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Measurable characteristics of a nonrelativistic quantum particle

D. Sokolovski
Theoretical and Computational Physics Research Division, Department of Applied Mathematics and Theoretical Physics,

Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom
~Received 17 August 1998!

We analyze the connection between the path integral and operator approaches to the quantum measurement
problem. In general, an act of measurement is shown to destroy interference between components of the wave
function related to the particle’s histories. Classically, there exist a class of meters suitable for measuring the
value of a given dynamical variableF. Quantally, different meters produce different results. The standard von
Neumann measurement is one particular case. Rearranging Feynman paths according to the value of~time
average of! F defines a different type of meter. The two methods disagree if the duration of the measurement
is very short. Possible ways to measure the particle’s momentum are studied in detail. The semiclassical limit
of a measurement is analyzed.@S1050-2947~99!02102-2#

PACS number~s!: 03.65.Bz, 73.40.Gk
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I. INTRODUCTION

Feynman wrote that ‘‘any other situation in quantum m
chanics, it turns out, can always be explained by say
‘You remember the case of the experiment with the t
holes? It’s the same thing’ ’’@1#. In Feynman’s quantum
mechanics@2#, quantum histories~Feynman paths for a
single structureless particle! interfere to produce the wav
function C(x,t) at locationx at time t. In the presence o
such interference, nothing is known about the particle’s h
tory except that its position isx at the timet. One learns
about the particle’s past by making different histories dist
guishable, for example, by setting up a meter which dis
guishes between the paths going through different hole
the double-slit experiment. The price of such information
that the interference pattern on the screen is destroyed
more generally that the probability to find the particle inx at
t is no longer equal touC(x,t)u2. In this approach an act o
measurement is, therefore, the destruction of interference
tween particle’s histories.

At first glance, the problem of determining the value o
function F(p,x) of the particle’s momentump and coordi-
nate x, appears different. Measurement ofF(p,x) requires
constructing a Hermitian operatorF̂(p,x) and expanding the
wavefunctionC(x,t) in the eigenstates ofF̂(p,x) @3#,

F̂~p,x!f i~x!5Fif i~x!,

i.e.,

C~x,t !5(
i

cif i~x!. ~1.1!

The probability thatF(p,x) has the valueFi is then given by
uci u2. As shown by von Neumann, the probability distrib
tion uci u2 can be measured, at least in principle, by coupl
the particle to an external degree of freedom@4#.

This straightforward recipe fails, however, if the me
sured quantity is defined over a certain duration rather t
at a single instant in time. One such example is the amo
PRA 591050-2947/99/59~2!/1003~7!/$15.00
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of time a quantum particle spends in a given region of sp
@5#. However, even the simple case of the linear momentu
F(p,x)5p[mẋ, needs clarification. Classically, determin
tion of the particle’s velocityẋ requires evaluating its posi
tion not once, but attwo, however close, moments of time
Unlike the classical trajectories, quantum~Feynman! paths
are highly irregular@2#. One might think, therefore, that de
fining a quantum particle’s momentum at any given time
difficult or impossible. However, according to Eq.~1.1!, the
corresponding probability distribution is readily given
terms of the plane-wave expansion of the wavefunct
C(x,t) at onegiven time@3,4#.

The main purpose of this paper is to establish a gen
relation between the Feynman path integral and operator
proaches to the quantum measurement problem. In par
lar, we shall demonstrate that a measurement of a dynam
quantity F(p,x) can be understood as distinguishing b
tween interfering alternatives related to the particle’s his
ries. Previous work on the connection between histories
quantum observables was done by Aharonov and co-wor
@6–9#, Griffiths @10#, Gell-Mann and Hartle@11#, and Ya-
mada and co-workers@12,13#. The relation between re
stricted path integrals and operators was studied in Ref.@14#.
The rest of the paper is organized as follows. In Sec. II
introduce a class of equivalent meters for a classical dyna
cal variableF(p,x). In Sec. III, we show that quantally th
action of a meter can be described as additional weightin
Feynman paths in the particle’s path integral. We also de
onstrate that meters that give the same result in the clas
limit may differ in the full quantum case. In Sec. IV, we us
the value ofF(p,x), f, as an independent variable, and o
tain the von Neumann approach as a particular case. In
V, we analyze the case of the particle’s momentum. In S
VI, we return the~semi!classical limit of a quantum measure
ment and study the occurrence of complex valued quant
for classically forbidden transitions. Section VII contains o
conclusions.

