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Quantum probability distribution of arrival times and probability current density
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This paper compares the proposal made in previous papers for a quantum probability distribution of the time
of arrival at a certain point with the corresponding proposal based on the probability current density. Quanti-
tative differences between the two formulations are examined analytically and numerically with the aim of
establishing conditions under which the proposals might be tested by experiment. It is found that quantum
regime conditions produce the biggest differences between the formulations which are otherwise near indis-
tinguishable. These results indicate that in order to discriminate conclusively among the different alternatives,
the corresponding experimental test should be performed in the quantum regime and with sufficiently high
resolution so as to resolve small quantum effel$4.050-2947@9)02602-5

PACS numbdps): 03.65.Bz, 03.65.Ca

I. INTRODUCTION A(X,p)HA()ﬂ(, lg,)
The problem of incorporating the time-of-arrival concept — ij f f f A(X,p)
in the theory of quantum measurement has remained contro- 47

versial over the years, and even nowadays this question is s .

open to debatgl-1§]. In recent times this issue has acquired x gll?X =07 P=Pl dx dp dg d . @

renewed interest in part due to the development of new ex-

perimental techniques for probing quantum systems in th&urthermore, the operator so obtained has the nice property

time domain. For instance, by exciting an atomic systenthat its expectation value is given by the classical expression

with a pulsed laser and measuring the subsequent flux of

electrons ejected from autoionizing states, as a function of A oA

the time of arrival at the detector, one can gain important <A(X’P)>:f f fw(x,p) A(x,p) dx dp, @

physical information which is not obtainable by probing the

system in the more familiar energy domdih9]. On the  with the Wigner functiorfy(x,p) playing the role of a qua-

other hand, the time domain is more related to the macrosiprobability distribution function in phase space.

scopic phenomena and for this reason turns out to be particu- The Weyl-Wigner quantization rule must be used with

larly suitable for investigating quantum systems at the mesoeaution for it does not necessarily lead to the correct quan-

scopic scalg20]. tum operator. In the present context, one obtains that the
Another related issue that has stimulated considerablgveyl-Wigner operator corresponding to the classical current

theoretical effort is that concerning the definition and char-J(X)=p/m &(x—X) is nothing but the usual current opera-

acterization of tunneling timeg21,22. In connection tor

with this problem, Dumont and Marchioro proposed the

probability current density as a quantum definition for N TP .

the (unnormalized probability distribution of arrival times I(X)= ﬁ(P [XMX[+[X)(X] P). 3)

at an asymptotic point behind a one-dimensional potential

barrier[7]. However, unlike the classical case, because of the fact that

There exists additional motivation for trying to incorpo- . . o .
S : J(X) is not positive definite, its expectation value cannot be
rate such a definition into the formalism of quantum mechan-

: . ; properly considered as a probability distribution of arrival
|ps.llndeed, g:e avferage_clurre{d'(x)> of a chssmaI statls-_ times. It has been argued, nonetheless, that asymptotically
tical ensemble of particles propagating In one spatiaky; from a potential barrier the transmitted current becomes
dimension along a well-defined direction plays the role of

Y @ k ) > @ositive, and this circumstance justifies its interpretation as a
probability distribution of arrival times aX. A simple way  propability distribution[7,9]. In this regard, McKinnon and
for translating such a result into the framework of quantumi_eavens(8,15] have also shown that within the framework
mechanics consists in invoking the Weyl-Wigner quantiza-of Bohmian mechanics it is possible to unambiguously de-
tion rule, which provides a prescription for constructing afine a probability distribution of the time of arrival in terms
guantum operatoh(X,P) corresponding to a given classical of the modulus of the probability current density. However,
dynamical variabléA(x,p) [23,24), even though such a definition circumvents the problem

mentioned above, in principle there is no justification for

extrapolating it to the framework of standard quantum
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A natural way for introducing time into the quantum lishing conditions under which the proposals might be tested
framework as a physical variable consists in considering it aby experiment. To this end we shall begin by briefly review-
such already at the classical leval fact that can be imple- ing the required formulation.
mented by making a suitable canonical transformateomd
then quantizing the corresponding formulation by using the ||, PROBABILITY DISTRIBUTION OF ARRIVAL TIMES
canonical quantization methd@5] in order to look for the ) ) _ )
desired probability distribution in terms of the spectral de- Consider a quantum particle moving along thexis to-
composition of an appropriate self-adjoint operator. In doingVard & detector located at a certain asymptotic pite-
so, one arrives at a time operator defined as the operatéind a one-dimensional scattering cent§iX). In looking
canonically conjugate to the relevant Hamiltonianfor a_probablllty dlstrlputlon of th_e time pf arrival for such a
[12,26,27. However, in general, no such a self-adjoint op-Physical system, we introduced in previous paé13 a
erator existd1,3,13. This is the technical reason that ex- self-adjoint operator with dimensions of tim&X) defined
plains to a great extent the difficulty found for incorporating in terms of its orthogonal spectral decomposition by
a time operator into the quantum formalism.

