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Quantum probability distribution of arrival times and probability current density
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This paper compares the proposal made in previous papers for a quantum probability distribution of the time
of arrival at a certain point with the corresponding proposal based on the probability current density. Quanti-
tative differences between the two formulations are examined analytically and numerically with the aim of
establishing conditions under which the proposals might be tested by experiment. It is found that quantum
regime conditions produce the biggest differences between the formulations which are otherwise near indis-
tinguishable. These results indicate that in order to discriminate conclusively among the different alternatives,
the corresponding experimental test should be performed in the quantum regime and with sufficiently high
resolution so as to resolve small quantum effects.@S1050-2947~99!02602-5#

PACS number~s!: 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

The problem of incorporating the time-of-arrival conce
in the theory of quantum measurement has remained con
versial over the years, and even nowadays this questio
open to debate@1–18#. In recent times this issue has acquir
renewed interest in part due to the development of new
perimental techniques for probing quantum systems in
time domain. For instance, by exciting an atomic syst
with a pulsed laser and measuring the subsequent flu
electrons ejected from autoionizing states, as a function
the time of arrival at the detector, one can gain import
physical information which is not obtainable by probing t
system in the more familiar energy domain@19#. On the
other hand, the time domain is more related to the mac
scopic phenomena and for this reason turns out to be par
larly suitable for investigating quantum systems at the me
scopic scale@20#.

Another related issue that has stimulated considera
theoretical effort is that concerning the definition and ch
acterization of tunneling times@21,22#. In connection
with this problem, Dumont and Marchioro proposed t
probability current density as a quantum definition f
the ~unnormalized! probability distribution of arrival times
at an asymptotic point behind a one-dimensional poten
barrier @7#.

There exists additional motivation for trying to incorp
rate such a definition into the formalism of quantum mech
ics. Indeed, the average current^J(X)& of a classical statis-
tical ensemble of particles propagating in one spa
dimension along a well-defined direction plays the role o
probability distribution of arrival times atX. A simple way
for translating such a result into the framework of quant
mechanics consists in invoking the Weyl-Wigner quanti
tion rule, which provides a prescription for constructing
quantum operatorÂ(X̂,P̂) corresponding to a given classic
dynamical variableA(x,p) @23,24#,
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A~x,p!→Â~X̂,P̂!

5
1

4p2E E E E A~x,p!

3ei [u~X̂2x!1t~ P̂2p!] dx dp du dt. ~1!

Furthermore, the operator so obtained has the nice prop
that its expectation value is given by the classical express

^Â~X̂,P̂!&5E E f W~x,p! A~x,p! dx dp, ~2!

with the Wigner functionf W(x,p) playing the role of a qua-
siprobability distribution function in phase space.

The Weyl-Wigner quantization rule must be used w
caution for it does not necessarily lead to the correct qu
tum operator. In the present context, one obtains that
Weyl-Wigner operator corresponding to the classical curr
J(X)5p/m d(x2X) is nothing but the usual current oper
tor

Ĵ~X!5
1

2m
~ P̂ uX&^Xu1uX&^Xu P̂!. ~3!

However, unlike the classical case, because of the fact
Ĵ(X) is not positive definite, its expectation value cannot
properly considered as a probability distribution of arriv
times. It has been argued, nonetheless, that asymptotic
far from a potential barrier the transmitted current becom
positive, and this circumstance justifies its interpretation a
probability distribution@7,9#. In this regard, McKinnon and
Leavens@8,15# have also shown that within the framewo
of Bohmian mechanics it is possible to unambiguously
fine a probability distribution of the time of arrival in term
of the modulus of the probability current density. Howev
even though such a definition circumvents the probl
mentioned above, in principle there is no justification f
extrapolating it to the framework of standard quantu
mechanics.
1010 ©1999 The American Physical Society
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PRA 59 1011QUANTUM PROBABILITY DISTRIBUTION OF ARRIVAL . . .
A natural way for introducing time into the quantu
framework as a physical variable consists in considering i
such already at the classical level~a fact that can be imple
mented by making a suitable canonical transformation! and
then quantizing the corresponding formulation by using
canonical quantization method@25# in order to look for the
desired probability distribution in terms of the spectral d
composition of an appropriate self-adjoint operator. In do
so, one arrives at a time operator defined as the oper
canonically conjugate to the relevant Hamiltoni
@12,26,27#. However, in general, no such a self-adjoint o
erator exists@1,3,12#. This is the technical reason that e
plains to a great extent the difficulty found for incorporati
a time operator into the quantum formalism.

A reasonable way of circumventing this problem consi
in looking instead for a self-adjoint operator with dimensio
of time not strictly conjugate to the Hamiltonian. Eve
though there exist appreciable differences among them,
approaches of Kijowski@4#, Grot et al. @10#, as well as the
one developed in Refs.@12# and@13# can be ascribed to thi
category. The first two approaches are concerned with
time of arrival of a free particle, and its supposed range
validity includes quantum states having, in the moment
representation, positive- and negative-momentum com
nents, while the latter is also applicable~asymptotically! in
the presence of a one-dimensional scattering potential an
range of validity is restricted to quantum states having eit
positive- or negative-momentum contributions. In this pa
we shall focus on this latter approach. It should be remark
however, that within their common range of applicability a
of them provide the same theoretical prediction for the pr
ability distribution of the time of arrival at a certain point.

