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Critical temperature and Ginzburg-Landau equation for a trapped Fermi gas
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We discuss a superfluid phase transition in a trapped neutral-atom Fermi gas. We consider the case where
the critical temperature greatly exceeds the spacing between the trap levels and derive the corresponding
Ginzburg-Landau equation. The latter turns out to be analogous to the equation for the condensate wave
function in a trapped Bose gas. The analysis of its solution provides us with the value of the critical tempera-
ture T, and with the spatial and temperature dependence of the order parameter in the vicinity of the phase
transition point[S1050-2947®8)50608-7

PACS numbe(s): 03.75.Fi, 05.30.Fk

The recent progress in the studies of ultracold trappedults in a lower value of . as compared to the critical tem-
Bose gases and the discovery of Bose-Einstein condensatigerature for thes-wave pairing. For example, for thpwave
[1-3] have stimulated an interest in macroscopic quantunpairing in a gas offLi the critical temperaturél ;~30 nK
phenomena in trapped Fermi gases. The most prominent pheerresponds to densities~ 10" cm* of different hyperfine
nomena should be connected with a superfluid phase transitate component$To reach this value one has to trap three
tion associated with the appearance of the order-parametetyperfine states and adjust their concentrations with an accu-
macroscopic wave function of strongly correlated two-racy ofAn/n~0.1; see Ref[5].)

particle states on the Fermi surfa¢€ooper pairs The In this paper we study the influence ofl@armonig trap-
possibilities of finding this phase transition in trapped Fermiping potential on superfluid pairing. We derive the corre-
gases have been discussed in Rgfs.6). sponding Ginzburg-Landa(GL) equation for the order pa-

A remarkable feature of neutral-atom Fermi gases is thatameter, assuming the critical temperatdrg to be much
the Cooper pairing and, hence, the superfluid phase transitidrigher than the level spacin@ in the trap. The analysis of
can occur for both attractive and repulsive interparticle interthis equation provides us with the valueTgf for the trapped
action. For an attractive interactiofnegative scattering gas and gives the coordinate and temperature dependence of
length a) the pairing occurs in thewave channel, as de- the order parameter in the vicinity of the phase transition. As
scribed by the standard BCS approach, and one has ‘“sirfound, the critical temperature is slightly lower than that for
glet” Cooper pairs. In a neutral-atom Fermi gas, accordinga spatially homogeneous Fermi gas with densigy(maxi-
to the Pauli principle, such a pair can only be formed by twomum density of the trapped gasand the behavior of the
atoms that are in different hyperfine states. Therefore, therder parameter resembles the behavior of a trapped Bose
critical temperaturel . of the transition is very sensitive to condensate.
the difference in concentrations of the two hyperfine compo- We consider a two-component neutral gas of fermionic
nents, and under the conditiohn/n=(n;—n,)/(ny+n,) atoms, with a short-range interatomic interaction, trapped in
=T./eg<1, whereeg~#%2n?3m is the Fermi energy, there a spherically symmetric harmonic potential. The thgper-
will be a complete suppression of the spin-singlet pairingfine) components are labeled by indices-+ and are as-

For °Li with a~—1140 A [7], one hasT.~30 nK for the  sumed to have equal concentrations. The Hamiltonian of the
atom densityn=4x 10" cm3 [4], and the existence of the system has the forrtfi=1)
swave pairing requiredn/n<3x 102,

For positive scattering lengtfrepulsive interactionthe 1
swave pairing is impossible, and one has to consider the H=| > l/fl(r)( —%52—
mechanism ofp-wave “triplet” pairing, which originates re
from the effective interaction caused by polarization effects g
[8]. Actually, this pairing mechanism is insensitive to the +5 > fdfl(f)l/fa(f)l/fﬁ(r)ebﬁ(f)- (1)
sign of the scattering length. It works equally well for @B Jr
a<0 in the situation where the direstwave pairing is sup-
pressed. In these cases the Pauli principle allows us to havghereu is the chemical potentidFermi energy, () the trap
Cooper pairs formed by two particles that are in one and th&equency,g=4ma/m the interaction strength, anah the
same hyperfine state, whereas the patrticles in other hyperfifg0om mass.
states participate only in the formation of the effective pair- The interaction effects can be expressed in terms of a
ing interaction. Therefore, thewave “triplet” pairing does ~ small gaseous parametex =2|a|pg/m<1, where pg
not require any severe restriction am. As found[9], the ~ =mvg=(3m%ny)*?is the Fermi momentum. In the spatially
corresponding critical temperatufe depends nonmonotoni- homogeneous case the system of fermions described by the
cally on n; and becomes zero only in the case where alHamiltonian (1), with =0, undergoes a superfluid phase
particles are in the same hyperfine state. Since the effectivisansition. The transition temperatu?l' and the type of
interaction based on polarization effects is weaker than thpairing depend on the sign af. For negativea (attractive
direct interparticle interaction, the-wave triplet pairing re- interaction) there will be thes-wave singlet pairing, whereas

