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Measurable characteristics of a nonrelativistic quantum particle
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We analyze the connection between the path integral and operator approaches to the quantum measurement
problem. In general, an act of measurement is shown to destroy interference between components of the wave
function related to the particle’s histories. Classically, there exist a class of meters suitable for measuring the
value of a given dynamical variablg. Quantally, different meters produce different results. The standard von
Neumann measurement is one particular case. Rearranging Feynman paths according to the(tialee of
average of F defines a different type of meter. The two methods disagree if the duration of the measurement
is very short. Possible ways to measure the particle’s momentum are studied in detail. The semiclassical limit
of a measurement is analyz¢&1050-2947®9)02102-3

PACS numbds): 03.65.Bz, 73.40.Gk

[. INTRODUCTION of time a quantum patrticle spends in a given region of space
[5]. However, even the simple case of the linear momentum,

Feynman wrote that “any other situation in quantum me-F(p,x)=p=mx, needs clarification. Classically, determina-

chanics, it turns out, can always be explained by sayingon of the particle’s velocity requires evaluating its posi-
‘You remember the case of the experiment with the twotion not once, but atwo, however close, moments of time.
holes? It's the same thing' '[1]. In Feynman’s quantum Unlike the classical trajectories, quantuieynman paths
mechanics[2], quantum historiesFeynman paths for a are highly irregulaf2]. One might think, therefore, that de-
single structureless partiglénterfere to produce the wave fining a quantum particle’s momentum at any given time is
function ¥ (x,t) at locationx at timet. In the presence of difficult or impossible. However, according to Ed..1), the
such interference, nothing is known about the particle’s hiscorresponding probability distribution is readily given in
tory except that its position i at the timet. One learns terms of the plane-wave expansion of the wavefunction
about the particle’s past by making different histories distin-¥(x,t) atonegiven time[3,4].

guishable, for example, by setting up a meter which distin- The main purpose of this paper is to establish a general
guishes between the paths going through different holes ifelation between the Feynman path integral and operator ap-
the double-slit experiment. The price of such information isProaches to the quantum measurement problem. In particu-
that the interference pattern on the screen is destroyed, d@"» We shall demonstrate that a measurement of a dynamical
more generally that the probability to find the particleiat ~ duantity 7(p,x) can be understood as distinguishing be-
tis no longer equal t§¥(x,t)|2. In this approach an act of tween interfering alternatives related to the particle’s histo-

measurement is, therefore, the destruction of interference b&€S: Previous work on the connection between histories and
tween particle’s histories guantum observables was done by Aharonov and co-workers

At first glance, the problem of determining the value of a[6_9]' Griffiths [10], Gell-Mann and Hartlg11], and Ya-

function 7 £ th icle N d i mada and co-worker$12,13. The relation between re-
unction Z(p,x) of the particle’s momenturp and coordi-  gyictad path integrals and operators was studied in [R4.

hatex, appears diffe_r_ent. Measurement 5{p,x) requires The rest of the paper is organized as follows. In Sec. Il we
constructing a Hermitian operat@i{p,x) and expanding the introduce a class of equivalent meters for a classical dynami-

wavefunction¥ (x,t) in the eigenstates g}:(p,x) [3], cal variableF(p,x). In Sec. Ill, we show that quantally the
action of a meter can be described as additional weighting of
F(p,X) i(X) = F hi(X), Feynman paths in the particle’s path integral. We also dem-
onstrate that meters that give the same result in the classical

ie., limit may differ in the full quantum case. In Sec. IV, we use

the value ofF(p,x), f, as an independent variable, and ob-
. tain the von Neumann approach as a particular case. In Sec.
\If(x,t)—}i: Cibi(X).- (1.9 V, we analyze the case of the particle’s momentum. In Sec.
VI, we return the(semjclassical limit of a quantum measure-

The probability thatF(p,x) has the valueF; is then given by ~ment anq study th_e occurrence of comp]ex valued qyantities
|c;|2. As shown by von Neumann, the probability distribu- for classically forbidden transitions. Section VII contains our

tion |c;|? can be measured, at least in principle, by couplingconclusions.