II. CLASSICAL MEASUREMENTS AND METERS

Consider the value of a classical dynamical varia
F(p,x) at a given timet. Further we shall want to extend th
1003 ©1999 The American Physical Society
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1004 PRA 59D. SOKOLOVSKI
analysis to the quantum case where Feynman paths
known to be highly irregular@2#, so we start by averaging
F(p,x) over a time interval@ t,t1T#,

^F&T5T21E
t2T

t

F~p,x!dt. ~2.1!

The instantaneous valueF„p(t),x(t)… ~if it exists! can then
be obtained from Eq.~2.1! by taking the limitT→0. There-
fore, we need to measure^F&T along aclassical trajectoryof
a particle described by a HamiltonianH0(p,x). This can be
done by coupling the particle to a classical ‘‘meter’’ who
coordinate and momentum we denotef and l, respectively.
We shall switch the meter on att2T and then read it at the
time t. Provided the HamiltonianH(p,x,l) describing both
the particle and the meter does not depend onf, the equations
of motion are (]x[]/]x)

ẋ5]pH~p,x,l!, ~2.2a!

ṗ52]xH~p,x,l!, ~2.2b!

ḟ 5]lH~p,x,l!, ~2.2c!

l̇50, ~2.2d!

so that the momentuml is conserved,l5const. We take
f (t2T)50 and then run the meter untilt5t. To ensure that
the meter does not perturb the particle’s motion, we cho

l50, ~2.3!

H~p,x,0!5H0~p,x!. ~2.4!

Also, the meter must measure the time average ofF(p,x), so
we define

]H~p,x,l!

]l
5T21F~p,x!. ~2.5!

With these assumptions Eqs.~2.2! become

ẋ5]pH0~p,x!, ~2.6a!

ṗ52]xH0~p,x!, ~2.6b!

f ~ t !5T21E
t2T

t

F~p,x!dt, ~2.6c!

where p(t) and x(t) are evaluated along the unperturb
particle’s trajectory as determined by the Hamiltoni
H0(p,x). We can, therefore, use the meter’s positionf as a
pointer to read the valuêF&T directly, for example, from a
suitably calibrated scale. We note next that Eqs.~2.4! and
~2.5! do not define the meter uniquely. Indeed, expand
H(p,x,l) in powers ofl,

H~p,x,l!5H0~p,x!1T21F~p,x!l1 (
n52

`

H ~n!~p,x,0!ln,

~2.7!
re

e

g

we note that because the termsH (n), n.1, in the sum vanish
for l50, they do not affect the work of the meter and can
chosen arbitrarily. In other words, all meters described
Eq. ~2.7! are equivalent in the classical limit. Finally, th
instantaneous value ofF(p,x) can be measured by choosin
T→0,

limT→0^F&T5F~p,x!u t . ~2.8!

In this limit the meter strongly interacts with the partic
over a short period of time.

III. QUANTUM MEASUREMENTS AND METERS

Next we consider the case when both the particle a
meter are to be described quantum mechanically. As in
classical case, we shall use the position of the meterf to
obtain information about̂ F&T . From our brief classical
analysis we may conclude, first, that a quantum measurem
will perturb the particle’s motion. Indeed, for an accura
measurement we need the meter’s position to be well
fined. On the other hand, because of the uncertainty rela
D f Dl.\, we can no longer make the momentum of t
meterl zero as required by Eq.~2.3!. Second, meters which
give the same result in the classical limit will not necessa
be equivalent in the quantum case. It is readily seen that
lÞ0, different Hamiltonians in Eq.~2.7! would affect parti-
cle’s motion differently.

To obtain the transition amplitudeg(x,x8,t,t2Tu f ) be-
tween the initial positionsx8 and f 850 at t2T andx andf at
t, we construct the classical LagrangianL( ẋ,x, ḟ ) corre-
sponding to a HamiltonianH(p,x,l) in Eq. ~2.7!:

L~ ẋ,x, ḟ ![l ḟ 1Ll~ ẋ,x!5l ḟ 1pẋ2H~p,x,l!. ~3.1!

