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Large-order behavior of the convergent perturbation theory for anharmonic oscillators
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Using the large-order formula for the coefficients of the divergent weak-coupling series for the energy of the
anharmonic oscillators, we derive a simple analytic large-order formula for the coefficients of the convergent
renormalized strong-coupling series. This formula is valid for all the states of the anharmonic oscillators
defined by the HamiltoniansH5p21x21bx2m with m>2. A further generalization of this formula is also
proposed. Numerical tests of the formula are performed for the quartic, sextic, octic, and decadic oscillator
with the help of asymptotic analysis. Further it is shown that the renormalized strong-coupling perturbation
expansion converges for all the states of these oscillators and for all physically relevantbP@0,̀ ).
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I. INTRODUCTION

We investigate the Schro¨dinger equationHc5E(b)c for
the anharmonic oscillators, where

H5p21x21bx2m, b>0, m>2. ~1!

As is well known, E(b) can be expressed as aweak-
couplingperturbation series in powers ofb,

E~b!5 (
n50

`

bnbn, ~2!

which diverges for everyb.0 @1–6#. The large-order be-
havior of the coefficientsbn follows from @3#

bn5~21!n11
~m21!2K

p3/2K!22n21
G„n~m21!1K

11/2…an~m21!1K11/2, K>0 , ~3!

a5
G„2m/~m21!…

G2
„m/~m21!…

, ~4!

whereK is the index of the excitation.
With the help of the scaling transformationx

→b21/[2(m11)]x, H can be expressed as@2#

H5b1/~m11!@p21b22/~m11!x21x2m#. ~5!

Consequently,E(b) also possesses thestrong-couplingex-
pansion

E~b!5b1/~m11! (
n50

`

Knb22n/~m11!, ~6!

which converges ifb is sufficiently large@2#.
Alternative perturbative approaches based upon renorm

ization ~Wick ordering@7# or scaling@7–11#! have consider-
able conceptual and technical advantages. In the quartic c
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Wick ordering and scaling are closely related and they dif
by a numerical factor in the effective coupling constant.
this paper we do scaling according tox→Atx, wheret and
b are related by them-dependent equation

b5~12t2!/~Bmtm11!, ~7!

with Bm5m(2m21)!!/2m21 @9#. This transformation maps
the physically relevantunboundedinterval bP@0,̀ ) onto
the boundedinterval tP@1,0). With the help of Eq.~7!, the
Hamiltonian~1! can be expressed in terms of a renormaliz
HamiltonianHR @9,10#,

H5HR /t, ~8!

HR~t!5p21x21~12t2!~x2m/Bm2x2! ~9!

5p21x2m/Bm1t2~x22x2m/Bm!.
~10!

The renormalizedenergy

ER~t!5tE~b! ~11!

can either be expressed as a divergentrenormalized weak-
couplingexpansion in 12t2 @10#,

ER~t!5 (
n50

`

cn~12t2!n, ~12!

or as arenormalized strong-couplingexpansion int2 @11#,

ER~t!5 (
n50

`

Gnt2n. ~13!

The weak-coupling expansion~12! diverges almost as
strongly as the weak-coupling expansion~2! @7,10#. How-
ever, the strong-coupling expansion~13! has some very use
ful properties@11,12#.

For the ground and first excited states of the quartic
harmonic oscillator, we computed numerically 200 coe
102 ©1999 The American Physical Society



-

i-

ur
n

g-

g
s
-
ul

yt
s

th
y
d
d

a
or

th

v-

al
d

the

-

he
-

PRA 59 103LARGE-ORDER BEHAVIOR OF THE CONVERGENT . . .
cientsGn with high accuracy@12#. From these data, we ob
tained the following large-order behavior:

Gn5A~K !~2n!~K21!/2e22A2nS 11 (
n51

` an
~K !

~2n!n/2D . ~14!

The leading coefficient

A~K !52
12K

K!

