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Theory of shape-preserving short pulses in inhomogeneously broadened three-level media
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We introduce an ansatz that permits a treatment of the effects of Doppler broadening in the theory of intense
steady-state pulse pairs propagating in three-levealr V) media. We have derived analytic solutions for pulse
amplitudes, for group and phase velocities, and for the probability amplitudes of the atoms in the transmission
medium. The solutions are different for theand V cases.S1050-29478)50308-3

PACS numbeps): 42.50.Md

Optical pulse propagation in a three-level medium undeipulses propagating througkr and V-type three-level media
two-photon or double one-photon resonance conditions haghen Doppler broadening is included, under the reasonable
been studied extensively theoretically and experimentally bypproximation(for A and V systemsthat the two transitions
various authors since the 197[0s-3]. It has been studied in have equal shifts. The expressions we have found describe
connection with self-induced transparency and simulidas ~ bright-dark and bright-bright soliton pairs, respectively.

9], lasing without inversior{10-12, phaseoniun{13,14, and V systems are illustrated in Fig. 1.

e|ectromagnetica"y induced transparerﬁﬂ:ﬁ]’ and other re- The electric-field vector for the two Optica| pu|seS can be
lated topic§16—21]. A constant focus of interest has been onWritten as

mechanisms by which two pulses can travel through an oth- . _ . _

erwise opaque three-level medium, sometimes without — E=XE&(z,t)e'Ka?~val +xgy(z,t)e!*o? s 1-c.c., (1)
changing their initial temporal shapes. Although no general

analytic solution has been found so far that covers all aspect¥herek,c=w, andk,c=wy,, and&, and&, are the ampli-

of propagation’ some Specia' analytic solutions have beereS of the electric fields of the two pulses. We assume that
found by restricting the parameter regimes or by using Spethe two fields interact Separately with their respectiye transi-
cial input pulses. For example, simultoj¥ were obtained tions, but they are nevertheless coupled by the nonlinear con-
in 1981, in which two solitonlike pulses with temporal Straint that in all cases the two transitions share a common
Shapes of “sech” propagate without Changing through ale-V€| of the atomf{level 2 in the flgurélThe Rabi frequen-
three-level medium that could be either V type, asymptoti-cies that correspond to these fields are given by
cally in the ground state, or cascade-type with asymptoticallya(=2d12E, /%) and Qp(=2d3, /%), whered;; is the di-
clamped equal inversions, both cases in the absence of dgole moment between levelsand j. The evolution equa-
tuning. Explicit N-soliton for V media have been given by tions for the atomic levels with complex amplitudes, C,,
Steudel[8]. andC; can be obtained for eithét or V media from Schreo

Another solitonlike solution was obtained more recentlydinger’s equation as
[9], which shows that two pulses with amplitudes given by
sech and “tanh” can propagate without change through a
three-level A-type medium that is asymptotically in the
ground state. From the intensifgquare of amplitudepoint
of view, this latter solution describes a bright-soliton dark- 9 1 1
soliton pair. 1=-C2=A5C,~ 5RaC1— S RyCs, (2b)

However, most of these earlier investigations have
avoided two difficult questiondi) the possible existence or P
nonexistence of a “global” restriction on pulse pairs similar i —C3=A3C;3—
to the area theorem discovered for two-level media by Mc- ar
Call and Hahr[22]; and (ii) a practical method to deal with
Doppler broadening(or other kinds of inhomogeneous
broadening, commonly a prominent broadening process and
frequently the dominant one for atomic and molecular vapors
and optical crystals of many kinds. The studies of Konop-
nicki and Eberly[4] included numerical experiments show-
ing pulse reshaping toward their predicted sech steady-state
form was observed in Doppler-broadened media. This is
reminiscent of area theorem behavior, but no formulas for F|G. 1. Schematic energy-level diagrams for three-level atomic
area were found. media: A (left) and V (right). The pulsesa andb (driving transi-

In this paper we address the second question. We havins 1-2 and 2-3, respectivélgre in two-photon resonance with
found analytic expressions for the amplitudes of solitonlikeoverall detuningA.

