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Excitability in a nonlinear optical cavity

Weiping Lu, Dejin Yu, and Robert G. Harrison
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 1 April 1998!

We establish a nonlinear optical cavity to be excitable. Excitability in this system is shown to originate from
the combined dynamical effects of nonlinear intracavity field saturation and temperature-dependent absorption
in the medium on two different time scales. The model may be experimentally realized using optical bistable
devices with possible useful applications.@S1050-2947~98!50508-2#

PACS number~s!: 42.65.Pc, 42.50.Fx
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Excitability has long been studied as an important clas
dynamical phenomena in biological and chemical syste
In local regions, an excitable system exhibits a long exc
sion ~pulse! in phase space for a superthreshold perturbat
the magnitude and width of such a pulse being independ
of this perturbation. For spatially extended systems, ex
ability underlies wave propagation and formations, such
cardiac muscle and nerve wave fronts and spirals under
FitzHugh-Nagumo model@1,2# and chemical excitation
waves in the Belousov-Zhabotinsky reaction@3#. However, it
is only recently that excitable features have been reveale
nonlinear systems that have physical mechanisms diffe
from those of biological and chemical interactions, such a
liquid crystals@4# and most recently an injected laser@5#. In
this Rapid Communication, we establish a nonlinear opt
cavity to be excitable. We show that its excitable behav
occurs in a small parameter window close to a bistable
erating region and is attributable to the combined dynam
effects of nonlinear intracavity field saturation an
temperature-dependent field absorption in the medium
two different time scales. We argue that such excitabi
may be experimentally realized in popular optical bista
devices. Possible applications of optical excitability are d
cussed.

We consider a unidirectional ring cavity containing a h
mogeneously broadened two-level nonlinear medium; a c
sical model description for earlier investigations of optic
bistability and instabilities in the late 1970s@6#. This system
is described by the Maxwell-Bloch equations, a set of th
coupled complex equations, which can be simplified a
single real equation under the resonant operation cond
and good cavity limit,k1!g' , g i ,
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]t
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]E
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52

caE

11E2/Es
2 , ~1!

where k1 is the cavity linewidth, andg' and g i are the
transverse and parallel relaxation rates of the medium.E is
the intracavity slowly varying amplitude,t the time,z the
coordinate in the wave propagating direction, andc the ve-
locity of light. Es5\Ag'g i/m is the saturation field ampli
tude anda5gmN/2\cg' is the unsaturated absorption c
efficient, where g is the field-polarization coupling
coefficient, m the modulus of the dipole moment,\ the
Planck constant, andN is the number of atoms. The cavit
imposes two boundary conditions on the input and out
signals,EI and ET , respectively, both of which are rea
PRA 581050-2947/98/58~2!/809~3!/$15.00
f
s.
r-
n,
nt
t-
s

he

in
nt
in

l
r
-

al

n
y
e
-

-
s-
l

e
a
n

t

ET5ATE(L,t) and E(0,t)5ATEI1(12T)E„L,t2( l
2L)/c…. HereT is the intensity transmission coefficient o
both input and output couplers, andL andl are the lengths of
the nonlinear medium and the cavity, respectively. Under
mean-field approximation,aL!1, T!1, and the cooperation
parameterC5aL/2T is finite; the dynamics of the optica
field E5E(L,t)[ET /AT at the output end is governed b
the following ordinary differential equation@6#:

k1
21 dE

dt
5E02E2

2CE

11E2/Es
2 , ~2!

whereE05EI /AT is the normalized incident field amplitud
at z50 andk15cT/ l . It is well known that Eq.~2! under
steady-state conditions gives anS-shaped bistable relation
betweenE0 and E. We note that, although Eq.~2! is rigor-
ously derived in a ring cavity configuration, it is also com
monly accepted as being a good approximation for a non
ear Fabry-Perot cavity where the interference effects of
intracavity counterpropagating waves are negligible.

In an absorptive medium the small signal absorption
efficient a is in general a function of the medium temper
ture and radiation frequency. For simplicity, we assume t
a linear relation between absorption coefficienta and tem-
perature changeQ is valid for a finite window of temperature
range at the input optical frequency, that is,

a5a01a1Q~E2!, ~3!

wherea0 is the absorption coefficient at the equilibrium tem
peratureQ0 and Q the temperature change induced by t
intracavity optical field.a1 is the absorption coupling coef
ficient, which can be either positive or negative, depend
on the types of materials used and the frequency of the in
optical field. We restrict ourselves to the condition ofDa
[a1Q<a0 .