4A6

pe2
~15!

was determined from the summation rules forGn . In addi-
tion, a few coefficientsan

(K) were also determined analyt
cally. The leading term of the large-order formula~14! shows
that the renormalized strong-coupling expansion~13! con-
verges for alltP@0,1) @12#.

Our results for the quartic anharmonic oscillator and f
ther numerical results for the sextic and octic anharmo
oscillators @11# indicate that the renormalized stron
coupling expansion~13! actually converges for arbitrarym
>2,K>0, andtP@0,1).

The main purpose of this paper is to investigateanalyti-
cally the large-order behavior of the renormalized stron
coupling coefficientsGn of general anharmonic oscillator
with Hamiltonian ~1!. We show in Sec. II that their large
order behavior is described by a simple analytic form
which is a generalization of the leading term in Eq.~14! to
arbitrarym>2. In contrast to@12#, where Eq.~14! was con-
jectured from numerical analysis, we use here an anal
approach. We propose also further generalization of the
ries~14!. In Sec. III we compare the large-order formula wi
the actual values of theGn coefficients and test the validit
of the summation rule forGn . These numerical results an
the large-order formula forGn show that the renormalize
strong-coupling expansion ~13! converges for all
tP@0,1), m>2, andK>0.

Finally, let us mention that our final goal is the resumm
tion of renormalized series both for the case of oscillat
(tP@0,1#) and double wells@tP(2`,0)#. Consideration of
the large-order behavior of these coefficients is a step in
program.

II. LARGE-ORDER FORMULA

For the determination of the large-order behavior ofGn ,
we start from Eq.~3! for the coefficientsbn . For largen, it
follows from @7,10# that cn5bn /@e3(Bm)n# for m52, and
cn5bn /(Bm)n for m>3. This leads to the large-order beha
ior valid for m>3,

cn5~21!n11CG„~m21!n1K11/2…/Dn, ~16!

C5
~m21!

p3/2

2K11

K!
aK11/2, ~17!

D54Bma12m. ~18!

For m52, the constantC in Eq. ~17! has to be divided bye3.
For the derivation of the large-order formula forGn we

use Eq.~16!. First we substitute Eq.~16! into the remainder
of the series~12!,
-
ic

-

a

ic
e-

-
s

is

DER~k!5ER~k!2 (
n50

n21

cnkn

5C(
n5n

`

~21!n11S k

D D n

G„~m21!n1K11/2…,

~19!

where k512t2 and n is large. Then, we use the integr
representation of theG function, exchange summation an
integration, and obtain

DER~k!52CE
0

`

(
n5n

` F2ktm21

D Gn

tK21/2e2tdt. ~20!

The geometric series in this equation can be summed in
Borel sense

DER~k!5~21!n11C~k/D !nE
0

` t ~m21!n1K21/2e2tdt

11ktm21/D
.

~21!

To find the large-order formula forGn , we compute the
coefficients of the Taylor expansion ofER with respect to
m5t2512k,

Gn5
1

n!

dnER~m!

dmn U
m50

. ~22!

If we combine Eqs.~19! and ~22!, we see that the sum
(n50

n21cn(12m)n does not contribute toGn . Consequently,
the large-order formula forGn can be obtained by differen
tiating the remainder of the sumDER only. Thus, if we re-
place in Eq.~22! ER by DER , and interchange in Eq.~21!
integration and differentiation with respect tom512k, we
get

Gn52
C

DnE0

` t ~m21!n1K21/2e2tdt

~11tm21/D !n11
. ~23!

We derive an analytic large-order formula forGn by con-
structing an asymptotic approximation according to t
Laplace method@13#. We have applied this method for dif
ferent values ofm andK and found

Gn52CD~K11/2!/~m21!I n , ~24!

where

I n5Jm,K

e2[m/~m21!][ D~m21!n] 1/m

n~m2K21!/m
, ~25!

J2,K5
eAp

DK/2
, ~26!