A reasonable way of circumventing this problem consists A e
in looking instead for a self-adjoint operator with dimensions TX) = f_w dr 7|7, X)(7:X], (4)
of time not strictly conjugate to the Hamiltonian. Even
though there exist appreciable differences among them, the =
approaches of Kijowskji4], Grot et al. [10], as well as the I7:X)=¢ sqr(P ) (P 2i2m) 7/t /ﬂ|x>
one developed in Ref$12] and[13] can be ascribed to this ’ m '
category. The first two approaches are concerned with the
tim_e .of grrival of a free particle, and _its sgpposed range ofrpe operators sgf() and \/m are in turn given by the
validity includes quantum states having, in the momentu”bxpressions
representation, positive- and negative-momentum compo-
nents, while the latter is also applicaliessymptotically in _ oo
the presence of a one-dimensional scattering potential and its \/ﬁzf dp\/m|p><p|, (6)
range of validity is restricted to quantum states having either o
positive- or negative-momentum contributions. In this paper
we shall focus on this latter approach. It should be remarked, P
however, that within their common range of applicability all sgriP)= fo dp([p){pl=I=P)}=pD. (@)
of them provide the same theoretical prediction for the prob-

ability distribution of the time of arrival at a certain point. \yhere the momentum eigenstatdp)} are assumed to be
Agreement with a conclusive experimental test is the ulyormalized agp|p’y=8(p—p').

timate requirement for establishing the validity of any theo-  Note that the above equations define, in fact, a one-

retical proposal. However, _discriminating expgrimentally arameter familf7(X)} of self-adjoint operatoréabeled by
among different alternatives is not always a straightforwar he positionX of the detectorwhich are canonically conju-

matter. It may happen that under certain experimental condi- « A Y i
tions predictions corresponding to different proposals bedate to the operatdi=sgn(P) Ho, with Ho=P*/2m being
come indistinguishable in practice. This is the case in théh® energy of the free particle.

present context when considering quantum states largely Let ®(+P) [@(—P)] represent the projector onto the
semiclassical in character. Indeed, in the semiclassical limigubspace spanned by plane waves with posithegative
[13] the proposal for the probability distribution of arrival momenta,

times based on the operator approach coincides with that

based on the modulus of the probability current density, N o

which is the result obtained by McKinnon and Leavens (ip):JO dpl=p){=pl. 8
within Bohmian mechanicE3,15]. More generally, since in
this limit the quantum current becomes necessarily positive . . -
it follows that the predictions based on the operator approacﬁy taklrJg a‘f"’a”tage of the resolution of the uniiy+P)
become in fact indistinguishable from those based in generat ®(—P)=1, we can rewrite the eigenstates X) (which
on the probability current density. Consequently, any experiare manifestly symmetric under time revejsal the form
mental test performed under these particular conditions

would be inconclusive. It is therefore worthwhile to investi- - IP|
|7;X)=0(+P)eHor? Fl

®)

gate quantitatively to what extent appreciable differences
among the competing proposals can be expected as well as to

X)
examine how such differences depend on the various con- A R 1P|
trollable parameters. This is the main purpose of the present +0O(—P)e Hoh \[——|X),
work [28]. More specifically, quantitative differences be- m
tween the two formulations will be examined analytically _

and numerically(as a function of both the initial quantum which involves the state/|P |/m|X) translatedfreely) both
state describing the particle and the parameters characteritorward and backward in time by the amount

ing an intermediate potential barriewith the aim of estab- Substituting then Eq9) into Eq. (4), one obtains

(€)
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O(+B) () =€ Mo ). (16)

Equation(15) along with Egs.(14) and(16) enable us to
compute the desired probability distribution in terms of the
ingoing asymptoté;,). It is worth, however, obtaining an
alternative formula in terms of the actual scattering state
where the positive-definite curredit™ (X, 7) is a straightfor- | #(t=0)). This can be accomplished by means of thélbto
ward quantum versior(in the interaction pictureof the  Operators,
modulus of the classical curreft(X)|=|p|/m §(x—X),

’j'(X)=®(+I5) Jj:dr T.AJEH(X,T)

~ o ~ ~
- @(—P)[deTTJf”(X,T) 0(—P), (10

O. = lim elHt/h g =iHgt/h (17)
j|(+)(x,,r):eiﬁofm :](“(X) e—iHoT/ﬁ, (11) T LT
5 5 which map the ingoing and outgoing asymptotic states onto
IH(X)= % S(X —X) % (120  the corresponding scattering state

Even thoughZ(X) is symmetric under time reversal, its [#(t=00)= L1 [thin) = Q- ow- (18
restrictions to the subspaces spanned by either positive- Jsing these relations and introducing the projector
negative-momentum plane waves are not. This fact enables
us to define a probability distribution of the time of arrival A O 5\ AT
for quantum states belonging to either of such subspaces. To P=0-6(R)0- (19
be specific, let us assume the particle under study to be i
cident from the left of the potential barrier, and let the stat
vector | ¢i,) [which is assumed to satisfy the identity;,)
E(I5) |#iny] represent the incoming asymptote of the ac- 1 Anoa Ao
tual scattering state of the particletat 0. The mean arrival Px(t)= $<'//(0)|7’Q—Jf+)(x,t)917’| #(0))
time at an asymptotic poinX can then be defined consis-
tently as[12,13

nﬁ/vhich selects that part of a given state vector that will be
etransmitte()l, one finally obtaingAppendix A

! 5O IH0OT F

. = $(¢O[PQITOOQIPIY(D),

(U TOX) | ) 20
)