Agreement with a conclusive experimental test is the
timate requirement for establishing the validity of any the
retical proposal. However, discriminating experimenta
among different alternatives is not always a straightforw
matter. It may happen that under certain experimental co
tions predictions corresponding to different proposals
come indistinguishable in practice. This is the case in
present context when considering quantum states lar
semiclassical in character. Indeed, in the semiclassical l
@13# the proposal for the probability distribution of arriva
times based on the operator approach coincides with
based on the modulus of the probability current dens
which is the result obtained by McKinnon and Leave
within Bohmian mechanics@8,15#. More generally, since in
this limit the quantum current becomes necessarily posit
it follows that the predictions based on the operator appro
become in fact indistinguishable from those based in gen
on the probability current density. Consequently, any exp
mental test performed under these particular conditi
would be inconclusive. It is therefore worthwhile to inves
gate quantitatively to what extent appreciable differen
among the competing proposals can be expected as well
examine how such differences depend on the various c
trollable parameters. This is the main purpose of the pre
work @28#. More specifically, quantitative differences b
tween the two formulations will be examined analytica
and numerically~as a function of both the initial quantum
state describing the particle and the parameters charact
ing an intermediate potential barrier! with the aim of estab-
s
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lishing conditions under which the proposals might be tes
by experiment. To this end we shall begin by briefly revie
ing the required formulation.

II. PROBABILITY DISTRIBUTION OF ARRIVAL TIMES

Consider a quantum particle moving along thex axis to-
ward a detector located at a certain asymptotic pointX be-
hind a one-dimensional scattering centerV(X̂). In looking
for a probability distribution of the time of arrival for such
physical system, we introduced in previous papers@12,13# a
self-adjoint operator with dimensions of timeT̂(X) defined
in terms of its orthogonal spectral decomposition by

T̂~X!5E
2`

1`

dt t ut;X&^t;Xu, ~4!

ut;X&[ei sgn~ P̂ ! ~ P̂ 2/2m! t/\AuP̂ u
m

uX&. ~5!

The operators sgn(P̂) and AuP̂ u are in turn given by the
expressions

AuP̂ u[E
2`

1`

dpAup u up&^pu, ~6!

sgn~ P̂![E
0

`

dp~ up&^pu2u2p&^2pu!, ~7!

where the momentum eigenstates$up&% are assumed to be
normalized aŝ pup8&5d(p2p8).

Note that the above equations define, in fact, a o
parameter family$T̂(X)% of self-adjoint operators~labeled by
the positionX of the detector! which are canonically conju-
gate to the operatorĤ[sgn(P̂) Ĥ0 , with Ĥ0[ P̂2/2m being
the energy of the free particle.

Let Q(1 P̂) @Q(2 P̂)# represent the projector onto th
subspace spanned by plane waves with positive@negative#
momenta,

Q~6 P̂!5E
0

`

dpu6p&^6pu. ~8!

By taking advantage of the resolution of the unityQ(1 P̂)
1Q(2 P̂)51̂, we can rewrite the eigenstatesut;X& ~which
are manifestly symmetric under time reversal! in the form

ut;X&5Q~1 P̂! eiĤ 0t/\AuP̂ u
m

uX&

1Q~2 P̂! e2 iĤ 0t/\AuP̂ u
m

uX&, ~9!

which involves the stateAuP̂ u/m uX& translated~freely! both
forward and backward in time by the amountt.

Substituting then Eq.~9! into Eq. ~4!, one obtains
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1012 PRA 59V. DELGADO
T̂~X!5Q~1 P̂!F E
2`

1`

dt t ĴI
~1 !~X,t!GQ~1 P̂!

2 Q~2 P̂!F E
2`

1`

dt t ĴI
~1 !~X,t!GQ~2 P̂!, ~10!

where the positive-definite currentĴI
(1)(X,t) is a straightfor-

ward quantum version~in the interaction picture! of the
modulus of the classical currentuJ(X)u5upu/m d(x2X),

ĴI
~1 !~X,t!5eiĤ 0t/\ Ĵ~1 !~X! e2 iĤ 0t/\, ~11!

Ĵ~1 !~X![AuP̂ u
m

d~X̂ 2X!AuP̂ u
m

. ~12!

Even thoughT̂(X) is symmetric under time reversal, it
restrictions to the subspaces spanned by either positive
negative-momentum plane waves are not. This fact ena
us to define a probability distribution of the time of arriv
for quantum states belonging to either of such subspaces
be specific, let us assume the particle under study to be
cident from the left of the potential barrier, and let the st
vector uc in& @which is assumed to satisfy the identityuc in&
[Q( P̂) uc in&] represent the incoming asymptote of the a
tual scattering state of the particle att50. The mean arrival
time at an asymptotic pointX can then be defined consis
tently as@12,13#

^tX&5
^c truT̂~X!uc tr&

^c truc tr&

5
1

^c truc tr&
E

2`

1`

dt t ^c truĴI
~1 !~X,t !uc tr&, ~13!

where uc tr& is the projection of the outgoing asymptote~at
t50) onto the channel of transmitted particles, i.e.,

uc tr&5Q~ P̂!ucout&5Q~ P̂! Ŝ uc in&

5E
0

`

dp T~p! ^puc in& up&, ~14!

with Ŝ andT(p) being, respectively, the scattering opera
and the transmission coefficient characterizing the poten
barrier.

It is worth noting the remarkable formal analogy betwe
Eq. ~13! and its corresponding classical counterpart. Inde
the positive-definite current^c truĴI

(1)(X,t)uc tr& enters the ex-
pression for̂ tX& playing the role of an~unnormalized! prob-
ability distribution. We can thus define the probability dist
bution of the time of arrival at the asymptotic pointX as

PX~ t ![
1

T
z^t;Xuc tr& z25

1

T ^c tr~ t !uĴ~1 !~X!uc tr~ t !&, ~15!

whereT[^c truc tr&5^c tr(t)uc tr(t)& is the transmittance an
we have written the latter expression in the more fami
Schrödinger picture by introducing the~Schrödinger! freely
evolving transmitted state
or
es

To
n-
e

-

r
al

d,

r

uc tr~ t !&[e2 iĤ 0t/\uc tr&. ~16!