the particle to an external degree of freedpth II. CLASSICAL MEASUREMENTS AND METERS
This straightforward recipe fails, however, if the mea-
sured quantity is defined over a certain duration rather than Consider the value of a classical dynamical variable

at a single instant in time. One such example is the amounf(p,x) at a given time. Further we shall want to extend the
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analysis to the quantum case where Feynman paths avge note that because the tertd€”, n>1, in the sum vanish
known to be highly irregulat2], so we start by averaging for A =0, they do not affect the work of the meter and can be

F(p,Xx) over a time intervalt,t+T], chosen arbitrarily. In other words, all meters described by
Eq. (2.7) are equivalent in the classical limit. Finally, the
t . .
_1-1 instantaneous value df(p,x) can be measured by choosing
(F)y+=T ftiT]-'(p,x)dt. (2.9 T_0
The instantaneous valug(p(t),x(t)) (if it exists) can then limy_o{ F)r=F(p,X)|; - (2.9

be obtained from Eq2.1) by taking the limitT—0. There-

fore, we need to measu¢e) along aclassical trajectoryof ~ In this limit the meter strongly interacts with the particle
a particle described by a Hamiltoni&iy(p,x). This can be over a short period of time.

done by coupling the particle to a classical “meter” whose

coordinate and momentum we denétand A, respectively. Ill. QUANTUM MEASUREMENTS AND METERS
We shall switch the meter on &t T and then read it at the
time t. Provided the Hamiltoniahi(p,x,\) describing both Next we consider the case when both the particle and
the particle and the meter does not depend, ¢ime equations Meter are to be described quantum mechanically. As in the
of motion are ¢,= d/9x) classical case, we shall use the position of the meter
obtain information abou{ F);. From our brief classical
X= JpH(P,X,\), (2.2  analysis we may conclude, first, that a quantum measurement

will perturb the particle’s motion. Indeed, for an accurate
: measurement we need the meter’'s position to be well de-
p=—dH(P.XMN), (2.20 fined. On the other hand, because ofghe uncertainty relation
AfAN>#, we can no longer make the momentum of the
meter\ zero as required by E@2.3). Second, meters which
. give the same result in the classical limit will not necessarily
A=0, (220  pe equivalent in the quantum case. It is readily seen that for

) N\ #0, different Hamiltonians in Eq2.7) would affect parti-
so that the momentum is conserved) =const. We take  .ja's motion differently.

f(t—T)=0 and then run the meter L!nti#t. To_ensure that To obtain the transition amplitudg(x,x’,t,t—T|f ) be-
the meter does not perturb the particle’s motion, we choosgeen the initial positions’ andf’ =0 att—T andx andf at

A=0, (23 b we construct the classical Lag_rangiar(k,x,i‘) corre-
sponding to a Hamiltoniakl (p,x,\) in Eq. (2.7):

f=0,H(p,x,\), (2.20

L(x,x, F)y=Nf+L,(X,x)=Af+pXx—H(p,x,\). (3.1
Also, the meter must measure the time averagg(@f,x), so

we define For simplicity we shall conside¥(x) to be time indepen-
dent, so thatg(x,x’,t,t—T|f )=g(x,x’,T|f ). Integrating
JH(p.x.\) —T 1A (px) 2.5 expli[1_;L(xx,f)dt/4} over all particle paths, we obtain
2N o '
With these assumptions Eq£.2) become g(x,x’,T|f )=f Dx(-)A[X(-),flexpiSo[x(- )]/},
. (3.2
. 1 (= . .
p=—a,Ho(p,X), (2.6b AX(-) fl1=5— fﬁ d\ exp(iNf/h)exp(i[ S\ —Sol/fi},
t (3.3
f()=T"| FApxdt, (2.60
=T where

where p(t) and x(t) are evaluated along the unperturbed t .

