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Using the large-order formula for the coefficients of the divergent weak-coupling series for the energy of the
anharmonic oscillators, we derive a simple analytic large-order formula for the coefficients of the convergent
renormalized strong-coupling series. This formula is valid for all the states of the anharmonic oscillators
defined by the Hamiltoniansl=p2+x2+ Bx®™ with m=2. A further generalization of this formula is also
proposed. Numerical tests of the formula are performed for the quartic, sextic, octic, and decadic oscillator
with the help of asymptotic analysis. Further it is shown that the renormalized strong-coupling perturbation
expansion converges for all the states of these oscillators and for all physically reBxafife).
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PACS numbd(s): 03.65—w, 02.30.Lt, 02.70-c

I. INTRODUCTION

We investigate the Schdinger equatio = E(8) ¢ for
the anharmonic oscillators, where
H=p?+x%+ Bx?", m=2.

B=0, D

As is well known, E(B8) can be expressed as vaeak-
coupling perturbation series in powers @

E(B)= 2 buf", 2)
which diverges for every3>0 [1-6]. The large-order be-
havior of the coefficientd,, follows from [3]

(m—1)2K

7T3/2K!22n*l

by,=(—1)""1 (n(m-1)+K

+ 1/2)an(m—1)+K+1/2' K=0, (3)
remi(m-1
,_fem(m-1) @
I'?(m/(m—1))
whereK is the index of the excitation.
With the help of the scaling transformatiorx
— g~ M2m+ )y H can be expressed 3]
H=gHm+[p24 g=2(m+1)y2 y2m (5)

ConsequentlyE(B) also possesses tistrong-couplingex-
pansion

E(ﬂ):ﬁ1/<m+1)20 KnIB—Zn/(m+1), (6)

which converges i3 is sufficiently large[2].

Wick ordering and scaling are closely related and they differ
by a numerical factor in the effective coupling constant. In
this paper we do scaling accordingxe- \/7x, wherer and
B are related by then-dependent equation
B=(1—7%)/(Bum™" 1), )
with B,=m(2m—1)!1/2™"1 [9]. This transformation maps
the physically relevantunboundedinterval 8[0,°) onto
the boundedinterval 7e[1,0). With the help of Eq(7), the
Hamiltonian(1) can be expressed in terms of a renormalized
HamiltonianHg [9,10],

H=Hg/7, ®
Hr(7)=p?+x2+(1— ) (X*"/ By —X?) 9
=p2+x2" B+ 72(X>— x>/ B,,).
(10)
The renormalizedenergy
Er(7)=1E(B) (11

can either be expressed as a divergemormalized weak-
couplingexpansion in + 72 [10],

0

Er(T)=2, Cy(1—7)",

n=0

(12
or as arenormalized strong-couplingxpansion inr? [11],
Er(7)= >, T/ (13

n=0

The weak-coupling expansioril2) diverges almost as
strongly as the weak-coupling expansi®) [7,10]. How-
ever, the strong-coupling expansi@B) has some very use-

Alternative perturbative approaches based upon renormaful properties[11,12,.

ization (Wick ordering[7] or scaling[7—11]) have consider-

For the ground and first excited states of the quartic an-

able conceptual and technical advantages. In the quartic casearmonic oscillator, we computed numerically 200 coeffi-
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cientsI",, with high accuracy12]. From these data, we ob- n-1
tained the following large-order behavior: AER(k)=Egr(k)— 2 c, k”
=0
/ I PN ()
_ A(K) (K=1)124—22n v
Fa=AfEn =3 14 2, & ) 49 —CE (- 1)”*1( ) F(m=1)p+K+1/2,
The leading coefficient (19
) 12X 4.6 where k=1—72 andn is large. Then, we use the integral
AT=— Kl 2 (15) representation of thé" function, exchange summation and

integration, and obtain
was determined from the summation rules fgy. In addi-

tion, a few coeﬁicientSi(VK) were also determined analyti- (K)=—C E _Ktm ' VthlIZeftdt (20)
cally. The leading term of the large-order form{la) shows 0 »=n '

that the renormalized strong-coupling expansi@8) con-

verges for allr[0,1) [12]. The geometric series in this equation can be summed in the

Our results for the quartic anharmonic oscillator and fur-Borel sense
ther numerical results for the sextic and octic anharmonic
oscillators [11] indicate that the renormalized strong- wt(M=Ln+K-125-tq¢
coupling expansiorf13) actually converges for arbitramn AER(K):(—1)'H1(3(f</D)”f —
=2K=0, andre[0,1). 0 1+«t™D
The main purpose of this paper is to investigatelyti-
cally the large-order behavior of the renormalized strong-
coupling coefficientsl’,, of general anharmonic oscillators

(21)