Jm,K5
A2pD ~m/22K21!/†m~m21!‡

~m21!~m2K21!/mm1/2
, m>3. ~27!
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TABLE I. Comparison of the numerical values of the coefficientsGn with their valuesGn
LO given by the large-order formula~28! for the

ground state (K50) of the quartic, sextic, octic, and decadic oscillators (m52,3,4,5). For the asymptotic analysis of these data, see T
III. Numbers in square brackets are powers of 10.

Quartic oscillator Sextic oscillator Octic oscillator Decadic oscillator
n Gn Gn

LO Gn Gn
LO Gn Gn

LO Gn Gn
LO

10 20.88203@25# 20.12314@24# 20.639832@4# 20.18200@23# 20.10130@23# 20.21369@23# 20.10402@23# 20.19836@23#

25 20.35367@27# 20.43060@27# 20.28977@25# 20.61652@25# 20.99835@25# 20.16084@24# 20.14801@24# 20.21856@24#

50 20.76355@210# 20.86997@210# 20.13891@26# 20.25088@26# 20.11772@25# 20.16529@25# 20.25970@25# 20.33955@25#

75 20.71513@212# 20.79322@212# 20.16773@27# 20.28016@27# 20.28464@26# 20.37581@26# 20.84276@26# 20.10457@25#

100 20.14217@213# 20.15531@213# 20.31476@28# 20.50082@28# 20.95738@27# 20.12185@26# 20.36076@26# 20.43422@26#

125 20.45589@215# 20.49297@215# 20.77117@29# 20.11855@28# 20.39115@27# 20.48549@27# 20.18138@26# 20.21388@26#
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By substituting the expressions forC, D, and I n into Eq.
~24!, we get after some manipulation a remarkably sim
large-order formula

Gn52
2K13/2aK11/2b

pK!Am
~bn! [ ~K11!/m21]e2$[m/~m21!] ~bn!1/m%,

~28!

b5~m21!D54~m21!Bma12m, m>3. ~29!

For m52, the right-hand side of Eq.~28! has to be divided
by e2, which yields the leading term of Eq.~14!.

Analogously to Eq.~14!, we assume that the gener
large-order behavior ofGn can be described by the series

Gn52
2K13/2aK11/2b

pK!Am
~bn! [ ~K11!/m21]e2$[m/~m21!] ~bn!1/m%

3S 11 (
n51

` an
~K,m!

~bn!n/mD , m>3 ~30!

wherean
(K,m) are expansion coefficients. Form52, the right-

hand side of Eq.~30! has to be divided bye2. Four expan-
sion coefficientsan

(K,m) are known for the ground state of th
quartic oscillator (K50,m52,n51, . . .,4), when they
equal the coefficientsan

(0) given in @12#. The calculation of
the an

(K,m) coefficients for the sextic and higher-order osc
lators is more involved and leads to transcendental exp
sions. We plan to publish results for these oscillators in
future @14#. The series ~30! is expected to be only
asymptotic.
e

s-
e

We note at the end of our calculations that the integrals
Eqs.~21! and~23! for m52 can be expressed in terms of th
Kummer functionU(a,b,z) @15#,

DER~k!5~21!n11C~D/k!K11/2G~n1k11/2!

3U~n1K11/2,n1K11/2,D/k!, ~31!

Gn52CDK11/2G~n1K11/2!U~n1K11/2,K11/2,D !.
~32!

III. NUMERICAL RESULTS

For the quartic oscillator (m52), the large-order formula
~28! was tested in@12#. It was shown that this formula give
numerical values of theGn coefficients close to the exac
ones starting fromn about 100. Qualitatively, it can be use
from n about 10.

Because of the (bn)1/m dependence in Eqs.~28! and~30!,
slower convergence of the large-order formulas to the ac
values ofGn can be expected with increasingm. To clarify
this question we performed numerical calculation of theGn
coefficients for the ground and first excited state (K50,1) of
the sextic, octic, and decadic oscillators (m53,4,5). These
results are compared with the results for the quartic oscilla
in Tables I–III.