particle’s trajectory as determined by the Hamiltonian SAEJ'HLA(XvX)dt 3.4
Ho(p,X). We can, therefore, use the meter's positfaas a

pointer to read the valugF); directly, for example, from a and S, is the original particle’s actionS,=S, _o. Further,

suitably calibrated scale. We note next that E@s4) and ;. ting Eq.(3.2 I t the original parti-
(2.5 do not define the meter uniquely. Indeed, expandingge?gr;(l)%%gzﬂég'& ;y(_err)a S restores the onginal part

H(p,x,\) in powers of\,

H(p,X,)\)=Ho(p,X)+T71f(p,X))\+ 22 H(n)(p,X,O)Rn, fﬁxg(x,x’,ﬂf )df:f DX()EXp[ISO[X()]/ﬁ}

2.7 =g(x,x',T). (3.5
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Equationg3.2—(3.5) are the main result of the paper. As far whereW(x,t) is the conventional Schdinger wave function

as the particle is concerned, a particular choiceF¢p,x) which satisfies the initial condition(x,t—T)=CW¥(x),
andH(p,x,\) leads[cf. Eqg.(3.2)], quantally, to the partition C=[”_G(f—f’)df' =const. Equation(4.6) follows di-

of the original particle’s propagatai(x,x’,T) into subam-  rectly from Egs.(4.1) and(3.5).

plitudesg(x,x’,T|f ), each labeled by the variabfe Each Recalling again that Eq4.2) describes the interaction of
subamplitude is related to the particle’s history betweand  the particle with a meter, we see that the meter acts to de-
t—T, and contains contributions from one or several Feynstroy interference between subamplitud&¢x,t|f ) corre-
man paths. From Ed3.4) we note that different values éf  sponding to different values &f The meter is switched on at
are, in the language of RdR], interfering alternatives, simi- t—T when the particle is in the stat,(x), and operates
lar to the two holes in the double-slit experiment. As in theuntil the reading(i.e., the pointer positionis taken at the
two-slit case, to determine the value foficcurately we re- time t. The accuracy of the measurement is determined by
quire a meter, and have no information abbuhless a meter initial uncertainty in the pointer positiofi which is con-

has been introduced. tained in the initial state of the mete@(f ) in Eq. (4.3.
Finally, we note that the von Neumann vN mefdj is a
IV. QUANTUM PARTICLE IN x AND f DIMENSIONS. particular case of Eq4.2) obtained when only linear terms
VON NEUMANN METER AND THE EIGENFUNCTION are retained in Eq2.7),
EXPANSION AN [ B ]
It is now easy to construct a theory in which botlandf ! T::HO_ Tof 7'—]‘1' xtf), 47

play the role of independent variable, and the particle is de-

scribed by a wavefunctioW (x,t|f ) giving the amplitude to  where, againfi, and ¥ are the operators obtained from the
be restricted ax and to have(F);=f. Since differenf's are  classical quantities by replacing— —i%a/dx. In the short-
interfering alternatives, a measurement to accurAcye-  time limit T—0 the second term on the right-hand side of

quires convolutingg(x,x’,T|f') with a (square-integrable  Eq. (4.6) dominates, and we obtain the quantum analog of

apparatus functiorG(f—f') such that it vanishes rapidly Eq. (2.8) [4],
outside a vicinityA aroundf =f’ [14]. If at t—T the particle
is described by the wave functiolr|(x), integration over N B
initial positions gives LAl )_Z Cii(x)G(T—F), (4.8

w(xtlf ):f dx’f df G(f— ) g(xx’ T )W (x). wherec; and F; are given by Eqs(1.1).
4.7 V. QUANTUM MOMENTUM. FEYNMAN VERSUS VON

. e . . NEUMANN APPROACH
It is easy to see tha¥(x,t|f ) satisfies a Schabinger-like

equation Next consider the particle’s momentum,
W (xtlf) . p P F(p,X)=p=mXx. (5.1
h(—HzH —ih — X, =i = | P(xt|f), P P
at X of . . . .
4.2 Classically, we have a choice of equivalent meters described

by different Hamiltonians in Egs(2.7). Now we want to
decide which one should be used quantally. We can do so
either by choosing a particular form of the Hamiltonian in
Eqg. (2.7 or, equivalently, by specifying the functional
A[x(-),f] in Eq. (3.9. In the spirit of Feynman’s approach

where 7 is the operator obtained by replacingHt(p,x,\)
given by Eq.(2.7) p— —ihdldx and\— —i#dlof, and