+

(tx) =

where|y(t))=e %] y(0)) is the usual Schidinger state
_ * a(4) vector. It is interesting to note that the above equation is
Al ) ) = Aty di (XD ), (13 merely the expectation value of the modulus of the current
. o . JHN(X) in the quantum state 4T Q7 P|y(t)), which, in
where |¢,) is the projection of the outgoing asymptd®  turn, is the normalized outgoing asymptote corresponding to

tZO) onto the channel of transmitted particles, i.e., that part Ofllﬂ(t)> that is going to be transmitted in the
R L. future.
|4t) = O (P)|$houy = O (P) S|ehin) In practice, whenever the actual scattering statée=ed
does not overlap appreciably with the potential barrier, the
_ " _ state vectordy;,) and|¢(0)) become physically indistin-
fo dp T(p) (pl¥in) [P), (149 guishable[29] and, consequently, one can legitimately use

A Egs. (14)—(16) with the substitutior] ¢;,)—|(0)).
with S and T(p) being, respectively, the scattering operator For our purposes it is convenient to write the expectation
and the transmission coefficient characterizing the potentiajalues ofJ(X) andJ(*)(X) as
barrier.
It is worth noting the remarkable formal analogy between A 11
Eq. (13) and its corresponding classical counterpart. Indeed, (O [ ¢hy(1)) = (Pl +cc), (2D
the positive-definite currerfy,|3{ ™) (X,t)| ¢) enters the ex-
pression foKty) playing the role of agunnormalized prob- 3(+) 1
ability distribution. We can thus define the probability distri- (OO P(0) = (%] Vell[VpD), (22
bution of the time of arrival at the asymptotic poitas
where we have introduced the functional

1 1 -
Pyu(t)= =|(t;:X| ) 2= = (¢ (1) [ I (X) | (1)), (15 = _ .
X( ) T|< |lr//t>| T<¢t( )| ( )|11[/t( )> ( ) I[f]Ef de(p) f(p)<p|lﬂ|n> e—|(p /Zm)t/ﬁele/ﬁ.
0

where T=(4n| i) = (4 (t) | ,(t)) is the transmittance and (23)
we have written the latter expression in the more familiar ) _ )
Schralinger picture by introducing théSchralinge) freely Note finally that the free case is a particular case of the

evolving transmitted state above formulation with the Mter operators) . reducing to
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the unit operator and, consequent®,—®(P). Since the contribut!on of negative-momentum components, apd propa-

scattering operator can be written Gs Qifu , it also fol- gating with average momentupb>_0 alopg thex axis t_o_—
RN ward a detector located at a certain posithr xy. Specifi-

lows thatS—1, and hence, by virtue of Eq14), T(p)—1 cally,

and |¢y)—|in)—|¥(0)). With these substitutions the

above formulas are applicable to the study of the arrival time

faf ticle at inX P—Po\®  PX
Ol a Tree particle at a poinx. — 21—1/4 _ _a Py
(pl(0))=[27(Ap)?] exr{ <2Ap) i }

l1l. ANALYTICAL APPROXIMATION (24)
FOR THE EXPECTATION VALUE OF J™)(X)

In this section we are interested in obtainin analyticalWhere the momentum sprea-<po is assumed to be suf-

expressions that permit us to compare the propoied probabf-Clently small so as to satisfyp|4(0))=6(p)(p|#(0)) to
" good approximation. As stated above, under these condi-

ity distribution of the time of arrival ¢ (t) I (X)[¥4(t))  tions T(p)—1 and we may substitutéy,(t))—|¥(t))

with  the  standard  probability — current  density throughout the relevant formulas. The integrals involved in

(e (V)] IX) | (1)). To this end we shall restrict ourselves the definition of the probability current densifgs. (21)

to a free particle characterized, &0, by a minimum and(23)] can then be easily carried out to obtain the well-

Gaussian wave packet with centroigl, having a negligible known formula

(Ap)A(X—xo)
4—
(ZmAp (p°+ mi2 t)

2
[(X—xo)—%t}

. (Ap)?
(OO g(1))= mh STREL exp —2 Py Ao : (25
(Ap)* (Ap)*
1+4 t 1+4 t
m?h2 m?2
|
As far as the probability distributious(t) |3 (X)| y(t)) is 1 ot
concerned, some additional simplification is needed. We 5Em+lm, (29
shall content ourselves with an analytical approximation (Ap)
valid up to order Ap/pg)2. To this end, following Grot
et al.[10], we expand the argument of the functiomgd/p] _ Pot 2i(Ap)2(X—xXo)/h
entering Eq.(22) as a Taylor series about the average mo- A= 1+2i(Ap)2t/mA (30

mentumpg, i.e.,

3 (The factorN is not relevant to our purposes and conse-
p—po) _ quently is not given hergNote that Re§)>0, as required
Po for the integral to converge. As is well known, the integral of
(26)  Eq. (29 is, in fact, independent of. Thus, by differentiat-
ing I[1] with respect tan one can readily show that

I[p]=ANI[1]. (31

Likewise, a second differentiation with respect\ideads to

Vp=1po

2
| +o

— 1 —

14 P=Po_ _( P—Po
2py 2\ 2pg

Substitution of this expansion intg \p] leads to

§|1+3| —i| 2+o(ﬂ)3
51[1] po[p] 2pg[lo] L

1
ILVPI=7VPo

@7 I[p?]=

The important point is that botl p] andI[p?] can be writ-

ten in terms of I[1], vyielding an expression for By inserting Eq.(31) into Eq.(21), one obtains
(p(®)[I(X)|y(t)) that can be easily related to the prob- 1

ability current density given in Eq25). Indeed, substituting (W] (1)) = —Re(\) [1I[1]|2. (33)
Eq. (24) in the integrand of[ 1] and taking into account that mh