Equation~15! along with Eqs.~14! and ~16! enable us to
compute the desired probability distribution in terms of t
ingoing asymptoteuc in&. It is worth, however, obtaining an
alternative formula in terms of the actual scattering st
uc(t50)&. This can be accomplished by means of the Mo” ller
operators,

V̂65 lim
t→7`

eiĤ t/\ e2 iĤ 0t/\, ~17!

which map the ingoing and outgoing asymptotic states o
the corresponding scattering state

uc~ t50!&5V̂1uc in&5V̂2ucout&. ~18!

Using these relations and introducing the projector

P̂[V̂2Q~ P̂!V̂2
† ~19!

~which selects that part of a given state vector that will
transmitted!, one finally obtains~Appendix A!

PX~ t !5
1

T ^c~0!uP̂ V̂2ĴI
~1 !~X,t !V̂2

† P̂uc~0!&

5
1

T ^c~ t !uP̂ V̂2Ĵ~1 !~X!V̂2
† P̂uc~ t !&,

~20!

where uc(t)&[e2 iĤ t/\uc(0)& is the usual Schro¨dinger state
vector. It is interesting to note that the above equation
merely the expectation value of the modulus of the curr
Ĵ(1)(X) in the quantum state 1/AT V̂2

† P̂uc(t)&, which, in
turn, is the normalized outgoing asymptote corresponding
that part of uc(t)& that is going to be transmitted in th
future.

In practice, whenever the actual scattering state att50
does not overlap appreciably with the potential barrier,
state vectorsuc in& and uc(0)& become physically indistin-
guishable@29# and, consequently, one can legitimately u
Eqs.~14!–~16! with the substitutionuc in&→uc(0)&.

For our purposes it is convenient to write the expectat
values ofĴ(X) and Ĵ(1)(X) as

^c tr~ t !uĴ~X!uc tr~ t !&5
1

mh

1

2
~ I * @p#I @1#1c.c.!, ~21!

^c tr~ t !uĴ~1 !~X!uc tr~ t !&5
1

mh
~ I * @Ap#I @Ap# !, ~22!

where we have introduced the functional

I @ f #[E
0

`

dp T~p! f ~p! ^puc in& e2 i ~p2/2m! t/\eipX/\.

~23!

Note finally that the free case is a particular case of
above formulation with the Mo” ller operatorsV̂6 reducing to
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the unit operator and, consequently,P̂→Q( P̂). Since the
scattering operator can be written asŜ5V̂2

† V̂1 , it also fol-

lows thatŜ→1̂, and hence, by virtue of Eq.~14!, T(p)→1
and uc tr&→uc in&→uc(0)&. With these substitutions th
above formulas are applicable to the study of the arrival ti
of a free particle at a pointX.

III. ANALYTICAL APPROXIMATION
FOR THE EXPECTATION VALUE OF Ĵ „1…

„X…

In this section we are interested in obtaining analyti
expressions that permit us to compare the proposed prob
ity distribution of the time of arrival̂ c tr(t)uĴ(1)(X)uc tr(t)&
with the standard probability current densi

^c tr(t)uĴ(X)uc tr(t)&. To this end we shall restrict ourselve
to a free particle characterized, att50, by a minimum
Gaussian wave packet with centroidx0 , having a negligible
W
io

o

r
b-

t
al
e

l
il-

contribution of negative-momentum components, and pro
gating with average momentump0.0 along thex axis to-
ward a detector located at a certain positionX.x0 . Specifi-
cally,

^puc~0!&5@2p~Dp!2#21/4expF2S p2p0

2Dp D 2

2 i
px0

\ G ,
~24!

where the momentum spreadDp!p0 is assumed to be suf
ficiently small so as to satisfŷpuc(0)&.Q(p)^puc(0)& to
a good approximation. As stated above, under these co
tions T(p)→1 and we may substituteuc tr(t)&→uc(t)&
throughout the relevant formulas. The integrals involved
the definition of the probability current density@Eqs. ~21!
and ~23!# can then be easily carried out to obtain the we
known formula
^c~ t !uĴ~X!uc~ t !&5
A2/pDp

m\

S p014
~Dp!4~X2x0!

m\2
t D

S 114
~Dp!4

m2\2
t2D 3/2 expS 22

~Dp!2

\2

F ~X2x0!2
p0

m
t G2

114
~Dp!4

m2\2
t2 D . ~25!
e-

of
As far as the probability distribution̂c(t)uĴ(1)(X)uc(t)& is
concerned, some additional simplification is needed.
shall content ourselves with an analytical approximat
valid up to order (Dp/p0)2. To this end, following Grot
et al. @10#, we expand the argument of the functionalI @Ap#
entering Eq.~22! as a Taylor series about the average m
mentump0 , i.e.,

Ap5Ap0F11
p2p0

2p0
2

1

2S p2p0

2p0
D 2

1OS p2p0

p0
D 3G .

~26!

Substitution of this expansion intoI @Ap# leads to

I @Ap#5
1

4
Ap0F3

2
I @1#1

3

p0
I @p#2

1

2p0
2

I @p2#1OS Dp

p0
D 3G .

~27!