To find the large-order formula fdr,,, we compute the
coefficients of the Taylor expansion &k with respect to

with Hamiltonian(1). We show in Sec. Il that their large-  _ >4 _

order behavior is described by a simple analytic formula

which is a generalization of the leading term in Ef}4) to 1 d"En(p)

arbitrarym=2. In contrast td12], where Eq(14) was con- To=— Z R (22)
jectured from numerical analysis, we use here an analytic nt o du” =0

approach. We propose also further generalization of the se-
ries(14). In Sec. Il we compare the large-order formula with |f we combine Egs.(19 and (22), we see that the sum
the actual values of thE,, coefficients and test the validity 2” 5€,(1—w)? does not contribute td',. Consequently,
of the summation rule fOF These numerical results and the |arge -order formula foF can be Obta"qed by differen-
the large-order formula foF show that the renormalized tjating the remainder of the suthEg only. Thus, if we re-
strong-coupling ~ expansion (13)  converges for all place in Eq.(22) Eg by AEg, and interchange in Eq21)

7€[0,1), m=2, andK=0. integration and differentiation with respect to=1— «, we
Finally, let us mention that our final goal is the resumma-get

tion of renormalized series both for the case of oscillators

(7€[0,1]) and double well$ 7 (—<0,0)]. Consideration of st (M=1)N+K =112ty
the large-order behavior of these coefficients is a step in this n=— —f . (23
program. (1+t™ /D)1

Il LARGE-ORDER FORMULA We derive an analytic large-order formula 8y by con-

structing an asymptotic approximation according to the
For the determination of the large-order behaviod gf, Laplace method13]. We have applied this method for dif-
we start from Eq(3) for the coefficientd,. For largen, it  ferent values om andK and found
follows from [7,10] that c,=b,/[e3*(B,,)"] for m=2, and
ch=b,/(B)" for m=3. This leads to the large-order behav- I',=—CcpW+1alm=by (24)
ior valid for m=3,

where
ch=(—1)""CTr(m-1)n+K+1/2)/D", (16)
e [M/(m=1)][D(m=1)n] ¥
(m—1) 2K+1 In=Jmk — , (25)
= K ak+12 17) no=m p(m=K-1)/m
— 1-m e\/;
D 4Bma . (18) JZ,K: DK/27 (26)
Form=2, the constan€ in Eq. (17) has to be divided bg®.
For the derivation of the large-order formula fby, we 2D (m2—K-1/m(m-1)]
use Eq.(16). First we substitute E(16) into the remainder k= il m=3. (27

of the serieq12), ' (m—1)(M-K-Dimp2
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TABLE I. Comparison of the numerical values of the coefficidntswith their valuesil“ho given by the large-order formul@8) for the
ground state K=0) of the quatrtic, sextic, octic, and decadic oscillatars<2,3,4,5). For the asymptotic analysis of these data, see Table

Ill. Numbers in square brackets are powers of 10.

Quatrtic oscillator Sextic oscillator

Octic oscillator Decadic oscillator

n r, r° r, T r, r'° T, rL°

10 —0.88203—5] —0.12314—4] —0.63983-[4] —0.18200—3] —0.10130— 3] —0.21369— 3] —0.10402— 3] —0.19836— 3]
25 —0.35367—7] —0.43060—7] —0.28977—5] —0.61652—5] —0.99835—5] —0.16084—4] —0.14801—4] —0.21856—4]
50 —0.7635%—10] —0.86997—10] —0.1389]—6] —0.25088—6] —0.11772—5] —0.16529—5] —0.25970—5] —0.3395%— 5]

75

—0.71513—12] —0.79322—12] —0.16773—7] —0.28016— 7] —0.28464—6] —0.37581— 6] —0.84276— 6] —0.10457— 5]

100 —0.14217 - 13] —0.1553] —13] —0.31476¢—8] —0.50082 — 8] —0.9573§—7] —0.12185— 6] —0.3607¢— 6] — 0.43422 — 6]
125 —0.45589 — 15] —0.49297 —15] —0.77117—9] —0.11855—8] —0.39115— 7] —0.48549— 7] —0.1813§— 6] —0.21388— 6]

By substituting the expressions f&; D, andl,, into Eq.