(p|¥(0))=0 for p<0, one arrives at the Gaussian integral L ) i
Substitution of Eqs(31) and (32) into Eg. (27) yields an

+o _ s(p—n)? expression fot[ p] depending only oh[1]. Inserting then
I[1]=N j_m dpe ; (28)  the expression so obtained into E32) and using Eq(33) to
eliminate [I[1]|? in favor of the probability current
where (p(1)|IX) | 4(t)), we arrive at

A2+ i)l[l] (32
26 '
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o 3 1 1
+) _ S 4 3 21312 22 —_
(YO0 (1)) = 16p8Re()\)[4p0+3poRe()\)+3p0|}\|2 2poRe()\2+ 25
S I N R (Ap>3 R

—poRE N N 55 [T A +55 +0 oo (P(O1I)]g(1)). (34)

Of course, for this cumbersome expression to be useful soni&gs. (29) and (30)] becomes of orderAp/py). This fact
simplification is still required. Lety=(X—Xy)m/py be the enables us to approximate the various terms contributing to
classical time of arrival at the detector locateKaiRestrict- EQ. (34) as Taylor's expansions up to terms of order
ing ourselves to particles arriving in the time interval (Ap/po)?. For instance, under the assumptions just stated we

[0,25], we have would have
(Ap)?t Ap) (Ap)*(X—xo)t  (Ap)*t? (Ap)3
t<2t, = <p|—1|. 35 Re(N)=po| 1+4 - +o| =] |,
0 mi P\ b, (39 &N)=Po o 2n? 0o
where the parameter denotes the distance between the cen- (36)

troid of the wave packet @t=0 and the detector’s position, With similar expansions for the rest of the terms entering the
in units of the spatial spreadx=7#/2Ap, i.e., (X—xXo)  above expression fafy(t)|I7)(X)|¥(t)). The substitution

=pAx. The important point is that whem~O(1), theterm  of all of these expansions into E(B4) leads, after a rather
2(Ap)?t/m# involved in the expressions of bothsland A lengthy calculation, to the final result

. Ap\3 .
(OO (D) =| 1+ Ag—Agt+Aot>+0 E) }wa)u(xwa», (37)
|

where the coefficientdy, A;, andA, are defined as out to be of order £p/py)?, so that, in the limit Ap/py)
—0, both of them coincide, a result that is in agreement with

_ 1{Ap 2 2(Ap)*H(X—xp)? Ref.[10] and confirms the asymptotic analysis of Rdf3].
AO:_E Po 12p2 ' 38 A comparison between these two quantities is, however,
0 most conveniently done in terms of their relative difference.

~ (Ap)*H(X—Xo)
AN=4——— (39 IV. RELATIVE DIFFERENCE

mpoh 2
, Given a HamiltonianA=Hy+V(X) and a state vector
A =2(Ap) 40) |(0)) having no contribution of negative-momentum com-
2% ene ponents, and not overlapping appreciably with the potential
barrier [so that one may legitimately substitutgs;,)
Equation(37) constitutes the main result of this section. —|#(0))], the relative differencé between the probability
When used along with Eq25), it enable§ us to obtain ana- djstribution <¢tr(t)|3(+)(x)|¢tr(t)> and the corresponding
lytically the probability distribution( y(t)|J)(X)[(t)) up  probability current density ()| 3(X)|#4(t)) can be writ-
to order (Ap/po)?. When the detector is located at a position ten as[see Eq(14)]
Xinitially separated from the centroig, a distance of order
Ax, its range of applicability extends over the time interval Ae1 (4(0)| STO(P)J,(X,1)@(P)S|y(0))
[0,25]. However, the validity of Eq(37) is not restricted to =1- = Y ~ = .
this particular configuration. Indeed, it is not difficult to see ((0)] ST(MP)J? )(X’t)®(P)S|‘/’(O)>
that for any detector locatioX>x, (i.e., any p>0), Eq.
(37) remains true within the interval0,0ty], with o
~min{(2/p),(2/p)?}. For greater times the contribution from
those terms neglected in the various expansions increases,
that they can no longer be considered to be of orde
(Ap/po)® and Eq.(37) might fail as an approximation valid

up to order A p/po)?. 0))= + 1)), 42
As is apparent from the above formulas, the difference (00 =a(Blgn)+ 142D 42

between the expectation values &(fX) and J(*)(X) turns  where« is the normalization constant,

(41)

This quantity, which constitutes the basis for our subsequent
analysis, is(for anyt) a state functional that enables us to

uantify the differences we are interested in, as a function of
(11’1% initial state|#(0)) . To this end we shall consider an
nitial state vector of the form
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a=(B*+2BRe(ys|;)+1) 712 (43) 0.14
and g3 is an arbitrary real coefficient. On the other hand, for 0.101
computational simplicity we shall choo$p| ;) (j=1,2) to [
be minimum Gaussian wave packets centeredgatwith 4 006!
momentum spreadp and average momentupy, respec- L
tively, i
) 0.02