For simplicity we shall considerV(x) to be time indepen-
dent, so thatg(x,x8,t,t2Tu f )5g(x,x8,Tu f ). Integrating
exp$i*t2T

t L(ẋ,x,ḟ)dt/\% over all particle paths, we obtain

g~x,x8,Tu f !5E Dx~• !A@x~• !, f #exp$ iS0@x~• !#/\%,

~3.2!

A@x~• !, f #[
1

2p\ E
2`

`

dl exp~ il f /\!exp$ i @Sl2S0#/\%,

~3.3!

where

Sl[E
t2T

t

Ll~ ẋ,x!dt ~3.4!

and S0 is the original particle’s action,S0[Sl50 . Further,
integrating Eq.~3.2! over all f’s restores the original parti
cle’s propagatorg(x,x8,T),

E
2`

`

g~x,x8,Tu f !d f5E Dx~• !exp$ iS0@x~• !#/\%

[g~x,x8,T!. ~3.5!
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PRA 59 1005MEASURABLE CHARACTERISTICS OF A QUANTUM PARTICLE
Equations~3.2!–~3.5! are the main result of the paper. As f
as the particle is concerned, a particular choice ofF(p,x)
andH(p,x,l) leads@cf. Eq. ~3.2!#, quantally, to the partition
of the original particle’s propagatorg(x,x8,T) into subam-
plitudesg(x,x8,Tu f ), each labeled by the variablef. Each
subamplitude is related to the particle’s history betweent and
t2T, and contains contributions from one or several Fe
man paths. From Eq.~3.4! we note that different values off
are, in the language of Ref.@2#, interfering alternatives, simi
lar to the two holes in the double-slit experiment. As in t
two-slit case, to determine the value off accurately we re-
quire a meter, and have no information aboutf unless a meter
has been introduced.

IV. QUANTUM PARTICLE IN x AND f DIMENSIONS.
VON NEUMANN METER AND THE EIGENFUNCTION

EXPANSION

It is now easy to construct a theory in which bothx and f
play the role of independent variable, and the particle is
scribed by a wavefunctionC(x,tu f ) giving the amplitude to
be restricted atx and to havêF&T5 f . Since differentf’s are
interfering alternatives, a measurement to accuracyD re-
quires convolutingg(x,x8,Tu f 8) with a ~square-integrable!
apparatus functionG( f 2 f 8) such that it vanishes rapidl
outside a vicinityD aroundf 5 f 8 @14#. If at t2T the particle
is described by the wave functionC I(x), integration over
initial positions gives

C~x,tu f !5E dx8E d f8G~ f 2 f 8!g~x,x8,Tu f 8!C I~x!.

~4.1!

It is easy to see thatC(x,tu f ) satisfies a Schro¨dinger-like
equation

i\
]C~x,tu f !

]t
5ĤS 2 i\

]

]x
,x,2 i\

]

] f DC~x,tu f !,

~4.2!

whereĤ is the operator obtained by replacing inH(p,x,l)
given by Eq.~2.7! p→2 i\]/]x andl→2 i\]/] f , and

C~x,t2Tu f !5G~ f !C I~x!. ~4.3!

Now

r~x, f ,t ![uC~x,tu f !u2 ~4.4!

yields the joint probability for finding the particle inx and
knowing the value off to accuracyD. We note that since the
operatorĤ on the right-hand side of Eq.~4.2! is Hermitian,
the total probability is conserved,

N~ t ![E uC~x,tu f !u2dx d f5const. ~4.5!

Also, for anyG( f ), we have

C~x,t !5E
2`

`

C~x,tu f !d f , ~4.6!
-

-

whereC(x,t) is the conventional Schro¨dinger wave function
which satisfies the initial conditionC(x,t2T)5CC I(x),
C[*2`

` G( f 2 f 8)d f85const. Equation~4.6! follows di-
rectly from Eqs.~4.1! and ~3.5!.

Recalling again that Eq.~4.2! describes the interaction o
the particle with a meter, we see that the meter acts to
stroy interference between subamplitudesC(x,tu f ) corre-
sponding to different values off. The meter is switched on a
t2T when the particle is in the stateC I(x), and operates
until the reading~i.e., the pointer position! is taken at the
time t. The accuracy of the measurement is determined
initial uncertainty in the pointer positionf, which is con-
tained in the initial state of the meter,G( f ) in Eq. ~4.3!.
Finally, we note that the von Neumann vN meter@4# is a
particular case of Eq.~4.2! obtained when only linear term
are retained in Eq.~2.7!,

i\
]CvN~x,tu f !