The important point is that bothI @p# andI @p2# can be writ-
ten in terms of I @1#, yielding an expression fo

^c(t)uĴ(1)(X)uc(t)& that can be easily related to the pro
ability current density given in Eq.~25!. Indeed, substituting
Eq. ~24! in the integrand ofI @1# and taking into account tha
^puc(0)&.0 for p,0, one arrives at the Gaussian integr

I @1#5NE
2`

1`

dp e2d~p2l!2
, ~28!

where
e
n

-

d[
1

4~Dp!2
1 i

t

2m\
, ~29!

l[
p012i ~Dp!2~X2x0!/\

112i ~Dp!2t/m\
. ~30!

~The factor N is not relevant to our purposes and cons
quently is not given here.! Note that Re(d).0, as required
for the integral to converge. As is well known, the integral
Eq. ~28! is, in fact, independent ofl. Thus, by differentiat-
ing I @1# with respect tol one can readily show that

I @p#5lI @1#. ~31!

Likewise, a second differentiation with respect tol leads to

I @p2#5S l21
1

2d D I @1#. ~32!

By inserting Eq.~31! into Eq. ~21!, one obtains

^c~ t !uĴ~X!uc~ t !&5
1

mh
Re~l! uI @1#u2. ~33!

Substitution of Eqs.~31! and ~32! into Eq. ~27! yields an
expression forI @Ap# depending only onI @1#. Inserting then
the expression so obtained into Eq.~22! and using Eq.~33! to
eliminate uI @1#u2 in favor of the probability current

^c(t)uĴ(X)uc(t)&, we arrive at
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^c~ t !uĴ~1 !~X!uc~ t !&5
3

16p0
3Re~l!

H 3

4
p0

413p0
3Re~l!13p0

2 ulu22
1

2
p0

2ReS l21
1

2d D
2p0ReFlS l21

1

2d D * G1
1

12Ul21
1

2d U
2

1OS Dp

p0
D 3J ^c~ t !uĴ~X!uc~ t !&. ~34!
om

al

en
,

to
er
we

the

r

Of course, for this cumbersome expression to be useful s
simplification is still required. Lett05(X2x0)m/p0 be the
classical time of arrival at the detector located atX. Restrict-
ing ourselves to particles arriving in the time interv
@0,2t0#, we have

t<2t0 ⇒ ~Dp!2t

m\
<rS Dp

p0
D , ~35!

where the parameterr denotes the distance between the c
troid of the wave packet att50 and the detector’s position
in units of the spatial spreadDx5\/2Dp, i.e., (X2x0)
[rDx. The important point is that whenr;O(1), theterm
2(Dp)2t/m\ involved in the expressions of both 1/d andl
n.
-

on

a

ee

s
de

c

e

-

@Eqs. ~29! and ~30!# becomes of order (Dp/p0). This fact
enables us to approximate the various terms contributing
Eq. ~34! as Taylor’s expansions up to terms of ord
(Dp/p0)2. For instance, under the assumptions just stated
would have

Re~l!5p0F114
~Dp!4~X2x0!t

mp0\2
24

~Dp!4t2

m2\2
1OS Dp

p0
D 3G ,

~36!

with similar expansions for the rest of the terms entering
above expression for̂c(t)uĴ(1)(X)uc(t)&. The substitution
of all of these expansions into Eq.~34! leads, after a rathe
lengthy calculation, to the final result
^c~ t !uĴ~1 !~X!uc~ t !&5F11L02L1t1L2t21OS Dp

p0
D 3G^c~ t !uĴ~X!uc~ t !&, ~37!
ith

er,
e.

r
-

tial

ent
to

of
n

where the coefficientsL0 , L1 , andL2 are defined as

L0[2
1

2S Dp

p0
D 2

1
2~Dp!4~X2x0!2

\2p0
2

, ~38!

L1[4
~Dp!4~X2x0!

mp0\2
, ~39!

L2[2
~Dp!4

m2\2
. ~40!

Equation~37! constitutes the main result of this sectio
When used along with Eq.~25!, it enables us to obtain ana
lytically the probability distribution̂ c(t)uĴ(1)(X)uc(t)& up
to order (Dp/p0)2. When the detector is located at a positi
X initially separated from the centroidx0 a distance of order
Dx, its range of applicability extends over the time interv
@0,2t0#. However, the validity of Eq.~37! is not restricted to
this particular configuration. Indeed, it is not difficult to s
that for any detector locationX.x0 ~i.e., any r.0), Eq.
~37! remains true within the interval@0,st0#, with s
'min$(2/r),(2/r)2%. For greater times the contribution from
those terms neglected in the various expansions increase
that they can no longer be considered to be of or
(Dp/p0)3 and Eq.~37! might fail as an approximation valid
up to order (Dp/p0)2.

As is apparent from the above formulas, the differen
between the expectation values ofĴ(X) and Ĵ(1)(X) turns
l

, so
r

e

out to be of order (Dp/p0)2, so that, in the limit (Dp/p0)
→0, both of them coincide, a result that is in agreement w
Ref. @10# and confirms the asymptotic analysis of Ref.@13#.
A comparison between these two quantities is, howev
most conveniently done in terms of their relative differenc

IV. RELATIVE DIFFERENCE

Given a HamiltonianĤ5Ĥ01V(X̂) and a state vecto
uc(0)& having no contribution of negative-momentum com
ponents, and not overlapping appreciably with the poten
barrier @so that one may legitimately substituteuc in&
→uc(0)&], the relative differenceD between the probability
distribution ^c tr(t)uĴ(1)(X)uc tr(t)& and the corresponding
probability current densitŷc tr(t)uĴ(X)uc tr(t)& can be writ-
ten as@see Eq.~14!#

D512
^c~0!u Ŝ†Q~ P̂!ĴI~X,t !Q~ P̂!Ŝ uc~0!&

^c~0!u Ŝ†Q~ P̂!ĴI
~1 !~X,t !Q~ P̂!Ŝ uc~0!&

. ~41!