_ P—P; . PXo

N 21-1/4 I L B [

(plyj)=[2m(Ap)?] exp[ ( 2hp ) i~ } 000

(44)

Furthermore, we tak@,=p;>0 and Ap<<p, in order to
guarantee thatiy(0)) has no appreciable contribution of
negative-momentum components. [
The interest in choosingy(0)) this way comes from the 0.0010 -
fact that by varying the continuous parametg&sp,, p-, < I . Ap=0005a.u.
Ap, andx, we can easily explore different regions of the 0.0006 |-
Hilbert space. Such an analysis will be the aim of the next DA Ap=0.001 a,
section. For the time being, consider a free particle described ~ 0.0002 | <
att=0 by the state vector defined by Ed42)—(44) with C SwmdmrmTre=s
P,—P1=Po. In this particular casd(0))—|;) and the -0.0002L—— 1. N
initial state reduces to the simple minimum Gaussian wave 0
packet considered in the preceding secfigqg. (24)]. Under th
these circumstances, an analytical expression can be derived
for A. By substituting Eq(37) into Eqg. (41), one finds(for

0.0014 K 2p=001au.

FIG. 1. Relative differencé as a function of thénormalized
time of arrivalt,=t/2t, [wheret,, which depends orp, is the

O<t<uato) classical arrival time: to=(X—Xg)m/po=3m#a/2pyAp]. The
1/Ap\2 Ap\3 circles superimposed in the cad@=0.01 a.u. correspond to the
A=A2(t—t0)2— 5( p_p) +O(p_p) , (45) theoretical prediction of Eq45).
0 0

with A, given in Eq.(40). Therefore, as a function of, the =~ MomMentump,=0.5 a.u., and place the detector X=X,
relative difference) is given by a parabola which reaches its + 34X, WhereAx=7/2Ap is the spatial spread ¢f/(0)).
minimum at the classical arrival timé,=(X—X)m/po. Figures 1a) and Xb) show the relative differenca, as a

From Eq.(45) it follows that A(t,) <0, and consequently ~ function of the time of arrival, for several valuesdp rang-
ing over two orders of magnitude. The detection interval has

((te)|[ I X) [ h(te)) <((tx)|I(X)|4(ty)), (46)  been chosen to be symmetric about the classical arrival time
tg, i.e.,te[0,24]. Moreover, for comparison purposes the
so that the probability of arriving &ty as predicted by the final instant of time has been normalized to unity in all cases
current J(X) is always greater than that predicted by the(i.e.,t—t,=t/2ty), so that, lies always in the middle of the
modulus of the currenﬁ(”(X). More generally, it can be detectiqn interval considered. It is worth rema'rlfing.that the
readily seen that for ani=0 within the symmetric interval probability current density turns out to be positive in all of

[to— MAX/po,to+MAX/py] aboutto, it holds that the cases studied. _ _ o
Besides the results obtained from a direct numerical inte-

(O] ID ))<= ()| IX) (1)), (47)  9ration of the corresponding formulas, FigblLalso shows
{ | | )= | | ) the behavior ofA as predicted by Eq45). (Only the theo-

where the equality is satisfied at the boundaries of the interretical values corresponding top=0.01 a.u. have been ex-

val [up to terms of order 4 p/po)?]. plicitly plotted [circles in Fig. 1b)] since for smalleAp the
agreement is even betteAs is apparent from this figure,

V. QUANTITATIVE ANALYSIS within the range of VaIIdIty of the theoretical prEdiCtia]h]at
is, for (Ap/pg)<<1 andte[0,0ty]) the agreement turns out
A. Free particle to be excellenfas it should bg In fact, for any momentum