mQ2r2

ha(r)
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for positive a the p-wave triplet pairing should take place characteristic distance scajg~vg /T, of these kernels. Ac-
(see Ref[8] for detail9. In both cases the critical tempera- cordingly,Fg [A] can be represented éwereinafter we use
ture TO'=Cer exp{—1/T'}, whereer=p2/2m is the Fermi  Rrg as a unit of length

energy,I’ the pairing interaction, an@ a numerical coeffi-

cient of order unity. The value @& and the expression fdr Fo[A]=R3 j
depend on the type of pairing. For the singlet pairing one has ' G- TF IR
I'=\, and for the triplet pairind”~\?/13.

In the Thomas-Fermi approack{>(}) the density pro-
file of the trapped Fermi gas i8(r)=ng(1—(r/Rg)%)%?,
and the Thomas-Fermi radit&g=uv /() turns out to be the
natural length scale in the system. One can also introduce thghereR=(r,+r,)/2, r=r;—r,, A=A(R), and
local Fermi momentunpg(r)=pe(1—(r/Rp)?)Y? and the
density of states on the local Fermi surfaceg(r) K#®(R)= VO(R)LS)Zi (4)
=mpg(r)/272. It should be noted that all these quantities 167°T
are only slightly influenced by the superfluid pairing, be-
cause the latter involves only a small fraction of particles
(~T./eg<1), with energies close to the Fermi energy.

For describing the phase transition one has to introduce
the order parameter, which in the case of singlet pairing is a T
complex functionA (1)~ (,(r) ¥y ())& e » With &, be- K(R)6,=Rrg 2 frir;G(Pl,(R,r)GS’)(R,r)- 6)
ing the antisymmetric tensor. For the triplet pairing the order ot
parameter is a 83 complex matrix A;;(r)~(020i)as  Here{(x) is the Riemann zeta function, and the summation
X(ha(r)d;yp(r)), where oy are the Pauli matrices. The s performed over the Matsubara frequencies =T(2n

A2
Tor KO (RIAP-KP(R)(aFA

+A*(92A—2(9iA*aiA)+K<4>|A|4], ©)

K@Z(R)=R3:TY, erG’MR,r)G;O)(R,r), (5)

time-independent Ginzburg-Land#BL) equation describes 1), n=0,+1 TheconditionT{®> Q) allows us to use
iepe 4 , =4, ... c

the equilibrium behavior of the order paramefdr) below o "¢ jasiclassical expression for the product of two Green

T¢, assumingT,—T<T. The critical temperatur@; can ¢, tione:

be found as the temperature below which this equation has a
nontrivial solution. We present the derivation of the GL g0 (R 1)GO(Rr)
equation for the trapped Fermi gas in the case of singlet * ¢

pairing (@<0), relying on the assumption that _ m |2
N 27TI’R-|—|:
T.,.TO>Qq.
|| 2V2
. . . . Xex o 2\2 2 2112
The derivation of the GL equation for the triplet pairing can [V(1-R*?+(w/eg)*+1-R?]
be performed along the same lines, and should be based on )

the results of Ref[10].
For the s-wave singlet pairing the equilibrium GL free which can be obtained from the corresponding expression
energy(A-dependent part of the free eneygan be written for the spatially homogeneous case, with the replacement

in the form pe— Pe(R). The validity of Eq.(7) requires the condition
(1-R?»)>(Q/T)?. The use of Eq(7) for calculating the
A(r)2 kernelsK{? and K? is justified by the fact that the pairing
|A(r)] 0 1
FelAl= ol takes place only in the central region of the gas cloud, and
r

the characteristic size of this regibp<<1. The main contri-

T bution to K{?) comes from frequenciew|<er, and a
—TIn( T, ex _fo der['h(r’T) straightforward calculation yields