]t
5H Ĥ02

i\]

T] f
F̂J CvN~x,tu f !, ~4.7!

where, again,Ĥ0 and F̂ are the operators obtained from th
classical quantities by replacingp→2 i\]/]x. In the short-
time limit T→0 the second term on the right-hand side
Eq. ~4.6! dominates, and we obtain the quantum analog
Eq. ~2.8! @4#,

CvN~x,tu f !5(
i

cif i~x!G~ f 2Fi !, ~4.8!

whereci andFi are given by Eqs.~1.1!.

V. QUANTUM MOMENTUM. FEYNMAN VERSUS VON
NEUMANN APPROACH

Next consider the particle’s momentum,

F~p,x!5p[mẋ. ~5.1!

Classically, we have a choice of equivalent meters descri
by different Hamiltonians in Eqs.~2.7!. Now we want to
decide which one should be used quantally. We can do
either by choosing a particular form of the Hamiltonian
Eq. ~2.7! or, equivalently, by specifying the functiona
A@x(•), f # in Eq. ~3.3!. In the spirit of Feynman’s approac
@2,14#, we shall define the amplitudeCF(x,tup) for the par-
ticle in x to have time average of the momentump as thenet
Feynman amplitudeexp$iS0 /\% on those paths, ending in x

for which ^mxG &T5p. Then, from Eqs.~3.1!, ~3.2!, and~4.2!,
we have

AF@x~• !,p#5d~p2^mẋ&T!, ~5.2!

Sl5S02l
m

T E
0

T

ẋdt, ~5.3!

and

i\
]CF~x,tup!

]t
5H 2

\2

2m S ]

]x
2

m

T

]

]pD 2

1V~x!J CF~x,tup!, ~5.4!
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1006 PRA 59D. SOKOLOVSKI
so that the HamiltonianĤ is quadratic in the meter’s mo
mentum. Equation~5.4!, therefore, is different from Eq.~4.7!
describing a standard von Neumann meter,

i\
]CvN~x,tup!

]t
5H 2

\2]2

2m]x2
1V~x!

2
\2

T

]]

]p]xJ CvN~x,tup!. ~5.5!

It is easy to see why the two approaches disagree. In gen
rearranging a particle’s paths according to the value of^F&T ,
as in Eq.~5.2!, gives the same result as the von Neuma
approach forC(x,Tu f ) only when the Legendre transform
connecting the actionSl @or, more precisely, the Lagrangia
Ll( ẋ,x) in Eq. ~3.1!# with the HamiltonianH(p,x,l),

H~p,x,l!5pẋ2mẋ2/21V~x!1
l

T
F, ~5.6!

is linear in l @14#. This is the case only ifF(p,x)[F(x)
does not depend onp, e.g., for the particle’s position or th
traversal time@4,14#. The simplest counterexample is the k
netic energyF5mẋ2/2, where the last term in Eq.~5.6!
renormalizes the particle’s mass so thatH(p,x,l) becomes
p2/„@12(l/T)#m…1V(x). The particle’s momentum is an
other such example. To compare both approaches in m
detail we study momentum distributions for a free parti
V(x)[0,

CF~x,Tup!5m21TE dp8G~p2p8!g0~p8T/m,T!

3C I~x2p8T/m!. ~5.7!

and

CvN~x,Tup!5E dp8G~p2k!exp~2 ik2T/2m\!

3CI~k!exp~ ikx/\!, ~5.8!

whereg0(x,T)5(2p i\T/m)21/2 exp(imx2/2T\) is the free-
particle propagator, andCI(k) are the coefficients in the
plane wave expansion of the initial particle’s stateC I(x),

CI~k![~2p\!21E exp~2 ikx/\!C I~x!dx. ~5.9!

In addition, we have the relation

CvN~x,Tup!5~ iT/2p\m!1/2

3E exp@2 i ~p2p8!2T/2m\#

3CF~x,Tup8!dp8. ~5.10!