The temperature change in the nonlinear medium is
scribed by the heat flow equation

cvr
]Q

]t
5a¹2Q1Q, ~4!

wherecv is the specific heat at constant volume, andr anda
the equilibrium density and thermal conductivity of the m
dium, respectively. ¹25¹'

2 1]2/]z2 is the three-
dimensional ~3D! Laplacian. Q5 1

2 ae0cnE2 is the heat
source arising from the absorbed optical intensity in the c
R809 © 1998 The American Physical Society
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ity, wheree0 is the vacuum permittivity andn is the linear
refractive index. Under the mean-field approximation,
optical field E is z-independent and so is the temperatu
changeQ induced by the absorption through Eq.~4!. When
the boundary effect on the temperature variations in the
gitudinal direction is negligible, typically in a bulk medium
its temperature change can be considered to be uniform
this direction. The transverse diffusion, on the other ha
can be approximated as a source of heat dissipation whe
dynamics of the transverse heat distribution of the system
not taken into account. Equation~4! is then simplified as

cvr
]Q

]t
52

a

pvp
2 Q1 1

2 e0ncaE2~ t !, ~5!

wherevp is the radius of the input optical beam spot in t
medium.

Equation~5! describes a dynamical relation of the tem
perature change to the intracavity field amplitude. Using
relation in Eq.~3!, it can be easily transformed into the ev
lution equation fora(E). The optical system comprisin
both types of nonlinearities is then described by the follo
ing coupled equations:

k1
21 dE

dt
52E2

2CE

11E2 1E0 ,
~6!

k2
21 dC

dt
52C1hCE21C0 ,

whereE andE0 have been renormalized toEs . The constant
k25a/(cvrpvp

2) is the relaxation rate of the absorptive c
efficient andC05a0L/2T the cooperation coefficient atQ0 .
h5e0nca1pvp

2Es
2/(2a) is the field-absorption coupling co

efficient, which is restricted toh!1 to satisfyDa<a0 . The
steady-state solutions of Eqs.~6! are determined by the in

FIG. 1. Equations~6! have three types of solutions, correspon
ing to ~a! an excitable system,~b! a system undergoing a Hop
bifurcation, and~c! a bistable system, respectively.
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tersection points of the two nullclinesE05E12CE/(1
1E2) andC05C(12hE2). Three basic cases, correspon
ing to three types of solutions, can be distinguished as ill
trated in Fig. 1. The nullclines intersect at~a! a single point
lying on low or high branches of the bistable curve,~b! a
single point lying on the middle branch, and~c! three points,
each lying on a different branch of the bistable curve. T
three cases describe an excitable system, a system und
ing a Hopf bifurcation, and a bistable system, respective
Equations~6! are in many respects similar to the FitzHug
Nagumo model, but in our case the relation between the
variables in the second equation~with slow time scale! is
quadratic forh!1. The absorptive bistable model is now
special case of a constant absorption coefficient,a5a0 .

We now focus on the parameter region of excitability f
which only a single intersection occurs in the low branch
the bistable curve as depicted in Fig. 1~a!. Excitable behavior
occurs under the condition ofe[k2 /k1!1, i.e., the time
scale of optical field dynamics is much faster than that of
temperature change. The system in this parameter re
gives a unique input-output relation, and its stability depen
on the parametersC0 , h as well as the ratioe. The steady-
state solutions, as shown in Fig. 2~a!, are stable on increasin
the input field amplitude until a Hopf bifurcation occurs
E0510.80 andE51.13 for C059, h50.06, ande50.001,
above which the output signal shows a periodic motion fo
constant input. Excitable behavior occurs in a small reg
just below the Hopf bifurcation. The mechanism for su
behavior can be best explained in the (C,E) phase space o
Fig. 2~b!. While the steady stateA in the (E0 ,E) curve,
which corresponds to the intersecting point in Fig. 2~b!, is
linearly stable in the sense thatA immediately relaxes back
to its original state for a small perturbation, it is howev
unstable once a larger excitation, referred to as the su
threshold perturbation, pushes this state to a position ac
the middle branch of the bistable curve, denoted asB in Fig.