YOE=TIE)=G(F)Wy(x). 4.3 [2,14], we shall define the amplitud& " (x,t|p) for the par-
Now ticle in x to have time average of the momentpras thenet
Feynman amplitudexp{iSy/%} on those paths, ending in x,
p(x,f,0)=|¥(x,t|f)|? (4.4  for which(mx);=p. Then, from Eqs(3.1), (3.2), and(4.2),
we have
yields the joint probability for finding the particle ix and _
knowing the value of to accuracyA. We note that since the AF[X(+),p]=8(p—(MmX)7), (5.2
operatori on the right-hand side of E@4.2) is Hermitian,
the total probability is conserved, S.=S,-\ ? Jdet, 5.3
0
N(t)Ef |W(x,t|f )|?dx df=const. (45  and
Also, for anyG(f ), we have i% I¥F(x.tlp) - _ ﬁ_z i_ Ti ’
ot 2m\gx T dp
\Ifx,tzjoc\lfx,tf df, 4.6
bt B I*) (49 +V(X)}‘I’F(X,t|p), (5.9
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so that the Hamiltoniarf{ is quadratic in the meter's mo- Sion of the initial statel(x) rather than the particle’s posi-
mentum. Equatioii5.4), therefore, is different from Eq4.7)  tion at the timet—T. Since forT—co the first term in Eq.

describing a standard von Neumann meter, (6.9 tends tos(p—p’), both meters give identical readings
if they operate sufficiently long@"N(x,T|p)~¥F(x,T|p).
a¥N(x,t|p) h25? Results of very fast measurements are, conversely, consider-
h ot - 2m3X2+V(X) ably different. AsT—0, for finite p, the Feynman wave

function is nearly independent ofp, W¥F(x,T|p)
~m~1T¥,(x). This is what one should expect: Feynman
paths are very irregular on a small time scale and, if the very
recent past is considered, the particle is seen as arrivirg at
It is easy to see why the two approaches disagree. In generaqually with all possible velocities. For a von Neumann
rearranging a particle’s paths according to the valughf;, meter, in the same limit, the simple relation between the
as in Eq.(5.2), gives the same result as the von Neumanmparticle’s momentum and its past position is lost. Indeed, as
approach for?(x,T|f ) only when the Legendre transform T—0, the width of the first Gaussian in E(5.10 tends to
connecting the actioB, [or, more precisely, the Lagrangian infinity and W¥N(x,t|p) contains contributions from those
L,(x,x) in Eq. (3.1] with the HamiltonianH (p,x,\), paths whose positior(t=0) can be far fromk(T), so that
the particle’s velocity=[x(T) —x(0)]/T is very large. Thus,
. . N for a very accuratéA is smal) von Neumann meter, we have
H(p,X,)\): pX—mX2/2+V(X)+ ? F, (56) \I’VN(X,T|p)%C|(p)fdp’G(p—p')exp@p’x/ﬁ) Hence for
x<hlA, WYN(x,T|p)~C,(p)expipx/i), whereas for x
is linear in\ [14]. This is the case only ifF(p,x)=F(X) >fi/A it vanishes. Note that sinck is small, the coordinate
does not depend op, e.g., for the particle’s position or the width of ¥'N(x,T|p), #/A, may exceed the width of the
traversal timg4,14]. The simplest counterexample is the ki- initial wave packet¥,(x). This is a consequence of the
netic energy]?=m5<2/2, where the last term in Eq5.6) Heisenberg uncertainty principle stating that an accurate von
renormalizes the particle’s mass so thHp,x,\) becomes Neumann measurement of the particle’s momentum destroys
p2/([1—(N/T)]m)+V(x). The particle’s momentum is an- information about its position. Finally, from E.9 we see
other such example. To compare both approaches in mof®at for an initial wave packet, (k), with mean values ok,
detail we study momentum distributions for a free particlek, and «_62502, the Feynman and von Neumann ap-