9 1
| E’Cl:AlCl_ER;CZ, (Za)

Ry C,, (20
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TABLE |. Parameters for different types of medium. also provides the precise relation betwe@g and its zero-
detuning counterpaxs;, so we get
A \Y,
C=f(A)c,+1-1(A), 6
- o o 1 =f(A)c +1-1(A) 6)
Ry 2 2 Ca=f(A)cs. W)
Ay 0 A
A, A 0 With these two relations we return to the equation@or. It
Aj 0 A is easy to see that this then provides an expressiofi(foy
Pa CiC, C;C, and an important connection betweenand(},:
Py CiC, C3Cs L
f(A)=—1+iATA, ®
where the parameterd;, A,, and Az are related to the
detuningA shown in Fig. 1 and the paramet&sandR, are i T
related to the Rabi frequenci€k, and(),, as given in Table CZZTQa' ©)

| for A or V media.
Similarly, the evolution equations for the fields can bewhere 7, is an auxiliary constant whose connection to the
obtained from the slowly varying Maxwell equatiof23] as  pulse duration will be obtained below.
J Now it is trivial to obtain solutions for all three’s by
: inserting into thec equations the new connection betwegn
a_gQa:"“f Pag(A)dA, (39 anan%nd the twoqknown pulse amplitude expressi(()er?s de-
rived earlier for on-resonance medi§ 9], namely,

%szi,uj Pra(A)dA, (3b) Qa(g,7)=A sechtK,{—7/7p),

— . . Qp(L,7)=B tanh K, {— 7/ 7).
whereP, andP,, are the polarizations given in Table I, and o(¢:7) anftkaZ= /)

g(A) is the distribution of detunings resulting from inhomo- \when we add the relevafitA) factors, the full solutions are
geneougDoppler-type broadening. The propagation coeffi-

cientu is assumed to be equal for all transitions and is given tanh(Ky{—7/7,) +iA Ty

by u=4md’Nw/(%c), where is the density of atoms in Ci(¢,mA)= 1+iAr, : (103
the medium. Equation&) and (3) are written in local-time

coordinateg and 7 in the frame propagating with velocity 2i | sectiK,¢—7/7,)

in the mediumr=t—z/c and{=z. Cz(g,r;A)z(F) BTy ea— (10b)
Equationg2) and(3) are nonlinear and there is no gener- P A

ally known method to solve them. We will introduce a com- B\ sechiK \Z— /7o)

plex detuning-dependent factorization as an ansatz, and we Ci(L,7A)= _(_) A P , (100

will see that this permits previously known on-resonance so- A 1+iA7y

lutions to be extended from zero detuning to any arbitrary h is clearlv th lse durati hich satisfi i
finite detuning. The key steps in determining the solutionaV€r€ 7p 1S Clearly -e pulse duration, which satisties a spe
for the A-type medium are summarized below. The deriva—CIfIC relation with 7, :
tion of solutions for the V-type medium is similar.

We now introduce a factorization ansatz for the upper-
level amplitude, motivated by a similar step taken by McCall
and Hahn{ 22] for the absorptive Bloch vector component in

a two-level systenfsee alsq19], p. 82. Our factorization is

Co(Z,mA)=1f(A)cy(L,7), (4)

A’TA ATp
2 2 1y

We also require the following constraint on the amplitudes:
A?—B?=4/7, (12

which was found previously for the zero-detuning solutions
where the lower-case letters,(,c,,c3) denote the level am-

plitudes forA=0, andf(A) satisfiesf(0)=1, but otherwise These solutions are so far the only solutions of the Schro
must be determined. The factorization ansatz then leads t&nger equations. To be physical they must also satisfy the
the following useful relation Maxwell equations. Inspection shows that the field amplitude
P 5 expressions are indeed compatible with the Maxwell equa-
S gpage . v tions and with the existence of a spread of detunings, via the
I &Tcl_ 2 Qaf(2)c=if(4) &Tcl’ ® Doppler distribution functiorg(A), with the right choice of
K, and a single modification: &dependent “carrier wave”
which implies thatC,; and f(A)c, differ by an additiveA- phase factorg({) must be attached to pulse so that its
dependent constant at most. Since we assume the mediumdelution function becomes
be in level 1 asymptotically, independent of detuning, this .
gives a definite value for the constant. The same argument Qa(¢,7)=A sectiK {— 1/ 7,)e D). (13
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The Schrdinger equations show that the same phase factor
must also be attached ©, andC5, and these are the only
changes. After substituting E¢L3) into the complex Max-
well equationg3) we find the following equation fokK , and

the phase:

M g(a)
o) Frme 0
d M Ag(A)
d_g¢(§):§f mdA- (14b) 5 s 10 15 20

We can define a new wave-vector Shm‘ by FIG. 2. Plot of the real part of the puls@" [=Re(y)T;]as a

function of time T(=+/T3) and spaceZ(=u{T3) for a V-type
medium with Doppler broadening. The parameters used in this plot

N . . S are Ay=1/T5, =T5, and A=v2/T,, which gives
which is physically equivalent to a modification of the re- K§:O.§6(Z aide’Tgp:O.iMz. 2 g

fractive index and is similar in appearance to the index
change known for two-level self-induced transparefsse

P()=K\L, (19

[23], p. 96, but herer, is not the pulse duration. T , .
The V solutions differ in interesting small ways from the g(A)= \/——e_[(A_AO)Tz] z, (19

A solutions, and we give the full solutions for the V-type 2m

media:
A7, sechiKy{—71/7p) where A, is the detuning from line center anf; is the

Cl(i,T;A)=I(T) Temvg, (168 inhomogeneous lifetime. Figure 2 shows propagation of
P pulse “a” in a V-type medium with such Doppler broaden-
tanh(Ky¢ — 7/ 7p) +iA 7, ing. The spatial oscillations due to nonzefé are evident

(16  from the figure.