We note at the end of our calculations that the integrals in

(24), we get after some manipulation a remarkably simpleEgs.(21) and(23) for m=2 can be expressed in terms of the

large-order formula

K+3/2,K+1/2
2 a b

mK!\m

r=- (bn)l(K+D/m=1]g={[m/(m=1)])(bm ™}

(28)

b=(m-1)D=4(m-1)B,al™™, m=3. (29

For m=2, the right-hand side of Ed28) has to be divided

by e, which yields the leading term of E¢14).
Analogously to Eq.(14), we assume that the general

large-order behavior df , can be described by the series

2K + 3/2aK + l/2b

r.=— b ) L(K+D/m=1]g—{[m/(m=1)](bm) ™}
n KIJm (bn)
> gkm
x| 1+ - , =3 30
VZ]. (bn)vlm ( )

wherea{*™ are expansion coefficients. Far=2, the right-
hand side of Eq(30) has to be divided bg?. Four expan-
sion coefficienta“™ are known for the ground state of the
quartic oscillator K=0m=2,v=1,...,4), when they
equal the coefficienta?) given in[12]. The calculation of

the a('™ coefficients for the sextic and higher-order oscil-

Kummer functionU(a,b,z) [15],
AER(k)=(—1)""1C(D/k)* I (n+k+1/2)

xU(n+K+12n+K+1/2D/k), (31
I',=—-CDX" VI (n+K+1/2U(n+K+1/2K+1/2D).
(32

[ll. NUMERICAL RESULTS

For the quartic oscillatorri=2), the large-order formula
(28) was tested in12]. It was shown that this formula gives
numerical values of th&', coefficients close to the exact
ones starting fronm about 100. Qualitatively, it can be used
from n about 10.

Because of thel{n)™ dependence in Eq§28) and(30),
slower convergence of the large-order formulas to the actual
values ofl",, can be expected with increasing To clarify
this question we performed numerical calculation of the
coefficients for the ground and first excited state<(0,1) of
the sextic, octic, and decadic oscillators= 3,4,5). These
results are compared with the results for the quartic oscillator
in Tables I-IIl.

The coefficientd", for n=0, . . .,125 were calculated by
the method described ifil6]. Numerical values of a few
selectedl’,, coefficients are compared with the large-order

lators is more involved and leads to transcendental expregermula (28) for m=2,3,4,5 andK=0,1 in Tables | and II.
sions. We plan to publish results for these oscillators in thélhe agreement of the numerical valued gfwith the large-

future [14]. The series(30) is expected to be only
asymptotic.

order formula(28) goes down with increasingn andK. We
see, however, that even for the first excited state of the dec-

TABLE Il. Comparison of the numerical values of the coefficieltswith their valueﬂ“ho given by the large-order formul@8) for the
first excited state=1) of the quartic, sextic, octic, and decadic oscillatars=(2,3,4,5). For the asymptotic analysis of these data, see

Table 1ll. Numbers in square brackets are powers of 10.

Sextic oscillator
rLe

Quartic oscillator

n r, rLe T,

Decadic oscillator
rLe

Octic oscillator

r, rLe r,

10
25
50
75

—0.25353—3] —0.66088—3] —0.12410—2] —0.47993—2] —0.16890— 2] —0.44625—2] —0.16329— 2] —0.37599— 2]
—0.19383—5] —0.36537—5] —0.80553—4] —0.22064— 3] —0.2104] —3] —0.42235—3] —0.27466— 3] —0.49760— 3]
—0.69940—8] —0.10439—7] —0.52767—5] —0.11312—4] —0.30768—4] —0.51616—4] —0.5655¢ — 4] — 0.88795— 4]
—0.86211—10] —0.1165¢—9] —0.7627]—6] —0.14460—5] —0.84682—5] —0.12987 —4] —0.20266— 4] —0.2965¢ — 4]

100 —0.2054] — 11] —0.26357 —11] —0.16180— 6] —0.2845]—6] —0.31195—5] —0.45252 —5] —0.93129—5] —0.13044 — 4]
125 —0.75313—13] —0.93534—13] —0.43444—7] —0.72558—7] —0.13661—5] —0.19063—5] —0.49460—5] —0.67184—5]
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TABLE lIl. Asymptotic analysis of the ratid",/T'-° for the
ground and first excited stat& &0,1) of the quartic, sextic, octic,
and decadic oscillatorsn{=2,3,4,5). The leading terra, of the
asymptotic expansio83) corresponding tm— o was obtained by
means of the diagonal Padgpproximants based on the values
I',/T0 for n=115, .. .125.

Ground state First excited state

m & ao

2 1.000037 1.003079
3 1.000747 1.021083
4 1.008496 0.984731
5 0.993720 0.978293

adic oscillator m=5 and K=1) these values agree rela-
tively well. We note that the absolute values of fhecoef-
ficients obtained from the large-order form(®8) are larger
than the actual values &f,. We have studied also the ratio
appearing in Eq(30),

a(lK,m)

a(2K,m)
(bn)llm +

I /TP=ag+ TSYT

+--., (33
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coefficientsa®?,v=1, ... ,4were used12]. It is seen that
the summation rule is obeyed with very good accuracy for
m=2 andK =0. With increasingn andK, the accuracy goes
down. We see, however, that the summation rule is obeyed
with reasonable accuracy even for the first excited state of
the decadic oscillatorni=5 andK=1). In any case, the
inclusion of the large-order formul@8) improves the accu-
racy of the rule. We note that) +3(°— 3, is always nega-
tive. It confirms again that the absolute valudgfgiven by

the large-order formul&28) is larger than the absolute value
of the actual coefficient¥',,.

