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Critical temperature and Ginzburg-Landau equation for a trapped Fermi gas

M. A. Baranov and D. S. Petrov
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~Received 2 April 1998!

We discuss a superfluid phase transition in a trapped neutral-atom Fermi gas. We consider the case where
the critical temperature greatly exceeds the spacing between the trap levels and derive the corresponding
Ginzburg-Landau equation. The latter turns out to be analogous to the equation for the condensate wave
function in a trapped Bose gas. The analysis of its solution provides us with the value of the critical tempera-
ture Tc and with the spatial and temperature dependence of the order parameter in the vicinity of the phase
transition point.@S1050-2947~98!50608-7#

PACS number~s!: 03.75.Fi, 05.30.Fk
pe
at
um
ph
n
te
o

m

th
iti
e

-
‘si
in
w
th

o
po

ng

e

th

ct
he
r

a
th
rfi
ir

-
a
ti
th

-

ee
ccu-

e-
-

f

ce of
As
or

ose

nic
in

the

f a

y
the

e

s

The recent progress in the studies of ultracold trap
Bose gases and the discovery of Bose-Einstein condens
@1–3# have stimulated an interest in macroscopic quant
phenomena in trapped Fermi gases. The most prominent
nomena should be connected with a superfluid phase tra
tion associated with the appearance of the order-parame
macroscopic wave function of strongly correlated tw
particle states on the Fermi surface~Cooper pairs!. The
possibilities of finding this phase transition in trapped Fer
gases have been discussed in Refs.@4–6#.

A remarkable feature of neutral-atom Fermi gases is
the Cooper pairing and, hence, the superfluid phase trans
can occur for both attractive and repulsive interparticle int
action. For an attractive interaction~negative scattering
length a! the pairing occurs in thes-wave channel, as de
scribed by the standard BCS approach, and one has ‘
glet’’ Cooper pairs. In a neutral-atom Fermi gas, accord
to the Pauli principle, such a pair can only be formed by t
atoms that are in different hyperfine states. Therefore,
critical temperatureTc of the transition is very sensitive t
the difference in concentrations of the two hyperfine com
nents, and under the conditionDn/n[(n12n2)/(n11n2)
*Tc /«F!1, where«F;\2n2/3/m is the Fermi energy, there
will be a complete suppression of the spin-singlet pairi
For 6Li with a'21140 Å @7#, one hasTc'30 nK for the
atom densityn5431012 cm23 @4#, and the existence of th
s-wave pairing requiresDn/n,331022.

For positive scattering length~repulsive interaction! the
s-wave pairing is impossible, and one has to consider
mechanism ofp-wave ‘‘triplet’’ pairing, which originates
from the effective interaction caused by polarization effe
@8#. Actually, this pairing mechanism is insensitive to t
sign of the scattering length. It works equally well fo
a,0 in the situation where the directs-wave pairing is sup-
pressed. In these cases the Pauli principle allows us to h
Cooper pairs formed by two particles that are in one and
same hyperfine state, whereas the particles in other hype
states participate only in the formation of the effective pa
ing interaction. Therefore, thep-wave ‘‘triplet’’ pairing does
not require any severe restriction onDn. As found @9#, the
corresponding critical temperatureTc depends nonmonotoni
cally on ni and becomes zero only in the case where
particles are in the same hyperfine state. Since the effec
interaction based on polarization effects is weaker than
direct interparticle interaction, thep-wave triplet pairing re-
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sults in a lower value ofTc as compared to the critical tem
perature for thes-wave pairing. For example, for thep-wave
pairing in a gas of6Li the critical temperatureTc'30 nK
corresponds to densitiesni'1013 cm23 of different hyperfine
state components.~To reach this value one has to trap thr
hyperfine states and adjust their concentrations with an a
racy of Dn/n;0.1; see Ref.@5#.!

In this paper we study the influence of a~harmonic! trap-
ping potential on superfluid pairing. We derive the corr
sponding Ginzburg-Landau~GL! equation for the order pa
rameter, assuming the critical temperatureTc to be much
higher than the level spacingV in the trap. The analysis o
this equation provides us with the value ofTc for the trapped
gas and gives the coordinate and temperature dependen
the order parameter in the vicinity of the phase transition.
found, the critical temperature is slightly lower than that f
a spatially homogeneous Fermi gas with densityn0 ~maxi-
mum density of the trapped gas!, and the behavior of the
order parameter resembles the behavior of a trapped B
condensate.

We consider a two-component neutral gas of fermio
atoms, with a short-range interatomic interaction, trapped
a spherically symmetric harmonic potential. The two~hyper-
fine! components are labeled by indicesa56 and are as-
sumed to have equal concentrations. The Hamiltonian of
system has the form~\51!