hZ

vN
T apox| ¥ (xtlp). (5.5

V(x)=0, proaches agree if
\IfF(x,Tlp)=m‘1Tf dp'G(p—p’)go(p’ T/M,T) T>mh/[max|p+ Al [k+a])]2. (5.1
X (x—p'T/m). (5.7)  Thus for a typical wavepacket with~1 eV, o<k, andA
<o, both meters would give the same result if the duration
and of measurement>#/E~10 1®s. Momentum distributions
for a particle described by amnnormalizedl Gaussian wave
WN(x, T|p) = f dp’ G(p—k)exp( —ik2T/2mh) packet
_ TN 2782
% C,(K)explikx/), 5.8 T, (x)=explikx)exp —x/67), (5.12
wherego(x,T)= (27 £ T/m) 2 exp(mx/2T#) is the free- measured by Gaussian,
particle propagator, an€,(k) are the coefficients in the G(p—0")=(A27/2)" Y exd — (D—p" )2/ A2
plane wave expansion of the initial particle’s stdtg(x), (p=p)=(a7ml2) xd=(p=p") I (5.13

C,(k)E(Zwﬁ)*lf exp —ikx/A) W, (x)dx. (5.9 Feynmar(dr_:tshgd ling and von Neumantsolid line) meters
are shown in Fig. 1.

In addition, we have the relation
VI. CLASSICAL LIMIT. CLASSICALLY FORBIDDEN

UWN(x,T|p)=(iT/2whm)*? EVENTS
Finally, we shall analyze the semiclassical limit of Eq.
Xj exd —i(p—p")2T/2mk] (4.2). The case of the time spent in the barrier was analyzed
in Refs.[14] and[15]. To present a more general argument it
XWF(x,T|p")dp'. (5.10 is convenient to rewrite Eq(4.1) introducing a particular

solution®(x,T|f ) of Eq. (4.2,
We see from Eq(5.7) that to contribute toVF(x,T|p) att,
the particle must have been approximatéfyA is smal) at , ) ,
x—pT/m at t—T, since obviously, for any path(t), D (xt[f ):f dx'g(xXx", [ f )W (x),
(mx)r=m[x(T)—x(0)]/T. The von Neumann meter, how- (6.9
ever, probes the coefficien®(p) in the plane-wave expan- ®(x,0/f )=6(f )T (x).
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FIG. 1. Contour plots of the probability densitieB(x,T|p)|? X
(dashedland| ¥¥N(x,T|p)|? (solid) for a free Gaussian wave packet _ _ _ _
in Eq. (5.11 vs dimensionlesp=p/k andX=kx/#, and for T FIG. 2. (a) Wave function®(x) = Ai( —x/x,) of a particle with

—TK/2m#=0.01 (), 2 (b), and 10(c). The accuracy of the mea- zero~energyE=O, in a linear potential/(x) = —eex vs dimension-
surementA=A/k=05 and the coordinate width of the wave lessx=x/xq. The vertical dashed line separates the classically for-

~ ey . —. . bidden regionx<0 from the classically allowed regiox>0. (b)
packeté=k5/ﬁ—5. As in Sec. V,k is the centroid of the wave Contour plot of the probability density™(x, T—0|p)|2 vs di-
packet in reciprocal space.

mensionlesx=x/xo. andp=px,/# for an inacurateA=Ax, /%

Clearly, ®(x,T|f ) yields the amplitude distribution for the =10, Gaussian metefc) Same asb), but forA =1. Also shown by
quantity f when measured to an infinite accuracy and is,the dashed line are posmons~of the critical poipis; in Eq. (6.9).
therefore, unnormalizablef|®(x,t|f )|2 dx df=c. For a (@ Same as(b), but for A=0.05 As in Sec. VI, =X,
(normalizabl¢ finite accuracy wave function’(x,t|f ) in ~ =(2mee/n?)
Eq. (4.2, we have[12] _ _ ) N