We see from Eq.~5.7! that to contribute toCF(x,Tup) at t,
the particle must have been approximately~if D is small! at
x2pT/m at t2T, since obviously, for any pathx(t),

^mẋ&T5m@x(T)2x(0)#/T. The von Neumann meter, how
ever, probes the coefficientsCI(p) in the plane-wave expan
al,

n

re

sion of the initial stateC I(x) rather than the particle’s posi
tion at the timet2T. Since forT→` the first term in Eq.
~6.9! tends tod(p2p8), both meters give identical reading
if they operate sufficiently long,CvN(x,Tup)'CF(x,Tup).
Results of very fast measurements are, conversely, cons
ably different. As T→0, for finite p, the Feynman wave
function is nearly independent ofp, CF(x,Tup)
'm21TC I(x). This is what one should expect: Feynma
paths are very irregular on a small time scale and, if the v
recent past is considered, the particle is seen as arrivingx
equally with all possible velocities. For a von Neuma
meter, in the same limit, the simple relation between
particle’s momentum and its past position is lost. Indeed
T→0, the width of the first Gaussian in Eq.~5.10! tends to
infinity and CvN(x,tup) contains contributions from thos
paths whose positionx(t50) can be far fromx(T), so that
the particle’s velocity'@x(T)2x(0)#/T is very large. Thus,
for a very accurate~D is small! von Neumann meter, we hav
CvN(x,Tup)'CI(p)*dp8G(p2p8)exp(ip8x/\). Hence for
x!\/D, CvN(x,Tup)'CI(p)exp(ipx/\), whereas for x
@\/D it vanishes. Note that sinceD is small, the coordinate
width of CvN(x,Tup), \/D, may exceed the width of the
initial wave packetC I(x). This is a consequence of th
Heisenberg uncertainty principle stating that an accurate
Neumann measurement of the particle’s momentum dest
information about its position. Finally, from Eq.~5.9! we see
that for an initial wave packetCI(k), with mean values ofk,

k̄, and (k2 k̄)2[s2, the Feynman and von Neumann a
proaches agree if

T@m\/@max~ up1Du,uk̄1su!#2. ~5.11!

Thus for a typical wavepacket withE'1 eV, s, k̄, andD
!s, both meters would give the same result if the durat
of measurementT@\/E'10215 s. Momentum distributions
for a particle described by an~unnormalized! Gaussian wave
packet

C I~x!5exp~ i k̄x!exp~2x2/d2!, ~5.12!

measured by Gaussian,

G~p2p8!5~D2p/2!21/4 exp@2~p2p8!2/D2#,
~5.13!

Feynman~dashed line!, and von Neumann~solid line! meters
are shown in Fig. 1.

VI. CLASSICAL LIMIT. CLASSICALLY FORBIDDEN
EVENTS

Finally, we shall analyze the semiclassical limit of E
~4.2!. The case of the time spent in the barrier was analy
in Refs.@14# and@15#. To present a more general argumen
is convenient to rewrite Eq.~4.1! introducing a particular
solutionF(x,Tu f ) of Eq. ~4.2!,

F~x,tu f !5E dx8g~x,x8,tu f !C I~x8!,

~6.1!
F~x,0u f !5d~ f !C I~x!.
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Clearly, F(x,Tu f ) yields the amplitude distribution for th
quantity f when measured to an infinite accuracy and
therefore, unnormalizable,* uF(x,tu f )u2 dx d f5`. For a
~normalizable! finite accuracy wave functionC(x,tu f ) in
Eq. ~4.2!, we have@12#

C~x,tu f !5E
2`

`

d f8G~ f 2 f 8!F~x,tu f 8!. ~6.2!

Quantally, f is a distributed quantity. It is instructive t
see first how a well-defined value forf is recovered in the
~semi!classical limit in the classically allowed region. As\
→0, F(x,tu f ) in Eq. ~6.2! becomes highly oscillatory ev
erywhere except in the vicinityd f of one~or possible more!
critical point where its phase is stationary. The width of t
stationary regiond f is typically proportional to\1/2. We can
then measuref with a meter, such that

D@d f . ~6.3!

Assuming that there is only one critical pointf 0 , and evalu-
ating the integral in Eq.~6.2! by the stationary phase, for th
probability r(x, f ) to find the valuef, we obtain

r~x, f !5uC~x,tu f !u2'uG~ f 2 f 0!u2, ~6.4!

which is the classical result. Note that a chance to obta
value significantly different from the classicalf 0 is negli-
gible because rapid oscillations ofF(x,tu f 8) over the range
of integrationD make the integral in Eq.~6.2! extremely
small.

