]2

]wm
2 2

2m

\2 m2E0D
2

\2

2m S ]2

]n2 1
1

n

]

]n
1

1

n2

]2

]wn
22

2m

\2 n2E0D 22e2G
3C~m,wm ,n,wn ,t!, ~7!

which is associated with the condition

]

]wm
C~m,wm ,n,wn ,t!5

]

]wn
C~m,wm ,n,wn ,t!. ~8!

Owing to the above condition the excessive unphysical
grees of freedom emerging from the use of the auxili
variables can be restricted. If we putwm5wn5w, the new
wave function is reduced to the original wave function

C~m,wm ,n,wn ,t!uwm5wn5w5x~m,n,w,t!. ~9!

The time evolution of the wave functio
C(m,wm ,n,wn ,t) with respect to the timet is given by the
generator,

F5
2\2

2m S ]2

]m2 1
1

m

]

]m
1

1

m2

]2

]wm
2 2

2m

\2 m2E0D
2

\2

2m S ]2

]n2 1
1

n

]

]n
1

1

n2

]2

]wn
2 2

2m

\2 n2E0D 22e2,

~10!

which yields

C~m,wm ,n,wn ,t!5expF2 i

\
tF GC~m,wm ,n,wn,0!.

~11!

The operators]/]wm , ]/]wn , and the generatorF can be
simultaneously diagonalized because they commute w
each other. To perform the diagonalization we introduce
operators@5#

A65
1

2Am\v
H 2 i\S ]

]jm
6 i

]

]hm
D2 imv~jm6 ihm!J ,

~12a!

A6
† 5

1

2Am\v
H 2 i\S ]

]jm
7 i

]

]hm
D1 imv~jm7 ihm!J ,

~12b!
-
y

th
e

B65
1

2Am\v
H 2 i\S ]

]jn
6 i

]

]hn
D2 imv~jn6 ihn!J ,

~12c!

B6
† 5

1

2Am\v
H 2 i\S ]

]jn
7 i

]

]hn
D1 imv~jn7 ihn!J ,

~12d!

where the new variables are defined by

jm5m coswm , hm5m sinwm , jn5n coswn ,

hn5n sinwn , ~13!

and the parameterv denotes

v5A2E0 /m. ~14!

The only nonvanishing commutators between the opera
defined by Eqs.~12a!–~12d! are

@A1 ,A1
† #5@A2 ,A2

† #5@B1 ,B1
† #5@B2 ,B2

† #51, ~15!

which show that they are the creation and annihilation
erators for the harmonic oscillators. In terms of these ope
tors, the generatorF can be expressed as

F5\v$A1
† A11A2

† A21B1
† B11B2

† B212%22e2.
~16!

The operators]/]wm and]/]wn are also expressed as

i
]

]wm
5A1

† A12A2
† A2 and i

]

]wn
5B1

† B12B2
† B2 .

~17!

Thus we can rewrite Eq.~8! as the condition for the physi
cally allowed states in terms of these operators:

~A1
† A12A2

† A22B1
† B11B2

† B2!uphysical&50. ~18!

The relevant eigenstates of the number operatorsA6
† A6 and

B6
† B6 are defined by

A6
† A6um1 ,m2 ,n1 ,n2&5um1 ,m2 ,n1 ,n2&m6 ~19!

and

B6
† B6um1 ,m2 ,n1 ,n2&5um1 ,m2 ,n1 ,n2&n6 , ~20!

where the eigenvaluesm1 , m2 , n1 , and n2 are non-
negative integers.

Noting that any linear superposition of the eigensta
um1 ,m2 ,m11n22m2 ,n2& satisfies the physical stat
condition ~18!, we define a coherent state

uC~a,b;g!&5exp@2 1
2 ~ uau21ubu21ugu2!#

3 (
m150

`

(
n250

`

(
m250

`
am1

Am1!

bn2

An2!

gm2

Am2!

3um1 ,m2 ,m11n22m2 ,n2&, ~21!
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where the complex numbersa, b, andg are to be specified
according to the initial condition. It should be remarked th
the productsag andbg are the eigenvalues of the operato
A2A1 andA2B2 such that

A2A1uC~a,b;g!&5uC~a,b;g!&ag ~22!

and

A2B2uC~a,b;g!&5uC~a,b;g!&bg, ~23!

which can be straightforwardly obtained from Eq.~21!.
By virtue of the physical state condition~18!, the time

evolution of the coherent state with respect to the timet is
given by
f
tim

e
lu
in
g
e
av
p

th
l

texpS 2
i

\
tF D uC~a,b;g!&

5expS 2
i

\
t$\v~A1

† A11A2
† A2

1B1
† B11B2

† B212!22e2% D uC~a,b;g!&

5expS 2
i

\
t$2\v~A1

† A11B2
† B211!22e2% D

3uC~a,b;g!&. ~24!