H5E
r
(
a

ca
†~r !S 2

1

2m
]22m1

mV2r2

2 Dca~r !

1
g

2 (
a,b

E
r
ca

†~r !ca~r !cb
†~r !cb~r !, ~1!

wherem is the chemical potential~Fermi energy!, V the trap
frequency,g54pa/m the interaction strength, andm the
atom mass.

The interaction effects can be expressed in terms o
small gaseous parameterl52uaupF /p,1, where pF
5mvF5(3p2n0)1/3 is the Fermi momentum. In the spatiall
homogeneous case the system of fermions described by
Hamiltonian ~1!, with V50, undergoes a superfluid phas
transition. The transition temperatureTc

(0) and the type of
pairing depend on the sign ofa. For negativea ~attractive
interaction! there will be thes-wave singlet pairing, wherea
R801 © 1998 The American Physical Society
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for positive a the p-wave triplet pairing should take plac
~see Ref.@8# for details!. In both cases the critical tempera
ture Tc

(0)5C«F exp$21/G%, where«F5pF
2/2m is the Fermi

energy,G the pairing interaction, andC a numerical coeffi-
cient of order unity. The value ofC and the expression forG
depend on the type of pairing. For the singlet pairing one
G5l, and for the triplet pairingG'l2/13.

In the Thomas-Fermi approach («F@V) the density pro-
file of the trapped Fermi gas isn(r )5n0„12(r /RTF)2

…

3/2,
and the Thomas-Fermi radiusRTF5vF /V turns out to be the
natural length scale in the system. One can also introduce
local Fermi momentumpF(r )5pF„12(r /RTF)2

…

1/2 and the
density of states on the local Fermi surface,n0(r )
5mpF(r )/2p2. It should be noted that all these quantiti
are only slightly influenced by the superfluid pairing, b
cause the latter involves only a small fraction of particle
(;Tc /«F!1), with energies close to the Fermi energy.

For describing the phase transition one has to introd
the order parameter, which in the case of singlet pairing
complex functionD(r );^cs(r )cs8(r )&«ss8 , with «ss8 be-
ing the antisymmetric tensor. For the triplet pairing the ord
parameter is a 333 complex matrix D i j (r );(s2s i)ab
3^ca(r )] jcb(r )&, where s i are the Pauli matrices. Th
time-independent Ginzburg-Landau~GL! equation describes
the equilibrium behavior of the order parameterD~r ! below
Tc , assumingTc2T!Tc . The critical temperatureTc can
be found as the temperature below which this equation h
nontrivial solution. We present the derivation of the G
equation for the trapped Fermi gas in the case of sin
pairing (g,0), relying on the assumption that

Tc ,Tc
~0!@V.

The derivation of the GL equation for the triplet pairing c
be performed along the same lines, and should be base
the results of Ref.@10#.

For the s-wave singlet pairing the equilibrium GL fre
energy~D-dependent part of the free energy! can be written
in the form

FGL@D#5E
r

uD~r !u2

ugu

2T lnK Tt expH 2E
0

1/T

dtE
r
@c1~r ,t!

3c2~r ,t!D* ~r !1H.c.#J L
0 , ~2!

where we use the Matsubara representation, and the sy
^¯&0 stands for the average over the states of the fr
particle Hamiltonian@first term in Eq.~1!#. In the vicinity of
the phase transition the quantityD is small, and the secon
term in Eq.~2! can be expanded in powers ofD. As usual, we
perform this expansion up to the fourth power. The coe
cients of the expansions~kernels! can be expressed in term
of the Green function of the normal state~without pairing!,
Gv

(0)(r1 ,r2). As will be justified below, the order paramet
varies on a distance scalel D that is much larger than th
s
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characteristic distance scalejK;vF /Tc of these kernels. Ac-
cordingly,FGL@D# can be represented as~hereinafter we use
RTF as a unit of length!

FGL@D#5RTF
3 E

R
H uDu2

ugu
2K0

~2!~R!uDu22K1
~2!~R!~D]2D*

1D* ]2D22] iD* ] iD!1K ~4!uDu4J , ~3!

whereR5(r11r2)/2, r5r12r2 , D[D(R), and

K ~4!~R!5n0~R!
7z~3!

16p2T2 , ~4!

K0
~2!~R!5RTF

3 T(
v

E
r
G2v

~0! ~R,r !Gv
~0!~R,r !, ~5!