The coefficientsGn for n50, . . .,125 were calculated by
the method described in@16#. Numerical values of a few
selectedGn coefficients are compared with the large-ord
formula ~28! for m52,3,4,5 andK50,1 in Tables I and II.
The agreement of the numerical values ofGn with the large-
order formula~28! goes down with increasingm andK. We
see, however, that even for the first excited state of the d
see

TABLE II. Comparison of the numerical values of the coefficientsGn with their valuesGn

LO given by the large-order formula~28! for the
first excited state (K51) of the quartic, sextic, octic, and decadic oscillators (m52,3,4,5). For the asymptotic analysis of these data,
Table III. Numbers in square brackets are powers of 10.

Quartic oscillator Sextic oscillator Octic oscillator Decadic oscillator
n Gn Gn

LO Gn Gn
LO Gn Gn

LO Gn Gn
LO

10 20.25353@23# 20.66088@23# 20.12410@22# 20.47993@22# 20.16890@22# 20.44625@22# 20.16329@22# 20.37599@22#

25 20.19383@25# 20.36537@25# 20.80553@24# 20.22064@23# 20.21047@23# 20.42235@23# 20.27466@23# 20.49760@23#

50 20.69940@28# 20.10439@27# 20.52767@25# 20.11312@24# 20.30768@24# 20.51616@24# 20.56558@24# 20.88795@24#

75 20.86211@210# 20.11658@29# 20.76277@26# 20.14460@25# 20.84682@25# 20.12987@24# 20.20266@24# 20.29658@24#

100 20.20541@211# 20.26357@211# 20.16180@26# 20.28451@26# 20.31195@25# 20.45252@25# 20.93129@25# 20.13044@24#

125 20.75313@213# 20.93534@213# 20.43444@27# 20.72553@27# 20.13661@25# 20.19063@25# 20.49460@25# 20.67184@25#
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adic oscillator (m55 and K51) these values agree rela
tively well. We note that the absolute values of theGn coef-
ficients obtained from the large-order formula~28! are larger
than the actual values ofGn . We have studied also the rati
appearing in Eq.~30!,

Gn /Gn
LO5a01

a1
~K,m!

~bn!1/m
1

a2
~K,m!

~bn!2/m
1•••, ~33!

whereGn are numerical values of the expansion coefficie
andGn

LO are given by the large-order formula~28!. For very
largen, this ratio should converge toa051. Using the Thiele
extrapolation built inMAPLE, we extrapolatedGn /Gn

LO to n
→` and obtained values ofa0 shown in Table III. These
values are very close to one and confirm correctness of
~28!.

Similarly to @12#, we have tested also the validity of th
summation rule

S05 (
n50

`

Gn52K11. ~34!

First we calculated the partial sumS0
N5(n50

N Gn for N
5125 from the numerical values ofGn . The remaining part
of the sum S0

LO5(n5N11
` Gn was calculated numerically

with the use of Eq.~28!. The infinite limit in this sum was
replaced by 5000. Results are shown in Table IV. Since
use only the leading term of Eq.~30! here, the summation
rules are obeyed with lower accuracy than in the case of
ground state of the quartic oscillator for which four analy

TABLE III. Asymptotic analysis of the ratioGn /Gn
LO for the

ground and first excited state (K50,1) of the quartic, sextic, octic
and decadic oscillators (m52,3,4,5). The leading terma0 of the
asymptotic expansion~33! corresponding ton→` was obtained by
means of the diagonal Pade´ approximants based on the valu
Gn /Gn

LO for n5115, . . .,125.

Ground state First excited state
m a0 a0

2 1.000037 1.003079
3 1.000747 1.021083
4 1.008496 0.984731
5 0.993720 0.978293

TABLE IV. Summation rulesS0
N andS0

N1S0
LO in comparison

with the exact value of the summation ruleS052K11 for the
coefficientsGn of the strong-coupling expansion for the ground a
first excited state (K50,1) of the quartic, sextic, octic, and decad
oscillators (m52,3,4,5).N5125. Numbers in square brackets a
powers of 10.