1
x¢_<r,r>A*(r>+H.c.]]> K{?(R)= 7 vo(R) k%, ®

0 (2)

wherex=75(3)/487%(Q/T)=0.13(QQ/T)<1.

where we use the Matsubara representation, and the symbol The calculation oﬂ<gz) is more subtle, because the fre-
(--+)o stands for the average over the states of the freequency sum in Eq(5) diverges. The divergency can be
particle Hamiltoniarffirst term in Eq.(1)]. In the vicinity of  eliminated in a standard way by renormalization of the bare
the phase transition the quantityis small, and the second interactiong, and finally one has
term in Eq.(2) can be expanded in powers&f As usual, we
perform this expansion up to the fourth power. The coeffi- 2o M Cer(R)
cients of the expansiori&ernel$ can be expressed in terms lol Ko (R)= 4xlal vo(R)In T
of the Green function of the normal stateithout pairing,
fo)(rl,rz). As will be justified below, the order parameter  Then, the final expression for the GL free energy can be
varies on a distance scalg that is much larger than the written in the form
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2 1 v 1 T oT
3 K 0 _ .. ~1/2
_ AN el (L N z=—In —~—(1+1/22)" 1 12
FolA] RTFJRVO(R)[ 2 () L\ (Vo(R) 1) =T 0 ( ) (12

T ee(R) 7¢(3) 1
_In( T er AP+ o7 T2l O wheresT=T,-T.
For z<1 and, henceT very close toT., the nonlinear

_ _ term in Eqg.(10) does not influence the shape of the order
where v4(R)=voV1—R? &r(R)=sr(1—R?), and the e
symbol (--) stands for the same combination of derivativesPar@meter, and the latter takes the form of a Gaussian:
of A as in Eq.(3). The analogous expression for the “trip-
let” pairing can be obtained from E@9), with the replace- - —(12\-3/4 P22
men‘t)s)\—>gl“~)\2/13, |A|2—>IF(ATA), (in)d|A|4—>tr(ATpA)2. A(R)~¢o(R)=(l}) exp(—R/21%). (13

Since only small distance®~ k<1 in Eq. (9) are im-

portant for pairing, we will make an expansion in powers of The linear size of the spatial region where the pairing takes
R_qnq retain only the Iarges{tquadratlc) tfrms. Then the place, |A:K/\/~;<1, is finite for T—T,. Moreover, I,
minimization of Eq.(9) with respect toA™ gives the GL o . _ /T_  which justifies the gradient expansion in Eq.

equation (3). For finding the amplitude of the order paramet&(R
=0), in the limiting casez<1 we write A in the form

(0) 2
_ g o, T TR AR ART)=a(T)[eo(R)+ 5¢(R,T)], where ¢=po+ s

2 T gn? T2 ' obeys the normalization conditiofig|¢(R,T)|?=1, and
(100 5p—0 for T—T,. Then Eq.(10) is transformed to

We stress once more that E@.0) is valid under the condi-

tion A/T<1, which, in turn, implies thalT ,— T<T,. b, 12N 0 -

It is interesting to emphasize that EQ.0) for A is for- K507 — = R 3| S+ IN(Tc/T) (9o + 5¢)
mally equivalent to the nonlinear Schiinger equation for
the condensate wave functiob, in a Bose gas of neutral 5 74(3) (@0t S¢p)3

(14)

particles of “mass” 1/Z? in a harmonic confining potential —a

with “frequency” (“level spacing”) 2k=2x(1+ 1/2x)Y2
The last(nonlineay term on the left-hand side plays the role
of repulsive interparticle interaction, and the third termEquation(14) givesa and ¢ as series of rational powers of
In(T@/T) the role of the chemical potential. Accordingly, the In(T¢/T)~4T/T;, the small parameter of expansion being
calculation of the shape df is similar to the calculation of ~Multiplying both sides of this equation by,(R), integrating
the Shape Oﬂfo in a trapped Bose gas, performed in, e.g',overR, and OI”_nIttlng the terms Contalnlr@D, to the Ieadlng
[11,12). But there is an important difference. In the Bose gasorder we obtain
the amplitude of¥’ is determined by the normalization con-
dition. Together with the Schdinger equation this condition 3 12
gives the chemical potential as a function of the particle a=T |3/2< 16w \/ﬁm E)

. . . . A )
number. Hence, for a small interparticle interaction the non- 7(3) T
linear term is not important at all. In the Fermi gas the am-
plitude of A is always determined by the nonlinear term.