K1
~2!~R!d i j 5RTF

5 T

8 (
v

E
r
r i r jG2v

~0! ~R,r !Gv
~0!~R,r !. ~6!

Herez(x) is the Riemann zeta function, and the summat
is performed over the Matsubara frequenciesv5pT(2n
11), n50,61, . . . . TheconditionTc

(0)@V allows us to use
the quasiclassical expression for the product of two Gr
functions:

G2v
~0! ~R,r !Gv

~0!~R,r !

5S m

2prRTF
D 2

3expH 2r
uvu
V

2&

@A~12R2!21~v/«F!2112R2#1/2J ,

~7!

which can be obtained from the corresponding express
for the spatially homogeneous case, with the replacem
pF→pF(R). The validity of Eq.~7! requires the condition
(12R2)@(V/T)2. The use of Eq.~7! for calculating the
kernelsK0

(2) and K1
2 is justified by the fact that the pairing

takes place only in the central region of the gas cloud, a
the characteristic size of this regionl D!1. The main contri-
bution to K1

(2) comes from frequenciesuvu!«F , and a
straightforward calculation yields

K1
~2!~R!5

1

4
n0~R!k2, ~8!

wherek5A7§(3)/48p2(V/T)50.13(V/T)!1.
The calculation ofK0

(2) is more subtle, because the fre
quency sum in Eq.~5! diverges. The divergency can b
eliminated in a standard way by renormalization of the b
interactiong, and finally one has

1

ugu
2K0

~2!~R!5
m

4puau
2n0~R!ln

C«F~R!

T
.

Then, the final expression for the GL free energy can
written in the form
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FGL@D#5RTF
3 E

R
n0~R!H 2

k2

4
~¯ !1F 1

l S n0

n0~R!
21D

2 lnS Tc
~0!

T

«F~R!

«F
D G uDu21

7z~3!

16p2

1

T2 uDu4J , ~9!

where n0(R)5n0A12R2, «F(R)5«F(12R2), and the
symbol ~¯! stands for the same combination of derivativ
of D as in Eq.~3!. The analogous expression for the ‘‘trip
let’’ pairing can be obtained from Eq.~9!, with the replace-
mentsl→G'l2/13, uDu2→tr(D†D), anduDu4→tr(D†D)2.

Since only small distancesR;Ak!1 in Eq. ~9! are im-
portant for pairing, we will make an expansion in powers
R and retain only the largest~quadratic! terms. Then the
minimization of Eq. ~9! with respect toD* gives the GL
equation

F2k2]21
112l

2l
R22 ln

Tc
~0!

T GD1
7z~3!

8p2

uDu2

T2 D50.

~10!

We stress once more that Eq.~10! is valid under the condi-
tion D/T!1, which, in turn, implies thatTc2T!Tc .

It is interesting to emphasize that Eq.~10! for D is for-
mally equivalent to the nonlinear Schro¨dinger equation for
the condensate wave functionC0 in a Bose gas of neutra
particles of ‘‘mass’’ 1/2k2 in a harmonic confining potentia
with ‘‘frequency’’ ~‘‘level spacing’’! 2k̃52k(111/2l)1/2.
The last~nonlinear! term on the left-hand side plays the ro
of repulsive interparticle interaction, and the third ter
ln(Tc

(0)/T) the role of the chemical potential. Accordingly, th
calculation of the shape ofD is similar to the calculation of
the shape ofC0 in a trapped Bose gas, performed in, e.
@11,12#. But there is an important difference. In the Bose g
the amplitude ofC0 is determined by the normalization con
dition. Together with the Schro¨dinger equation this condition
gives the chemical potential as a function of the parti
number. Hence, for a small interparticle interaction the n
linear term is not important at all. In the Fermi gas the a
plitude of D is always determined by the nonlinear term.

The critical temperatureTc for the trapped Fermi gas i
the maximum temperatureT at which Eq.~10! has a non-
trivial solution. As usual,D→0 for T→Tc , and for finding
Tc the nonlinear term in Eq.~10! can be omitted. Then the
GL equation becomes similar to the Schro¨dinger equation for
spherically symmetrical oscillator, and we obtain

Tc
~0!2Tc

Tc
~0! ' ln

Tc
~0!

Tc
53k̃!1. ~11!

One can see from Eq.~11! that the critical temperatureTc for
the trapped gas is only slightly lower thanTc

(0) for the ho-
mogeneous gas with densityn0 .