This quantity, which constitutes the basis for our subsequ
analysis, is~for any t) a state functional that enables us
quantify the differences we are interested in, as a function
the initial stateuc(0)& . To this end we shall consider a
initial state vector of the form

uc~0!&5a~b uc1&1uc2&), ~42!

wherea is the normalization constant,



fo

f

e
ex
ibe

av

riv

its

he

l

te

pr

g

as
ime
e
es

he
of

te-

-

,

t

n

t
i-
l

e

PRA 59 1015QUANTUM PROBABILITY DISTRIBUTION OF ARRIVAL . . .
a5~b212b Rê c1uc2&11!21/2, ~43!

andb is an arbitrary real coefficient. On the other hand,
computational simplicity we shall choose^puc j& ( j 51,2) to
be minimum Gaussian wave packets centered atx0 , with
momentum spreadDp and average momentumpj , respec-
tively,

^puc j&5@2p~Dp!2#21/4expF2S p2pj

2Dp D 2

2 i
px0

\ G .
~44!

Furthermore, we takep2>p1.0 and Dp!p1 in order to
guarantee thatuc(0)& has no appreciable contribution o
negative-momentum components.

The interest in choosinguc(0)& this way comes from the
fact that by varying the continuous parametersb, p1 , p2 ,
Dp, and x0 we can easily explore different regions of th
Hilbert space. Such an analysis will be the aim of the n
section. For the time being, consider a free particle descr
at t50 by the state vector defined by Eqs.~42!–~44! with
p2→p1[p0 . In this particular case,uc(0)&→uc1& and the
initial state reduces to the simple minimum Gaussian w
packet considered in the preceding section@Eq. ~24!#. Under
these circumstances, an analytical expression can be de
for D. By substituting Eq.~37! into Eq. ~41!, one finds~for
0<t<st0)

D5L2~ t2t0!22
1

2S Dp

p0
D 2

1OS Dp

p0
D 3

, ~45!

with L2 given in Eq.~40!. Therefore, as a function oft , the
relative differenceD is given by a parabola which reaches
minimum at the classical arrival timet05(X2x0)m/p0 .
From Eq.~45! it follows that D(t0),0, and consequently

^c~ t0!uĴ~1 !~X!uc~ t0!&,^c~ t0!uĴ~X!uc~ t0!&, ~46!

so that the probability of arriving att0 as predicted by the
current Ĵ(X) is always greater than that predicted by t
modulus of the currentĴ(1)(X). More generally, it can be
readily seen that for anyt>0 within the symmetric interva
@ t02mDx/p0 ,t01mDx/p0# aboutt0 , it holds that

^c~ t !uĴ~1 !~X!uc~ t !&<^c~ t !uĴ~X!uc~ t !&, ~47!

where the equality is satisfied at the boundaries of the in
val @up to terms of order (Dp/p0)2#.

V. QUANTITATIVE ANALYSIS

A. Free particle

We begin the analysis of the relative differenceD be-
tween the probability distribution̂c tr(t)uĴ(1)(X)uc tr(t)& and
the probability current densitŷc tr(t)uĴ(X)uc tr(t)& by con-
sidering a free particle described att50 by the minimum
Gaussian wave packet defined in Eq.~24! @which, as already
said, is nothing but a particular case of the state vector
viously introduced in Eqs.~42!–~44!#. To be specific, we
shall restrict our investigation to an electron with avera
r

t
d

e

ed

r-

e-

e

momentump050.5 a.u., and place the detector atX5x0

13Dx, whereDx5\/2Dp is the spatial spread ofuc(0)&.
Figures 1~a! and 1~b! show the relative differenceD, as a

function of the time of arrival, for several values ofDp rang-
ing over two orders of magnitude. The detection interval h
been chosen to be symmetric about the classical arrival t
t0 , i.e., tP@0,2t0#. Moreover, for comparison purposes th
final instant of time has been normalized to unity in all cas
~i.e., t→tn[t/2t0), so thatt0 lies always in the middle of the
detection interval considered. It is worth remarking that t
probability current density turns out to be positive in all
the cases studied.

Besides the results obtained from a direct numerical in
gration of the corresponding formulas, Fig. 1~b! also shows
the behavior ofD as predicted by Eq.~45!. „Only the theo-
retical values corresponding toDp50.01 a.u. have been ex
plicitly plotted @circles in Fig. 1~b!# since for smallerDp the
agreement is even better.… As is apparent from this figure
within the range of validity of the theoretical prediction„that
is, for (Dp/p0)!1 andtP@0,st0#… the agreement turns ou
to be excellent~as it should be!. In fact, for any momentum
uncertaintyDp<0.01 a.u., the relative difference betwee

^ Ĵ(1)(X)&(t) and ^Ĵ(X)&(t), considered as a function oft,
behaves as a parabola which cuts the horizontal axis atn
51/3 andtn52/3, reaching its minimum value at the class
cal time tn51/2. Furthermore, while within the interva

@1/3,2/3# the expectation value ofĴ(X) always dominates
over the expectation value ofĴ(1)(X), just the opposite oc-
curs outside such an interval.