We begin the analysis of the relative differendebe-  uncertaintyAp<0.01 a.u., the relative difference between
tween the probability distributiofr,(t)| 3 (X)| (1)) and ~ (37(X))(t) and(J(X))(t), considered as a function of
the probability current densityyy(t)|3(X)|y(t)) by con- behaves as a parabola. Wh.ICh cuts the horizontal axig at
sidering a free particle described B¢0 by the minimum  — 1/3 andt,=2/3, reaching its minimum value at the classi-
Gaussian wave packet defined in E2@) [which, as already cal time t,=1/2. Furthermore, VYhI|e within the interval
said, is nothing but a particular case of the state vector prd-1/3,2/3 the expectation value aJ(X) always dominates
viously introduced in Eqs(42)—(44)]. To be specific, we over the expectation value df*)(X), just the opposite oc-
shall restrict our investigation to an electron with averagecurs outside such an interval.
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[ T T T T T T T N T T T T T T T T ]
0.10 1‘6:: Pi=02au. (a)::
4 0.06 1 < 10 ;
0.02 § 04k E
-0.02 ' E— — _0'2'.|..|.|.|.|..|.|...|.|.'
0.006 — . :
oo N 0.0025 =
[ —— 300 (b) 4 i — Y000 (]
--------- JCO®
0.004 |- - I
0.0015
0.002 : [
0.0005
0000="A 1 o1 L1 L
0 200 400 600 800 N N A R B A R B A R A
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FIG. 2. (a) Relative differenceA as a function of the time of t(auw.)
arrival t. A(b) Expecta}ion valuegindistinguishable on the present FIG. 3. (a) Relative differenceA as a function of the time of
scalg of J**)(X) andJ(X) (in a.u) as a function ot. arrivalt. (b) Expectation values a*)(X) andJ(X) (in a.u) as a
function oft.
From Figs. 1a) and 1b), the rapid decrease df with the
momentum spread is also apparent, which is a direct conséetween 0.4 and 0.2 a.u., respectively. The detector’s posi-
guence of the fact that fakp/p, sufficiently small,A is of  tion has been chosen as befdraore precisely, we have
order (Ap/po)?. In this regard, note that fakp<0.01 a.u. takenX—x,=3%/2Ap) and the detection intervéhow ex-
the relative difference is already less than 0.2% over all opressed in atomic unitdas been chosen in such a way that
the detection interval considered, and that figure would bédts final timet; satisfies
even smaller if one focused attention on a time interval more
localized about the most probable time of arritglThis fact (p(t)| 3D 0| (1)Y= ((0)] I (X) | (0)).  (49)
would render any attempt to discriminate betwe(éﬁ*)
X (X))(t) and(J(X))(t) almost impossible in practice. Such  In Figs. 2b) and 3b) we have plotted the expectation
a negative conclusion should not be extrapolated, howevetglues of bothf]”)(x) and j(x) corresponding, respec-
A minimum Gaussian wave packet represents a very speciglely, to p;=0.4 a.u. and;=0.2 a.u. These curves can be
type of quantum state, for it exhibits the lowest possibleconsidered as being obtained by means of a continuous de-
uncertainty productixAp and consequently is expected to formation (induced by varyingp,) starting from the initial
be largely semiclassical in character. On the other hand, agaussian profile corresponding pg=p,=0.5 a.u. Since a
can be inferred from an asymptotic analy$k3], in the  marked interference pattern is a hallmark of quantum behav-
semiclassical limiti— 0 it holds that ior, it is evident that by decreasing we are probing do-
R R mains of the Hilbert space with increasing quantum charac-
(ORI = KOR)N D), 48 ter. As is apparent from these figures, while far=0.4 a.u.
the probability current density remains positive over all of
so that the small value found fdx in the cases considered the time interval considered, the same does not occur for

above is not surprising. p;=0.2 a.u., and in this cai@//(t)ﬁ(x)lz,/;(t)) attains nega-
A simple way for generating initial states having a moretive values in the neighborhood t¥ 40 a.u. and= 400 a.u.
genuine quantum character consists in allowpgdo be dif- The analysis of the corresponding relative differences,

ferent fromp, in Egs.(42)—(44). In fact, a marked interfer- plotted in Figs. 2a) and 3a), reveals that nowA exhibits a
ence pattern can be induced in the probability current densitgeries of maximdclearly related to the interference pattern
(as well as in the corresponding position probability density of the probability current densityhere it can take values of
by simply increasing the distan¢@® momentum spagebe-  order 10%in the first caspor 100%(in the second one[In
tween p; and p, while keeping unchanged the remaining fact, in this latter case the maxima which have been trun-
parameters. cated in the figure correspond, respectively Ag89.1 a.u)
Figures 2 and 3 show the results obtained by takihg =31.96 andA(398.05 a.)=1011.58] Therefore, the prob-
=2, p,=0.5 a.u,,Ap=0.01 a.u., and allowing, to vary  ability distributions of the time of arrival as predicted by
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(IEX))(t) or (J(X))(t) can be quite different in these the barrier can be more easily identified. Accordingly, we
cases. A comparison with the bound 0.2% obtained previshall consider an electron characterizet=a0 by the Gauss-
ously for p;=p,=0.5 a.u.[Fig. 1(b)] reflects the fact that ian state given in Eq(24), with po=0.5 a.u. The potential
the choice of the initial state plays an essential role in bottparrier is assumed to occupy the segnj@] of thex axis,
the magnitude and the behavior of the relative discrepancgnd its heightV, has been chosen in all cases so that
between(3)(X))(t) and(3(X))(t). =V2mVo=0.8 au. o _
An interesting limiting situation, where quantum effects QU Primary interest consists in investigating the behavior
dominate the behavior of the probability current density, carPf the relative differencé as a function of both the barrier's
be achieved by taking\p—0 and p,/p,;>g>1 in Eqs. Width d and the momentum spredcp. To this end we have
(42)—(44). In this particular case, the initial state becomes aS€lected the centroig, of the initial wave packets in such a
purely quantum state with no classical analog, consisting of/ay that(x|#(0)) does not overlap appreciallin compari-
the coherent superposition of two macroscopically distin-SOn With the transmittanc&) with the interaction center.
guishable states in momentum space. Under these circungPecifically,xo has been implicitly defined by
stances, the main contribution tas(t)|J(X)|#(t)) comes w
from the interference terms and one obtains, to leading order f dx|(x|#(0))[?=10"3T (52
asAp—0 [13], 0

. 227 and, consequently, is a function of bap andd. On the
(O] (1))~ mh Ba®Ap p; other hand, in order to guarantee the applicability of the for-
malism (which requires the particle to be asymptotically
X cog p%t/th— Po(X—Xg) /%] free), the detector has been assumed to be switched on at a
certain instant; satisfying the condition that the probability
+0((Ap)?). (500 of finding the particle within the interaction region is already

negligible. More precisely, we have defined implicitlyby

This case is illustrated in Figs(@ and 4b), where we have the condition

specifically taken3=100, p,=1 a.u.,p;=4x10 3 a.u.,
Ap=5x10"* a.u., andX—x,=3%/2Ap. Also plotted in d
Fig. 4(b) is the modulus of the probability current density, f dX|(X| ¢ (1))]?=10"3T. (53
[((t)]I(X) | (1)), which is the proposal by McKinnon and -
Leavens[8] for the probability distribution of the time of
arrival.