IV. CONCLUSIONS

The results of this paper may be summarized as follows:
Starting from known large-order behavior of the divergent
weak-coupling expansion coefficients,, we derived the
general large-order formul@8) for the strong-coupling ex-
pansion coefficient§',,. In contrast tg12], where the form
of this formula was form=2 conjectured from numerical
analysis, Eq(28) was derived analytically. The large-order
formula(28) is very simple and holds for all anharmonicities
x2™ with m=2, and for all state& =0. We suggested also
the more general serig80) which is expected to be only
asymptotic. The numerical tests of E@8) were performed

wherel',, are numerical values of the expansion coefficientsfor the quartic, sextic, octic, and decadic oscillator. Our re-

andl“hO are given by the large-order formu(a8). For very
largen, this ratio should converge &y,= 1. Using the Thiele
extrapolation built inMAPLE, we extrapolated™,/T'-° to n

—oo and obtained values &f, shown in Table IlIl. These

sults show that the absolute values of thg coefficients
obtained from Eq.28) are upper bounds to the absolute
values of actual, (see alsd12]). This result and the large-
order formula (28) show that the renormalized strong-

values are very close to one and confirm correctness of Egoupling expansiori13) converges for allr<[0,1), for all

(28).
Similarly to [12], we have tested also the validity of the
summation rule

So=2, [=2K+1. (34)
n=0

First we calculated the partial suB)=3N_ ', for N

=125 from the numerical values &f,. The remaining part

of the sum3§°==7_,,T, was calculated numerically

with the use of Eq(28). The infinite limit in this sum was

anharmonicitiesx?™ with m=2, and for all statek=0.
Therefore the energ¥(B) can for all physically relevant
Be[0°) be computed via theonvergentrenormalized
strong-coupling expansiofi3).

It is remarkable that starting from the large-order behavior
(16) of the divergent serieél?) it is possible to derive the
large-order behavio{28) of the convergent serigd3). This
can be understood as follows. The weak-coupling expansion
Er(k)=3,c,«" is expanded at the singular poikt=0 and,
therefore, diverges for anye (0,1). From the physical point
of view, this point is singular since the Hamiltonidtg

replaced by 5000. Results are shown in Table IV. Since we=P°+X?+ «(x*/3—x?) does not have bound states for any

use only the leading term of E¢30) here, the summation

k<0 and the energ¥r(k) is not analytic at the poink

rules are obeyed with lower accuracy than in the case of the'0. In the strong-coupling case wheffip(x)=2nl'n(1
ground state of the quartic oscillator for which four analytic — «)", the HamiltonianHg=p“+x*/3+ (1— k) (x"—x"/3)

TABLE IV. Summation rulesS§ and3§+3t° in comparison
with the exact value of the summation rul)=2K+1 for the

becomes for + k<0 the Hamiltonian of the double-well
problem which has bound states and the end&tgfx) can
be, at the poink= 1, analytic. From this point of view, our

coefficientsI',, of the strong-coupling expansion for the ground and derivation of Eq.(28) from Eq. (16) is nothing but transfor-

first excited statel =0,1) of the quartic, sextic, octic, and decadic
oscillators (n=2,3,4,5).N=125. Numbers in square brackets are
powers of 10.

Ground state First excited state

m 281_20 2’8‘+2|60_20 2’(\)‘_20 EB‘+EI60_EO
2 0339-14] —0265-15 0587—12] —0.134—12]
3 0160-7] -0.805-8] 0.965-6] —0.597—6]
4 0142-5] -0298-6] 0543-4] —0.183-4]
5 095[-5] -0.139-5] 0.28§-3] —0.849—4]

mation from the singular poink=0 to the physically more
reasonable poink=1. We plan to publish a more detailed
discussion in the future.

The large-order formul#28) has been derived from the
formula for the coefficientd, which is of semiclassical
(JWKB) character. Therefore our formu{@8) has the same
semiclassical character. In addition, in E§0) we consider
the higher-order correctiord7].

The results of this paper can be applied also to more gen-
eral oscillators such as, for example, to one-dimensional os-
cillators which have in addition to the andx®™ terms other
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even powers in the potentifif] as well as for isotropic mul- also in many applicationd 9], we believe that our results are
tidimensional problems considered|ib8]. of some interest.

Our results show that the renormalized strong-coupling
expansion(13) is both from the physical and mathematical
point of view the most advantageous perturbative approach
to the anharmonic oscillators. Since the perturbation theory This work was supported in part by the GACR, the
of anharmonic oscillators is important not only as modelGAUK (L.S. and J.2, the NSERQJ.C), the FRVS, and the
systems in quantum mechanics and quantum field theory biCI of Germany(E.J.W).
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