FIG. 1. Relative differenceD as a function of the~normalized!
time of arrival tn[t/2t0 @where t0 , which depends onDp, is the
classical arrival time: t0[(X2x0)m/p053m\/2p0Dp]. The
circles superimposed in the caseDp50.01 a.u. correspond to th
theoretical prediction of Eq.~45!.
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From Figs. 1~a! and 1~b!, the rapid decrease ofD with the
momentum spread is also apparent, which is a direct co
quence of the fact that forDp/p0 sufficiently small,D is of
order (Dp/p0)2. In this regard, note that forDp<0.01 a.u.
the relative difference is already less than 0.2% over al
the detection interval considered, and that figure would
even smaller if one focused attention on a time interval m
localized about the most probable time of arrivalt0. This fact
would render any attempt to discriminate between^Ĵ(1)

3(X)&(t) and^Ĵ(X)&(t) almost impossible in practice. Suc
a negative conclusion should not be extrapolated, howe
A minimum Gaussian wave packet represents a very spe
type of quantum state, for it exhibits the lowest possi
uncertainty productDxDp and consequently is expected
be largely semiclassical in character. On the other hand
can be inferred from an asymptotic analysis@13#, in the
semiclassical limit\→0 it holds that

^c~ t !uĴ~1 !~X!uc~ t !&→ z^c~ t !uĴ~X!uc~ t !& z, ~48!

so that the small value found forD in the cases considere
above is not surprising.

A simple way for generating initial states having a mo
genuine quantum character consists in allowingp1 to be dif-
ferent fromp2 in Eqs.~42!–~44!. In fact, a marked interfer-
ence pattern can be induced in the probability current den
~as well as in the corresponding position probability dens!
by simply increasing the distance~in momentum space! be-
tween p1 and p2 while keeping unchanged the remainin
parameters.

Figures 2 and 3 show the results obtained by takingb
52, p250.5 a.u.,Dp50.01 a.u., and allowingp1 to vary

FIG. 2. ~a! Relative differenceD as a function of the time of
arrival t. ~b! Expectation values~indistinguishable on the presen

scale! of Ĵ(1)(X) and Ĵ(X) ~in a.u.! as a function oft.
e-

f
e
e

r.
ial
e

as

ity

between 0.4 and 0.2 a.u., respectively. The detector’s p
tion has been chosen as before~more precisely, we have
takenX2x053\/2Dp) and the detection interval~now ex-
pressed in atomic units! has been chosen in such a way th
its final time t f satisfies

^c~ t f !uĴ~1 !~X!uc~ t f !&'^c~0!uĴ~1 !~X!uc~0!&. ~49!

In Figs. 2~b! and 3~b! we have plotted the expectatio
values of bothĴ(1)(X) and Ĵ(X) corresponding, respec
tively, to p150.4 a.u. andp150.2 a.u. These curves can b
considered as being obtained by means of a continuous
formation ~induced by varyingp1) starting from the initial
Gaussian profile corresponding top15p250.5 a.u. Since a
marked interference pattern is a hallmark of quantum beh
ior, it is evident that by decreasingp1 we are probing do-
mains of the Hilbert space with increasing quantum char
ter. As is apparent from these figures, while forp150.4 a.u.
the probability current density remains positive over all
the time interval considered, the same does not occur
p150.2 a.u., and in this case^c(t)uĴ(X)uc(t)& attains nega-
tive values in the neighborhood oft540 a.u. andt5400 a.u.

The analysis of the corresponding relative differenc
plotted in Figs. 2~a! and 3~a!, reveals that nowD exhibits a
series of maxima~clearly related to the interference patte
of the probability current density! where it can take values o
order 10%~in the first case! or 100%~in the second one!. @In
fact, in this latter case the maxima which have been tr
cated in the figure correspond, respectively, toD~39.1 a.u.!
531.96 andD~398.05 a.u.!51011.58.# Therefore, the prob-
ability distributions of the time of arrival as predicted b

FIG. 3. ~a! Relative differenceD as a function of the time of

arrival t. ~b! Expectation values ofĴ(1)(X) and Ĵ(X) ~in a.u.! as a
function of t.
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^Ĵ(1)(X)&(t) or ^Ĵ(X)&(t) can be quite different in thes
cases. A comparison with the bound 0.2% obtained pr
ously for p15p250.5 a.u.@Fig. 1~b!# reflects the fact tha
the choice of the initial state plays an essential role in b
the magnitude and the behavior of the relative discrepa
between̂ Ĵ(1)(X)&(t) and ^Ĵ(X)&(t).

An interesting limiting situation, where quantum effec
dominate the behavior of the probability current density, c
be achieved by takingDp→0 and p2 /p1@b@1 in Eqs.
~42!–~44!. In this particular case, the initial state become
purely quantum state with no classical analog, consisting
the coherent superposition of two macroscopically dis
guishable states in momentum space. Under these circ
stances, the main contribution tôc(t)uĴ(X)uc(t)& comes
from the interference terms and one obtains, to leading o
asDp→0 @13#,

^c~ t !uĴ~X!uc~ t !&;
2A2p

mh
ba2Dp p2

3cos@p2
2t/2\m2p2~X2x0!/\#

1O„~Dp!2
…. ~50!

This case is illustrated in Figs. 4~a! and 4~b!, where we have
specifically takenb5100, p251 a.u., p15431023 a.u.,
Dp5531024 a.u., andX2x053\/2Dp. Also plotted in
Fig. 4~b! is the modulus of the probability current densit
z^c(t)uĴ(X)uc(t)& z, which is the proposal by McKinnon an
Leavens@8# for the probability distribution of the time o
arrival.

From a comparison between Figs. 4~a! and 4~b! it can be
seen that the relative differenceD between^Ĵ(X)&(t) and

^Ĵ(1)(X)&(t) reaches a local maximum exactly whe

^Ĵ(X)&(t) reaches a local minimum, and in this caseD@1,
so that

D'2
^Ĵ~X!&~ t !

^Ĵ~1 !~X!&~ t !
5

z^Ĵ~X!&~ t !z

^Ĵ~1 !~X!&~ t !
. ~51!