In the classically forbidden regiod (x,t|f ) has no criti-
cal points on the redlaxis. Rather, it may have saddle points
in the complexX plane, so that in the limi¢ — 0 the conven-
tional Schralinger wave function? (x,t) [cf. Eq. (4.6)],

W (x,t|f )=f df'G(f—f)Dd(x,tf). (6.2

Quantally,f is a distributed quantity. It is instructive to
see first how a well-defined value foris recovered in the *
(semjclassical limit in the classically allowed region. 4s Yxn= J_m®(x,t|f df, 6.5
—0, ®(x,t|f ) in Eq. (6.2 becomes highly oscillatory ev-
erywhere except in the vicinitgf of one(or possible more s exponentially small. In the absence of a well-defined real
critical point where its phase is stationary. The width of thestationary region, a meter will produce readings distributed
stationary regionSf is typically proportional tdi 2 We can  over a wide range of values. The shape of the distribution
then measuré with a meter, such that will depend on the properties of the meter, namely, its appa-

As sf 6.3 ratus functionG(f ). In this sense, in the classically forbid-
' ' den region we cannot assign a unique valué égen in the

Assuming that there is only one critical poifyf, and evalu- limit 7— 0 [16].

ating the integral in E¢(6.2) by the stationary phase, for the The simplest.system Qemonstratin_g b(.)th classically al-
probability p(x, f ) to find the valuef, we obtain lowed and classically forbidden behaviors is a quantum par-

ticle of massm and chargee in a constant electric field,
X, F )=V (x.t|f)|?~|G(f—fy)|?, 6.4

p(x,f)=[W(x,t|f )[*~[G(f— 1) (6.4 V()= — esx=—Fx. 6.6
which is the classical result. Note that a chance to obtain a
value significantly different from the classic} is negli- We shall choose the particle to have zero eneEgy,0, so
gible because rapid oscillations @f(x,t|f') over the range that the regionx>0 is classically allowed, whilx<0 is
of integration A make the integral in Eq(6.2) extremely classically forbidden. The initial state of the particle is, there-
small. fore, the Airy function[17] shown in Fig. 2a),
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W, (x)=Ai(—x/Xg), this reason, there is little difference between formerly classi-
(6.7) cally allowed and classically forbidden regiofi€g. 2(d)].

Xo=(2mes/%?) 15,

For simplicity we shall consider a very fasff{-0) mea- VII. CONCLUSIONS
surement of the particle’s momentum by a von Neumann

In general, a quantum act of measurement, complete at
meter[Eqg. (4.8)]. From Egs.(1.1) and(4.8), we have g g b

time t, can be understood as the destruction of interference
between different componentsubamplitudesW (x,t|f ) of
the particle’s wave functiof’(x,t), related to the particle’s
history fort’<t. A particular choice of the variablepro-
vides different decompositions oF (x,t), where the value
XexF[—ip3xg/(3h3)+ipx/h]_ (6.9 of the measured variable plays the role of a continuous
index labeling subamplitudes. Typically, a measurement is
characterized by a duration showing how far into the past
The phase of the exponential in E@.8 has two critical ~the particle’s behavior is probed, and an accuracyhich
pointsp;.,: specifies the degree to which the interference between differ-
’ entW(x,t|f ) is destroyed.
A particular variablef is measurable in practicéor,
Py.=*+fixY2x; %2, (6.9 rather, at thegedankenexperimetevel) if the single-particle
' generalized Schobinger equatiori4.2) for ¥'(x,t|f ) can be
interpreted as a Schdimger equation representing both the
particle plus a meter. Since a meter acts as a “slit” in the
coordinate, i.e., it filters in subamplitudas(x,t|f ) in the
vicinity A of the measured valui, and discards the rest, it
would, in general, perturb the particle’s motion. Conversely,
the perturbation produced by a meter is the one necessary to
project W(x,t|f ) onto the apparatus functioG(f ). The
sp~ VX Vaxg Sl U2y U2y~ 14 o g )34, time average of a dynamical va_lriable in _Ea.l) can always
6.10 be m_easured, but more esoteric quantities, suc_h as the quan-
tum first passage timgl8,19, may not necessarily be mea-
surable.