FIG. 2. ~a! Steady-state relation of the inputE0 to the outputE
for C059 andh50.06. The solid and dotted lines correspond
stable and unstable steady-state solutions, which are separated
Hopf bifurcation ~marked by a solid square! at (E0 ,E)
5(10.80,1.13) fore50.001. ~b! Phase-space illustration of exci
ability for E0510, C059, and h50.06. ~c! and ~d! Time se-
quences of the fast and slow variables,E andC, after excitation.
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2~b!. For the latter case, the system first switches to the h
branch of the bistable curve, then follows this branch to
right, jumps back to the low branch, and eventually rela
back toA, forming a long excursion in the phase space. T
value of the superthreshold perturbation is therefore defi
to be the distance between the steady state~in the low
branch! and the middle branch points in the vertical dire
tion. A typical time pulse signal of both the fast (E) and
slow (C) variables under a superthreshold perturbation
shown in Figs. 2~c! and 2~d!. As a distinct feature of excit-
ability, such a long excursion in phase space or pulse sig
in time is independent of the exact external perturbation o
it is a superthreshold perturbation. Notice that, as shown
Fig. 2~c!, after excitation the system spends a long tim
along the low bistable branch, the refractory period, whe
is not susceptible to small perturbation until returning to
steady stateA. As a common feature of excitability, the ex
istence of two different time scales in the system, i.e.e
!1, is a priori. When the two time scales are of the sam
order of magnitude, the long excursion phenomenon dis
pears and is replaced by a short pulse, the width and am
tude of which are dependent on the perturbation.

While excitability in optics shares many universal fe
tures with those in biological and chemical systems, an
portant difference between them lies in the fact that ex
ability in optics is manifested in the field amplitude as
excitable optical field, whereas for the latter it is in the no
linear media, referred to as an excitable media. In our s
tem, the population difference and polarization follow ad
batically the intracavity optical field under the good cav
limit, that is, D51/(11E2) and P5E/(11E2), respec-
tively. Both variables show a dip in time when the optic
field is excited and stay in the upper branch of the (C,E)
curve.

The superthreshold phenomenon in an excitable opt
system may be utilized for applications. One such examp
a signal profile-reshaping device for a train of pulses that
distorted, say, through propagation in a nonlinear mediu
Using such a pulse sequence as perturbations to the in
avity field amplitudeE, the device reshapes the output, pr
ducing the same profile pulse train. Since such a device
plifies only the signal~superthreshold! and ignores the noise
background~subthreshold!, it may also be used as a sign
selection device. The selection criteria can easily be c
trolled through the adjustment of the superthreshold value
varying the operating condition of the system. Furthermo
the optical excitable device may have potential applicati
through its capability of generating a coherent resonance
put under stochastic noise perturbations. The phenome
akin to the well-known stochastic resonance effect, has b
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initially investigated recently in the FitzHugh-Nagum
model with a noisy driving term to the fast variable@7#. In
optics, the excitable device can turn a white-noise-type s
nal to a nearly equal-spaced periodic time series, as show
Fig. 3.

An experimental observation of the excitability may b
realized in optical bistable devices. The two types of nonl
earities required in Eq.~6! can be obtained, or at least ap
proximated, by using semiconductor and other absorb
materials. Indeed, the saturation of absorption in cert
types of semiconductors may be treated as that in a two-l
system, whereas the thermally induced temperature cha
in these materials are quasilinear in a definite tempera
window for an optical input of appropriate frequency. Tw
different time scales in a semiconductor cavity are read
available. The fast one,k215 l /cT, is the cavity lifetime, on
the order of 1027– 1028 s for a ring cavity length of 1 m and
a transmission coefficient of 90%. The response time of
temperature change in semiconductors is dependent on
physical properties of the materials and the input opti
beam size. It is generally slow due to thermal conduction
the materials, typically on the order of between 1022 and
1026 s. For example, in bulk ZnSe@8#, which has widely
been used in optical bistable devices,D[a/cvr
51024 m2 s21, leading tok21;331024 s for an optical
beam size ofvp530mm. Finally, we note that the excitabl
behavior in our model is predicted in nonbistable operat
conditions and is in a small region close to the Hopf bifu
cation point.

This work was supported by EPSRC~U.K.! Grant No.
GR/L95229.

FIG. 3. Noise-induced coherence in system~6!. ~a! Gaussian
white noisegv , ^gv(t)gv(s)&5d(t2s), which perturbs the intra-
cavity optical fieldE, E→E1Dgv ; ~b! outputE shows coherence
enhancement under the noise perturbation. The parameters aC0

59, h50.06,E0510.7,e50.01, andD50.2.
-
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