Consequently, the main effect produced by the replacem

^Ĵ(X)&(t)→u^Ĵ(X)&(t)u upon the corresponding relative di
ference would consist in a change of sign. A similar conc
sion could be inferred from Fig. 3~a! for those instants of
time where the probability current density becomes negat
The important consequence is that, from a quantitative
ting, by replacing the probability current density by i
modulus one in general does not achieve a better agree
with the probability distribution̂ Ĵ(1)(X)&(t).

B. Potential barrier

The presence of a potential barrier might, in princip
induce some additional discrepancy between^Ĵ(X)&(t) and

^Ĵ(1)(X)&(t). In order to examine whether this is the cas
we shall consider next a quantum particle propagating
ward a detector located at a certain asymptotic pointX be-
hind a one-dimensional potential barrier. It turns out to
most convenient restricting to initial states as simple as p
sible since in these cases the effect produced specificall
i-

h
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n

a
of
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m-
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e.
t-

ent
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,
-

e
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the barrier can be more easily identified. Accordingly, w
shall consider an electron characterized att50 by the Gauss-
ian state given in Eq.~24!, with p050.5 a.u. The potentia
barrier is assumed to occupy the segment@0,d# of thex axis,
and its heightV0 has been chosen in all cases so thatpB

[A2mV050.8 a.u.
Our primary interest consists in investigating the behav

of the relative differenceD as a function of both the barrier’
width d and the momentum spreadDp. To this end we have
selected the centroidx0 of the initial wave packets in such
way that^xuc(0)& does not overlap appreciably~in compari-
son with the transmittanceT) with the interaction center
Specifically,x0 has been implicitly defined by

E
0

`

dxz^xuc~0!& z2.1023T ~52!

and, consequently, is a function of bothDp and d. On the
other hand, in order to guarantee the applicability of the f
malism ~which requires the particle to be asymptotica
free!, the detector has been assumed to be switched on
certain instantt i satisfying the condition that the probabilit
of finding the particle within the interaction region is alrea
negligible. More precisely, we have defined implicitlyt i by
the condition

E
2`

d

dxz^xuc tr~ t i !& z2.1023T. ~53!

The detector has also been assumed to be located at a c
positionX behind the interaction center sufficiently far fro
the barrier’s edge so as to satisfy the condition that when

FIG. 4. ~a! Relative differenceD between^Ĵ(1)(X)&(t) and

^Ĵ(X)&(t) as a function of the time of arrivalt. ~b! ^Ĵ(1)(X)&(t),

^Ĵ(X)&(t), andu^Ĵ(X)&(t)u ~in 1026 a.u.! as a function oft.
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switched on~at t5t i) the probability of finding~in the ab-
sence of detector! the transmitted particle within the regio
x>X is still negligible. That is,X has been obtained from th
condition

E
X

`

dxz^xuc tr~ t i !& z2.1023T. ~54!

Finally, it has been assumed that the detector is switched
at a certain instantt f satisfying

^c tr~ t f !uĴ~1 !~X!uc tr~ t f !&'^c tr~ t i !uĴ~1 !~X!uc tr~ t i !&.
~55!

Combining Eqs.~53! and ~54! we see that att5t i , i.e.,
when the detector is switched on, the transmitted particle
be found in the region between the barrier’s edge and
detector’s position with a probability of 99.8%, a fact th
guarantees the applicability of the formulation developed
the preceding sections.

Figure 5 shows the relative differenceD obtained by tak-
ing Dp50.01 a.u. and allowing the barrier width to va
betweend52 a.u. andd512 a.u. The corresponding value
for the parametersx0 , t i , t f , andX @obtained numerically
from Eqs.~52!–~55!# are given in Table I. For compariso
purposes, the time interval@ t i ,t f # has been renormalized t
the interval @0,1# by means of the mappingt→tn[(t
2t i)/(t f2t i). As is apparent from Fig. 5, the potential ba
rier seems to produce no special effect onD. In fact, even
though the transmitted stateuc tr(t)& depends to a great exten
on the barrier widthd, the relative difference between th
corresponding expectation values ofĴ(X) and Ĵ(1)(X) ex-
hibits no appreciable dependence on this parameter. Fur
more,D remains very small~of order 0.25%) in all cases.

Things are quite different, however, when the moment
spread increases. ForDp50.1 a.u.~Figs. 6 and 7 and Table
II !, the relative difference not only takes greater values,
also exhibits a clear dependence on the barrier width. F
Fig. 6~a! we see that ford58 a.u.,D manifests an oscillatory
behavior which@from a comparison with Fig. 6~b!# can be
straightforwardly related to the emergence of an incipi
interference pattern in the corresponding probability curr

FIG. 5. Relative differenceD as a function of the~normalized!
time of arrival tn[(t2t i)/(t f2t i), for Dp50.01 a.u. and barrier
widths d52, 4, 8, and 12 a.u.
ff

n
e

n

er-

t
m

t
t

density. The appearance of such an interference pattern
in turn be traced back to the interference dynamically
duced between tunneling and over-the-barrier contributi
in the corresponding transmitted wave packet@30#.