FIG. 1. Contour plots of the probability densitiesuCF(x,Tup)u2

~dashed! anduCvN(x,Tup)u2 ~solid! for a free Gaussian wave pack

in Eq. ~5.11! vs dimensionlessp̃[p/ k̄ and x̃[ k̄x/\, and for T̃

[Tk̄2/2m\50.01 ~a!, 2 ~b!, and 10~c!. The accuracy of the mea

surementD̃[D/ k̄50.5, and the coordinate width of the wav

packet d̃[ k̄d/\55. As in Sec. V,k̄ is the centroid of the wave
packet in reciprocal space.
,

a

In the classically forbidden regionF(x,tu f ) has no criti-
cal points on the realf axis. Rather, it may have saddle poin
in the complexf plane, so that in the limit\→0 the conven-
tional Schro¨dinger wave functionC(x,t) @cf. Eq. ~4.6!#,

C~x,t !5E
2`

`

F~x,tu f !d f , ~6.5!

is exponentially small. In the absence of a well-defined r
stationary region, a meter will produce readings distribu
over a wide range of values. The shape of the distribut
will depend on the properties of the meter, namely, its ap
ratus functionG( f ). In this sense, in the classically forbid
den region we cannot assign a unique value tof even in the
limit \→0 @16#.

The simplest system demonstrating both classically
lowed and classically forbidden behaviors is a quantum p
ticle of massm and chargee in a constant electric field«,

V~x!52e«x[2Fx. ~6.6!

We shall choose the particle to have zero energy,E50, so
that the regionx.0 is classically allowed, whilex,0 is
classically forbidden. The initial state of the particle is, the
fore, the Airy function@17# shown in Fig. 2~a!,

FIG. 2. ~a! Wave functionC I(x)5Ai( 2x/x0) of a particle with
zero energy,E50, in a linear potentialV(x)52eex vs dimension-

lessx̃[x/x0 . The vertical dashed line separates the classically
bidden regionx,0 from the classically allowed regionx.0. ~b!
Contour plot of the probability densityuCvN(x,T→0up)u2 vs di-

mensionlessx̃[x/x0 . and p̃[px0 /\ for an inacurate,D̃[Dx0 /\

510, Gaussian meter.~c! Same as~b!, but for D̃51. Also shown by
the dashed line are positions of the critical pointsp1;2 in Eq. ~6.9!.

~d! Same as ~b!, but for D̃50.05 As in Sec. VI, x0[x0

[(2mee/\2)21/3
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1008 PRA 59D. SOKOLOVSKI
C I~x!5Ai ~2x/x0!,
~6.7!

x0[~2me«/\2!21/3.

For simplicity we shall consider a very fast, (T→0) mea-
surement of the particle’s momentum by a von Neuma
meter@Eq. ~4.8!#. From Eqs.~1.1! and ~4.8!, we have

lim
T→0

FvN~x,Tup!5x0~4p\2!21/2

3exp@2 ip3x0
3/~3\3!1 ipx/\#. ~6.8!

The phase of the exponential in Eq.~6.8! has two critical
pointsp1;2:

p1;256\x1/2x0
23/2. ~6.9!

For x.0, the classical valuesp1;2 are real, corresponding t
the particle moving in the left and right directions, respe
tively. The width of the stationary regiondp increases as the
particle approaches the turning pointx50,

dp'p1/2\x21/4x0
23/45p1/2\1/2x21/4~2me«!3/4.

~6.10!

At the turning pointx50, the critical points of the Airy
integral ~6.9! coalesce, and then, asx becomes negative
move into the complex plane. The results of measuring
particle’s momentum to accuracyD by a von Neumann
meter with a Gaussian apparatus function~5.13! are shown
in Fig. 2. For a very inaccurate meter@Fig. 2~b!# D is large
and, for finitep, G(p2p8) does not restrict integration in
Eq. ~4.1!. As a result,r(x,p,T→0) in Eq. ~4.4! is nearly
independent ofp, r(x,p,T→0)'uC I(x)u2. In the classically
forbidden regionr(x,p,T→0) is exponentially small, while
in the classically allowed region it repeat oscillations of t
Airy function. Clearly, such a meter does not distingui
between different momenta, and this limit corresponds
Aharonov’s weak measurement regime@8#. We shall not dis-
cuss the weak measurement limit any further. As the ac
racy of the measurement improves,D'dp @Fig. 2~c!# in the
classically allowed region the meter begins to resolve
two stationary regions corresponding to the classical va
of the momentum in Eq.~6.9!. At the turning pointx50
where the two classical values coalesce, the meter’s read
are centered aroundp50. Further into the classically forbid
den region of negativex there is no preferred real value ofp,
and the readings remain to be distributed around the ori
A further increase in the accuracy of the measurementD
!dp, again destroys the classical picture as the appar
function begins to vary rapidly across the stationary regi
Equivalently, the perturbation produced by an accurate m
is greater than the effect of the original potentialV(x). For
n
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e
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u-