Importantly, there is no unique recipe for constructing
quantum subamplitude¥ (x,t|f ) for a given classical dy-
é]amical variableF. Measurements, equivalent in the classi-
cal limit, may differ in the quantum case, and correspond,
therefore, to different decompositions ¥f(x,t). In general,

a measurement does not necessarily correspond to a rear-
rangement of Feynman’s paths into classes according to the
value of a particular classical functional. We have analyzed
two possibilities. A special choice of the Hamiltonian in Eq.
(2.2), linear in the meter’'s momentum, yields, quantully, the

. VN . . . .
in the classically allowed region it repeat oscillations of theVave functiom™" (x, T|f ), which is consistent with the von

Airy function. Clearly, such a meter does not distinguish’\leurT1ann proce.dure and, In _the lirfit-» 0, with the eigen-
between different momenta, and this limit corresponds td‘u_nchon expansion1.1). Def|n|ng\If(x,t|f_) as_the net am-
Aharonov’s weak measurement regifi®d. We shall not dis- plitude on those Feynman paths for which); in Eq. (1'1).
cuss the weak measurement limit any further. As the accuhaFS exactly the valué yields the Feynman wave function
racy of the measurement improvess p [Fig. 2(c)] in the vaN(X’T|f ) which is, in general, different from
classically allowed region the meter begins to resolve the? O TIf ). . . -

two stationary regions corresponding to the classical value& On_e of the_S|mpIe ex_amples IS the pamclgs momenfm
of the momentum in Eq(6.9). At the turning pointx=0 a}SS|caI!y,p is th_e variable canonically conjugate to parti-
where the two classical values coalesce, the meter’s readin(j):ée S positionx. It is al_so_ rel_ated to the rate of changexof
are centered arounm=0. Further into the classically forbid- P=mx Quantally, defining in the usual way the momentum
den region of negative there is no preferred real value pf ~ 0 be conjugate ta leads to the operator i7i(d/9x) and von
and the readings remain to be distributed around the origifNeumann subamplitude®*™(x,T|p) in Eq. (5.5). In this

A further increase in the accuracy of the measuremant, Way one loses, however, the simple classical relation be-
< 8p, again destroys the classical picture as the apparatf¥een p and th? part|cle_’s position in the past, as
function begins to vary rapidly across the stationary region¥ "\(x,T|[p) contains contributions from Feynman paths
Equivalently, the perturbation produced by an accurate meté#ith a wide range of velocities. Rearranging Feynman paths
is greater than the effect of the original potentéx). For  according to the valuémx); yields WF(x,T|p) in Eq. (5.4,

lim ®YN(x,T|p)=Xo(4mhi2) "2
T—0

For x>0, the classical valugs, ., are real, corresponding to
the particle moving in the left and right directions, respec-
tively. The width of the stationary regiofp increases as the
particle approaches the turning point 0,

At the turning pointx=0, the critical points of the Airy
integral (6.9 coalesce, and then, as becomes negative,
move into the complex plane. The results of measuring th
particle’s momentum to accurack by a von Neumann
meter with a Gaussian apparatus functi{&rnl3 are shown

in Fig. 2. For a very inaccurate metgfig. 2b)] A is large
and, for finitep, G(p—p’) does not restrict integration in
Eqg. (4.1). As a result,p(x,p,T—0) in Eq. (4.4 is nearly
independent op, p(x,p,T—0)~|¥,(x)|2. In the classically
forbidden regiornp(x,p,T—0) is exponentially small, while
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which considerably differs froml"N(x,T|p) in the short-  EQ. (1.1). In this sense, there is no unique definition of the
time limit. As far as measurements are concerned, both wav@uantum particle’s momentum.

functions are equally meaningful. We can, in principle, con-
struct an apparatus which would measure either the probabil- ACKNOWLEDGMENT

ity density| WYN(x,t|p)|2 or |[¥F(x,t|p)|%. A choice between Useful discussions with Professor D. Bessis are gratefully
the two requires additional assumptions, such as postulatingcknowledged.
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