Ground state First excited state
m S0

N2S0 S0
N1S0

LO2S0 S0
N2S0 S0

N1S0
LO2S0

2 0.339@214# 20.265@215# 0.582@212# 20.134@212#

3 0.160@27# 20.805@28# 0.965@26# 20.592@26#

4 0.142@25# 20.298@26# 0.543@24# 20.183@24#

5 0.951@25# 20.139@25# 0.286@23# 20.849@24#
s

q.

e

e

coefficientsan
0,2,n51, . . . ,4were used@12#. It is seen that

the summation rule is obeyed with very good accuracy
m52 andK50. With increasingm andK, the accuracy goes
down. We see, however, that the summation rule is obe
with reasonable accuracy even for the first excited state
the decadic oscillator (m55 and K51). In any case, the
inclusion of the large-order formula~28! improves the accu-
racy of the rule. We note thatS0

N1S0
LO2S0 is always nega-

tive. It confirms again that the absolute value ofGn given by
the large-order formula~28! is larger than the absolute valu
of the actual coefficientsGn .

IV. CONCLUSIONS

The results of this paper may be summarized as follo
Starting from known large-order behavior of the diverge
weak-coupling expansion coefficientsbn , we derived the
general large-order formula~28! for the strong-coupling ex-
pansion coefficientsGn . In contrast to@12#, where the form
of this formula was form52 conjectured from numerica
analysis, Eq.~28! was derived analytically. The large-orde
formula ~28! is very simple and holds for all anharmonicitie
x2m with m>2, and for all statesK>0. We suggested also
the more general series~30! which is expected to be only
asymptotic. The numerical tests of Eq.~28! were performed
for the quartic, sextic, octic, and decadic oscillator. Our
sults show that the absolute values of theGn coefficients
obtained from Eq.~28! are upper bounds to the absolu
values of actualGn ~see also@12#!. This result and the large
order formula ~28! show that the renormalized strong
coupling expansion~13! converges for alltP@0,1), for all
anharmonicitiesx2m with m>2, and for all statesK>0.
Therefore the energyE(b) can for all physically relevant
bP@0,̀ ) be computed via theconvergentrenormalized
strong-coupling expansion~13!.

It is remarkable that starting from the large-order behav
~16! of the divergent series~12! it is possible to derive the
large-order behavior~28! of the convergent series~13!. This
can be understood as follows. The weak-coupling expans
ER(k)5(ncnkn is expanded at the singular pointk50 and,
therefore, diverges for anykP(0,1). From the physical poin
of view, this point is singular since the HamiltonianHR
5p21x21k(x4/32x2) does not have bound states for a
k,0 and the energyER(k) is not analytic at the pointk
50. In the strong-coupling case whenER(k)5(nGn(1
2k)n, the HamiltonianHR5p21x4/31(12k)(x22x4/3)
becomes for 12k,0 the Hamiltonian of the double-wel
problem which has bound states and the energyER(k) can
be, at the pointk51, analytic. From this point of view, ou
derivation of Eq.~28! from Eq. ~16! is nothing but transfor-
mation from the singular pointk50 to the physically more
reasonable pointk51. We plan to publish a more detaile
discussion in the future.

The large-order formula~28! has been derived from th
formula for the coefficientsbn which is of semiclassica
~JWKB! character. Therefore our formula~28! has the same
semiclassical character. In addition, in Eq.~30! we consider
the higher-order corrections@17#.

The results of this paper can be applied also to more g
eral oscillators such as, for example, to one-dimensional
cillators which have in addition to thex2 andx2m terms other



in
al
ac
o
e
b

e

e
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even powers in the potential@7# as well as for isotropic mul-
tidimensional problems considered in@18#.

Our results show that the renormalized strong-coupl
expansion~13! is both from the physical and mathematic
point of view the most advantageous perturbative appro
to the anharmonic oscillators. Since the perturbation the
of anharmonic oscillators is important not only as mod
systems in quantum mechanics and quantum field theory
o
b

l

um
g

h
ry
l
ut

also in many applications@19#, we believe that our results ar
of some interest.
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