From a comparison between Figgajdand 4b) it can be
seen that the relative differende between(J(X))(t) and
(I (X)) (t) reaches a local maximum exactly when — T T

(3(X))(t) reaches a local minimum, and in this case 1,
so that

The detector has also been assumed to be located at a certain
position X behind the interaction center sufficiently far from
the barrier's edge so as to satisfy the condition that when it is

800 F @)

~QAo0)® K3
Qom0

Consequently, the main effect produced by the replacement
(3(X))(t)—|(I(X))(t)| upon the corresponding relative dif-
ference would consist in a change of sign. A similar conclu-  -1000b—1——1 1 —Ll —
sion could be inferred from Fig.(8 for those instants of
time where the probability current density becomes negative.
The important consequence is that, from a quantitative set-
ting, by replacing the probability current density by its
modulus one in general does not achieve a better agreemer
with the probability distribution/ 3(7)(X))(t).

4 500
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The presence of a potential barrier might, in principle, L Voo VoY vy ]
: " . ~ | —a“cw axyo - ldenl
induce some additional discrepancy betwééX))(t) and o4l T
(I(X))(t). In order to examine whether this is the case, 2000 2020 2040 2060 2080
we shall consider next a quantum particle propagating to- t (a.u.)

ward a detector located at a certain asymptotic pHirtte- R

hind a one-dimensional potential barrier. It turns out to be FIG. 4. (@) Relative differenceA between(J™)(X))(t) and
most convenient restricting to initial states as simple as pogJ(X))(t) as a function of the time of arrival (b) (3™ (X))(t),
sible since in these cases the effect produced specifically bya(X))(t), and|(3(X))(t)| (in 10~ a.u) as a function ot.
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FIG. 5. Relative differenc& as a function of thénormalized
time of arrivalt,=(t—t;)/(t;—t;), for Ap=0.01 a.u. and barrier
widthsd=2, 4, 8, and 12 a.u.

switched on(at t=t;) the probability of finding(in the ab-
sence of detectpithe transmitted particle within the region
x= X is still negligible. That isX has been obtained from the
condition

f:dXKXI Yu(t))P=10"°T. (59

TABLE |. Parameters corresponding &p=0.01 a.u. All val-
ues in atomic units.

d Xo t ts X

2 —201.8 785 1550 379.0

4 —228.0 839 1600 382.0

8 —275.4 933 1700 386.5
12 —316.6 1014 1800 391.0

density. The appearance of such an interference pattern can
in turn be traced back to the interference dynamically in-
duced between tunneling and over-the-barrier contributions
in the corresponding transmitted wave padka].

A similar behavior associated, however, with greater rela-
tive differences can be appreciated in Fig&) 7and 7b),
which show the results corresponding to a barrier width
=10 a.u. This particular case is interesting for still another
reason. As is shown in the inset of Figby, the probability
current density takes in this case negative values in the
neighborhood of the arrival time= 373 a.u.(though, admit-
tedly, very small onés This fact demonstrates that even for
initial Gaussian wave packets having no appreciable contri-
bution of negative-momentum components, the probability
current density can take negative values at an asymptotic
point X behind a one-dimensional potential barrier. This sole

Finally, it has been assumed that the detector is switched offason is sufficient to invalidatéeven under such special

at a certain instant; satisfying

(Pt 300 () )= (1) [ I (X) (1))
(55)

Combining Eqgs.(53) and (54) we see that at=t;, i.e.,

when the detector is switched on, the transmitted particle can
be found in the region between the barrier's edge and the  .006 [
detector’s position with a probability of 99.8%, a fact that i
guarantees the applicability of the formulation developed in

the preceding sections.

Figure 5 shows the relative differendeobtained by tak-
ing Ap=0.01 a.u. and allowing the barrier width to vary
betweend=2 a.u. andd=12 a.u. The corresponding values
for the parametersg, t;, t;, andX [obtained numerically
from Egs.(52)—(55)] are given in Table |I. For comparison
purposes, the time intervft; ,t;] has been renormalized to
the interval [0,1] by means of the mapping—t,=(t
—t;)/(t;—t;). As is apparent from Fig. 5, the potential bar-
rier seems to produce no special effectdnin fact, even
though the transmitted stat#,(t)) depends to a great extent
on the barrier widthd, the relative difference between the

corresponding expectation values 3{fX) and J(*)(X) ex-

hibits no appreciable dependence on this parameter. Further B 7

more, A remains very smalfof order 0.25%) in all cases.

circumstancesits interpretation as a probability distribution
of arrival times. Of course, there still exists the possibility of
considering instead the modulus of the probability current

0.012

0.000

0006——t— 1 1.