As well as in the case of a trapped Bose condensate
shape of the order parameter in Eq.~10! is predetermined by
the ratioz of the nonlinear termuDu2/T2 to the level spacing
2k̃. Since the nonlinear term is on the order of the differen
between the ‘‘chemical potential’’ ln(Tc

(0)/T) and its mini-
mum value~11!, we have
f

,
s

e
-
-

he

e

z5
1

2k̃
ln

Tc

T
'

dT

V
~111/2l!21/2, ~12!

wheredT5Tc2T.
For z!1 and, hence,T very close toTc , the nonlinear

term in Eq. ~10! does not influence the shape of the ord
parameter, and the latter takes the form of a Gaussian:

Dc~R!;w0~R![~p l D
2 !23/4 exp~2R2/2l D

2 !. ~13!

The linear size of the spatial region where the pairing ta

place, l D5k/Ak̃!1, is finite for T→Tc . Moreover, l D

@jK;V/Tc , which justifies the gradient expansion in E
~3!. For finding the amplitude of the order parameter,D(R
50), in the limiting casez!1 we write D in the form
D(R,T)5a(T)@w0(R)1dw(R,T)#, where w5w01dw
obeys the normalization condition*Ruw(R,T)u251, and
dw→0 for T→Tc . Then Eq.~10! is transformed to

Fk2]22
112l

2l
R213k̃ Gdw1 ln~Tc /T!~w01dw!

5a2
7z~3!

8p2

~w01dw!3

Tc
2 . ~14!

Equation~14! givesa anddw as series of rational powers o
ln(Tc /T)'dT/Tc , the small parameter of expansion beingz.
Multiplying both sides of this equation byw0(R), integrating
overR, and omitting the terms containingdw, to the leading
order we obtain

a5Tcl D
3/2S 16p3A2p

7z~3!
ln

Tc

T D 1/2

,

and, hence,

FIG. 1. The order parameter versusR for various temperatures
The solid lines correspond toD0(R,T) @Eq. ~15!#, and the dashed
lines to numerical solutions of Eq.~10!.
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D~R,T!'D0~R,T!5TcA16p2&

7z~3!
ln

Tc

T
expS 2

R2

2l D
2 D

'5.15TcATc2T

Tc
expS 2

R2

2l D
2 D . ~15!

As in the spatially homogeneous case, we haveD
;ATc2T for T→Tc . For the triplet pairing one will have
D i j (R,T)5d i j D0(R,T).

It is important to mention, however, that the correctio
to Eq. ~15!, which can be obtained from Eq.~14!, are physi-
cally meaningless. They have the same order of magnit
@}(dT/Tc)

3/2# as the corrections originating from terms wi
higher powers ofD ~for example,D5/Tc

4! or higher deriva-
tives, neglected in deriving Eq.~10!. For the same reason on
should not go beyond the first term in expanding ln(Tc /T) in
powers ofdT/Tc . In Fig. 1 we present the approximate s
lution D0 ~solid lines! and the corresponding numerical s
lutions of Eq.~10! ~dashed lines! for Tc

(0)/V55, l50.3, and
dT/Tc50.001, 0.01, 0.03. For these values ofTc

(0)/V andl

we havek̃54.431022, and Eq.~11! gives the critical tem-
peratureTc50.87Tc

(0) , which is only 1% higher thanTc ,
following from the exact numerical solution of Eq.~10!.

For lower temperature, wherez@1 ~but still much smaller
than k̃21, as required by the conditiondT!Tc!, one can
neglect the Laplacian term in Eq.~10!, and write the approxi-
mate solution for the order parameter in the form
an

et

n,
tt.

et,

r,

.

de

D~R,T!5TcA 8p2

7z~3!
ln

Tc

T
~12R2/Rc

2!1/2

'3.06TcATc2T

Tc
~12R2/Rc

2!1/2 ~16!

for R<Rc5A(dT/Tc)(111/2l)215 l DA2z!1, and zero
otherwise. The solution~16! is completely analogous to tha
for the Bose condensate wave function in the quasiclass
~Thomas-Fermi! regime@13,14#.

Equations~15! and ~16! show that in the vicinity of the
phase transition the superfluid pairing takes place only i
small central region of the gas sample. This, together w
the fact that the superfluid pairing involves only a small fra
tion (;Tc /«F!1) of atoms, makes it very difficult to detec
the presence of pairing through the measurement of the
density profile. On the other hand, as well as in the spati
homogeneous case, the pairing should influence the spec
of elementary excitations. In this respect we believe that
measurement of eigenfrequencies of oscillations of the
cloud can be one of the most promising ways of identifyi
the phase transition in trapped Fermi gases.

We acknowledge fruitful discussions with G. V. Shlya
nikov. This work was supported by the Russian Foundat
for Basic Studies~Grant No. 97-02-16532!.
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