e
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er

this reason, there is little difference between formerly clas
cally allowed and classically forbidden regions@Fig. 2~d!#.

VII. CONCLUSIONS

In general, a quantum act of measurement, complet
time t, can be understood as the destruction of interfere
between different components~subamplitudes! C(x,tu f ) of
the particle’s wave functionC(x,t), related to the particle’s
history for t8,t. A particular choice of the variablef pro-
vides different decompositions ofC(x,t), where the value
of the measured variablef plays the role of a continuou
index labeling subamplitudes. Typically, a measuremen
characterized by a durationT, showing how far into the pas
the particle’s behavior is probed, and an accuracyD which
specifies the degree to which the interference between di
ent C(x,tu f ) is destroyed.

A particular variable f is measurable in practice~or,
rather, at thegedankenexperimentlevel! if the single-particle
generalized Schro¨dinger equation~4.2! for C(x,tu f ) can be
interpreted as a Schro¨dinger equation representing both th
particle plus a meter. Since a meter acts as a ‘‘slit’’ in thf
coordinate, i.e., it filters in subamplitudesC(x,tu f ) in the
vicinity D of the measured valuef 0 and discards the rest, i
would, in general, perturb the particle’s motion. Converse
the perturbation produced by a meter is the one necessa
project C(x,tu f ) onto the apparatus functionG( f ). The
time average of a dynamical variable in Eq.~2.1! can always
be measured, but more esoteric quantities, such as the q
tum first passage time@18,19#, may not necessarily be mea
surable.

Importantly, there is no unique recipe for constructi
quantum subamplitudesC(x,tu f ) for a given classical dy-
namical variableF. Measurements, equivalent in the clas
cal limit, may differ in the quantum case, and correspo
therefore, to different decompositions ofC(x,t). In general,
a measurement does not necessarily correspond to a
rangement of Feynman’s paths into classes according to
value of a particular classical functional. We have analyz
two possibilities. A special choice of the Hamiltonian in E
~2.2!, linear in the meter’s momentum, yields, quantully, t
wave functionCvN(x,Tu f ), which is consistent with the von
Neumann procedure and, in the limitT→0, with the eigen-
function expansion~1.1!. DefiningC(x,tu f ) as the net am-
plitude on those Feynman paths for which^F&T in Eq. ~1.1!
has exactly the valuef yields the Feynman wave functio
CF(x,Tu f ) which is, in general, different from
CvN(x,Tu f ).

One of the simple examples is the particle’s momentump.
Classically,p is the variable canonically conjugate to par
cle’s positionx. It is also related to the rate of change ofx,
p5mẋ. Quantally, defining in the usual way the momentu
to be conjugate tox leads to the operator2 i\(]/]x) and von
Neumann subamplitudesCvN(x,Tup) in Eq. ~5.5!. In this
way one loses, however, the simple classical relation
tween p and the particle’s position in the past, a
CvN(x,Tup) contains contributions from Feynman pat
with a wide range of velocities. Rearranging Feynman pa
according to the valuêmẋ&T yieldsCF(x,Tup) in Eq. ~5.4!,
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which considerably differs fromCvN(x,Tup) in the short-
time limit. As far as measurements are concerned, both w
functions are equally meaningful. We can, in principle, co
struct an apparatus which would measure either the prob
ity densityuCvN(x,tup)u2 or uCF(x,tup)u2. A choice between
the two requires additional assumptions, such as postula
-

D

tt.

e

ve
-
il-

ng

Eq. ~1.1!. In this sense, there is no unique definition of t
quantum particle’s momentum.
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