Hence the dynamics is equivalent to that of the tw
dimensional harmonic oscillator.

Furthermore, substituting the explicit form~21! into Eq.
~24!, we obtain
expS 2
i

\
t$2\v~A1

† A11B2
† B211!22e2% D uC~a,b;g!&

5expS 2
1

2
$uau21ubu21ugu2% D (

m150

`

(
m250

`

(
n250

`
am1bn2gm2

Am1!n2!m2!
exp~2 i2vtm1!exp~2 i2vtn2!

3expF i2S e2

\
2v D t G um1 ,m2 ,m11n22m2 ,n2&

5exp~2 1
2 $ua~t!u21ub~t!u21ugu2%!

3 (
m150

`

(
m250

`

(
n250

`
a~t!m1b~t!n2gm2

Am1!n2!m2!
um1 ,m2 ,m11n22m2 ,n2&expF i2S e2

\
2v D tG

5uC„a~t!,b~t!;g…&expF i2S e2

\
2v D tG , ~25!
r-

in

bit

not
ion
where the time-dependent eigenvalues,

ae2 i2vt5a~t! ~26a!

and

be2 i2vt5b~t!, ~26b!

have been defined@13#. Equation~25! shows the modulus o
the wave function does not change its shape during the
evolution with respect to the auxiliary time variablet. As
long as the modulus of the wave function is concerned, tht
dependence appears only through the complex eigenva
which correspond to the classical orbit. If the correspond
classical orbit is elliptic, the complex eigenvalues chan
with respect to the original timet. Nevertheless, the chang
is periodic so that the change of the modulus of the w
function is also periodic and its minimum wave-packet pro
erty is periodically retained.

It is of some interest to see the classical analogue of
auxiliary time variablet @14#. In the case of the classica
e

es,
g
e

e
-

e

elliptic Kepler motion, the orbit in the spherical polar coo
dinates (r ,u,f) is given by the equation

r 5
l

11e cosf
, ~27!

where 2l is the length of the latus rectum ande is the eccen-
tricity @15#. The elliptic orbit means 0,e,1. If we intro-
duce a parametera, which is called the averaged length
astronomy, the relationl 5a(12e2) holds. As is well
known, the eccentric anomalyu that satisfies the relation
@15#

tan
f

2
5A~11e!/~12e! tan

u

2
~28!

maps the location of the Kepler particle on the elliptic or
onto a point on the auxiliary circle with radiusa. Obviously,
the speed of the mapped point on the auxiliary circle is
constant. In order to map the nonconstant circular mot
onto the uniform circular motion, we note the relation
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d

dt
u5

1

aA12e2
r

d

dt
f, ~29!

and that in the Kepler motion, the angular momentum

r 2S d

dt
f D5const[h ~30!

is conserved. Using this constant value for the classical
gular momentumh, we find

r
d

dt
u5

h

aA12e2
5const, ~31!

which yields

r
d

dt
5

h

aA12e2

d

du
5~const!

d

du
. ~32!
n

m

n-

This implies that if the eccentric anomaly is adopted as
time variable, the mapped motion on the auxiliary circle b
comes uniform circular motion, which has obviously th
symmetry of the two-dimensional harmonic oscillator. B
causer 5 1

2 (m21n2) in our formulation, the auxiliary time
variable t defined by Eq.~4! corresponds to the eccentr
anomalyu except a constant factor.

Concluding this paper let us make a brief remark on
classical limit of the radiation damping of the atomic ele
tron. It has been shown that the classical limit of the charg
quantized harmonic oscillator interacting with the quantiz
radiation field can be obtained based on the generalized H
Wheeler method with the von Neumann lattice coher
states@16,17#. The theory can be applied to the present fo
mulation of the atomic electron with slight modification. Th
details will be discussed in a forthcoming paper.

One of us~T.T.! thanks Professor T. Akamatsu~Depart-
ment of Mathematics, Tokai University! for critical com-
ments on the change of the time variable.
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