The critical temperaturd, for the trapped Fermi gas is and. hence,

the maximum temperatur€ at which Eq.(10) has a non-
trivial solution. As usualA—0 for T—T,, and for finding 4
T. the nonlinear term in Eq10) can be omitted. Then the
GL equation becomes similar to the Sctfirgger equation for

872 Tg

spherically symmetrical oscillator, and we obtain 3
TO-T, T o

Twln T—c=3K<1. (11 E 2
I

One can see from E@l1) that the critical temperaturg, for
the trapped gas is only slightly lower than® for the ho-
mogeneous gas with density.

As well as in the case of a trapped Bose condensate, the . :
shape of the order parameter in Efj0) is predetermined by 0.0 0.1 0.2 03 0.4
the ratioz of the nonlinear termA|2/T2 to the level spacing R/Ry
2. Since the nonlinear term is on the order of the difference EiG. 1. The order parameter versRgor various temperatures.

between the “chemical potential” IF(/T) and its mini-  The solid lines correspond ty(R,T) [Eq. (15)], and the dashed
mum value(11), we have lines to numerical solutions of E¢10).

[y
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AR, T)=Ay(RT)=T leﬂzﬁl Te R’ ART)=T \/8W2| Te 1—R%/R?)12
(RT)=~An(R,T)=T, Wn?ex N (R,T)=T, mn?(— c)
T—T R? T—T
~5.15T \/—=— exd — 5. (15) ~3.06T;\/—=— (1-R¥RH)¥ (1)
Te 213 Te

As in the spatially homogeneous case, we hake
~\T¢—=T for T—=T.. For the triplet pairing one will have for R<R,= \/(ST/TC)(1+ 1/2)\)*1=IA\/£<1, and zero
Aij(R,T)=6;;Aq(R,T). otherwise. The solutiofil6) is completely analogous to that

It is important to mention, however, that the correctionsfor the Bose condensate wave function in the quasiclassical
to Eq.(15), which can be obtained from E{l4), are physi- (Thomas-Fermiregime[13,14).
cally meaningless. They have the same order of magnitude Equations(15) and (16) show that in the vicinity of the
[(ST/T.)%?] as the corrections originating from terms with phase transition the superfluid pairing takes place only in a
higher powers ofA (for example,AS/T‘c‘) or higher deriva- small central region of the gas sample. This, together with
tives, neglected in deriving E@L0). For the same reason one the fact that the superfluid pairing involves only a small frac-
should not go beyond the first term in expandingrffl) in  tion (~T./ex<<1) of atoms, makes it very difficult to detect
powers of ST/T;. In Fig. 1 we present the approximate so- the presence of pairing through the measurement of the gas
lution A, (solid lineg and the corresponding numerical so- density profile. On the other hand, as well as in the spatially
lutions of Eq.(10) (dashed linesfor T/ =5,1=0.3, and homogeneous case, the pairing should influence the spectrum
8T/T,=0.001, 0.01, 0.03. For these valuesTéf/Q andx  Of elementary excitations. In this respect we believe that the
we havexk=4.4x 102, and Eq.(11) gives the critical tem- rr;eaguremte)nt of ei?eﬁlfrequencies .Of. oscillationfs.dof the_gas
peratureT,=0.87T®), which is only 1% higher thar,, cloud can be one of the most promising ways of identifying

. . i the phase transition in trapped Fermi gases.
following from the exact numerical solution of E(LO). P bp g
For lower temperature, wheee>1 (but still much smaller

than k%, as required by the conditioAT<T,), one can We acknowledge fruitful discussions with G. V. Shlyap-
neglect the Laplacian term in E(L0), and write the approxi- nikov. This work was supported by the Russian Foundation
mate solution for the order parameter in the form for Basic StudiegGrant No. 97-02-16532
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