The time scale for which these solutions are valid can be
recognized by noting that Eq&2) and (3) are written in the
absence off; and T, terms(no homogeneous broadenjng
So the solutions must be regarded as short-pulse approxima-
tions, which are valid when the pulse widtf of the sech
Q.(L,7)=A sechiKy¢— 7/~ )eiK\'lg, (160) pulse is shorter tham; andT,. There is no restriction om,

P with respect to the inhomogeneous broadening fiifiei.e.,
7p can be longer or shorter tharg .

Cald,mA)= 17idr, :

. _.[B7p sectiKy{—/7,) iK! ¢
C3(§,7,A)—I(T) TATDG vé, (160

= — iKy¢
Qp(¢,7)=B sechiKyf—r/mp)emve, (169 Actually, the inhomogeneous broadening timg only
Where affects the values oK andK’, which determine the group
velocities[v 4= 1/(K 7p,) in the moving framéand phase ve-
i g(A) locities (v pn=Cc+K'/w). Figure 3 shows the dependence of
= | —— K andK' on the ratio ofr, /T3 . We see from the figure that
Ky 27, ,f A2+(1/Tp)2dA, (179 2 g
04
, M Ag(A) i Ky

0.3
As in the A case, the solution is constrained by a relationship —~

o

between the amplitude and width of the pulses, in this case g
given by e 2
4 B
AZ+B?=—. (18) ol
Tp

When the pulses are detuned from line center and the
line-shape function is not symmetric with respectie-0, 0 4 /TS 6
the integrals in Eq914b) and(17b) give a nonzero value for e
K’, which in turn gives rise to the complex phase. To dem- FIG. 3. Plot ofK andK’ (in units of xT3) as a function of
onstrate this effect, we have taken a medium with a Gaussiaf, /T3 for A- and V-type media. Parameters used Ape= 1/T5 in
line-shape function: g(A) andB=1/T% in the A-type media.
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when the pulse width is ultrashaighorter than the inhomo- can be used to eliminatg, everywhere in either the \A) or
geneous broadening time,<T3), the values oK andK’ the A(—) case. This leads to amplitude-dependent expres-
increase with the increase of for both A-type and V-type sions for group and phase velocities in an obvious way.
media. However, when the pulse width is merely “short,”  As a final result, we point out that the constraints in Egs.
i.e., short enough to ignore homogeneous relaxation but still12) and(18) require that the areas of the input sech pulse be
much longer than the inhomogeneous broadening timgreater than 2 for A-type media and less thamor V-type
(7p>T3), the values oK andK’ decrease in the case of a media. Also note that the solution pulses for theype me-
A-typg medium and increase in the case of a V-type mediumiium correspond to a “bright”(sech and “dark” (tanh
as 7, Increases. soliton, whereas both of the pulsésech in the V-type me-
The reason for this behavior is that, foAatype medium,  dium correspond to a bright soliton. Note that these solutions
K andK’ depend onv, throughr,=r7,/(1+75B%/4). Fora  reduce to the well-known 2 sech pulse for self-induced

V—typt::; medium the equivalent of, is simply 7,. So for  transparency in a two-level mediu®2] if level 3 and pulse
7p<T3 , we haver,~ 7, andK andK'’ behave similarly for ~«p" are eliminated(by puttingB=0 andCs=0).

both types of medium. But _f0fp>T* , we haver,~1/7, In summary we have found formulas for the amplitudes of
andK andK’ behave oppositely foA-type and V-type me- g solitonlike pulse pair for inhomogeneously broadened
dia. and V-type three-level media. Explicit expressions for both

Note that it is also possibléand it could sometimes be group and phase velocities, and for the detuning-dependent
more physicalto regard the pulse amplitudésandB as the  gchralinger amplitudes have also been given. We have com-

primary independent parameters insteadof Then the re-  janted on the differences between the solutions for the two

lation types of media.
E: A2+ B This research was partially supported by NSF Grant Nos.
Tp PHY94-15583 and PHY97-22024.
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