30 T 1 T T T T R T T
[ — (70w
— {00

20

10+ .
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Things are quite different, however, when the momentum 0 0.2 04 0.6 0.8 ' 1

spread increases. FAp=0.1 a.u.(Figs. 6 and 7 and Table

tn

II), the relative difference not only takes greater values, but
also exhibits a clear dependence on the barrier width. From FIG. 6. (a) Relative difference\ as a function of thénormal-

Fig. 6(a) we see that fod=8 a.u.,A manifests an oscillatory
behavior which[from a comparison with Fig. (®)] can be

ized) time of arrivalt,=(t—t;)/(t;—t;) , for Ap=0.1 a.u. andd
=2, 4, and 8 a.u(b) Expectation valuesindistinguishable on the

straightforwardly related to the emergence of an incipienpresent scajeof J(*)(X) andJ(X) (in 10~° a.u) as a function of
interference pattern in the corresponding probability current,,, for Ap=0.1 a.u. andi=8 a.u.



PRA 59 QUANTUM PROBABILITY DISTRIBUTION OF ARRIVAL . .. 1019

05— A B (both in the case of free evolution and in the presence of an
i d=10au. @) intermediate potential barrier _ N

We have found that quantum regime conditions produce
the biggest differences between the formulations which are
j otherwise near indistinguishable. In fact, in the semiclassical
regime, for electrons in quantum states with a well-defined
momentumpy>Ap (thus having a clear classical analpg
the relative discrepancy can be typically of order 0.2%, and
this figure would be even smaller if one restricted attention
L _ to arrival times having an appreciable probability. Therefore,
-0.1 T - - - in this regime the probability distribution proposed in Refs.
[12,13 becomes indistinguishable in practice from the cor-

0.3

T PR ] responding probability current density. Important discrepan-
L — Q”’(X);(t) (b) ] cies only occur in the purely quantum regime, for states of
10k —— JX))® ] genuinely quantum character, having no classical analog. In-
] deed, the appearance of important relative differences can be
i ] straightforwardly related to the existence or emergence of a
61 7] marked interference pattern in the probability current density
= . (or alternatively in the position probability densityrrespec-
o[ ] tive of the fact that such quantum interference was already
- 1 present in the initial state or was generated dynamically
I i through the temporal evolution of the systéas can be the
2=t —L— —t case in the presence of a scattering potentrlrthermore, a
250 350 450 550 closer analysis reveals that such quantum effects are mainly

t (a.u.) localized about arrival times having a negligible probability
) _ ) ) and/or occur over short time scales in comparison with the
FIG. 7. (8 Relative differenced as a function of the time of (ojayant time interval. These results indicate that in order to
arrival t, for Ap=0.1 a.u. andi=10 a.u.(b) Expectation values  giseriminate conclusively among the different alternatives,
(indistinguishable on the present soatf J)(X) and J(X) (in  the corresponding experimental test should be performed in
10° a.u) as a function ot, for Ap=0.1 a.u. andi=10 a.u. the quantum regime and with sufficiently high resolution as
. ) ) to resolve small quantum effects. Hopefully, the recent ad-
density. Were we to plot the relative difference between gnces in the development of experimental techniques as
(I(X))(1) and [(I(X))(t)|, the only relevant change in well as in the preparation and manipulation of atomic sys-
Fig. 7(a) would be the transformation of the first maximum tems will make such experiments feasible.
A(t=373.3 a.u=3.92 into a minimum (3.92--1.92.
Cpnsequently, a considerable discrepancy would still sur- ACKNOWLEDGMENTS
vive.
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In the present work we have compared the proposal madgra.
in previous paper§l2,13 for a quantum probability distri-
bution of the time of arrival at a certain point with that based APPENDIX A
on the probability current densitfor alternatively on its
modulug, with the aim of establishing conditions under | et us introduce the statlp—)={_|p), which is the

which the proposals might be tested by experiment. To thigo|ytion of the Lippmann-Schwinger equation corresponding
end, we began by obtaininginder certain particular condi- to an outgoing plane wave), i.e.,

tions) an analytical approximation for the expectation value

of J(M)(X) valid up to order Ap/py)?, and we have per- Ip—)=|p)+(pZ2m—i0—H)"WV(X)|p). (A1)
formed a quantitative analysis of the corresponding relative

differences as a function of the initial state of the particle|n terms of these states one can define the projector

TABLE Il. Parameters correspondingAp=0.1 a.u. All values A A Ay ks
in atomic units. P=Q_6(P)Q_= Jo dplp—)p—|, (A2)
d Xo ti tf X ) ) )
which selects that part of a given state vector that will be
2 —20.15 145.7 530.0 1129 fipally transmitted. Taking into account thét} ). =1 and
4 —22.48 137.0 470.0 108.5 &—AtA .
8 o584 1411 A 1173 S=0.Q., it follows from Eq.(A2) that
10 —28.30 254.0 573.0 2294

AP0, =0(P)S. (A3)
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[Bzyg]l’J5|ng the intertwining relations for the Mer operators | (1)) = e~ Hotl? ®(I5)AS|¢//m>=ﬁi75|z,b(t)>, (A6)

QOLHO.=H,, (A4)  where we have used thzmt‘”q”ﬁQ+|¢m)=e‘“q”"|¢(0)>
=|¢(t)). In particular, fort=0, Eq.(A6) reduces to
as well as Eq(A3), it can be readily shown that
e-Folh @(P)5= ()T PeAUi () | (A5) ) =0T Ply(0)). (A7)

Taking advantage of this relationship and recalling thatsupstitution of Eq(A6) [or alternatively Eq(A7)] into Eg.
| ey =O(P)S| i), We can write (15) leads to Eq(20).
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