A similar behavior associated, however, with greater re
tive differences can be appreciated in Figs. 7~a! and 7~b!,
which show the results corresponding to a barrier widthd
510 a.u. This particular case is interesting for still anoth
reason. As is shown in the inset of Fig. 7~b!, the probability
current density takes in this case negative values in
neighborhood of the arrival timet5373 a.u.~though, admit-
tedly, very small ones!. This fact demonstrates that even f
initial Gaussian wave packets having no appreciable con
bution of negative-momentum components, the probabi
current density can take negative values at an asymp
point X behind a one-dimensional potential barrier. This s
reason is sufficient to invalidate~even under such specia
circumstances! its interpretation as a probability distributio
of arrival times. Of course, there still exists the possibility
considering instead the modulus of the probability curr

FIG. 6. ~a! Relative differenceD as a function of the~normal-
ized! time of arrival tn[(t2t i)/(t f2t i) , for Dp50.1 a.u. andd
52, 4, and 8 a.u.~b! Expectation values~indistinguishable on the

present scale! of Ĵ(1)(X) and Ĵ(X) ~in 1026 a.u.! as a function of
tn , for Dp50.1 a.u. andd58 a.u.

TABLE I. Parameters corresponding toDp50.01 a.u. All val-
ues in atomic units.

d x0 t i t f X

2 2201.8 785 1550 379.0
4 2228.0 839 1600 382.0
8 2275.4 933 1700 386.5

12 2316.6 1014 1800 391.0
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density. Were we to plot the relative difference betwe

^Ĵ(1)(X)&(t) and z^Ĵ(X)&(t) z, the only relevant change in
Fig. 7~a! would be the transformation of the first maximu
D(t5373.3 a.u.!53.92 into a minimum ~3.92→21.92!.
Consequently, a considerable discrepancy would still s
vive.

VI. CONCLUSION

In the present work we have compared the proposal m
in previous papers@12,13# for a quantum probability distri-
bution of the time of arrival at a certain point with that bas
on the probability current density~or alternatively on its
modulus!, with the aim of establishing conditions und
which the proposals might be tested by experiment. To
end, we began by obtaining~under certain particular condi
tions! an analytical approximation for the expectation val

of Ĵ(1)(X) valid up to order (Dp/p0)2, and we have per-
formed a quantitative analysis of the corresponding rela
differences as a function of the initial state of the parti

FIG. 7. ~a! Relative differenceD as a function of the time of
arrival t, for Dp50.1 a.u. andd510 a.u.~b! Expectation values

~indistinguishable on the present scale! of Ĵ(1)(X) and Ĵ(X) ~in
1026 a.u.! as a function oft, for Dp50.1 a.u. andd510 a.u.

TABLE II. Parameters corresponding toDp50.1 a.u. All values
in atomic units.

d x0 t i t f X

2 220.15 145.7 530.0 112.9
4 222.48 137.0 470.0 108.5
8 225.84 141.1 390.0 117.3
10 228.30 254.0 573.0 229.4
n

r-

de

is

e

~both in the case of free evolution and in the presence o
intermediate potential barrier!.

We have found that quantum regime conditions produ
the biggest differences between the formulations which
otherwise near indistinguishable. In fact, in the semiclass
regime, for electrons in quantum states with a well-defin
momentump0@Dp ~thus having a clear classical analog!,
the relative discrepancy can be typically of order 0.2%, a
this figure would be even smaller if one restricted attent
to arrival times having an appreciable probability. Therefo
in this regime the probability distribution proposed in Re
@12,13# becomes indistinguishable in practice from the c
responding probability current density. Important discrep
cies only occur in the purely quantum regime, for states
genuinely quantum character, having no classical analog
deed, the appearance of important relative differences ca
straightforwardly related to the existence or emergence
marked interference pattern in the probability current den
~or alternatively in the position probability density!, irrespec-
tive of the fact that such quantum interference was alre
present in the initial state or was generated dynamic
through the temporal evolution of the system~as can be the
case in the presence of a scattering potential!. Furthermore, a
closer analysis reveals that such quantum effects are ma
localized about arrival times having a negligible probabil
and/or occur over short time scales in comparison with
relevant time interval. These results indicate that in orde
discriminate conclusively among the different alternativ
the corresponding experimental test should be performe
the quantum regime and with sufficiently high resolution
to resolve small quantum effects. Hopefully, the recent
vances in the development of experimental techniques
well as in the preparation and manipulation of atomic s
tems will make such experiments feasible.
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APPENDIX A

Let us introduce the stateup2&[V̂2up&, which is the
solution of the Lippmann-Schwinger equation correspond
to an outgoing plane waveup&, i.e.,

up2&5up&1~p2/2m2 i02Ĥ !21V~X̂!up&. ~A1!

In terms of these states one can define the projector

P̂[V̂2Q~ P̂!V̂2
† 5E

0

`

dp up2&^p2u, ~A2!

which selects that part of a given state vector that will

finally transmitted. Taking into account thatV̂6
† V̂651̂ and

Ŝ5V̂2
† V̂1 , it follows from Eq. ~A2! that

V̂2
† P̂ V̂15Q~ P̂!Ŝ. ~A3!
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By using the intertwining relations for the Mo” ller operators
@29#,

V̂6
† Ĥ V̂65Ĥ0 , ~A4!

as well as Eq.~A3!, it can be readily shown that

e2 iĤ 0t/\ Q~ P̂!Ŝ5 V̂2
† P̂ e2 iĤ t/\ V̂1 . ~A5!

Taking advantage of this relationship and recalling t
uc tr&5Q( P̂)Ŝ uc in&, we can write
ru

. G
t

uc tr~ t !&5e2 iĤ 0t/\ Q~ P̂!Ŝ uc in&5V̂2
† P̂ uc~ t !&, ~A6!

where we have used thate2 iĤ t/\ V̂1uc in&5e2 iĤ t/\uc(0)&
5uc(t)&. In particular, fort50, Eq. ~A6! reduces to

uc tr&5V̂2
† P̂ uc~0!&. ~A7!

Substitution of Eq.~A6! @or alternatively Eq.~A7!# into Eq.
~15! leads to Eq.~20!.
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